F. Momose Nagoya Math. J. Vol. 96 (1984), 139-165

p-TORSION POINTS ON ELLIPTIC CURVES DEFINED OVER QUADRATIC FIELDS

FUMIYUKI MOMOSE*

Let p be a prime number and k an algebraic number field of finite degree d. Manin [14] showed that there exists an integer n = n(k, p) (≥ 0) which satisfies the condition

$$E(k)_{p^{\infty}} \subseteq \ker (p^n \colon E \longrightarrow E)$$

for all elliptic curves E defined over k. Here, $E_{p^{\infty}} = \bigcup_{m \ge 1} E_{p^m}$ and $E_{p^m} = \ker(p^m \colon E \to E)$. We denote by n = n(k, p) the least non-negative integer satisfying the above condition. For $k = \mathbf{Q}$, we know that $n(\mathbf{Q}, 2) = 3$, $n(\mathbf{Q}, 3) = 2$, $n(\mathbf{Q}, 5) = n(\mathbf{Q}, 7) = 1$ and $n(\mathbf{Q}, p) = 0$ for $p \ge 11$ (cf. [10], [16, 17], [20], [22]). For quadratic fields k, Kenku [6, 8, 9] showed that $n(k, 2) \le 4$, n(k, 3) = 2, n(k, 5) = n(k, 7) = 1, n(k, 17) = n(k, 19) = n(k, 23) = 0 and n(k, p) = 0 for the primes $p; p \ge 181$, $p \ne 191$ and $\sharp J_0(p)(\mathbf{Q}) < \infty$. Here $J_0(p)$ is the jacobian variety of the modular curve $X_0(p), w_p$ is the automorphism of $J_0(p)$ induced by the fundamental involution $w_p \colon (E, A) \mapsto (E/A, E_p/A)$ of $X_0(p)$ and $J_0(p) = J_0(p)/(1 + w_p)J_0(p)$ (see [17]). Our result for quadratic fields k is the following.

THEOREM A. Let k be any quadratic field and n = n(k, p) as above. Then

$$n(k, 11) \leq 1$$
$$n(k, 13) \leq 1$$

and n(k, p) = 0 for the primes $p \ge 17$ satisfying the condition $\# J_0(p)(Q) < \infty$.

For p = 2, 11 and 13, n(k, p) depends on k (see (3.3)). For the primes $p, 17 \leq p < 300$, except for p = 151, 199, 227 and 277, the condition $\# J_0(p)(Q) < \infty$ is satisfied ([17] p. 40, [35] Table 5 pp. 135-141). We conjecture n(k, p) = 0 for $p \geq 17$. Our method used for quadratic fields can

Received December 1, 1983.

^{*} Supported in part by Japan-U.S. exchange fund.

be applied to some other number fields. For example we get the following.

THEOREM B. Let k be any cubic field and n = n(k, p) as above. Then

$$n(k, 2) \leq 5$$
$$n(k, 3) = 2$$
$$n(k, 17) \leq 1$$

and n(k, p) = 0 for p = 19, 23, 41, 47, 59, 71 and the primes $p; p \ge 79$, $p \ne 79, p \ne 109$ and $\# J_0^-(p)(\mathbf{Q}) < \infty$.

We here give a sketch of the proof of Theorem A above for the case $p \ge 23$, $p \ne 37$. Suppose that there exists a non cuspidal k-rational point x on $X_1(p)$. Under the condition as in Theorem A, one gets a rational function g on $X_0(p)$ defined over Q such that

$$(g) = (x) + (x^{\sigma}) + 2(\infty) - (w_p(x)) - (w_p(x^{\sigma})) - 2(0),$$

where $1 \neq \sigma \in \text{Gal}(k/Q)$ and $0, \infty$ are the cusps on $X_0(p)$, Section 2. For $p \geq 181 \ (p \neq 191)$, Kenku [9] proved that such function g does not exist, using an Ogg's idea [22, 24]: The upper semicontinuity gives a non constant rational function $h(F_2)$ on $\mathscr{X}_0(p) \otimes F_2$ with $(h)_{\infty} <$ an effective divisor of degree 4, which leads the inequality $\# \mathscr{X}_0(p)(F_p) \leq 10$. For the remaining p, we use the following two methods: (1) The condition $(w_p^*g) = -(g) \ (\neq 0)$ shows that $w_p^*(g) = a/g$ for $a \in Q^{\times}$. Let y_i be the fixed points of w_p on $X_0(p)$ and put $D = \Sigma_i(y_i)$. Then one sees that $(g-\sqrt{a})_0 > \Sigma'(y_i)$ and $(g+\sqrt{a})_0 > \Sigma''(y_i)$ with $D = \Sigma'(y_i) + \Sigma''(y_i)$. This notion and a study on y_i give the inequality that the degree of $D \leq 4$, (2.3). This criterion gives the proof, except for p = 43, 67, 73, 97 and 163. (2) The upper semicontinuity and a study on the action of w_{p} on $\mathscr{X}_0(p)\otimes F_2$ give a non constant rational function $h(/F_2)$ on $\mathscr{X}_0^+(p)\otimes F_2$ with $(h)_{\infty} \leq 2(\text{cusp})$ (2.4), where $\mathscr{X}_0^+(p) = \mathscr{X}_0(p)/\langle w_p \rangle$. Then $\# \mathscr{X}_0^+(p)(F_2) \leq 5$ and $\# \mathscr{X}_0^+(p)(F_4) \leq 9$, which complete the remaining case. For p = 13 and 37, we apply other methods.

For the case p < 300, we get an estimate of n = n(k, p) by an integer which depends only on k and p (see § 2). We add the table in Section 4.

The author thanks to B. Mazur, T. Sekiguchi and K. Cho for their useful remarks on curves.

Notation. For a prime number q, Q_q^{ur} denotes the maximal unramified extension of Q_q . Let K be a finite extension of Q, Q_q or Q_q^{ur} , and A an

abelian variety defined over K. Then \mathcal{O}_{K} denotes the ring of integers of K, $A_{/\sigma_{K}}$ denotes the Néron model of A over the base \mathcal{O}_{K} .

§1. Preliminaries

Let p be a prime number, $X_1(p^r)$ (resp. $X_0(p^r)$) the modular curve (defined over **Q**) which corresponds to the modular group $\Gamma_1(p^r)$ (resp. $\Gamma_0(p^r)$). For $p^r \geq 5$, $X_1(p^r)$ is the coarse moduli space (/Q) of the isomorphism classes of the generalized elliptic curves E with a torsion point Pof order p^r up to the isomorphism $(-1)_E : E \cong E$. We denote by $Y_1(p^r)$, $Y_0(p^r)$ the affine open subschemes $X_1(p^r) \leq x_0(p^r) > x_0(p^r) > x_0($ tively. Let k be a number field and x a k-rational point on $Y_1(p^r)$ (resp. $Y_0(p^r)$). Then there exists an elliptic curve E defined over k with a torsion point P of order p^r (resp. a cyclic subgroup A of rank p^r) defined over k (see [2] VI Proposition (3.2)). Let $f: X_1(p^r) \to X_0(p^r)$ be the natural morphism: $(E, \pm p) \rightarrow (E, \langle P \rangle)$, where $\langle P \rangle$ is the cyclic subgroup generated by P. Then f is a Galois covering with the Galois group $\overline{\Gamma}(p^r) =$ $\Gamma_0(p^r)/\pm \Gamma_1(p^r) \ (\simeq (Z/p^rZ)^{\times}/\pm 1).$ For an integer *i* prime to *p*, [*i*] (= [-*i*]) denotes the element of $\overline{\Gamma}(p^r)$ respresented by $g \in \Gamma_0(p^r), g \equiv \begin{pmatrix} i & * \\ 0 & * \end{pmatrix} \mod p^r.$ The action of [i] is defined by $(E, \pm P) \rightarrow (E, \pm i \cdot P)$. Let $w = w_{pr}$ be the fundamental involution of $X_0(p^r)$: $(E, A) \mapsto (E/A, E_{p^r}/A)$ and $X_0^+(p^r)$ the quotient $X_0(p^r)/\langle w \rangle$. For a point on a modular curve, $\to X_0(1)$ (= the projective j-line/Q), j(x) denotes the modular invariant of x. We here explain the fixed points of w_p on $X_0(p)$ and add a table of the Mordell-Weil groups of subcoverings $X: X_1(p^r) \to X \to X_0(p^r)$. Further we discuss the fixed points of w_p on $\mathscr{X}_0(p) \otimes \mathbb{Z}_2$ and prepare some lemmas on curves, which will be used in Section 2.

(1.1) The ramification points of $Y_1(p^r) \longrightarrow Y_0(p)$ $(p^r \ge 5)$. $j(x) \ \ \sharp \{\text{ramification points}\}$ 1728 2 if $p \equiv 1 \mod 4$ 0 2 if $p \equiv 1 \mod 3$.

(1.2) The ramification points of $X_0(p) \longrightarrow X_0^+(p)$ $(p \ge 5)$ and $X_0(11^2) \longrightarrow X_0^+(11^2)$.

Let h = h(-p) be the class number of $Q(\sqrt{-p})$, and h' = h'(p) the class number of the order $Z[\sqrt{-p}]$ for $p \equiv 1 \mod 4$. Then h' = h if $p \equiv -1 \mod 8$, $h' \equiv 3h$ if $p \equiv 3 \mod 8$ (see e.g., [12] Part 8). Denote by s = s(p)

FUMIYUKI MOMOSE

the number of the ramification points of $X_0(p) \to X_0^+(p)$ $(p \ge 5)$. Then

$$s = egin{cases} h & ext{if} \ p \equiv 1 egin{array}{c} 1 \ ext{mod} \ 4 \ h + h' & ext{if} \ p \equiv 1 egin{array}{c} 1 \ ext{mod} \ 4 \ \end{array} \end{cases}$$

(loc. cit.). Let H (resp. H') be the Hilbert class field of $Q(\sqrt{-p})$ (resp. of the order $Z[\sqrt{-p}]$ if $p \equiv 1 \mod 4$) and $x_1, \dots, x_h, \dots, x_s$ the ramification points. Let $H \stackrel{\iota}{\longrightarrow} C$ (resp. $H' \stackrel{\iota'}{\longrightarrow} C$) be an embedding, ρ the complex conjugation of H (resp. H') induced by this embedding, and H^+ (resp. H'^+) the fixed field by ρ . For $i, 1 \leq i \leq h, x_i$ is defined over H and cojugate over $Q(\sqrt{-p})$. One of them, say x_i , is defined over H^+ . (Under the embedding ι of H into C, x_1 is represented by the elliptic curve C/α for an ideal α of the ring of integers of $Q(\sqrt{-p})$ which satisfies $(\alpha^{\rho}) \sim (\alpha)$ in the ideal class group of $Q(\sqrt{-p})$. If $p \equiv -1 \mod 4$, $x_{h+i}(1 \leq i \leq h')$ are defined over H' and conjugate over $Q(\sqrt{-p})$. One of them, say x_{h+1} , is defined over H'^+ . (Under the embedding ι' of H' into C, x_{h+1} is represented by the elliptic curve $C/Z + Z\sqrt{-p}$).

There are six ramification points of $X_0(11^2) \to X_0^+(11^2)$, which are conjugate over Q, and the set of the ramification points is a disjoint union of two orbits of $\operatorname{Gal}(\overline{Q}/Q(\sqrt{-1}))$ of length three.

(1.3) The cuspidal sections of $X_0(p^r)$ ([2]).

For integers $k, 1 \leq k \leq r$, and i prime to p, let $\binom{i}{p^k}$ be the cuspidal section of $X_0(p^r)$ represented by the pair $(G_m \times Z/p^{r-k}Z, Z/p^rZ(\zeta^i, p^k))$. Here, $Z/p^rZ(\zeta^i, p^k)$ is the cyclic subgroup of $\mu_{pr} \times Z/p^rZ$ generated by $(\zeta^i, p^k), \zeta = \zeta_{pr}$ is a primitive p^r -th root of 1. We denote $0 = \binom{0}{1}$ and $\infty = \binom{1}{0}$. The ramification index of the covering $X_1(p^r) \to X_0(p^r)$ at $\binom{i}{p^k}$ is min $\{p^k, p^{r-k}\}$. Let $0_i, 1 \leq i \leq p^{r-1}(p-1)$, be the cuspidal sections of $X_1(p^r)$ lying over $0 = \binom{0}{1}$, which are Q-rational. We call them the 0-cusps.

(1.4) We will use the following coverings. Here $\tilde{\tau}$ is the generator of $\overline{\Gamma}_0(p^r) \simeq (Z/p^r Z)^{\times}/\pm 1$, s = s(p) is the number of the ramification points of $X \to Y$, and g(X) and g(Y) are respectively the genuses of X and Y. If $X = X_0(p)$ and $Y = X_0^+(p)$, put $g_0(p) = g(X)$, $g_+(p) = g(Y)$.

142

prime <i>p</i>	covering	8	g(X)	g(Y)
2	$X = X_{ m i}(32)/\langle { ilde { au}}^4 angle \stackrel{2}{\longrightarrow} Y = X_{ m i}(32)/\langle { ilde { au}}^2 angle$	8	5	1
3	$X = X_{ m i}(27)$ $\stackrel{3}{\longrightarrow} Y = X_{ m i}(27)/\langle ec \gamma^{ m s} angle$	12	13	1
5	$X = X_{\scriptscriptstyle 1}(25)/\langle { ilde {\gamma}}^{\scriptscriptstyle 5} angle \stackrel{5}{\longrightarrow} Y = X_{\scriptscriptstyle 0}(25)$	4	4	0
(7	$X=X_{\scriptscriptstyle 1}(49)/\langle 7^{\scriptscriptstyle 3} angle \longrightarrow Y=X_{\scriptscriptstyle 0}(49)$	2	3	1)
11	$X = X_{\rm i}(121) \xrightarrow{2} Y = X_{\rm o}^{+}(121)$	6	6	2
13	$X = X_{ m i}(13) \qquad \stackrel{2}{\longrightarrow} Y = X_{ m i}(13)/\langle {\widetilde \prime}^{ m s} angle$	6	2	0
17	$X = X_1(17)$ $\xrightarrow{2}$ $Y = X_1(17)/\langle \gamma^4 \rangle$	8	5	1
19	$X = X_{1}(19) \qquad \stackrel{3}{\longrightarrow} Y = X_{1}(19)/\langle \mathcal{T}^{3} angle$	6	7	1
23	$X = X_1(23) \qquad \xrightarrow{11} Y = X_0(23)$	0	12	2
0		6	2	0
$egin{array}{l} \mathrm{p} \geqq 29 \ eq 37 \end{array}$	$X = X_0(p) \qquad \stackrel{2}{\longrightarrow} Y = X_0^+(p)$			

Table 1.

For p = 37, let $(X_1(37) \xrightarrow{9} X \xrightarrow{2} Y = X_0(37))$ be the double covering. Then s = 2, g(X) = 4 and g(Y) = 2.

(1.5) Let J = J(X) be the jacobian variety of the modular curve X above. On the Mordell-Weil groups of J or $J_0^-(p)$ $(p \ge 11)$, we know the following (Kenku [6, 8, 9], Mazur and Tate [20], Mazur [17], [35] Table 1, 3, 5).

Table 2.			
р	$\# J(Q) ext{or} \# J_0^+(p)(Q)_{ ext{tor}}$		
2	$2\cdot 5 \ \ J(\boldsymbol{Q}) 2^9\cdot 5^2$		
3	$3 \cdot 19 \# J(Q) 3^{4} \cdot 19 \cdot 307$		
5	$J(Q) \simeq Z/71Z$		
7	$J(oldsymbol{Q})\simeq Z/14Z$		
11	$2 \cdot 5 \sharp J_{_0}^{}(121)(oldsymbol{Q}) 2^a \cdot 5^{_2}$ for an integer $a \geqq 1$		
13	$J(Q)\simeq Z/19Z$		
17	$2 \cdot 73 \mid \# J(\mathbf{Q}) \mid 2^3 \cdot 73$		
19	$3 \# J(Q) 3^2 \cdot 387$		
23	$11 \# J_1(23)(Q) 11 \cdot 37181$		
$p \ge 11$	$J_0^-(p)(\mathbf{Q})_{\mathrm{tor}}\simeq Z/mZ$, where $m=\mathrm{num}((p-1)/12).$		

FUMIYUKI MOMOSE

For p = 37, we will see that the Mordell-Weil group of Coker $(J_0(37) \rightarrow J(X))$ is isomorphic to Z/5Z. (The double covering $X \rightarrow X_0(37)$ has two ramification points with the modular invariant j = 1728).

(1.6) Let $\mathscr{X}_1(p^r)$, $\mathscr{X}_0(p^r)$ be the normalizations of the projective *j*-line $\mathscr{X}_0(1) \simeq \mathbf{P}_Z^1$ in $X_1(p^r)$ and $X_0(p^r)$, respectively. These are smooth over $\mathbb{Z}[1/p]$ ([2]VI Proposition (6.7)). The special fibre $\mathscr{X}_1(p^r) \otimes \mathbb{F}_p$ (also $\mathscr{X}_0(p^r) \otimes \mathbb{F}_p$) has r + 1 irreducible components E_0, \dots, E_r . The 0-cusps $\otimes \mathbb{F}_p$ are the sections of the smooth component $E_0^h = E_0 \setminus \{\text{supersingular points on } \mathscr{X}_1(p^r) \otimes \mathbb{F}_p\}$. Put $\mathscr{V}_1(p^r) = \mathscr{X}_1(p^r) \setminus \sum_{i=0}^{r-1} E_{i+1}$, which is smooth over \mathbb{Z} . The 0-cusps are the sections of $\mathscr{V}_1(p^r)$ ([2] V § 2, § 4, VI).

N.B. (loc. cit.). Let $\mathscr{C}' = \mathscr{C}'_1(p^r)$ be the algebraic stack which represents the functor: for a scheme S/Z, $\mathscr{C}'(S)$ is the set of the isomorphism classes of the generalized elliptic curves C with a S-section P of order p^r such that $\langle P \rangle \simeq (Z/p^r Z)/S$, isomorphic locally for the étale topology. Here $\langle P \rangle$ is the finite étale subgroup generated by the section P (see loc. cit. V § 2, § 4). Let $\mathscr{V}_1(p^r)$ be the scheme induced by \mathscr{C}' (= "schéma grossier", loc. cit. VI, VII p. 300). Then $\mathscr{V}_1(p^r)$ is an open subscheme of $\mathscr{X}_1(p^r)$ and smooth over Z (see loc. cit. V § 2, § 4, I (8.22)). The 0-cusps are the sections of $\mathscr{V}_1(p^r)$ represented by the pairs $(G_m \times Z/p^r Z, \pm P)$ for $P \in Z/p^r Z$.

Let k be an algebraic number field of degree d, \tilde{k} the smallest Galois extension of Q containing k. For a rational prime q, let q be a prime of \tilde{k} lying over q. We denote by f_q , e_q the degree of q and the ramification index of q in \tilde{k} , respectively. Let C = C(k, p) be the set of rational primes q as follows:

(1.7)
$$C(k,p) = \{q \neq 2, p\} \cup \{q = p \quad \text{if } e_p < p-1\} \\ \cup \{q = 2 \quad \text{if } p \neq 2, 11, 17 \text{ or } p \equiv 1 \mod 8\}.$$

Define an integer n' = n'(k, p) as the least non-negative integer subjects to

(1.8)
$$p^{n'} > \min_{q \in C(k,p)} \{1 + q^{f_q} + 2\sqrt{q^{f_q}}\}$$

and

$$n' > 4$$
 if $p = 2$, $n' > 2$ if $p = 3$, $n' > 1$ if $p = 5$, 7.

For $p \ge 23$, let n'' = n''(k, p) be the least integer such that $n'' \ge n'$ and $p^{n''} > 1 + 2^{f_2} + 2\sqrt{2^{f_2}}$. For the prime $p \equiv 1 \mod 8$ $(p \ge 23)$, n' = n'' (see (1.7)).

For a k-rational point x on $X_1(p^r)$ (resp. $X_0(p^r)$), by x we denote the $\mathcal{O}_{\bar{k}}$ -section: Spec $\mathcal{O}_{\bar{k}} \to \mathcal{X}_1(p^r)$ (resp. $\to \mathcal{X}_0(p^r)$) which is the unique extension of x. Let E be an elliptic curve defined over k with a k-rational point P of order p^r , and x the point on $Y_1(p^r)$ represented by the pair $(E, \pm P)$.

LEMMA (1.9). Let q be a rational prime such that $q \neq p$, or q = pand $e_q , and q a prime of <math>\tilde{k}$ lying over q. If $p^r > 1 + q^{f_q} + 2\sqrt{q^{f_q}}$, then $x^{\sigma} \otimes \mathcal{O}/\mathfrak{p}$ is a 0-cusp for any $\sigma \in \text{Isom}_{Q}(k, Q)$, where \mathcal{O} is the ring of integers of \tilde{k} .

Proof. We denote f_q by f, and $\mathcal{O}^{\mathrm{ur}}$ the ring of integers of $\tilde{k} \otimes Q_q^{\mathrm{ur}}$. The point x^{σ} is represented by (E^{σ}, P^{σ}) which is defined over \tilde{k} . By the universal property of the Néron model E_{I_0} , there exists a homomorphism $f: (Z/p^{r}Z)_{/o} \to E_{/o}$ such that $f \otimes \tilde{k}$ is an isomorphism into E. Let A be the flat closure of $f((Z/p^r Z))_{/o} \otimes \tilde{k})$ in the Néron model $E_{/o}$, which is a finite flat group scheme of rank p^r . If $q \neq p$, f is an isomorphism. If q = p and $e_p , by the fundamental property of the finite flat group$ schemes ([26] § 3 Proposition (3.3.2)), f is also an isomorphism (: $f \otimes \mathcal{O}^{ur}$ is an isomorphism, then ker $(f \otimes F_{qf}) = \{0\}$. Since $p^r > 1 + q^f + 2\sqrt{q^f}$ (≥ 5) , E has semistable reduction at q (Tate [35] p. 46), and has multiplicative reduction (e.g., [16] Lemma 2). Fix an embedding of \bar{k} into \bar{Q}_q . Then the connected component $(E^{\sigma}{}_{\prime o}\otimes F_{qf})^{\circ}$ of the unity is a torus T and $T \otimes_{F_{q^{2}f}} F_{q^{2f}} \simeq G_{m/F_{q^{2f}}}$. So if $x^{\sigma} \otimes F_{q^{f}}$ is not a 0-cusp, then $Z/p^{r}Z \subset$ $T(F_{q^f}),\simeq Z/(q^f-1)Z$ or $\simeq Z/(q^f+1)Z.$ Therefore the condition $p^r>$ $1 + q^f + 2\sqrt{q^f}$ shows that $x^\sigma \otimes F_{qf}$ is a 0-cusp.

(1.10) Now we describe the fixed points of $w = w_p$ of $\mathscr{X}_0(p) \otimes \mathbb{Z}[1/p]$ $(p \ge 5).$

Let $\mathscr{X}_0^+(p)$ be the quotient $\mathscr{X}_0(p)/\langle w \rangle$, which is smooth over Z[1/p]. $(\mathscr{X}_0(p)$ is smooth over Z_2 and the action of w on $\mathscr{X}_0(p) \otimes F_2$ is generically étale of degree two, see [2] VI Proposition (6.7)). Let $q, \neq p$, be a rational prime, y a fixed point of w on $\mathscr{X}_0(p) \otimes F_q$. Then y is represented by an elliptic curve $(/\bar{F}_q)$ with a subgroup A of rank p such that $(E, A) \simeq (E/A, E_p/A)$ (see [2]). There exists an endomorphism α of E such that $\alpha(A) = \{0\}$ and $\alpha^2 = -p$. The pair (E, α) is lifted to characteristic zero (over a finite extension of Q_q^{ur}), see e.g., [12] Part 12 § 5 Theorem 14). Thus y is the special fibre of a fixed point x_i for an integer $i, 1 \leq i$ $\leq s = s(p)$ (see (1.2)). Let x be a fixed point of w on $X_0(p)$ and \mathcal{O} the ring of integers of Q_q^{ur} . Let $\widehat{\mathcal{O}_{x_0(p),x}} = \mathcal{O}[[t]]$ be the completion along the \mathcal{O} -section x ([2] VI Proposition (6.7)). Then, $\sigma = w^*$ is of the form $\sigma(t) = -t + a_2t^2 + \cdots$ for $a_i \in \mathcal{O}$ and $a_j \in \mathcal{O}^{\times}$ for some j if q = 2. If $q \neq 2$, p, it is easily seen that $x_i \otimes \overline{F_q} \neq x_j \otimes \overline{F_q}$ for $x_i \neq x_j$.

Now assume q = 2 $(p \ge 5)$. The double covering $\mathscr{X}_0(p) \otimes F_2 \to \mathscr{X}_0^+(p) \otimes F_2$ has wild ramifications at the fixed points of $w = w \otimes F_2$ (see e.g., [29] Chapitre IV). By the Riemann-Hurwitz formula, $2g_0(p) - 2 = 2(2g_+(p) - 2) + \sum_{y}(1 + i(y))$, where y are the ramification points and i(y) is the index of wild ramification at y (see loc. cit., [17] Chapter II). Therefore, there are at most s(p)/2 ramification points on $\mathscr{X}_0(p) \otimes \overline{F}_2$. Let $v = v_2$ be the normalized valuation of \overline{Q}_2 such that v(2) = 1.

SUBLEMMA. Let x, σ and \mathcal{O} be as above, and π a prime element of \mathcal{O} . Let \mathcal{O}' be the ring of integers of the cyclic extension of $\mathbf{Q}_{\lambda}^{ur}(x)$ of degree three, and π' a prime element of \mathcal{O}' .

(i) If $v(\pi) = 1$ ($\mathcal{O} \simeq W(\overline{F}_2)$), there are at most two solutions $t = \alpha \in \pi \mathcal{O}$ of $t = \sigma(t)$, and at most three solutions $t = \alpha \in \pi' \mathcal{O}'$ of the same equation.

(ii) If $v(\pi) = 1/2$, $t = \sigma(t)$ has at most two solutions in πO .

Proof. The relation $\sigma^2 = 1$ implies $a_3 = -a_2^2$. The remaining part is elementary.

Case $p \equiv 1 \mod 8$. The ramification index of the rational prime 2 in H is 2 (see (1.2)). By (ii) above we see that the map $\{x_i\} \to \{x_i \otimes \overline{F}_2\}$ is two to one. Two of $x_i \otimes \overline{F}_2$ are F_2 -rational (see [24] Theorem 3).

Case $p \equiv 5 \mod 8$. By the same reason as above, the map $\{x_i\} \rightarrow \{x_i \otimes \overline{F}_2\}$ is two to one. One of $x_i \otimes \overline{F}_2$ is F_2 -rational (loc. cit.).

Case $p \equiv -1 \mod 8$. In this case H = H' (see (1.2)), the rational prime 2 splits in $Q(\sqrt{-p})$ and $x_i \otimes \overline{F}_2$ are not the supersingular points (e.g., [13] Chapter 8, [30]). By the uniqueness of the Deuring lifting (e.g., [12] Part 13, § 4 Theorem 13), $\{x_i\}_{1 \leq i \leq h} \to \{x_i \otimes \overline{F}_2\}$ is injective. Hence (i) above shows that the map $\{x_i\}_{1 \leq i \leq 2h} \to \{x_i \otimes \overline{F}_2\}$ is two to one. Let $\mathfrak{p} = \mathfrak{p}_2$ be a prime of H lying over 2. Then these $\{x_i \otimes \overline{F}_2\}$ is the disjoint union of orbits of the action of $\operatorname{Gal}(H_{\nu}/Q(\sqrt{-p})) \simeq \operatorname{Gal}(\kappa(\mathfrak{p})/F_2)$. Here H_{ν} is the \mathfrak{p} -adic completion of H and $\kappa(\mathfrak{p}) = \mathcal{O}_H/\mathfrak{p}$. Note that the degree of \mathfrak{p} is odd ≥ 3 for $p \geq 23$, $p \equiv -1 \mod 8$.

Case $p \equiv 3 \mod 8$. The rational prime 2 does not ramify in H and the degree of the prime $\mathfrak{p}|2$ of H is two. H' is a cyclic extension of Hof degree 3, which ramifies totally at the primes lying over 2 (e.g., [12] Part 8 Theorem 7). Then $x_i^{\sigma} \otimes \kappa(\mathfrak{p}') = x_i \otimes \kappa(\mathfrak{p}')$ for a prime $\mathfrak{p}'|2$ of H'and $\sigma \in \text{Gal}(H'/H)$, where $\kappa(\mathfrak{p}') = \mathcal{O}_{H'}/\mathfrak{p}'$. Let E/F_2 be a supersingular elliptic curve. Then $x_i \otimes \overline{F_2}$ is represented by the pair (E, A) for A =ker $(\alpha: E \to E), \alpha^2 = -p$. Under the isomorphism

$$\operatorname{End}\left(E
ight) \xrightarrow{\sim} \left\{ rac{a+bi+cj+dk}{2} \middle| a,b,c,d\in Z, a\equiv b\equiv c\equiv d \operatorname{mod} 2
ight\}$$

(e.g., [35] § 7), α is represented by ai + bj + ck for $a, b, c \in \mathbb{Z}$. Then, as $p \equiv 3 \mod 8$, a, b, c must be odd. Therefore A is invariant under the action of $(1 + \alpha)/2 \in \text{End}(E)$. Let $(\tilde{E}, \tilde{\beta})$ be a lifting of $(E, (1 + \alpha)/2)$ (e.g., [12] Part 13, § 5 Theorem 14). Then $x_i \otimes \bar{F}_2$ is the special fibre of x_j for a $j, 1 \leq j \leq h$, see (1.2). x_j is represented by $(\tilde{E}, \ker (2\tilde{\beta} - 1))$. Thus we see that the map $\{x_i\}_{1\leq i\leq h} \to \{x_i \otimes \bar{F}_2\}$ is one to one (see (i) above), and $\{x_{i+h}\}_{1\leq i\leq h} \to \{x_i \otimes \bar{F}_2\}$ is three to one. One of $x_i \otimes \bar{F}_2$ is F_2 -rational ([24] Theorem 3).

Let y_j be the fixed point of $w = w \otimes F_2$ on $\mathscr{X}_0(p) \otimes F_2$ $(p \ge 5)$, i(y) be the index of the wild ramification at y_j of the natural morphism $\mathscr{X}_0(p) \otimes F_2 \to \mathscr{X}_0^+(p) \otimes F_2$.

$p \mod 8$	$i(y_j)$	$\# \{F_2 \text{-rational fixed points}\}$	$# \{ non F_2 \text{-rational fixed points} \}$
1	1	2	h/2 - 2
5	1	1	h/2 - 1
-1	1	$0~(p\geq 23)$	$h \ (p \ge 23)$
3	3	1	h-1

Table 3.

Let K be a field, X a proper smooth curve defined over K. Let $\sigma \neq 1$ be an automorphism of X defined over K, $\{x_i\}_{1 \leq i \leq s}$ the set of the fixed points of σ , and set $D = \sum_{i=1}^{s} (x_i)$ a divisor of X. It is easy to see the following.

LEMMA (1.11). If g is a rational function on X of degree m defined over K such that $(\sigma^*g) \neq (g)$ (= the divisor of g) and $g(x_i) \neq 0, \infty$. Then

$$(\sigma^*g/g-1)_0 > D.$$

In particular, $s \leq 2 m$. If, moreover, $\sigma^2 = 1$,

$$(\sigma^* g/g - 1)_0 = \sum_{i=1}^s m_i(x_i) + \sum_j \{(y_j) + (\sigma y_j)\}$$

for some positive integers m_i such that $\sum_{i=1}^{s} m_i(x_i)$ is K-rational and $y_j \neq \sigma y_j$.

Now let K be a finite extension of Q_2 , R the ring of integers of K with the residue field F_q for $q = 2^r$. Suppose that X is the generic fibre of a smooth projective curve $\mathscr{X} \to \operatorname{Spec} R$, and σ an involution of \mathscr{X} defined over R such that $\mathscr{Y}_{dfn} = \mathscr{X}/\langle \sigma \rangle \to \operatorname{Spec} R$ is smooth and that the natural morphism $f: \mathscr{X} \otimes F_q \to \mathscr{Y} \otimes F_q$ is not radicial. Let $E = \sum m_i(z_i)$, $m_i > 0$, be a K-rational divisor of X such that $1 < \dim_{\mathsf{K}} H^{\circ}(X, \mathscr{O}(E))$. Then we have

LEMMA (1.12). Assume further that $\sigma = \sigma \otimes F_q$ has fixed points, $z_i \otimes F_q$ are not fixed points and that $\sigma^*(\sum m_i(z_i \otimes F_q)) = \sum m_i(z_i \otimes F_q)$. Then there exists a covering $g: \mathscr{V} \otimes F_q \to P^{1}_{/F_q}$ defined over F_q such $f^*((g)_{\infty}) > \sum m_i(z_i \otimes F_q)$.

Proof. Let K' be a finite extension of K over which the z_i 's are defined, and $R', F_{q'}$ the ring of integers of K' and the residue field of R', respectively. Let $\mathscr{L} = \overset{i}{\otimes} \mathscr{O}(z_i)^{\otimes m_i}$ be the Cartier divisor of $\mathscr{X} \otimes R'$. Then $\dim_{F_q} H^0(\mathscr{X} \otimes F_{q'}, \mathscr{L}) > 1$ by the upper semicontinuity ([34] (7.7.5)1). Then $\dim_{F_q} H^0(\mathscr{X} \otimes F_q, \mathscr{O}(E)) > 1$, because $\mathscr{L} \simeq \mathscr{O}(E) \otimes R'$ over $\mathscr{X} \otimes R'$. By the assumption $\sigma^*(E \otimes F_q) = E \otimes F_q$, there exists a non-constant section h of $H^0(\mathscr{X} \otimes F_q, \mathscr{O}(E))$ such that $F_q \oplus F_q h$ is a σ -invariant subspace. So $\sigma^* h = h + a$ for an $a \in F_q$. The proof is completed if a = 0 is shown (because $\mathscr{X} \otimes F_q \to \mathscr{Y} \otimes F_q$ is generically étale of degree 2). Suppose $a \neq 0$. For each point x on $\mathscr{X} \otimes F_q \backslash \text{Supp}(E \otimes F_q), h \in \mathscr{O}_{\mathscr{X} \otimes F_q, \mathscr{X}}$. The covering $\mathscr{X} \otimes F_q \to \mathscr{Y} \otimes F_q$ is then factored by $\text{Spec } \mathcal{O}_{\mathscr{Y} \otimes F_q, \mathscr{I}(x)}[h]$ at x:

The morphism f is finite of degree 2, and $\operatorname{Spec} \mathcal{O}_{\#\otimes F_q, f(x)}[h] \to \operatorname{Spec} \mathcal{O}_{\#\otimes F_q, f(x)}$ is étale of degree 2, since $\sigma^*h(z) \neq h(z)$ for any point z on $\mathscr{X} \otimes F_q \setminus$ $\operatorname{Supp} (E \otimes F_q)$. Therefore f is étale at any point $x \in \mathscr{X} \otimes F_q \setminus \operatorname{Supp} (E \otimes F_q)$.

148

This contradicts to our assumption. \Box

§2. The rational points on $Y_1(p^r)$

Let k be an algebraic number field of degree d; \tilde{k} , e_q , f_q , C = C(k, p), n' = n'(k, p) and n'' = n''(k, p) be as in the last section. Assuming the existence of a k-rational point on $Y_1(p^r)$ with r > n(k, p), we here introduce a rational function g on a modular curve whose divisor is determined by the k-rational point as above. Further we prepare propositions which concern g and the fixed points of w_p $(p \ge 23)$. Let x be a k-rational point on $Y_1(p^r) = X_1(p^r) \setminus \{\text{cusps}\}$ for $r \ge n'(k, p)$. By x we denote also the image of x by the natural morphism $X_1(p^r) \to X$, see (1.4). We consider only the primes p with $p \le 23$ or $(p \ge 29 \text{ and}) \notin J_0^-(p)(Q) < \infty$. For each $\sigma \in \text{Isom}_Q(k, \bar{Q})$, Lemma (1.9) shows that $x^\sigma \otimes \kappa(q) = 0_{i_\sigma} \otimes \kappa(q)$ for an integer i_{σ} and a prime q of \tilde{k} lying over the rational prime $q \in C = C(k, p)$ which attains the minimal value of $1 + q^{f_q} + 2\sqrt{q^{f_q}}$, where $\kappa(q) = \theta_k/q$. Consider the Q-rational section

$$i(x) = \operatorname{cl}\left(\sum_{\sigma} (x^{\sigma}) - \sum_{\sigma} (0_{i_{\sigma}})\right)$$

of A = J(X) for $p \leq 23$, $p \neq 11$; of $A = \operatorname{Coker} (J_0(37) \to J(X))$ for p = 37; of $A = J_0^-(121)$ for p = 11; and of $A = J_0^-(p)$ for $p \geq 29$ (see (1.4)). Let \mathscr{X} be the normalization of the projective *j*-line $\mathscr{X}_0(1)$ in X (see (1.4)). Let $Z_{(q)}$ be the localization of Z at the prime q and $\mathcal{O}_{(q)} = \mathcal{O}_{\tilde{k}} \otimes Z_{(q)}$. Then $x^{\sigma} \otimes \mathcal{O}_{(q)}, \mathbf{0}_{i_{\sigma}} \otimes \mathcal{O}_{(q)}$ are the sections of the smooth part of $\mathscr{X} \otimes Z_{(q)}$, see (1.6), (1.9). Let

$$i(x^{\sigma})\colon \operatorname{Spec} \mathscr{O}_{(q)} \overset{x^{*}}{\longrightarrow} \mathscr{X}^{\operatorname{smooth}} \otimes Z_{(q)} \longrightarrow A_{/Z_{(q)}} \qquad z \longrightarrow \operatorname{cl}((z) - (0_{i_{\sigma}})) \ .$$

Then by our assumptions on q and r (see (1.8), (1.9)), $i(x_{\sigma}) \otimes \kappa(q) = 0$. Then $i(x) \otimes \kappa(q) = (\sum_{\sigma} i(x^{\sigma})) \otimes \kappa(q) = 0$, i.e., $i(x) \otimes F_q = 0$. The Q-rational section $i(x) \otimes Z_{(q)}$ is of finite order for $p \neq 37$, see (1.5). The specialization lemma of the finite flat group schemes ([26] Proposition (3.3.2), [18] Proposition (1.2)) leads that i(x) = 0 for $p \neq 37$ (, note: $1 < 3 - 1 \leq q - 1$, (1.7)). Then there is a rational function g on X such that (see (1.4))

$$(2.1) \quad (g) = \begin{cases} \sum (x^{\sigma}) - \sum (0_{i_{\sigma}}) & \text{for } p \leq 23, \ p \neq 11 \\ \sum (x^{\sigma}) - d(0) & \text{for } p = (23), 29, 31, 41, 47, 59, 71 \\ & (\text{Case } X_{0}^{+}(p) \simeq P^{1}); \\ \sum (x^{\sigma}) + d(\infty) - \sum (\tilde{\tau}(x^{\sigma})) - d(0) & \text{for } p = 11, \ p > 29 \\ & \text{with } \# J_{0}^{-}(p)(Q) < \infty \end{cases}$$

For p = 37, we will show Coker $(J_0(37) \rightarrow J(X))(Q) \simeq Z/5Z$, see (3.4.2). Then we get a rational function g on X such that

(2.1)'
$$(g) = \sum (x^{\sigma}) + \sum (\tilde{r}(\mathbf{0}_{i_{\sigma}})) - \sum (\tilde{r}(x^{\sigma})) - \sum (\mathbf{0}_{i_{\sigma}}),$$

where $1 \neq \gamma \in \text{Aut}(X|X_0(37))$, see (1.4). As (g) is **Q**-rational, we may assume that g is defined over **Q**. If p = 11 or p is the last case in (2.1), $(w^*g) = -(g) \ (\neq 0)$; and if p = 37, $(\gamma^*g) = -(g)$. So we may assume

(2.2)
$$\begin{cases} w^*g = \frac{a}{g} \\ \gamma^*g = \frac{a}{g} \quad \text{(for } p = 37) \end{cases}$$

for a square free integer $a \ (\neq 0)$. For $p \neq 37$, as $Q(x_i)$ is not totally imaginary (see (1.2)), a > 0.

PROPOSITION (2.3). Let x be a k-rational point on $Y_1(p^r)$, g the rational function as above and p = 2, 3, 11, 17, or $p \ge 23, \neq 37$, with $\# J_0^-(p)(Q) < \infty$. In the case $p \equiv 5 \mod 8$ and the class number h = h(-p) of $Q(\sqrt{-p})$ is divisible by 4, we further assume $p^r > 1 + q^{f_q} + 2\sqrt{q^{f_q}}$ for an odd prime $q \neq p$. Then we have

$$s = s(p) \leq 2d$$
.

Proof. Case $p \ge 23$ and $X_0^+(p) \simeq P^1$.

The rational function g is of degree d and $(g) \neq (w^*g)$. So the conditions of Lemma (1.11) are satisfied.

Case $p \ge 23$, $\neq 37$, and $X_0^+(p) \neq P^1$.

Let $x_1, \dots, x_h, \dots, x_s$ be the fixed points of $w = w_p$. Then $g(x_i) = \pm \sqrt{a}$ (see (2.2)). We may assume $g(x_1) = +\sqrt{a}$. First, we consider the case $p \equiv -1 \mod 4$. Then s = s(p) = h + h' (see (1.4)) is even, and $h(\leq h')$ is odd. x_1 is defined over H^+ (see (1.4)) and $[H^+: \mathbf{Q}]$ is odd, so that a = 1 (by our choice of a, see (2.2)). The points x_1, \dots, x_h (resp. $x_{h+1}, \dots, x_{h+h'}$) are conjugate to each other over \mathbf{Q} , so that

$$(g-1)_0 > \sum_{i=1}^h (x_i)$$

and

$$(g-1)_0 > \sum_{i=1}^{h'} (x_{h+i})$$
 or $(g+1)_0 > \sum_{i=1}^{h'} (x_{h+i})$.

In the first case $s = h + h' \leq 2d$. In the second case, Lemma (1.11) and

and the fact that h and h' are odd integers show

$$(g-1)_0 > 2\sum_{i=1}^{h} (x_i)$$

and

$$(g+1)_0 > 2\sum_{i=1}^{h'} (x_{h+i})$$
 .

Thus $2d \ge 2h' \ge s$.

Next, we consider the case $p \equiv 1 \mod 4$. If 2d < h = s, then

$$egin{aligned} (g-\sqrt{a})_{\scriptscriptstyle 0} > \sum'(x_i) \ (g+\sqrt{a})_{\scriptscriptstyle 0} > \sum''(x_i) \end{aligned}$$

where $\sum' + \sum'' = \sum_{i=1}^{s}$ and a > 1 (because x_i are conjugate to each other over Q). If $h \not\equiv 0 \mod 4$, our assumption and Lemma (1.11) show $(g - \sqrt{a})_0 >$ $2 \sum'(x_i)$ and $(g + \sqrt{a})_0 > 2 \sum''(x_i)$. This contradicts that s > 2d. If $h \equiv 0 \mod 4$, a = p. Set $D' = \sum'(x_i)$. D' is a divisor of degree s/2 and

$$(g-\sqrt{p})=D'+E-\sum_{\sigma}(w(x^{\sigma}))-d(0),$$

for an effective divisor E. We have $w^*E = E$. By the assumption, there is an odd prime $q \neq p$ such that $p^r > 1 + q^{f_q} + 2\sqrt{q^{f_q}}$. Using the upper semicontinuity ([34] (7.7.5), 1), we get a rational function f on $\mathscr{X}_{\mathfrak{g}}(p) \otimes \overline{F}_q$ such that

$$(f) = D' + E - d(\infty) - d(0)$$
.

Then $(w^*f) = (f)$ so $w^*f = \pm f$. If $w^*f = +f$, E > D'. If $w^*f = -f$, $(f)_0 > D = \sum_{i=1}^{s} (x_i)$ (see (1.11)). Thus $s \leq 2d$.

Case p = 11. The number of the fixed points of $w = w_{121}$ on $X_0(121)$ is six. Using g in (2.1), (2.2), we get $d \ge 3 = s/2$ by the same way as above.

Case p = 2, 17. Let $f = \mathcal{I}^* g/g$ for $1 \neq \mathcal{I} \in \text{Gal}(X/Y)$ (see (1.4)). Then $\mathcal{I}^* f = 1/f$ and $(f) = \sum (\mathcal{I}(x^{\sigma})) + \sum (0_{i_{\sigma}}) - \sum (x^{\sigma}) - \sum (\mathcal{I}(0_{i_{\sigma}}))$. If $(\mathcal{I}^* g) = (g)$, then $\mathcal{I}(x^{\sigma}) = x^{\iota \sigma}$ for an $\iota \in \text{Isom}_Q(k, \bar{Q})$ and any $\sigma \in \text{Isom}_Q(k, \bar{Q})$. If d = 2, we see that $\{x, x^{\sigma} = \mathcal{I}(x)\}$ defines a Q-rational point on Y. But we know that the Q-rational points on $X_0(32)$, and on $X_0(17)$ are the cuspidal points ([35] table 1). If d = 3, one of the x^{σ} becomes a fixed point of \mathcal{I} . But we know that a ramification point of $X \to Y$ is either a cuspidal point or a point with the modular invariant j = 1728, see (1.1), (1.4). Therefore

FUMIYUKI MOMOSE

 $(\gamma^*g) \neq (g)$ for d = 2 and 3. The rest then follows from Lemma (1.11).

Case p = 3. Let $f = \mathcal{I}^* g/g$ for $1 \neq \mathcal{I} \in \text{Gal}(X/Y)$ (see (1.4)). Then $(f) = \sum (\mathcal{I}(x^{\sigma})) + \sum (0_{i_{\sigma}})) - \sum (x^{\sigma}) - \sum (\mathcal{I}(0_{i_{\sigma}}))$. For d < 6 = s/2, if $(\mathcal{I}^*g) = (g)$, $\mathcal{I}(x^{\sigma}) = x^{i_{\sigma}}$ for an $i \in \text{Isom}_Q(k, \overline{Q})$ and any $\sigma \in \text{Isom}_Q(k, \overline{Q})$. Any fixed point of \mathcal{I} is a cuspidal point or a point with the modular invariant j = 0, so that $\mathcal{I}(x^{\sigma}) \neq x^{\sigma}$ for any $\sigma \in \text{Isom}_Q(k, \overline{Q})$, see (1.4). Then $\{x^{\sigma}\}_{\sigma}$ is a disjoint union of $\langle \mathcal{I} \rangle$ -orbits of length 3. If d = 3, $\{x^{\sigma}\}_{\sigma} = \{x, \mathcal{I}(x), \mathcal{I}^2(x)\}$ defines a Q-rational point on Y. But a Q-rational point on $X_0(27)$ is a cuspidal point or a point with the modular invariant j = 0 (see (1.4), [35] table 1). Therefore $(\mathcal{I}^*g) \neq (g)$ for d < 6. Then by Lemma (1.11) we get the result.

Let $\mathscr{X}^+ = \mathscr{X}^+_0(p)$ be the quotient $\mathscr{X}_0(p)/\langle w_p \rangle$, which is smooth over $\mathbb{Z}[1/p]$ (see (1.10)).

PROPOSITION (2.4). Let $p \ge 23$, $\ne 37$ be a prime number satisfying the condition $\# J_0^-(p)(\mathbf{Q}) < \infty$, g the rational function on $X_0(p)$ in (2.2). If $p^r > 1 + 2^{f_2} + 2\sqrt{2^{f_2}}$, then there is a covering f defined over F_2 ,

$$\mathscr{X}^{+}\otimes F_{2} \xrightarrow{f} P^{1}_{/F_{2}}$$

such that $(f)_{\infty} = d'$ (cusp) for an integer d', $1 \leq d' \leq d$.

Proof. Let $\mathscr{L} = (\otimes^{\sigma} \mathscr{O}(x^{\sigma})) \otimes \mathscr{O}(d(\infty))$ be the Cartier divisor on $\mathscr{X}_{0}(p) \otimes \mathscr{O}_{\tilde{k}}$, where $\mathscr{O}_{\tilde{k}}$ is the ring of integers of \tilde{k} . By our assumption, $\dim_{\bar{F}_{2}} H^{0}(\mathscr{X}_{0}(p) \otimes \bar{F}_{2}, \mathscr{L}) > 1$ (see [34] (7.7.5), 1), and $\mathscr{L} \otimes \bar{F}_{2} = \mathscr{O}(d(0) + d(\infty))$, see (1.9). The cusps $0 = 0 \otimes F_{2}$ and $\infty = \infty \otimes F_{2}$ are not the fixed points of $w = w \otimes F_{2}$, while $\mathscr{X}_{0} \otimes F_{2} \to \mathscr{X}^{+} \otimes F_{2}$ has ramifications points. The divisor $d(0) + d(\infty)$ is F_{2} -rational, and is *w*-invariant. So Lemma (1.12) yields the desired covering f.

COROLLARY (2.5). Under the assumption of (2.4),

PROPOSITION (2.6). Let $p \ge 23$, $\neq 37$, be a prime number such that $\sharp J_0^-(p)(\mathbf{Q}) < \infty$. Assume that $r \ge n'' = n''(k, p)$ (see (1.8)) and let g be the rational function on $X_0(p)$ in (2.2). Then we get the following estimates of $\sharp \mathcal{X}_0^+(p)(\mathbf{F}_{2^m})$.

(i) $p \equiv 1 \mod 8; \ \# \mathscr{X}_0^+(p)(F_2) \leq 2 + 2d - h/4$.

(ii)
$$p \equiv 5 \mod 8$$
 and $h = h(-p) \not\equiv 0 \mod 4$;
 $\# \mathscr{X}_0^+(p)(F_2) \leq 2 + 2d - h/2$
or
 $\# \mathscr{X}_0^+(p)(F_4) \leq 1 + 4d - (h - 2)/4.$
(iii) $p \equiv -1 \mod 8$; $\# \mathscr{X}_0^+(p)(F_2) \leq 1 + 2d - h$
and
 $\# \mathscr{X}_0^+(p)(F_4) \leq 1 + 4d - h$.
(iv) $p \equiv 3 \mod 8$; $\# \mathscr{X}_0^+(p)(F_2) \leq 2 + 2d - 2h$
and
 $\# \mathscr{X}_0^+(p)(F_4) \leq 1 + 4d - h$.

Proof. Let x_1, \dots, x_s (resp. $y_1 = x_1 \otimes F_2, y_2, \dots, y_{h/2}$ if $p \equiv 1 \mod 4$; y_1, y_2, \dots, y_h if $p \equiv -1 \mod 4$) be the fixed points of $w = w_p$ on $X_0(p)$ (resp. $\mathscr{X}_0(p) \otimes F_2$), see (1.10). Then $g(x_i) = \pm \sqrt{a}$ (see (2.3)). We may assume $g(x_1) = +\sqrt{a} \in H^+$ (see (1.2)). As in the proof of (2.3), a = 1, or a = p if $p \equiv 1 \mod 4$. Set $D = \sum_{i=1}^s (x_i)$.

Case $p \equiv 1 \mod 4$ and a = 1. The divisor of g - 1 is

$$(g-1) = D + E - \sum (w(x^{\sigma})) - d(0)$$

for a w-invariant Q-rational divisor E > 0 (see (1.11)). Let $\mathscr{L} = \mathcal{O}(D + E)$ $\otimes \mathscr{O}(\sum (wx^{\circ}) + d(0))^{\otimes (-1)}$ be the invertible sheaf on $\mathscr{X}_0(p) \otimes \mathscr{O}_K$ for a finite extension K of Q. By the upper semicontinuity ([34] (7.7.5), 1), there is a rational function f on $\mathscr{X}_0(p) \otimes \overline{F}_2$ such that

$$(f) = 2 \sum_{i=1}^{h/2} (y_i) + E - d(0) - d(\infty) \ (\neq 0)$$

for the effective divisor $E = E \otimes F_2$ (see (1.10)). The divisor (f) is F_2 -rational and w-invariant. Then $w^*f = f$ and we may assume that f is defined over F_2 . Then we get a covering f^+ defined over F_2 :

$$\mathscr{X}^+_0(p)\otimes F_2 \xrightarrow{f^+} P^1_{/F_2}$$

such that $(f^+) = \sum_{i=i}^{h/2} (y_i) + E' - d'$ (cusp) for an effective divisor E' and an integer d', $1 \leq d' \leq d$. Here by y_i we denote the images of y_i by the natural morphism of $\mathscr{X}_0(p) \otimes F_2$ to $\mathscr{X}_0^+(p) \otimes F_2$. Then $\# \mathscr{X}_0^+(p)(F_2) \leq 3 + 2d$ -h/2 if $p \equiv 1 \mod 8$; $\leq 2 + 2d - h/2$ if $p \equiv 5 \mod 8$ (see (1.9)).

Case $p \equiv 1 \mod 8$ and a = p. Let $D = D_1 + D_2$, $D_1 > (x_1)$, be the decomposition into the sum of $\operatorname{Gal}(H/Q(\sqrt{p}))$ -orbits D_i of length h/2. Then

FUMIYUKI MOMOSE

for $Q(\sqrt{p})$ -rational, w-invariant divisors $E_i > 0$. Let $1 \neq \sigma$ be an element of the inertia subgroup of a prime of H lying over 2, and $H^+ = H^{\langle \sigma \rangle}$ the fixed field of $\langle \sigma \rangle$ ($\simeq Z/2Z$). Then $\sigma^*D_i = D_i$ for i = 1, 2. There are only two fixed points of w defined over H^+ (see (1.10)). Therefore $D_2 \otimes F_2 =$ $2 \sum'(y_i)$. In the same way as above, we get a rational function f^+ on $\mathscr{X}_0^+(p) \otimes F_2$ defined over F_2 such that $(f^+) = \sum'(y_i) + E' - d'$ (cusp), for an effective divisor E' and an integer d', $1 \leq d' \leq d$. So $\# \mathscr{X}_0^+(p)(F_2) \leq$ 2 + 2d - h/4 (see (1.10)).

Case $p \equiv 5 \mod 8$ and a = p. Let $D = D_1 + D_2$, $D_1 > (x_1)$, be the decomposition into the sum of $\operatorname{Gal}(H/Q(\sqrt{p}))$ -orbits D_i of length h/2. Here we assume $h = h(-p) \not\equiv 0 \mod 4$. Then by Lemma (1.11)

$$egin{aligned} & (g-\sqrt{p}\,)=2D_1+E_1-\sum{(w(x^{\sigma}))}-d(0) \ & (g+\sqrt{p}\,)=2D_2+E_2-\sum{(w(x^{\sigma}))}-d(0) \ & , \end{aligned}$$

for $Q(\sqrt{p})$ -rational, w-invariant divisors $D_i > 0$. Let $\sigma = \sigma_2$ be the Frobenius element of the rational prime 2. Then $\sigma(D_1) = D_2$, i.e., $(D_1 \otimes F_4)^{(2)} = D_2 \otimes F_4$. By (1.10), we see that $D_1 \otimes F_4 = (y_1) + \sum_{i=2}^{(h-2)/4}(y_i)$, y_1 is the F_2 -rational fixed point of w (see (1.10)). By the same way as above, we get a rational function f^+ on $\mathscr{X}_0^+(p) \otimes F_4$ such that $(f^+) = (y_1) + 2 \sum_{i=2}^{(h-2)/4}(y_i) + E' - d'$ (cusp), for an effective divisor E' and an integer d', $1 \leq d' \leq d$ (see (1.10)). Then $\# \mathscr{X}_0^+(p)(F_4) \leq 1 + 4d - (h-2)/4$.

Case $p \equiv -1 \mod 8$. Set $D_1 = \sum_{i=1}^h (x_i), D_2 = \sum_{i=1}^h (x_{h+i})$. Then

$$(g-1) = egin{cases} D+E-\sum{(w(x^{s}))}-d(0) \ {
m or} \ 2D_{_1}+E_{_1}-\sum{(w(x^{s}))}-d(0) \end{cases}$$

for Q-rational, w-invariant divisors E > 0, $E_1 > 0$. In both cases, by the same way as above, we get a rational function f^+ on $\mathscr{X}_0^+(p) \otimes F_2$ defined over F_2 such that $(f^+) = \sum_{i=1}^{h} (y_i) + E' - d'$ (cusp) for an effective divisor E' and an integer d', $1 \leq d' \leq d$. Then $\# \mathscr{X}_0^+(p)(F_2) \leq 1 + 2d - h$ and $\# \mathscr{X}_0^+(p)(F_4) \leq 1 + 4d - h$ (see (1.10)).

Case
$$p \equiv 3 \mod 8$$
. Set $D_1 = \sum_{i=1}^{h} (x_i), D_2 = \sum_{i=1}^{3h} (x_i)$. Then $(g-1) = D + E - \sum (w(x^{\sigma})) - d(0)$

154

or

$$(g+1) = 2D_2 + E_2 - \sum (w(x^{\sigma})) - d(0)$$

for Q-rational, w-invariant divisors E > 0, $E_2 > 0$. In the first case, the same argument as above shows that there is a rational function f^+ on $\mathscr{X}_0^+(p) \otimes F_2$ defined over F_2 such that $(f^+) = 2 \sum_{i=1}^{h} (y_i) + E' - d'$ (cusp), for an effective divisor E' and an integer d', $1 \leq d' \leq d$. Then $\# \mathscr{X}_0^+(p)(F_2) \leq 2 + 2d - 2h$, and $\# \mathscr{X}_0^+(p)(F_4) \leq 1 + 4d - h$ (see (1.10)). The second case yields better estimates. \Box

§3. Rational points on $Y_1(p^r)$ defined over quadratic fields

In this section we prove Theorem A in the introduction. Let k be a quadratic field, x a k-rational point on $Y_1(p^r)$ for $r \ge n' = n''(k, p)$ (see (1.8)). In this case, it is easy to see that n'(k, p) = n''(k, p) (see (1.7), (1.8)). So we can apply the propositions in Section 2. Moreover, we see that we have only to show n(k, p) < n'(k, p) (see Section 0). Applying Proposition (2.3), we get the result of the theorem except for p = 13, 37,43, 67, 97, 163 and 193 ($p < 300, \neq 5, 7, 151, 199, 227, 277$). See table (4.3).

(3.1). Proof for p = 43, 67, 73, 97, 163 and 193. We can apply (2.4), (2.5) and (2.6) in the last section to these cases. Wada [32] shows that the characteristic polynomials of the Hecke operator T_2 on the *C*-vector space of holomorphic cusp forms of weight 2 belonging to $\left\langle \Gamma_0(p), \begin{pmatrix} 0 & -1 \\ p & 0 \end{pmatrix} \right\rangle$ for p < 250. According to his table, we get

р	characteristic polynomial of T_2	$\# \mathscr{X}_0^+(p)(F_2)$	$\# \mathscr{X}_0^+(p)(F_4)$	h(-p)
43	x + 2	5	5	1
67	$x^2 + 3x + 1$	6	6	1
73	$x^2 + 3x + 1$	6	6	4
97	$x^3 + 4x^2 + 3x - 1$	7	7	4
163	$x(x^5 + 5x^4 + 3x^3 - 15x^2 - 16x + 3)$	8	10	1
193	$(x^2+3x+1) imes (x^5+2x^4-5x^3-7x^2+7x+1)$) 8	12	4

Table 4.

With these and Proposition (2.6), we get the proof.

(3.2). *Proof for* p = 13.

(3.2.1). Rational points on $Y_1(13)$ defined over quadratic fields k.

Let x be a k-rational point on $Y_1(13)$. There is an elliptic curve E defined over k with a k-rational point P of order 13 such that the pair $(E, \pm P)$ represents x ([2] VI Proposition (3.2)). By (1.5), (1.7), we can apply Lemma (1.9). So there is a rational function g (defined over Q) on $X_1(13)$ such that

$$(g) = (x) + (x^{\sigma}) - (0_i) - (0_{i_{\sigma}}) \ (\neq 0)$$

for $1 \neq \sigma \in \operatorname{Gal}(k/\mathbf{Q})$ see (2.1). g defines an involution \tilde{r} of $X_1(13)$ such that $X_1(13)/\langle \tilde{r} \rangle \simeq \mathbf{P}^1$. The automorphism $[5] \in \overline{\Gamma}(13)$ (see § 1) of $X_1(13)$ is of degree 2, and $X_1(13)/\langle [5] \rangle \simeq \mathbf{P}^1$ (see (1.4)). Hence $\tilde{r} = [5]$, and so $x^{\sigma} = \tilde{r}(x), 0_{i_{\sigma}} = \tilde{r}(0_i) \ (\neq 0_i)$. (Note that if a proper smooth curve X defined over a field is hyperelliptic of genus ≥ 2 , the involution \tilde{r} satisfying $X/\langle \tilde{r} \rangle \simeq \mathbf{P}^1$ is unique.) Then $\{x, x^{\sigma} = \tilde{r}(x)\}$ defines a \mathbf{Q} -rational point on $Y_1(13)/\langle \tilde{r} \rangle$ and $0_i \otimes \mathbf{F}_q \neq \tilde{r}(0_i) \otimes \mathbf{F}_q$ for any rational prime q. There exists an elliptic curve F defined over \mathbf{Q} such that the image of $G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ of the Galois representation on $F_{13}(\overline{\mathbf{Q}})$ is contained in $\left\{ \begin{pmatrix} \langle 5 \rangle \\ 0 \\ \end{pmatrix} \right\} \ (\subset GL_2(\mathbf{F}_{13})),$ and $F \simeq E$ over \mathbf{C} .

(3.2.2). Suppose that there is a k-rational point x on $Y_1(169)$. There is an elliptic curve E defined over k with a k-rational point P of order 13^2 such that the pair $(E, \pm P)$ represents x ([2] VI Proposition (3.2)). Let x' be a k-rational point on $Y_1(13)$ which is represented by the pair $(E', \pm P')_{/k} \stackrel{=}{\underset{dfn}{=}} (E/\langle 13 \cdot P \rangle, \pm P \mod \langle 13 \cdot P \rangle)_{/k}$, and ρ' the Galois representation on $E'_{13}(\overline{k})$. Then

$$\rho'(G_k) \longrightarrow \left\{ \begin{pmatrix} 1 & 0 \\ 0 & * \end{pmatrix} \right\}.$$

As was seen in (3.2.1), there is an elliptic curve F defined over Q such that the image of G_Q under the Galois representation ρ on $F_{13}(\bar{Q})$ is contained in $\left\{ \begin{pmatrix} \langle 5 \rangle & * \\ 0 & * \end{pmatrix} \right\}$ and $E' \simeq F$ over C. Since F has multiplicative reduction at q = 2 (see (1.9)), there exists a quadratic extension K of k over which $E' \simeq F$. Thus

$$\rho(G_{\kappa}) \longrightarrow \left\{ \begin{pmatrix} 1 & 0 \\ 0 & * \end{pmatrix} \right\}.$$

So $\rho(G_q) \longrightarrow \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\}$, which contradicts to the fact that $X_{\text{sp.Car}}(13)(Q)$

156

consists of the cusps 0, ∞ (; $X_{\rm sp.Car}(p) \simeq X_0(p^2)$, see [7], [21]).

Remarks (3.3). (3.3.1). The modular curve $X = X_1(16)$ is of genus 2 and $\# J_1(16)(\mathbf{Q}) = 20$ (see [6]). Let $X \xrightarrow{2} Y \xrightarrow{2} X_0(16)$ be the natural covering, $\tilde{\tau}$ the generator of $\operatorname{Gal}(X/Y)$. Then $Y = X/\langle \tilde{\tau} \rangle \simeq P^1$. Let x be a k-rational point on $Y_1(16)$. If q = 3 (resp. =5) does not remain prime in k, then $x \otimes \kappa(q)$ and $x^\sigma \otimes \kappa(q)$ are 0-cusps for a prime q of k lying over q(see (1.9)). Then we get a rational function g on X, defined over \mathbf{Q} , such that $(g) = (x) + (x^{\sigma}) - (0_i) - (0_{i_{\sigma}})$ (see (2.2)). Thus $x^{\sigma} = \tilde{\tau}(x)$ and $0_{i_{\sigma}} = \tilde{\tau}(0_i)$ $(\neq 0_i)$ (see (3.2)). Therefore if q = 3 or 5 ramifies in k, $Y_1(16)(k) = \phi$. Let k be an imaginary quadratic field such that the class number of k is prime to 5 and that the rational prime 2 does not split in k. Then the fact that $Z/5Z \subset J_1(16)(\mathbf{Q})$ and the descent ([17] Chapter III) show $\# J_1(16)(k) < \infty$. Moreover, if 3 splits in k or 5 does not remain prime in k, using Mazur's idea "formal immersion" [18], we see $Y_1(16)(k) = \phi$.

(3.3.2). The modular curve $X_1(11)$ is an elliptic curve with conductor (11). The defining equation of $X_1(11)$ is

$$y^2 + y = x^3 - x^2$$

and $X_1(11)(\mathbf{Q}) \simeq \mathbf{Z}/5\mathbf{Z}$ (see [35] p. 82). The numbers of the F_{q^i} -rational points for q = 2, 3 of $\mathcal{X} = \mathcal{X}_1(11)$ are as follows:

$$\sharp \mathscr{X}(F_2) = 5, \qquad \sharp \mathscr{X}(F_4) = 5 \\ \sharp \mathscr{X}(F_3) = 5, \qquad \sharp \mathscr{X}(F_9) = 15$$

(loc. cit.). Therefore $X_1(11)(k)_{tor} \simeq Z/5Z$ for quadratic fields k. So we have $Y_1(11)(k) = \phi$ if and only if the rank of $X_1(11)(k)$ is 0. For example if k is an imaginary quadratic field such that the class number of k is prime to 5 and the rational prime 11 does not split in k, then $Y_1(11)(k) = \phi$. This can be shown by the descent; see [17] Chapter III.

(3.3.3). By the argument in (3.2.1), we have already known that the k-rational points on $Y_1(13)$ are parametrized by the $\mathbf{Q} \cup \{\infty\}$ -values of a rational function on $X_1(13)/\langle r \rangle \simeq \mathbf{P}_q^1$ of degree 1. If the rational prime q = 2 does not split in k or q = 3 ramifies in k, then $x \otimes \kappa(q) = x^{\sigma} \otimes \kappa(q)$ for a k-rational point x on $X_1(13)$ and a prime q of k lying over q. Therefore by (3.2.1) in such a case $Y_1(13)(k) = \phi$.

(3.4). Proof for p = 37. Let $X_1(37) \xrightarrow{9} X \xrightarrow{2} X_0(37)$ be the natural coverings, J = J(X) the jacobian variety of X and $A = \operatorname{Coker} (J_0(37) \to J)$

(see (1.4)). Then A has everywhere good reduction over $Q(\sqrt{37})$ ([2] V).

LEMMA (3.4.1). Let p be a prime number congruent to $1 \mod 4$, $X_1(p) \xrightarrow{(p-1)/4} X \xrightarrow{2} X_0(p)$ the natural coverings, and J = J(X) the jacobian variety of X. If there is a prime factor of $(1/4)B_{2,}(\underline{r})$ which is prime to the class number of $Q(\sqrt{p})$, then there is a factor $(/Q(\sqrt{p}))$ of Coker $(J_0(p) \rightarrow J)$ with finite Mordell-Weil group $(/Q(\sqrt{p}))$. Here $B_{2,}(\underline{r})$ is the (second) generalized Bernoulli number associated to the quadratic residue symbol (\underline{r}) (see [13]).

Proof. Let 0', 0'' be the 0-cusps of X. The order of $\operatorname{cl}((0') - (0''))$ is $(1/4)B_{2,(\mathbb{Z})}$ [11]. Let q be a prime number which is prime to the class number of $Q(\sqrt{p})$ and divides $(1/4)B_{2,(\mathbb{Z})}$. Let B be a quotient (/Q) of $\operatorname{Coker}(J_0(p) \to J)$ such that B is Q-simple and the order of the image $\operatorname{cl}((0') - (0''))$ on B is divisible by q, then $Z/qZ \subset B$. B has everywhere good reduction over $Q(\sqrt{p})$, see [2] V, and is isogenous to a product $C \times C^{\sigma}$ of an abelian variety C over $Q(\sqrt{p})$. Further C is isogenous over $Q(\sqrt{p})$ to C^{σ} for $1 \neq \sigma \in \operatorname{Gal}(Q(\sqrt{p})/Q)$, see [31] Chapter 7. Then B is isogenous over Q to $\operatorname{Re}_{Q(\sqrt{p})/Q}(C)$, where $\operatorname{Re}_{Q(\sqrt{p})/Q}$ is the restriction of scalars (see [4], [33]). Hence $\operatorname{rk} B(Q) = \operatorname{rk} C(Q(\sqrt{p}))$. Applying the descent to $C(/Q(\sqrt{p}))$ (see [17] Chapter III), we have $\# C(Q(\sqrt{p})) < \infty$.

LEMMA (3.4.2). Let $A = \operatorname{Coker} (J_0(37) \rightarrow J)$ as above. Then $A(Q) \simeq Z/5Z$.

Proof. $(1/4)B_{2, \binom{ST}{2}} = 5$ and the class number of $Q(\sqrt{37}) = 1$. A is isogenous over $Q(\sqrt{37})$ to a product of two elliptic curves, so that A is Q-simple. Using the table of the characteristic polynomials of the Hecke operators on the C-vector space $S_2(\Gamma_0(37), \binom{3T}{2})$ of the holomorphic cusp forms of weight 2 with the neben character $\binom{3T}{2}$ belonging to $\Gamma_0(37)$, p. 207 of [31], we see that $\# A(Q)_{tor} = 5$. Then Lemma (3.4.1) is applied to yield $A(Q) \simeq Z/5Z$. \Box

Suppose that there is a k-rational point x on $Y_i(37)$. Consider the *Q*-rational section $i(x) = c1((x) + (x^{\sigma}) - (0_i) - (0_i))$ of A, where $1 \neq \sigma \in$ Gal(k/Q), see Section 2. Then $i(x) \otimes F_q = 0$ for q = 2, 3 and 5 (see (1.9)), so we get i(x) = 0, see (3.4.2). There is a rational function g on X (defined over Q) such that $(g) = (x) + (x^{\sigma}) + (\gamma(0_i)) + (\gamma(0_{i_{\sigma}})) - (\gamma(x)) - (\gamma(x^{\sigma})) - (0_i) - (0_i)$, where $1 \neq \sigma \in Aut(X/X_0(37))$, see (2.1'). Claim. $x \neq \tilde{\gamma}(x), \neq \tilde{\gamma}(x^{\sigma}).$

Proof. If $x = \gamma(x)$, then x is a fixed point of γ with the modular invariant j(x) = 1728. This contradicts that $x \otimes \kappa(q) = 0_i \otimes \kappa(q)$ for the primes $q \mid 2$ of k. If $x = \gamma(x^{\sigma})$, then $\{x, x^{\sigma} = \gamma(x)\}$ defines a Q-rational point on $(Y_0(37))$. But we know that the non-cuspidal Q-rational points on $X_0(37)$ have everywhere potentially good reduction, [19] Section 5, p. 32. \Box

Let \mathscr{X} be the normalization of the projective *j*-line $\mathscr{X}_0(1) \simeq \mathbf{P}_{\mathbf{Z}}^1$ in X. Then \mathscr{X} is smooth over $\mathbf{Z}[1/37]$, see [2].

Case $0_i \neq 0_{i_{\sigma}}$. In this case $\gamma(0_i) = 0_i$ and $(g) = (x) + (x^{\sigma}) - (\gamma(x)) - (\gamma(x^{\sigma}))$ $(\neq 0)$. Let $E_{\eta} = (x) + (x^{\sigma})$ and E be the flat closure of E_{η} on $\mathscr{X} \otimes \mathbb{Z}_2$. Then $E \otimes \mathbb{F}_2 = (0_i \otimes \mathbb{F}_2) + (\gamma(0_i \otimes \mathbb{F}_2))$. The argument similar to Lemma (1.11) shows that there is a rational function on $\mathscr{X}_0(37) \otimes \mathbb{F}_2$ of degree one. This is a contradiction.

Case $0_i = 0_{i_g}$. Let $E_{\eta} = (x) + (x') + 2(\mathcal{I}(0_i))$ and E be the flat closure of E_{η} on $\mathscr{X} \otimes Z_2$. Then $E \otimes F_2 = 2(0_i \otimes F_2) + 2(\mathcal{I}(0_i \otimes F_2))$. The argument as in Lemma (1.11) shows that there is a double covering $g': \mathscr{X}_0(37) \otimes F_2 \rightarrow P_{F_2}^1$, such that $(g')_{\infty} = 2(0 \otimes F_2)$. Then $0 = 0 \otimes F_2$ is a fixed point of the (unique) hyperelliptic involution \overline{S} of $\mathscr{X}_0(37) \otimes F_2$. The hyperelliptic involution S of $X_0(37)$ sends the cusp $0 = \binom{0}{1}$ to a non cuspidal Q-rational point, see [19] Section 5. As noted as before, $S(0) \otimes F_2$ is not a cusp (see loc. cit.), so that $\overline{S} = S \otimes F_2$ does not fix $0 = 0 \otimes F_2$. Thus we get a contradiction.

For an imaginary quadratic field k, $Y_1(p)(k) = \phi$ if a rational prime p remains prime in k, except for finitely many p ([18] § 4). For a real quadratic field k, we use Mazur's idea "formal immersion" (loc. cit.) to show the following. \Box

PROPOSITION (3.5). Let $p \ge 17$ be a rational prime congruent to $1 \mod 4$. If there exists a prime factor of $(1/4)B_{2,(\underline{P})}$ which is prime to the class number of $Q(\sqrt{p})$, then $Y_1(p)(Q(\sqrt{p})) = \phi$.

Proof. Let $X_1(p) \xrightarrow{(p-1)/4} X \xrightarrow{2} X_0(p)$ be the natural coverings, J = J(X) the jacobian variety of X, and $A = \operatorname{Coker} (J_0(p) \to J)$. Then by Lemma (3.4.1), there exists a quotient B(/Q) of A with finite Mordell-Weil group over $Q(\sqrt{p})$. As $p > (1+3)^2$, Lemma (1.8) is applied for q = 3. The rest owes to [18] Section 4. \Box

COROLLARY (3.6). Let p be a prime number congruent to $1 \mod 8$. Then $Y_1(p)(Q(\sqrt{p})) = \phi$.

Proof. $(1/4)B_{2,(\underline{P})} \equiv 0 \mod 2$ (see, e.g. [17] Chapter II § 12).

§4. Further results

Let k be an algebraic number field of degree d, n = n(k, p) and n'' = n''(k, p) as in Section 1 (1.8). Applying propositions in Section 2, we can estimate n in some cases.

THEOREM (4.1). Let k be any cubic field. Then

$$n(k, 2) \leq 5,$$

 $n(k, 3) = 2,$
 $n(k, 17) \leq 1$

For p = 19, 23, 41, 47, 59, 71 and the primes $p \leq 79, \neq 97, \neq 109$, satisfying $\# J_0^-(p)(\mathbf{Q}) < \infty$, we have n(k, p) = 0.

Proof. For p < 300, the result follows from Proposition (2.3), (1.4), (1.8), Lemma (1.12), except for p = 19, 23, 157, 163, 193, (277) (see table (4.3)). Using Corollary (2.5), we get the result for p = 157, 163, 193 (see (3.1)). The characteristic polynomial of the Hecke operator T_2 on $S_2\left(\left\langle \Gamma_0(157), \begin{bmatrix} 0 & -1\\ 157 & 0 \end{bmatrix}\right\rangle\right)$ (see (3.1)) is $x^5 + 5x^4 + 5x^3 - 6x^2 - 7x + 1$ (see [32]). Thus $\# \mathscr{X}_0^+(157)(F_2) = 8$ and $\# \mathscr{X}_0^+(157)(F_4) = 10$. For p = 19, 23, if there exists a k-rational point x on $Y_1(p)$, then there exists a rational function g on $X = X_1(p)$, defined over Q, such that $(g) = \sum (x^a) - \sum (0_{i_a})$, see (1.9), (2.1)). For p = 23, we know $\# \mathscr{X}_1(23)(F_2) = 11$ ([9] § 4). Using the upper semicontinuity (see [34] (7.7.1)1), we get a contradiction.

(4.1.1) Proof for p = 19. Let $1 \neq i \in \operatorname{Aut}(X/Y)$ (see (1.4)). If $(i^*g) = (g)$, then $i(x) = x^r$ for a $\tau \in \operatorname{Isom}_Q(k, \overline{Q})$. Then x is a fixed point if $\tau = 1$, or $\{x^s\}_{\sigma} = \{i^{ri}(x)\}_{i=0,1,2}$ if $\tau \neq 1$. The fixed points of i have the modular invariant j = 0 (see (1.1), (1.4)). So by Lemma (1.9) the first case above does not occur. In the second case, $\{x^s\}_{\sigma}$ defines a Q-rational point on Y, hence on $X_0(19)$. But the Q-rational points on $X_0(19)$ are the cusps and the points represented by the elliptic curve $C/Z[(1 + \sqrt{-19})/2]$. So $(i^*g) \neq (g)$ is shown. Let $D = \sum_{i=1}^{6} (x_i)$ be the Q-rational divisor of $X_1(19)$, where x_i are the fixed points of i on $X_1(19)$ (see (1.4)). Then by Lemma (1.11), $1/(i^*g/g - 1) \in H^0(X_1(19), \mathcal{O}(D))$.

160

theorem of Clifford (see below) then show $\dim_{\mathcal{O}} H^0(X_1(19), \mathcal{O}(D)) < 1 + 3$.

(4.1.2) THEOREM (Clifford; see e.g. [5]). Let X be a proper smooth curve $|C \text{ of genus} \geq 1, E \text{ an effective divisor such that } \dim_{C} H^{0}(X, \mathcal{O}(K-E)) > 0,$ where K is the canonical divisor. Then

$$\dim_{\mathcal{C}} H^{\scriptscriptstyle 0}(X, \mathscr{O}(E)) \leq 1 + rac{1}{2} \deg (E)$$
.

The equality holds if and only if E = 0, $E \sim K$ or $E \sim \pi^* F$ if X is hyperelliptic, where $\pi: X \to P^1$ is a double covering and F is a divisor of P^1 .

It is easy to see the following.

(4.1.3). Let X be a proper smooth curve and γ an automorphism of X of degree $m \geq 1$ defined over Q. Let E be an effective, Q-rational divisor of X such that $\tilde{\tau}^* E = E$ and $\tilde{\tau}^*$ acts faithfully on $H^0(X, \mathcal{O}(E))$. Then $\dim_{O} H^{0}(X, \mathcal{O}(E)) \geq 1 + \varphi(m)$, where $\varphi(m)$ is the Euler number of m.

Let $\tilde{\gamma}$ be the generator of $\overline{\Gamma}_0(19) = \Gamma_0(19)/\pm \Gamma_1(19)$ (see (1.4)), which is of order 9. Then D is $\tilde{\gamma}^*$ -invariant and $H^0(X_1(19), \mathcal{O}(D))^{\langle \tau^* \rangle} = Q \cdot 1$. If $\dim_{\mathcal{O}} H^{0}(X_{1}(19), \mathcal{O}(D)) \geq 2$, then $\tilde{\gamma}^{*}$ acts faithfully on $H^{0}(X_{1}(19), \mathcal{O}(D))$ and $\dim_{\mathcal{O}} H^{0}(X_{1}(19), \mathcal{O}(D)) \geq 1 + \varphi(9) = 7$ by (4.1.3). This is a contradiction.

(4.1.4) Proof for p > 300 (e.g. p = 383, 419, 429, 491, cf. [17] p. 151]) (and for p = 277 if $\# J_0^-(277)(\mathbf{Q}) < \infty$). By Corollary (2.5), if $Y_1(p)(k) \neq \phi$, then $\# \mathscr{X}_0(p)(F_4) \leq 2(1+4\cdot 3) - s \leq 24$. But we know $\# \mathscr{X}_0(p)(F_4) \geq 2 + (p+1)/12$ (see [24] Theorem 3). Hence $Y_1(p)(k) = \phi$ for p > 300 (, and p = 277) if $\sharp J_0(p) < \infty$.

Remark (4.2). The above method used for (p, d) = (19, 3) can be applied to some other cases. For example, it gives an alternating proof for (p, d) = (5, 2). In this case, under the notation in (4.1.1), (4.1.2) and the Riemann-Roch theorem show $\dim_{Q} H^{0}(X, \mathcal{O}(D)) \leq 1 + 2$. But if $\dim_{\mathbb{Q}} H^{0}(X, \mathcal{O}(D)) \geq 2$, then it must be $\geq 1 + 4$ by (4.1.3).

(4.3). Table for p < 300.

Let k be an algebraic number field of degree d. For the pairs (p, d)in the following table, we get n(k, p) < n''(k, p). See (1.4), (1.8), [32], [35] table 5, pp. 135-141.

		Table 5.	
р	d	s(p)	$h(-p)$ (for $p \ge 23$)
2	2, 3	8	
3	2, 3, 4, 5	12	
5	2	4	
7	2	2	
11	2	6	
13	2	6	
17	2, 3	8	
19	2, 3	8	
23	2, 3	6	3
29	2	6	6
31	2	6	3
37	2	2	2
41	2, 3	8	8
43	2	4	1
47	2, 3, 4	10	5
53	2	6	6
59	2, 3, 4, 5	12	3
61	2	6	6
67	2	4	1
71	2, 3, 4, 5, 6	14	7
73	2	4	4
79	2, 3, 4	10	5
83	2, 3, 4, 5	12	3
89	2, 3, 4, 5	12	12
97	2	4	4
101	2, 3, 4, 5, 6	14	14
103	2, 3, 4	10	5
107	2, 3, 4, 5	12	3
109	2	6	6
113	2,3	8	8
127	2, 3, 4	10	5
131	$2, 3, \cdots, 9$	20	5
137	2, 3	8	8
139	2, 3, 4, 5	12	3
149	2, 3, 4, 5, 6	14	14
151	?	14	7
157	2, 3	6	6
163	2, 3	4	1

p	d	s(p)	$h(-p)$ (for $p \ge 23$)
167	$2, 3, \cdots, 10$	22	
173	2, 3, 4, 5, 6	14	11 14
	2, 3, 4, 5, 0 $2, 3, \dots, 9$		
179		20	5
181	2, 3, 4	10	10
191	$2, 3, \cdots, 12$	26	13
193	2, 3	4	4
197	2, 3, 4	10	10
199	?	18	9
211	2, 3, 4, 5	12	3
223	2, 3, 4, 5, 6	14	7
227	?	20	5
229	2, 3, 4	10	10
233	2, 3, 4, 5	12	12
239	$2, 3, \cdots, 14$	30	15
241	2, 3, 4, 5	12	12
251	$2, 3, \cdots, 13$	28	7
257	2, 3, 4, 5, 6, 7	16	16
263	$2, 3, \cdots, 12$	26	13
269	$2, 3, \cdots, 10$	22	22
271	$2, 3, \cdots, 10$	22	11
277	?	6	6
281	$2, 3, \cdots, 9$	20	20
283	2, 3, 4, 5	12	3
293	$2, 3, \cdots, 8$	18	18

References

- [1] Z. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York and London (1966).
- [2] P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, Proceedings of the International Summer School on Modular functions of one variable, vol. II, Lecture Notes in Math., 349, Springer-Verlag, Berlin-Heiderberg-New York (1973).
- [3] B. H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., 776, Springer-Verlag, Berlin-Heiderberg-New York (1980).
- [4] A. Grothendieck, Fondements de la géométrie algébrique, Sém. Bourbaki, 1957-1962.
- [5] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York (1977).
- [6] M. A. Kenku, Certain torsion points on elliptic curves defined over quadratic fields, J. London Math. Soc., (2) 19 (1979), 233-240.
- [7] —, The modular curve $X_0(169)$ and rational isogeny, J. London Math. Soc., (2) **22** (1980), 239-244.

FUMIYUKI MOMOSE

- [8] —, On the modular curves X₀(125), X₁(25) and X₁(49), J. London Math. Soc.,
 (2) 23 (1981), 415-427.
- [9] —, Rational torsion points on elliptic curves defined over quadratic fields, to appear.
- [10] D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., (3) 33 (1976), 193-237.
- [11] D. Kubert, S. Lang, Units in the modular function fields I, II, III, Math. Ann., 218 (1975), 67-96, 175-189, 273-285.
- [12] S. Lang, Elliptic Functions, Addison-Wesley, Reading Math. (1973).
- [13] -----, Cyclotomic Fields, Addison-Wesley, Reading Math. (1973).
- [14] Yu. I. Manin, The p-torsion of elliptic curves is uniformly bounded, Math. USSR-Izv., 3 (1969), 433-438.
- [15] —, Parabolic points and zeta functions of modular curves, Math. USSR-Izv., 6 (1972), 19-64.
- [16] B. Mazur, Rational points on modular curves, Proceedings of Conference on Modular Functions held in Bonn, Lecture Notes in Math., 601, Springer-Verlag, Berlin-Heiderberg-New York (1977).
- [17] —, Modular curves and the Eisenstein ideal, I.H.E.S. Publ. Math., 47 (1977), 33-186.
- [18] —, Rational isogenies of prime degree, Invent. Math., 44 (1978), 129-162.
- [19] —, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61.
- [20] —, J. Tate, Points of order 13 on elliptic curves, Invent. Math., 22 (1973), 41-49.
- [21] J. F. Mestre, Points rationnels de la courbe modulaire $X_0(169)$, Ann. Inst. Fourier, **30**, 2 (1980), 17–27.
- [22] A. Ogg, Rational points on certain elliptic modular curves, Proc. Symposia in Pure Math. XXIV, AMS (1973), 221-231.
- [23] —, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449-462.
- [24] —, Diophantine equation and modular forms, Bull. Amer. Math. Soc., 81 (1975), 14-27.
- [25] F. Oort, J. Tate, Group schemes of prime order, Ann. Sci. Ecole Norm. Sup. série 4,3 (1970), 1-21.
- [26] M. Raynaud, Schémas en groupes de type (p,..., p), Bull. Soc. Math. France, 102 (1974), 241-280.
- [27] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math., 101 (1975), 555-562.
- [28] J. P. Serre, p-torsion des courbes elliptiques (d'àpres Y. Manin), Sém. Bourbaki 1969/70 pp.281-294, Lecture Notes in Math., 180, Springer-Verlag, Berlin-Heiderberg-New York (1971).
- [29] J. P. Serre, Corps Locaux, Publ. Inst. de Math. de Univ. de Nancago Hermann, Paris (1968).
- [30] G. Shimura, On elliptic curves with complex multiplication as factors of jacobians of modular function fields, Nagoya Math. J., 43 (1971), 199-208.
- [31] —, Introduction to the Arithmetic theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Iwanami Shoten, Tokyo-Princeton Univ. Press, Princeton, N.J.
- [32] H. Wada, A table of Hecke operators II, Proc. Japan Acad., 49 (1973) 380-384.
- [33] A. Weil, Adèles and Algebraic Groups, Lecture Notes, Inst. for Advanced Study, Princeton, N.J.

- [34] Éléments de Géométrie Algébrique III (par A. Grothendieck), I.H.E.S. Publ. Math., 17 (1963).
- [35] Modular Functions of One Variable IV (Ed. By B. J. Birch and W. Kuyk), Lecture Notes in Math., 476, Springer-Verlag, Berlin-Heiderberg-New York (1975).

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan