p-TORSION POINTS ON ELLIPTIC CURVES DEFINED OVER QUADRATIC FIELDS

FUMIYUKI MOMOSE*

Let p be a prime number and k an algebraic number field of finite degree d. Manin [14] showed that there exists an integer $n=n(k, p)(\geqq 0)$ which satisfies the condition

$$
E(k)_{p^{\infty}} \subseteq \operatorname{ker}\left(p^{n}: E \longrightarrow E\right)
$$

for all elliptic curves E defined over k. Here, $E_{p^{\infty}}=\bigcup_{m \geqq 1} E_{p^{m}}$ and $E_{p^{m}}=\operatorname{ker}\left(p^{m}: E \rightarrow E\right)$. We denote by $n=n(k, p)$ the least non-negative integer satisfying the above condition. For $k=\boldsymbol{Q}$, we know that $n(\boldsymbol{Q}, 2)=$ $3, n(\boldsymbol{Q}, 3)=2, n(\boldsymbol{Q}, 5)=n(\boldsymbol{Q}, 7)=1$ and $n(\boldsymbol{Q}, p)=0$ for $p \geqq 11$ (cf. [10], [16, 17], [20], [22]). For quadratic fields k, Kenku [6, 8, 9] showed that $n(k, 2) \leqq 4, n(k, 3)=2, n(k, 5)=n(k, 7)=1, n(k, 17)=n(k, 19)=n(k, 23)=0$ and $n(k, p)=0$ for the primes $p ; p \geqq 181, p \neq 191$ and $\# J_{0}^{-}(p)(\boldsymbol{Q})<\infty$. Here $J_{0}(p)$ is the jacobian variety of the modular curve $X_{0}(p), w_{p}$ is the automorphism of $J_{0}(p)$ induced by the fundamental involution $w_{p}:(E, A) \mapsto$ $\left(E\left|A, E_{p}\right| A\right)$ of $X_{0}(p)$ and $J_{0}^{-}(p)=J_{0}(p) /\left(1+w_{p}\right) J_{0}(p)$ (see [17]). Our result for quadratic fields k is the following.

Theorem A. Let k be any quadratic field and $n=n(k, p)$ as above. Then

$$
\begin{aligned}
& n(k, 11) \leqq 1 \\
& n(k, 13) \leqq 1
\end{aligned}
$$

and $n(k, p)=0$ for the primes $p \geqq 17$ satisfying the condition $\# J_{0}^{-}(p)(\boldsymbol{Q})<\infty$.
For $p=2,11$ and $13, n(k, p)$ depends on k (see (3.3)). For the primes $p, 17 \leqq p<300$, except for $p=151,199,227$ and 277 , the condition $\# \boldsymbol{J}_{0}^{-}(p)(Q)<\infty$ is satisfied ([17] p. 40, [35] Table $5 \mathrm{pp} .135-141$). We conjecture $n(k, p)=0$ for $p \geqq 17$. Our method used for quadratic fields can

[^0]be applied to some other number fields. For example we get the following.
Theorem B. Let k be any cubic field and $n=n(k, p)$ as above. Then
\[

$$
\begin{aligned}
& n(k, 2) \leqq 5 \\
& n(k, 3)=2 \\
& n(k, 17) \leqq 1
\end{aligned}
$$
\]

and $n(k, p)=0$ for $p=19,23,41,47,59,71$ and the primes $p ; p \geqq 79$, $p \neq 79, p \neq 109$ and $\# \boldsymbol{J}_{0}^{-}(p)(\boldsymbol{Q})<\infty$.

We here give a sketch of the proof of Theorem A above for the case $p \geqq 23, p \neq 37$. Suppose that there exists a non cuspidal k-rational point x on $X_{1}(p)$. Under the condition as in Theorem A, one gets a rational function g on $X_{0}(p)$ defined over \boldsymbol{Q} such that

$$
(g)=(x)+\left(x^{o}\right)+2(\infty)-\left(w_{p}(x)\right)-\left(w_{p}\left(x^{o}\right)\right)-2(0)
$$

where $1 \neq \sigma \in \operatorname{Gal}(k / \boldsymbol{Q})$ and $0, \infty$ are the cusps on $X_{0}(p)$, Section 2. For $p \geqq 181$ ($p \neq 191$), Kenku [9] proved that such function g does not exist, using an Ogg's idea [22,24]: The upper semicontinuity gives a non constant rational function $h\left(/ \boldsymbol{F}_{2}\right)$ on $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{2}$ with $(h)_{\infty}<$ an effective divisor of degree 4 , which leads the inequality $\# \mathscr{X}_{0}(p)\left(F_{p}\right) \leqq 10$. For the remaining p, we use the following two methods: (1) The condition $\left(w_{p}^{*} g\right)=-(g)(\neq 0)$ shows that $w_{p}^{*}(g)=a / g$ for $a \in \boldsymbol{Q}^{\times}$. Let y_{i} be the fixed points of w_{p} on $X_{0}(p)$ and put $D=\Sigma_{i}\left(y_{i}\right)$. Then one sees that $(g-\sqrt{a})_{0}>\Sigma^{\prime}\left(y_{i}\right)$ and $(g+\sqrt{a})_{0}>\Sigma^{\prime \prime}\left(y_{i}\right)$ with $D=\Sigma^{\prime}\left(y_{i}\right)+\Sigma^{\prime \prime}\left(y_{i}\right)$. This notion and a study on y_{i} give the inequality that the degree of $D \leqq 4$, (2.3). This criterion gives the proof, except for $p=43,67,73,97$ and 163. (2) The upper semicontinuity and a study on the action of w_{p} on $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{2}$ give a non constant rational function $h\left(/ \boldsymbol{F}_{2}\right)$ on $\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2}$ with $(h)_{\infty}<2$ (cusp) (2.4), where $\mathscr{X}_{0}^{+}(p)=\mathscr{X}_{0}(p) /\left\langle w_{p}\right\rangle$. Then $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq 5$ and $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{4}\right) \leqq 9$, which complete the remaining case. For $p=13$ and 37 , we apply other methods.

For the case $p<300$, we get an estimate of $n=n(k, p)$ by an integer which depends only on k and p (see $\S 2$). We add the table in Section 4.

The author thanks to B. Mazur, T. Sekiguchi and K. Cho for their useful remarks on curves.

Notation. For a prime number $q, \boldsymbol{Q}_{q}^{\mathrm{ur}}$ denotes the maximal unramified extension of \boldsymbol{Q}_{q}. Let K be a finite extension of $\boldsymbol{Q}, \boldsymbol{Q}_{q}$ or $\boldsymbol{Q}_{q}^{\mathrm{ur}}$, and A an
abelian variety defined over K. Then \mathcal{O}_{K} denotes the ring of integers of $K, A_{\text {loK }}$ denotes the Néron model of A over the base \mathcal{O}_{K}.

§1. Preliminaries

Let p be a prime number, $X_{1}\left(p^{r}\right)$ (resp. $X_{0}\left(p^{r}\right)$) the modular curve (defined over \boldsymbol{Q}) which corresponds to the modular group $\Gamma_{1}\left(p^{r}\right)$ (resp. $\Gamma_{0}\left(p^{r}\right)$). For $p^{r} \geqq 5, X_{1}\left(p^{r}\right)$ is the coarse moduli space (/Q) of the isomorphism classes of the generalized elliptic curves E with a torsion point P of order p^{r} up to the isomorphism $(-1)_{E}: E \leftrightarrows E$. We denote by $Y_{1}\left(p^{r}\right)$, $Y_{0}\left(p^{r}\right)$ the affine open subschemes $X_{1}\left(p^{r}\right) \backslash\{$ cusps $\}$ and $X_{0}\left(p^{r}\right) \backslash\{$ cusps\}, respectively. Let k be a number field and x a k-rational point on $Y_{1}\left(p^{r}\right)$ (resp. $Y_{0}\left(p^{r}\right)$). Then there exists an elliptic curve E defined over k with a torsion point P of order p^{r} (resp. a cyclic subgroup A of rank p^{r}) defined over k (see [2] VI Proposition (3.2)). Let $f: X_{1}\left(p^{r}\right) \rightarrow X_{0}\left(p^{r}\right)$ be the natural morphism: $(E, \pm p) \rightarrow(E,\langle P\rangle)$, where $\langle P\rangle$ is the cyclic subgroup generated by P. Then f is a Galois covering with the Galois group $\bar{\Gamma}\left(p^{r}\right)=$ $\Gamma_{0}\left(p^{r}\right) / \pm \Gamma_{1}\left(p^{r}\right)\left(\simeq\left(\boldsymbol{Z} / p^{r} \boldsymbol{Z}\right)^{\times} / \pm 1\right)$. For an integer i prime to $p,[i](=[-i])$ denotes the element of $\bar{\Gamma}\left(p^{r}\right)$ respresented by $g \in \Gamma_{0}\left(p^{r}\right), g \equiv\left(\begin{array}{l}i \\ 0 \\ 0\end{array} *\right) \bmod p^{r}$. The action of $[i]$ is defined by $(E, \pm P) \rightarrow(E, \pm i \cdot P)$. Let $w=w_{p^{r}}$ be the fundamental involution of $X_{0}\left(p^{r}\right):(E, A) \mapsto\left(E / A, E_{p^{r}} / A\right)$ and $X_{0}^{+}\left(p^{r}\right)$ the quotient $X_{0}\left(p^{r}\right) \mid\langle w\rangle$. For a point on a modular curve, $\rightarrow X_{0}(1)(=$ the projective j-line $/ \boldsymbol{Q}$), $j(x)$ denotes the modular invariant of x. We here explain the fixed points of w_{p} on $X_{0}(p)$ and add a table of the MordellWeil groups of subcoverings $X: X_{1}\left(p^{r}\right) \rightarrow X \rightarrow X_{0}\left(p^{r}\right)$. Further we discuss the fixed points of w_{p} on $\mathscr{X}_{0}(p) \otimes \boldsymbol{Z}_{2}$ and prepare some lemmas on curves, which will be used in Section 2.
(1.1) The ramification points of $Y_{1}\left(p^{r}\right) \longrightarrow Y_{0}(p)\left(p^{r} \geqq 5\right)$.
$j(x) \quad \#\{$ ramification points $\}$

1728	2	if $p \equiv 1 \bmod 4$
0	2	if $p \equiv 1 \bmod 3$.

(1.2) The ramification points of $X_{0}(p) \longrightarrow X_{0}^{+}(p)(p \geqq 5)$ and $X_{0}\left(11^{2}\right) \longrightarrow$ $X_{0}^{+}\left(11^{2}\right)$.

Let $h=h(-p)$ be the class number of $\boldsymbol{Q}(\sqrt{-p})$, and $h^{\prime}=h^{\prime}(p)$ the class number of the order $Z[\sqrt{-p}]$ for $p \equiv 1 \bmod 4$. Then $h^{\prime}=h$ if $p \equiv-1$ $\bmod 8, h^{\prime} \equiv 3 h$ if $p \equiv 3 \bmod 8$ (see e.g., [12] Part 8). Denote by $s=s(p)$
the number of the ramification points of $X_{0}(p) \rightarrow X_{0}^{+}(p)(p \geqq 5)$. Then

$$
s= \begin{cases}h & \text { if } p \equiv 1 \bmod 4 \\ h+h^{\prime} & \text { if } p \equiv 1 \bmod 4\end{cases}
$$

(loc. cit.). Let H (resp. H^{\prime}) be the Hilbert class field of $\boldsymbol{Q}(\sqrt{-p})$ (resp. of the order $Z[\sqrt{-p}]$ if $p \equiv 1 \bmod 4)$ and $x_{1}, \cdots, x_{h}, \cdots, x_{s}$ the ramification points. Let $H \stackrel{\text { c }}{ }$ C (resp. $H^{\prime} \stackrel{c^{\prime}}{\longrightarrow} C$) be an embedding, ρ the complex conjugation of H (resp. H^{\prime}) induced by this embedding, and H^{+}(resp. H^{++}) the fixed field by ρ. For $i, 1 \leqq i \leqq h, x_{i}$ is defined over H and cojugate over $Q(\sqrt{-p})$. One of them, say x_{1}, is defined over H^{+}. (Under the embedding c of H into C, x_{1} is represented by the elliptic curve C / a for an ideal \mathfrak{a} of the ring of integers of $\boldsymbol{Q}(\sqrt{-p})$ which satisfies $\left(\mathfrak{a}^{\rho}\right) \sim(\mathfrak{a})$ in the ideal class group of $\boldsymbol{Q}(\sqrt{-p})$. If $p \equiv-1 \bmod 4, x_{h+i}\left(1 \leqq i \leqq h^{\prime}\right)$ are defined over H^{\prime} and conjugate over $\boldsymbol{Q}(\sqrt{-p})$. One of them, say x_{h+1}, is defined over $H^{\prime+}$. (Under the embedding ι^{\prime} of H^{\prime} into C, x_{h+1} is represented by the elliptic curve $C / Z+Z \sqrt{-p})$.

There are six ramification points of $X_{0}\left(11^{2}\right) \rightarrow X_{0}^{+}\left(11^{2}\right)$, which are conjugate over \boldsymbol{Q}, and the set of the ramification points is a disjoint union of two orbits of $\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q}(\sqrt{-1}))$ of length three.
(1.3) The cuspidal sections of $X_{0}\left(p^{r}\right)$ ([2]).

For integers $k, 1 \leqq k \leqq r$, and i prime to p, let $\binom{i}{p^{k}}$ be the cuspidal section of $X_{0}\left(p^{r}\right)$ represented by the pair ($\boldsymbol{G}_{m} \times \boldsymbol{Z} / p^{r-k} \boldsymbol{Z}, \boldsymbol{Z} / p^{r} \boldsymbol{Z}\left(\zeta^{i}, p^{k}\right)$). Here, $\boldsymbol{Z} / p^{r} \boldsymbol{Z}\left(\zeta^{i}, p^{k}\right)$ is the cyclic subgroup of $\mu_{p^{r}} \times \boldsymbol{Z} / p^{r} \boldsymbol{Z}$ generated by $\left(\zeta^{i}, p^{k}\right), \zeta=\zeta_{p^{r}}$ is a primitive p^{r}-th root of 1 . We denote $0=\binom{0}{1}$ and $\infty=\binom{1}{0}$. The ramification index of the covering $X_{1}\left(p^{r}\right) \rightarrow X_{0}\left(p^{r}\right)$ at $\binom{i}{p^{k}}$ is $\min \left\{p^{k}, p^{r-k}\right\}$. Let $0_{i}, 1 \leqq i \leqq p^{r-1}(p-1)$, be the cuspidal sections of $X_{1}\left(p^{r}\right)$ lying over $0=\binom{0}{1}$, which are \boldsymbol{Q}-rational. We call them the 0 -cusps.
(1.4) We will use the following coverings. Here γ is the generator of $\bar{\Gamma}_{0}\left(p^{r}\right) \simeq\left(\boldsymbol{Z} \mid p^{r} \boldsymbol{Z}\right)^{\times} \mid \pm 1, s=s(p)$ is the number of the ramification points of $X \rightarrow Y$, and $g(X)$ and $g(Y)$ are respectively the genuses of X and Y. If $X=X_{0}(p)$ and $Y=X_{0}^{+}(p)$, put $g_{0}(p)=g(X), g_{+}(p)=$ $g(Y)$.

Table 1.

For $p=37$, let $\left(X_{1}(37) \xrightarrow{9}\right) X \xrightarrow{2} Y=X_{0}(37)$ be the double covering. Then $s=2, g(X)=4$ and $g(Y)=2$.
(1.5) Let $J=J(X)$ be the jacobian variety of the modular curve X above. On the Mordell-Weil groups of J or $J_{0}^{-}(p)(p \geqq 11)$, we know the following (Kenku [6, 8, 9], Mazur and Tate [20], Mazur [17], [35] Table 1, 3, 5).

Table 2.

p	$\# \boldsymbol{H}(\boldsymbol{Q})$ or $\# \boldsymbol{J}_{0}^{+}(p)(\boldsymbol{Q})_{\text {tor }}$
2	$2 \cdot 5\|\# J(\boldsymbol{Q})\| 2^{9} \cdot 5^{2}$
3	$3 \cdot 19\|\# J(\boldsymbol{Q})\| 3^{4} \cdot 19 \cdot 307$
5	$J(\boldsymbol{Q}) \simeq \boldsymbol{Z} / 71 \boldsymbol{Z}$
7	$J(\boldsymbol{Q}) \simeq \boldsymbol{Z} / 14 \boldsymbol{Z}$
11	$2 \cdot 5\left\|\# \boldsymbol{J}_{0}^{-}(121)(\boldsymbol{Q})\right\| 2^{a} \cdot 5^{2}$ for an integer $a \geqq 1$
13	$J(\boldsymbol{Q}) \simeq \boldsymbol{Z} / 19 \boldsymbol{Z}$
17	$2 \cdot 73\|\# J(\boldsymbol{Q})\| 2^{3} \cdot 73$
19	$3\|\# J(\boldsymbol{Q})\| 3^{2} \cdot 387$
23	$11\left\|\# J_{1}(23)(\boldsymbol{Q})\right\| 11 \cdot 37181$
$p \geqq 11$	$J_{0}^{-}(p)(\boldsymbol{Q})_{\text {tor }} \simeq \boldsymbol{Z} / m \boldsymbol{Z}$, where $m=\operatorname{num}((p-1) / 12)$.

For $p=37$, we will see that the Mordell-Weil group of Coker $\left(J_{0}(37) \rightarrow J(X)\right)$ is isomorphic to $Z / 5 Z$. (The double covering $X \rightarrow X_{0}(37)$ has two ramification points with the modular invariant $j=1728$).
(1.6) Let $\mathscr{X}_{1}\left(p^{r}\right), \mathscr{X}_{0}\left(p^{r}\right)$ be the normalizations of the projective j-line $\mathscr{X}_{0}(1) \simeq \boldsymbol{P}_{Z}^{1}$ in $X_{1}\left(p^{r}\right)$ and $X_{0}\left(p^{r}\right)$, respectively. These are smooth over $Z[1 / p]$ ($[2] \mathrm{VI}$ Proposition (6.7)). The special fibre $\mathscr{X}_{1}\left(p^{r}\right) \otimes \boldsymbol{F}_{p}$ (also $\mathscr{X}_{0}\left(p^{r}\right) \otimes \boldsymbol{F}_{p}$) has $r+1$ irreducible components E_{0}, \cdots, E_{r}. The 0 -cusps $\otimes \boldsymbol{F}_{p}$ are the sections of the smooth component $E_{0}^{h}=E_{0} \backslash$ \{supersingular points on $\left.\mathscr{X}_{1}\left(p^{r}\right) \otimes \boldsymbol{F}_{p}\right\}$. Put $\mathscr{V}_{1}\left(p^{r}\right)=\mathscr{X}_{1}\left(p^{r}\right) \backslash \sum_{\substack{r=1 \\ i=0}}^{\substack{i+1}}$, which is smooth over Z. The 0-cusps are the sections of $\mathscr{V}_{1}\left(p^{r}\right)$ ([2] V §2, §4, VI).
N.B. (loc. cit.). Let $\mathscr{C}^{\prime}=\mathscr{C}_{1}^{\prime}\left(p^{r}\right)$ be the algebraic stack which represents the functor: for a scheme $S / Z, \mathscr{C}^{\prime}(S)$ is the set of the isomorphism classes of the generalized elliptic curves C with a S-section P of order p^{r} such that $\langle P\rangle \simeq\left(Z \mid p^{r} Z\right) / S$, isomorphic locally for the étale topology. Here $\langle P\rangle$ is the finite étale subgroup generated by the section P (see loc. cit. V §2, §4). Let $\mathscr{V}_{1}\left(p^{r}\right)$ be the scheme induced by \mathscr{C}^{\prime} (= "schéma grossier", loc. cit. VI, VII p. 300). Then $\mathscr{V}_{1}\left(p^{r}\right)$ is an open subscheme of $\mathscr{X}_{1}\left(p^{r}\right)$ and smooth over Z (see loc. cit. V $\S 2, \S 4, \mathrm{I}(8.22)$). The 0 -cusps are the sections of $\mathscr{V}_{1}\left(p^{r}\right)$ represented by the pairs ($\boldsymbol{G}_{m} \times \boldsymbol{Z} / p^{r} \boldsymbol{Z}, \pm P$) for $P \in \boldsymbol{Z} / p^{r} \boldsymbol{Z}$.

Let k be an algebraic number field of degree d, \tilde{k} the smallest Galois extension of \boldsymbol{Q} containing k. For a rational prime q, let q be a prime of \tilde{k} lying over q. We denote by f_{q}, e_{q} the degree of q and the ramification index of q in \tilde{k}, respectively. Let $C=C(k, p)$ be the set of rational primes q as follows:

$$
\begin{align*}
C(k, p)= & \{q \neq 2, p\} \cup\left\{q=p \quad \text { if } e_{p}<p-1\right\} \\
& \cup\{q=2 \quad \text { if } p \neq 2,11,17 \text { or } p \equiv 1 \bmod 8\} \tag{1.7}
\end{align*}
$$

Define an integer $n^{\prime}=n^{\prime}(k, p)$ as the least non-negative integer subjects to

$$
\begin{equation*}
p^{n^{\prime}}>\min _{q \in C(k, p)}\left\{1+q^{f_{q}}+2 \sqrt{q^{f_{q}}}\right\} \tag{1.8}
\end{equation*}
$$

and

$$
n^{\prime}>4 \quad \text { if } p=2, n^{\prime}>2 \quad \text { if } p=3, n^{\prime}>1 \quad \text { if } p=5,7
$$

For $p \geqq 23$, let $n^{\prime \prime}=n^{\prime \prime}(k, p)$ be the least integer such that $n^{\prime \prime} \geqq n^{\prime}$ and $p^{n^{\prime \prime}}>1+2^{f_{2}}+2 \sqrt{2^{f_{2}}} . \quad$ For the prime $p \equiv 1 \bmod 8(p \geqq 23), n^{\prime}=n^{\prime \prime}$ (see (1.7)).

For a \tilde{k}-rational point x on $X_{1}\left(p^{r}\right)$ (resp. $X_{0}\left(p^{r}\right)$), by x we denote the $\mathcal{O}_{\dot{k}-\text {-section: }} \operatorname{Spec} \mathcal{O}_{\tilde{k}} \rightarrow \mathscr{X}_{1}\left(p^{r}\right)$ (resp. $\rightarrow \mathscr{X}_{0}\left(p^{r}\right)$) which is the unique extension of x. Let E be an elliptic curve defined over k with a k-rational point P of order p^{r}, and x the point on $Y_{1}\left(p^{r}\right)$ represented by the pair $(E, \pm P)$.

Lemma (1.9). Let q be a rational prime such that $q \neq p$, or $q=p$ and $e_{q}<p-1$, and \mathfrak{q} a prime of \tilde{k} lying over q. If $p^{r}>1+q^{f_{q}}+2 \sqrt{q^{f_{q}}}$, then $x^{\sigma} \otimes \mathcal{O} / \mathfrak{p}$ is a 0 -cusp for any $\sigma \in \operatorname{Isom}_{Q}(k, \bar{Q})$, where \mathcal{O} is the ring of integers of \tilde{k}.

Proof. We denote f_{q} by f, and $\mathcal{O}^{\text {ur }}$ the ring of integers of $\tilde{k} \otimes \boldsymbol{Q}_{q}^{\mathrm{ur}}$. The point x^{σ} is represented by (E^{o}, P^{σ}) which is defined over \tilde{k}. By the universal property of the Néron model $E_{l 0}$, there exists a homomorphism $f:\left(Z / p^{r} \boldsymbol{Z}\right)_{10} \rightarrow E_{/ 0}$ such that $f \otimes \tilde{k}$ is an isomorphism into E. Let A be the flat closure of $f\left(\left(\boldsymbol{Z} / p^{r} \boldsymbol{Z}\right)_{10} \otimes \tilde{k}\right)$ in the Néron model $E_{/ 0}$, which is a finite flat group scheme of rank p^{r}. If $q \neq p, f$ is an isomorphism. If $q=p$ and $e_{p}<p-1$, by the fundamental property of the finite flat group schemes ([26] § 3 Proposition (3.3.2)), f is also an isomorphism (: $f \otimes \mathcal{O}^{\text {ur }}$ is an isomorphism, then $\left.\operatorname{ker}\left(f \otimes \boldsymbol{F}_{q f}\right)=\{0\}\right)$. Since $p^{r}>1+q^{f}+2 \sqrt{\overline{q^{f}}}$ ($\geqq 5$), E has semistable reduction at q (Tate [35] p. 46), and has multiplicative reduction (e.g., [16] Lemma 2). Fix an embedding of \tilde{k} into $\overline{\boldsymbol{Q}}_{q}$. Then the connected component $\left(E^{\sigma}{ }_{10} \otimes F_{q}\right)^{0}$ of the unity is a torus T and $\boldsymbol{T} \otimes_{F_{q} f} \boldsymbol{F}_{q^{2} f} \simeq \boldsymbol{G}_{m / \boldsymbol{F}_{q^{2}} f}$. So if $x^{\sigma} \otimes \boldsymbol{F}_{q f}$ is not a 0-cusp, then $\boldsymbol{Z} / p^{r} \boldsymbol{Z} \subset$ $T\left(F_{q f}\right), \simeq Z /\left(q^{f}-1\right) Z$ or $\simeq \boldsymbol{Z} /\left(q^{f}+1\right) Z$. Therefore the condition $p^{r}>$ $1+q^{f}+2 \sqrt{q^{f}}$ shows that $x^{\sigma} \otimes \boldsymbol{F}_{q f}$ is a 0 -cusp.
(1.10) Now we describe the fixed points of $w=w_{p}$ of $\mathscr{X}_{0}(p) \otimes Z[1 / p]$ ($p \geqq 5$).

Let $\mathscr{X}_{0}^{+}(p)$ be the quotient $\mathscr{X}_{0}(p) /\langle w\rangle$, which is smooth over $Z[1 / p]$. ($\mathscr{X}_{0}(p)$ is smooth over Z_{2} and the action of w on $\mathscr{X}_{0}(p) \otimes F_{2}$ is generically étale of degree two, see [2] VI Proposition (6.7)). Let $q, \neq p$, be a rational prime, y a fixed point of w on $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{q}$. Then y is represented by an elliptic curve $\left(\mid \bar{F}_{q}\right)$ with a subgroup A of rank p such that $(E, A) \simeq$ $\left(E / A, E_{p} \mid A\right)$ (see [2]). There exists an endomorphism α of E such that
$\alpha(A)=\{0\}$ and $\alpha^{2}=-p$. The pair (E, α) is lifted to characteristic zero (over a finite extension of $\boldsymbol{Q}_{q}^{\mathrm{ur}}$), see e.g., [12] Part $12 \S 5$ Theorem 14). Thus y is the special fibre of a fixed point x_{i} for an integer $i, 1 \leqq i$ $\leqq s=s(p)$ (see (1.2)). Let x be a fixed point of w on $X_{0}(p)$ and \mathcal{O} the ring of integers of $\boldsymbol{Q}_{q}^{\mathrm{ur}}$. Let $\widehat{\mathcal{O}_{x_{0}(p), x}}=\mathcal{O}[[t]]$ be the completion along the \mathcal{O}-section x ([2] VI Proposition (6.7)). Then, $\sigma=w^{*}$ is of the form $\sigma(t)=-t+a_{2} t^{2}+\cdots$ for $\mathrm{a}_{i} \in \mathcal{O}$ and $a_{j} \in \mathcal{O}^{\times}$for some j if $q=2$. If $q \neq 2$, p, it is easily seen that $x_{i} \otimes \overline{\boldsymbol{F}}_{q} \neq x_{j} \otimes \overline{\boldsymbol{F}}_{q}$ for $x_{i} \neq x_{j}$.

Now assume $q=2(p \geqq 5)$. The double covering $\mathscr{X}_{0}(p) \otimes F_{2} \rightarrow$ $\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2}$ has wild ramifications at the fixed points of $w=w \otimes \boldsymbol{F}_{2}$ (see e.g., [29] Chapitre IV). By the Riemann-Hurwitz formula, $2 g_{0}(p)-2=$ $2\left(2 g_{+}(p)-2\right)+\sum_{y}(1+i(y))$, where y are the ramification points and $i(y)$ is the index of wild ramification at y (see loc. cit., [17] Chapter II). Therefore, there are at most $s(p) / 2$ ramification points on $\mathscr{X}_{0}(p) \otimes \overline{\boldsymbol{F}}_{2}$. Let $v=v_{2}$ be the normalized valuation of $\overline{\boldsymbol{Q}}_{2}$ such that $v(2)=1$.

Sublemma. Let x, σ and \mathcal{O} be as above, and π a prime element of \mathcal{O}. Let \mathcal{O}^{\prime} be the ring of integers of the cyclic extension of $\boldsymbol{Q}_{2}^{\mathrm{ur}}(x)$ of degree three, and π^{\prime} a prime element of \mathcal{O}^{\prime}.
(i) If $v(\pi)=1\left(\mathcal{O} \simeq W\left(\bar{F}_{2}\right)\right)$, there are at most two solutions $t=\alpha \in \pi \mathcal{O}$ of $t=\sigma(t)$, and at most three solutions $t=\alpha \in \pi^{\prime} \mathcal{O}^{\prime}$ of the same equation.
(ii) If $v(\pi)=1 / 2, t=\sigma(t)$ has at most two solutions in $\pi \mathcal{O}$.

Proof. The relation $\sigma^{2}=1$ implies $a_{3}=-a_{2}^{2}$. The remaining part is elementary.

Case $p \equiv 1 \bmod 8$. The ramification index of the rational prime 2 in H is 2 (see (1.2)). By (ii) above we see that the map $\left\{x_{i}\right\} \rightarrow\left\{x_{i} \otimes \bar{F}_{2}\right\}$ is two to one. Two of $\boldsymbol{x}_{i} \otimes \overline{\boldsymbol{F}}_{2}$ are \boldsymbol{F}_{2}-rational (see [24] Theorem 3).

Case $p \equiv 5 \bmod 8$. By the same reason as above, the map $\left\{x_{i}\right\} \rightarrow$ $\left\{x_{i} \otimes \bar{F}_{2}\right\}$ is two to one. One of $x_{i} \otimes \bar{F}_{2}$ is F_{2}-rational (loc. cit.).

Case $p \equiv-1 \bmod 8$. In this case $H=H^{\prime}$ (see (1.2)), the rational prime 2 splits in $\boldsymbol{Q}(\sqrt{-p})$ and $x_{i} \otimes \overline{\boldsymbol{F}}_{2}$ are not the supersingular points (e.g., [13] Chapter 8, [30]). By the uniqueness of the Deuring lifting (e.g., [12] Part 13, § 4 Theorem 13), $\left\{x_{i}\right\}_{1 \leqq i \leqq h} \rightarrow\left\{x_{i} \otimes \overline{\boldsymbol{F}}_{2}\right\}$ is injective. Hence (i) above shows that the map $\left\{x_{i}\right\}_{1 \leq i \leq 2 h} \rightarrow\left\{x_{i} \otimes \bar{F}_{2}\right\}$ is two to one. Let $\mathfrak{p}=\mathfrak{p}_{2}$ be a prime of H lying over 2. Then these $\left\{x_{i} \otimes \overline{\boldsymbol{F}}_{2}\right\}$ is the disjoint union of orbits of the action of $\operatorname{Gal}\left(H_{p} / \boldsymbol{Q}(\sqrt{-p})\right) \simeq \operatorname{Gal}\left(\kappa(\mathfrak{p}) / \boldsymbol{F}_{2}\right)$. Here H_{p} is the
\mathfrak{p}-adic completion of H and $\kappa(\mathfrak{p})=\mathcal{O}_{H} / \mathfrak{p}$. Note that the degree of \mathfrak{p} is odd $\geqq 3$ for $p \geqq 23, p \equiv-1 \bmod 8$.

Case $p \equiv 3 \bmod 8$. The rational prime 2 does not ramify in H and the degree of the prime $\mathfrak{p} \mid 2$ of H is two. H^{\prime} is a cyclic extension of H of degree 3 , which ramifies totally at the primes lying over 2 (e.g., [12] Part 8 Theorem 7). Then $x_{i}{ }^{\sigma} \otimes k\left(\mathfrak{p}^{\prime}\right)=x_{i} \otimes k\left(\mathfrak{p}^{\prime}\right)$ for a prime $\mathfrak{p}^{\prime} \mid 2$ of H^{\prime} and $\sigma \in \operatorname{Gal}\left(H^{\prime} \mid H\right)$, where $\kappa\left(\mathfrak{p}^{\prime}\right)=\mathcal{O}_{H^{\prime}} / \mathfrak{p}^{\prime}$. Let E / \boldsymbol{F}_{2} be a supersingular elliptic curve. Then $x_{i} \otimes \bar{F}_{2}$ is represented by the pair (E, A) for $A=$ $\operatorname{ker}(\alpha: E \rightarrow E), \alpha^{2}=-p$. Under the isomorphism

$$
\operatorname{End}(E) \xrightarrow{\sim}\left\{\left.\frac{a+b i+c j+d k}{2} \right\rvert\, a, b, c, d \in Z, a \equiv b \equiv c \equiv d \bmod 2\right\}
$$

(e.g., [35] § 7), α is represented by $a i+b j+c k$ for $a, b, c \in Z$. Then, as $p \equiv 3 \bmod 8, a, b, c$ must be odd. Therefore A is invariant under the action of $(1+\alpha) / 2 \in \operatorname{End}(E)$. Let $(\tilde{E}, \tilde{\beta})$ be a lifting of $(E,(1+\alpha) / 2)$ (e.g., [12] Part 13, § 5 Theorem 14). Then $x_{i} \otimes \overline{\boldsymbol{F}}_{2}$ is the special fibre of x_{j} for a $j, 1 \leqq j \leqq h$, see (1.2). $\quad x_{j}$ is represented by ($\tilde{E}, \operatorname{ker}(2 \tilde{\beta}-1)$). Thus we see that the map $\left\{x_{i}\right\}_{1 \leq i \leq h} \rightarrow\left\{x_{i} \otimes \bar{F}_{2}\right\}$ is one to one (see (i) above), and $\left\{x_{i+h}\right\}_{1 \leqq i \leqq 3 h} \rightarrow\left\{x_{i} \otimes \overline{\boldsymbol{F}}_{2}\right\}$ is three to one. One of $\boldsymbol{x}_{i} \otimes \overline{\boldsymbol{F}}_{2}$ is \boldsymbol{F}_{2}-rational ([24] Theorem 3).

Let y_{j} be the fixed point of $w=w \otimes \boldsymbol{F}_{2}$ on $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{2}(p \geqq 5), i(y)$ be the index of the wild ramification at y_{j} of the natural morphism $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{2} \rightarrow \mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2}$.

Table 3.

$p \bmod 8$	$i\left(y_{j}\right)$	$\#\left\{\boldsymbol{F}_{2}\right.$-rational fixed points $\}$	$\#\left\{\right.$ non \boldsymbol{F}_{2}-rational fixed points $\}$
1	1	2	$h / 2-2$
5	1	1	$h / 2-1$
-1	1	$0(p \geqq 23)$	$h(p \geqq 23)$
3	3	1	$h-1$

Let K be a field, X a proper smooth curve defined over K. Let $\sigma \neq 1$ be an automorphism of X defined over $K,\left\{x_{i}\right\}_{1 \leq i \leq s}$ the set of the fixed points of σ, and set $D=\sum_{i=1}^{s}\left(x_{i}\right)$ a divisor of X. It is easy to see the following.

Lemma (1.11). If g is a rational function on X of degree m defined over K such that $\left(\sigma^{*} g\right) \neq(g)(=$ the divisor of $g)$ and $g\left(x_{i}\right) \neq 0, \infty$. Then

$$
\left(\sigma^{*} g / g-1\right)_{0}>D
$$

In particular, $s \leqq 2 m$. If, moreover, $\sigma^{2}=1$,

$$
\left(\sigma^{*} g / g-1\right)_{0}=\sum_{i=1}^{s} m_{i}\left(x_{i}\right)+\sum_{j}\left\{\left(y_{j}\right)+\left(\sigma y_{j}\right)\right\}
$$

for some positive integers m_{i} such that $\sum_{i=1}^{s} m_{i}\left(x_{i}\right)$ is K-rational and $y_{j} \neq \sigma y_{j}$.

Now let K be a finite extension of \boldsymbol{Q}_{2}, R the ring of integers of K with the residue field F_{q} for $q=2^{r}$. Suppose that X is the generic fibre of a smooth projective curve $\mathscr{X} \rightarrow \operatorname{Spec} R$, and σ an involution of \mathscr{X} defined over R such that $\mathscr{Y}_{\text {dfn }}=\mathscr{X} \mid\langle\sigma\rangle \rightarrow \operatorname{Spec} R$ is smooth and that the natural morphism $f: \mathscr{X} \otimes \boldsymbol{F}_{q} \rightarrow \mathscr{Y} \otimes \boldsymbol{F}_{q}$ is not radicial. Let $E=\sum m_{i}\left(z_{i}\right)$, $m_{i}>0$, be a K-rational divisor of X such that $1<\operatorname{dim}_{K} H^{0}(X, \mathcal{O}(E))$. Then we have

Lemma (1.12). Assume further that $\sigma=\sigma \otimes \boldsymbol{F}_{q}$ has fixed points, $z_{i} \otimes \boldsymbol{F}_{q}$ are not fixed points and that $\sigma^{*}\left(\sum m_{i}\left(z_{i} \otimes \boldsymbol{F}_{q}\right)\right)=\sum m_{i}\left(z_{i} \otimes \boldsymbol{F}_{q}\right)$. Then there exists a covering $g: \mathscr{Y} \otimes \boldsymbol{F}_{q} \rightarrow \boldsymbol{P}^{1_{\mid F_{q}}}$ defined over \boldsymbol{F}_{q} such $f^{*}\left((g)_{\infty}\right)>$ $\sum m_{i}\left(z_{i} \otimes F_{q}\right)$.

Proof. Let K^{\prime} be a finite extension of K over which the z_{i} 's are defined, and $R^{\prime}, F_{q^{\prime}}$ the ring of integers of K^{\prime} and the residue field of R^{\prime}, respectively. Let $\mathscr{L}=\stackrel{i}{\otimes} \mathcal{O}\left(z_{i}\right)^{\otimes m_{i}}$ be the Cartier divisor of $\mathscr{X} \otimes R^{\prime}$. Then $\operatorname{dim}_{F_{q^{\prime}}} H^{0}\left(\mathscr{X} \otimes \boldsymbol{F}_{q^{\prime}}, \mathscr{L}\right)>1$ by the upper semicontinuity ([34] (7.7.5)1). Then $\operatorname{dim}_{F_{q}} H^{0}\left(\mathscr{X} \otimes \boldsymbol{F}_{q}, \mathcal{O}(E)\right)>1$, because $\mathscr{L} \simeq \mathcal{O}(E) \otimes R^{\prime}$ over $\mathscr{X} \otimes R^{\prime}$. By the assumption $\sigma^{*}\left(E \otimes \boldsymbol{F}_{q}\right)=E \otimes \boldsymbol{F}_{q}$, there exists a non-constant section h of $H^{0}\left(\mathscr{X} \otimes \boldsymbol{F}_{q}, \mathcal{O}(E)\right)$ such that $\boldsymbol{F}_{q} \oplus \boldsymbol{F}_{q} h$ is a σ-invariant subspace. So $\sigma^{*} h=$ $h+a$ for an $a \in \boldsymbol{F}_{q}$. The proof is completed if $a=0$ is shown (because $\mathscr{X} \otimes \boldsymbol{F}_{q} \rightarrow \mathscr{Y} \otimes \boldsymbol{F}_{q}$ is generically étale of degree 2). Suppose $a \neq 0$. For each point x on $\mathscr{X} \otimes \boldsymbol{F}_{q} \backslash \operatorname{Supp}\left(E \otimes \boldsymbol{F}_{q}\right), h \in \mathcal{O}_{x \otimes \boldsymbol{F}_{q}, x}$. The covering $\mathscr{X} \otimes \boldsymbol{F}_{q} \rightarrow$ $\mathscr{Y} \otimes \boldsymbol{F}_{q}$ is then factored by $\operatorname{Spec} \mathcal{O}_{y \otimes \boldsymbol{F}_{q}, f(x)}[h]$ at x :

The morphism f is finite of degree 2, and $\operatorname{Spec} \mathcal{O}_{\otimes \otimes F_{q}, f(x)}[h] \rightarrow \operatorname{Spec} \mathcal{O}_{\otimes \otimes F_{q}, f(x)}$ is étale of degree 2, since $\sigma^{*} h(z) \neq h(z)$ for any point z on $\mathscr{X} \otimes F_{q} \backslash$ $\operatorname{Supp}\left(E \otimes \boldsymbol{F}_{q}\right)$. Therefore f is étale at any point $x \in \mathscr{X} \otimes \boldsymbol{F}_{q} \backslash \operatorname{Supp}\left(E \otimes \boldsymbol{F}_{q}\right)$.

This contradicts to our assumption.

§2. The rational points on $\boldsymbol{Y}_{1}\left(\boldsymbol{p}^{\boldsymbol{r}}\right)$

Let k be an algebraic number field of degree $d ; \tilde{k}, e_{q}, f_{q}, C=C(k, p)$, $n^{\prime}=n^{\prime}(k, p)$ and $n^{\prime \prime}=n^{\prime \prime}(k, p)$ be as in the last section. Assuming the existence of a k-rational point on $Y_{1}\left(p^{r}\right)$ with $r>n(k, p)$, we here introduce a rational function g on a modular curve whose divisor is determined by the k-rational point as above. Further we prepare propositions which concern g and the fixed points of $w_{p}(p \geqq 23)$. Let x be a k-rational point on $Y_{1}\left(p^{r}\right)=X_{1}\left(p^{r}\right) \backslash\{$ cusps $\}$ for $r \geqq n^{\prime}(k, p)$. By x we denote also the image of x by the natural morphism $X_{1}\left(p^{r}\right) \rightarrow X$, see (1.4). We consider only the primes p with $p \leqq 23$ or ($p \geqq 29$ and) $\# J_{0}^{-}(p)(\boldsymbol{Q})<\infty$. For each $\sigma \in \operatorname{Isom}_{\boldsymbol{Q}}(k, \overline{\boldsymbol{Q}})$, Lemma (1.9) shows that $x^{\sigma} \otimes \kappa(\mathfrak{q})=0_{i_{\sigma}} \otimes k(\mathfrak{q})$ for an integer i_{σ} and a prime \mathfrak{q} of \tilde{k} lying over the rational prime $q \in C=C(k, p)$ which attains the minimal value of $1+q^{f_{q}}+2 \sqrt{q^{f_{q}}}$, where $\kappa(\mathfrak{q})=\mathcal{O}_{\tilde{k}} / \mathfrak{q}$. Consider the \boldsymbol{Q}-rational section

$$
i(x)=\operatorname{cl}\left(\sum_{\sigma}\left(x^{o}\right)-\sum_{\sigma}\left(0_{i_{\sigma}}\right)\right)
$$

of $A=J(X)$ for $p \leqq 23, p \neq 11$; of $A=\operatorname{Coker}\left(J_{0}(37) \rightarrow J(X)\right.$) for $p=37$; of $A=J_{0}^{-}(121)$ for $p=11$; and of $A=J_{0}^{-}(p)$ for $p \geqq 29$ (see (1.4)). Let \mathscr{X} be the normalization of the projective j-line $\mathscr{X}_{0}(1)$ in X (see (1.4)). Let $\boldsymbol{Z}_{(q)}$ be the localization of \boldsymbol{Z} at the prime q and $\mathcal{O}_{(q)}=\mathcal{O}_{\tilde{k}} \otimes \boldsymbol{Z}_{(q)}$. Then $x^{\sigma} \otimes \mathcal{O}_{(q)}, 0_{i_{\sigma}} \otimes \mathcal{O}_{(q)}$ are the sections of the smooth part of $\mathscr{X} \otimes \boldsymbol{Z}_{(q)}$, see (1.6), (1.9). Let

$$
i\left(x^{\sigma}\right): \operatorname{Spec} \mathcal{O}_{(q)} \xrightarrow{x^{\sigma}} \mathscr{X}^{\text {smooth }} \otimes \boldsymbol{Z}_{(q)} \longrightarrow A_{/ Z_{(q)}} \quad z \longrightarrow \operatorname{cl}\left((z)-\left(0_{i_{\sigma}}\right)\right) .
$$

Then by our assumptions on q and r (see (1.8), (1.9)), $i\left(x_{\sigma}\right) \otimes \kappa(q)=0$. Then $i(x) \otimes \kappa(\mathfrak{q})=\left(\sum_{o} i\left(x^{\sigma}\right)\right) \otimes \kappa(\mathfrak{q})=0$, i.e., $i(x) \otimes \boldsymbol{F}_{q}=0$. The \boldsymbol{Q}-rational section $i(x) \otimes \boldsymbol{Z}_{(q)}$ is of finite order for $p \neq 37$, see (1.5). The specialization lemma of the finite flat group schemes ([26] Proposition (3.3.2), [18] Proposition (1.2)) leads that $i(x)=0$ for $p \neq 37$ (, note: $1<3-1 \leqq q-1$, (1.7)). Then there is a rational function g on X such that (see (1.4))

For $p=37$, we will show $\operatorname{Coker}\left(J_{0}(37) \rightarrow J(X)\right)(\boldsymbol{Q}) \simeq \boldsymbol{Z} / 5 \boldsymbol{Z}$, see (3.4.2). Then we get a rational function g on X such that

$$
\begin{equation*}
(g)=\sum\left(x^{\sigma}\right)+\sum\left(r\left(0_{i_{\sigma}}\right)\right)-\sum\left(r\left(x^{\sigma}\right)\right)-\sum\left(0_{i_{\sigma}}\right), \tag{2.1}
\end{equation*}
$$

where $1 \neq \gamma \in \operatorname{Aut}\left(X / X_{0}(37)\right)$, see (1.4). As (g) is \boldsymbol{Q}-rational, we may assume that g is defined over \boldsymbol{Q}. If $p=11$ or p is the last case in (2.1), $\left(w^{*} g\right)=-(g)(\neq 0)$; and if $p=37,\left(\gamma^{*} g\right)=-(g)$. So we may assume

$$
\left\{\begin{array}{l}
w^{*} g=\frac{a}{g} \tag{2.2}\\
\gamma^{*} g=\frac{a}{g} \quad(\text { for } p=37)
\end{array}\right.
$$

for a square free integer $a(\neq 0)$. For $p \neq 37$, as $\boldsymbol{Q}\left(x_{i}\right)$ is not totally imaginary (see (1.2)), $a>0$.

Proposition (2.3). Let x be a k-rational point on $Y_{1}\left(p^{v}\right), g$ the rational function as above and $p=2,3,11,17$, or $p \geqq 23, \neq 37$, with $\# J_{0}^{-}(p)(\boldsymbol{Q})<\infty$. In the case $p \equiv 5 \bmod 8$ and the class number $h=h(-p)$ of $\boldsymbol{Q}(\sqrt{ }-p)$ is divisible by 4, we further assume $p^{r}>1+q^{f_{q}}+2 \sqrt{q^{f_{q}}}$ for an odd prime $q \neq p$. Then we have

$$
s=s(p) \leqq 2 d
$$

Proof. Case $p \geqq 23$ and $X_{0}^{+}(p) \simeq P^{1}$.
The rational function g is of degree d and $(g) \neq\left(w^{*} g\right)$. So the conditions of Lemma (1.11) are satisfied.

Case $p \geqq 23, \neq 37$, and $X_{0}^{+}(p) \neq P^{1}$.
Let $x_{1}, \cdots, x_{h}, \cdots, x_{s}$ be the fixed points of $w=w_{p}$. Then $g\left(x_{i}\right)= \pm \sqrt{a}$ (see (2.2)). We may assume $g\left(x_{1}\right)=+\sqrt{a}$. First, we consider the case $p \equiv-1 \bmod 4$. Then $s=s(p)=h+h^{\prime}$ (see (1.4)) is even, and $h\left(\leqq h^{\prime}\right)$ is odd. x_{1} is defined over H^{+}(see (1.4)) and [$\left.H^{+}: \boldsymbol{Q}\right]$ is odd, so that $a=1$ (by our choice of a, see (2.2)). The points x_{1}, \cdots, x_{h} (resp. $x_{h+1}, \cdots, x_{h+h^{\prime}}$) are conjugate to each other over \boldsymbol{Q}, so that

$$
(g-1)_{0}>\sum_{i=1}^{h}\left(x_{i}\right)
$$

and

$$
(g-1)_{0}>\sum_{i=1}^{h^{\prime}}\left(x_{h+i}\right) \quad \text { or }(g+1)_{0}>\sum_{i=1}^{h^{\prime}}\left(x_{h+i}\right) .
$$

In the first case $s=h+h^{\prime} \leqq 2 d$. In the second case, Lemma (1.11) and
and the fact that h and h^{\prime} are odd integers show

$$
(g-1)_{0}>2 \sum_{i=1}^{h}\left(x_{i}\right)
$$

and

$$
(g+1)_{0}>2 \sum_{i=1}^{h^{\prime}}\left(x_{h+i}\right) .
$$

Thus $2 d \geqq 2 h^{\prime} \geqq s$.
Next, we consider the case $p \equiv 1 \bmod 4$. If $2 d<h=s$, then

$$
\begin{aligned}
& (g-\sqrt{a})_{0}>\sum^{\prime}\left(x_{i}\right) \\
& (g+\sqrt{a})_{0}>\sum^{\prime \prime}\left(x_{i}\right)
\end{aligned}
$$

where $\Sigma^{\prime}+\Sigma^{\prime \prime}=\sum_{i=1}^{s}$ and $a>1$ (because x_{i} are conjugate to each other over \boldsymbol{Q}). If $h \not \equiv 0 \bmod 4$, our assumption and Lemma (1.11) show $(g-\sqrt{a})_{0}>$ $2 \sum^{\prime}\left(x_{i}\right)$ and $(g+\sqrt{a})_{0}>2 \sum^{\prime \prime}\left(x_{i}\right)$. This contradicts that $s>2 d$. If $h \equiv 0$ $\bmod 4, a=p . \quad$ Set $D^{\prime}=\sum^{\prime}\left(x_{i}\right) . \quad D^{\prime}$ is a divisor of degree $s / 2$ and

$$
(g-\sqrt{p})=D^{\prime}+E-\sum_{\sigma}\left(w\left(x^{\sigma}\right)\right)-d(0),
$$

for an effective divisor E. We have $w^{*} E=E$. By the assumption, there is an odd prime $q \neq p$ such that $p^{r}>1+q^{f_{q}}+2 \sqrt{q^{f_{q}}}$. Using the upper semicontinuity ([34] (7.7.5), 1), we get a rational function f on $\mathscr{X}_{0}(p) \otimes \overline{\boldsymbol{F}}_{q}$ such that

$$
(f)=D^{\prime}+E-d(\infty)-d(0)
$$

Then $\left(w^{*} f\right)=(f)$ so $w^{*} f= \pm f$. If $w^{*} f=+f, E>D^{\prime}$. If $w^{*} f=-f,(f)_{0}>$ $D=\sum_{i=1}^{s}\left(x_{i}\right)$ (see (1.11)). Thus $s \leqq 2 d$.

Case $p=11$. The number of the fixed points of $w=w_{121}$ on $X_{0}(121)$ is six. Using g in (2.1), (2.2), we get $d \geqq 3=s / 2$ by the same way as above.

Case $p=2$, 17. Let $f=\gamma^{*} g / g$ for $1 \neq \gamma \in \operatorname{Gal}(X / Y)$ (see (1.4)). Then $\gamma^{*} f=1 / f$ and $(f)=\sum\left(\gamma\left(x^{\sigma}\right)\right)+\sum\left(0_{i_{\sigma}}\right)-\sum\left(x^{\sigma}\right)-\sum\left(\gamma\left(0_{i_{\sigma}}\right)\right)$. If $\left(\gamma^{*} g\right)=(g)$, then $\gamma\left(x^{c}\right)=x^{c \sigma}$ for an $\iota \in \operatorname{Isom}_{Q}(k, \overline{\boldsymbol{Q}})$ and any $\sigma \in \operatorname{Isom}_{Q}(k, \overline{\boldsymbol{Q}})$. If $d=2$, we see that $\left\{x, x^{\sigma}=\gamma(x)\right\}$ defines a \boldsymbol{Q}-rational point on Y. But we know that the \boldsymbol{Q}-rational points on $X_{0}(32)$, and on $X_{0}(17)$ are the cuspidal points ([35] table 1). If $d=3$, one of the x^{σ} becomes a fixed point of γ. But we know that a ramification point of $X \rightarrow Y$ is either a cuspidal point or a point with the modular invariant $j=1728$, see (1.1), (1.4). Therefore
$\left(\gamma^{*} g\right) \neq(g)$ for $d=2$ and 3. The rest then follows from Lemma (1.11).
Case $p=3$. Let $f=\gamma^{*} g / g$ for $1 \neq \gamma \in \operatorname{Gal}(X / Y)$ (see (1.4)). Then $\left.(f)=\sum\left(\gamma\left(x^{\sigma}\right)\right)+\sum\left(0_{i_{\sigma}}\right)\right)-\sum\left(x^{c}\right)-\sum\left(\gamma\left(0_{i_{\sigma}}\right)\right)$. For $d<6=s / 2$, if $\left(\gamma^{*} g\right)=$ (g), $\gamma\left(x^{\sigma}\right)=x^{\iota \sigma}$ for an $\iota \in \operatorname{Isom}_{Q}(k, \bar{Q})$ and any $\sigma \in \operatorname{Isom}_{Q}(k, \bar{Q})$. Any fixed point of γ is a cuspidal point or a point with the modular invariant $j=0$, so that $\gamma\left(x^{\sigma}\right) \neq x^{\sigma}$ for any $\sigma \in \operatorname{Isom}_{Q}(k, \bar{Q})$, see (1.4). Then $\left\{x^{\sigma}\right\}_{\sigma}$ is a disjoint union of $\langle\gamma\rangle$-orbits of length 3. If $d=3,\left\{x^{\sigma}\right\}_{\sigma}=\left\{x, \gamma(x), \gamma^{2}(x)\right\}$ defines a \boldsymbol{Q}-rational point on Y. But a \boldsymbol{Q}-rational point on $X_{0}(27)$ is a cuspidal point or a point with the modular invariant $j=0$ (see (1.4), [35] table 1). Therefore $\left(\gamma^{*} g\right) \neq(g)$ for $d<6$. Then by Lemma (1.11) we get the result. \square

Let $\mathscr{X}^{+}=\mathscr{X}_{0}^{+}(p)$ be the quotient $\mathscr{X}_{0}(p) \mid\left\langle w_{p}\right\rangle$, which is smooth over $Z[1 / p]$ (see (1.10)).

Proposition (2.4). Let $p \geqq 23, \neq 37$ be a prime number satisfying the condition $\# J_{0}^{-}(p)(Q)<\infty$, g the rational function on $X_{0}(p)$ in (2.2). If $p^{r}>1+2^{f_{2}}+2 \sqrt{2^{f_{2}}}$, then there is a covering f defined over \boldsymbol{F}_{2},

$$
\mathscr{X}+\otimes F_{2} \xrightarrow{f} P_{\mid F_{2}}^{1}
$$

such that $(f)_{\infty}=d^{\prime}$ (cusp) for an integer $d^{\prime}, 1 \leqq d^{\prime} \leqq d$.
Proof. Let $\mathscr{L}=\left(\otimes^{\sigma} \mathcal{O}\left(x^{\sigma}\right)\right) \otimes \mathcal{O}(d(\infty))$ be the Cartier divisor on $\mathscr{X}_{0}(p) \otimes \mathcal{O}_{\tilde{k}}$, where $\mathcal{O}_{\tilde{k}}$ is the ring of integers of \tilde{k}. By our assumption, $\operatorname{dim}_{\bar{F}_{2}} H^{0}\left(\mathscr{X}_{0}(p) \otimes \bar{F}_{2}, \mathscr{L}\right)$ >1 (see [34] (7.7.5), 1), and $\mathscr{L} \otimes \overline{\boldsymbol{F}}_{2}=\mathcal{O}(d(0)+d(\infty))$, see (1.9). The cusps $0=0 \otimes \boldsymbol{F}_{2}$ and $\infty=\infty \otimes \boldsymbol{F}_{2}$ are not the fixed points of $w=w \otimes \boldsymbol{F}_{2}$, while $\mathscr{X}_{0} \otimes F_{2} \rightarrow \mathscr{X}^{+} \otimes F_{2}$ has ramifications points. The divisor $d(0)+d(\infty)$ is F_{2}-rational, and is w-invariant. So Lemma (1.12) yields the desired covering f.

Corollary (2.5). Under the assumption of (2.4),

$$
\begin{gathered}
\# \mathscr{X}_{0}^{+}(p)\left(F_{2^{m}}\right)<1+2^{m} d \\
\# \mathscr{X}_{0}(p)\left(F_{4}\right) \leqq 2+8 d-s(p) .
\end{gathered}
$$

Proposition (2.6). Let $p \geqq 23, \neq 37$, be a prime number such that $\#_{0}^{\prime} \cdot J_{0}^{-}(p)(\boldsymbol{Q})<\infty$. Assume that $r \geqq n^{\prime \prime}=n^{\prime \prime}(k, p)$ (see (1.8)) and let g be the rational function on $X_{0}(p)$ in (2.2). Then we get the following estimates of $\#_{0}^{\prime} \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2^{m}}\right)$.
(i) $p \equiv 1 \bmod 8 ; ~ \# \mathscr{X}_{0}^{+}(p)\left(F_{2}\right) \leqq 2+2 d-h / 4$.
(ii) $p \equiv 5 \bmod 8$ and $h=h(-p) \not \equiv 0 \bmod 4$;

$$
\begin{aligned}
& \quad \# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq 2+2 d-h / 2 \\
& \text { or } \\
& \# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{4}\right) \leqq 1+4 d-(h-2) / 4 .
\end{aligned}
$$

(iii) $\quad p \equiv-1 \bmod 8 ; \# \mathscr{X}_{0}^{+}(p)\left(F_{2}\right) \leqq 1+2 d-h$
and

$$
\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{4}\right) \leqq 1+4 d-h .
$$

(iv) $p \equiv 3 \bmod 8 ; \# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq 2+2 d-2 h$ and

$$
\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{4}\right) \leqq 1+4 d-h .
$$

Proof. Let x_{1}, \cdots, x_{s} (resp. $y_{1}=x_{1} \otimes F_{2}, y_{2}, \cdots, y_{n / 2}$ if $p \equiv 1 \bmod 4$; $y_{1}, y_{2}, \cdots, y_{h}$ if $\left.p \equiv-1 \bmod 4\right)$ be the fixed points of $w=w_{p}$ on $X_{0}(p)$ (resp. $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{2}$), see (1.10). Then $g\left(x_{i}\right)= \pm \sqrt{a}$ (see (2.3)). We may assume $g\left(x_{1}\right)=+\sqrt{a} \in H^{+}$(see (1.2)). As in the proof of (2.3), $a=1$, or $a=p$ if $p \equiv 1 \bmod 4$. Set $D=\sum_{i=1}^{s}\left(x_{i}\right)$.

Case $p \equiv 1 \bmod 4$ and $a=1$. The divisor of $g-1$ is

$$
(g-1)=D+E-\sum\left(w\left(x^{\sigma}\right)\right)-d(0)
$$

for a w-invariant \boldsymbol{Q}-rational divisor $E>0$ (see (1.11)). Let $\mathscr{L}=\mathcal{O}(D+E)$ $\otimes \mathcal{O}\left(\sum\left(w x^{\sigma}\right)+d(0)\right)^{\otimes(-1)}$ be the invertible sheaf on $\mathscr{X}_{0}(p) \otimes \mathcal{O}_{K}$ for a finite extension K of \boldsymbol{Q}. By the upper semicontinuity ([34] (7.7.5), 1), there is a rational function f on $\mathscr{X}_{0}(p) \otimes \bar{F}_{2}$ such that

$$
(f)=2 \sum_{i=1}^{h / 2}\left(y_{i}\right)+E-d(0)-d(\infty)(\neq 0)
$$

for the effective divisor $E=E \otimes \boldsymbol{F}_{2}$ (see (1.10)). The divisor (f) is \boldsymbol{F}_{2}-rational and w-invariant. Then $w^{*} f=f$ and we may assume that f is defined over \boldsymbol{F}_{2}. Then we get a covering f^{+}defined over \boldsymbol{F}_{2} :

$$
\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2} \xrightarrow{f^{+}} \boldsymbol{P}_{/ \boldsymbol{F}_{2}}^{1}
$$

such that $\left(f^{+}\right)=\sum_{1=i}^{h / 2}\left(y_{i}\right)+E^{\prime}-d^{\prime}$ (cusp) for an effective divisor E^{\prime} and an integer $d^{\prime}, 1 \leqq d^{\prime} \leqq d$. Here by y_{i} we denote the images of y_{i} by the natural morphism of $\mathscr{X}_{0}(p) \otimes \boldsymbol{F}_{2}$ to $\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2}$, Then $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq 3+2 d$ $-h / 2$ if $p \equiv 1 \bmod 8 ; \leqq 2+2 d-h / 2$ if $p \equiv 5 \bmod 8($ see (1.9)).

Case $p \equiv 1 \bmod 8$ and $a=p$. Let $D=D_{1}+D_{2}, D_{1}>\left(x_{1}\right)$, be the decomposition into the sum of $\operatorname{Gal}(H / \boldsymbol{Q}(\sqrt{p}))$-orbits D_{i} of length $h / 2$. Then

$$
\begin{aligned}
& (g-\sqrt{p})=D_{1}+E_{1}-\sum\left(w\left(x^{\sigma}\right)\right)-d(0) \\
& (g+\sqrt{p})=D_{2}+E_{2}-\sum\left(w\left(x^{\sigma}\right)\right)-d(0),
\end{aligned}
$$

for $\boldsymbol{Q}(\sqrt{p})$-rational, w-invariant divisors $E_{i}>0$. Let $1 \neq \sigma$ be an element of the inertia subgroup of a prime of H lying over 2 , and $H^{+}=H^{\langle o\rangle}$ the fixed field of $\langle\sigma\rangle(\simeq Z / 2 Z)$. Then $\sigma^{*} D_{i}=D_{i}$ for $i=1,2$. There are only two fixed points of w defined over H^{+}(see (1.10)). Therefore $D_{2} \otimes F_{2}=$ $2 \sum^{\prime}\left(y_{i}\right)$. In the same way as above, we get a rational function f^{+}on $\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2}$ defined over \boldsymbol{F}_{2} such that $\left(f^{+}\right)=\sum^{\prime}\left(y_{i}\right)+E^{\prime}-d^{\prime}$ (cusp), for an effective divisor E^{\prime} and an integer $d^{\prime}, 1 \leqq d^{\prime} \leqq d$. So $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq$ $2+2 d-h / 4$ (see (1.10)).

Case $p \equiv 5 \bmod 8$ and $a=p$. Let $D=D_{1}+D_{2}, D_{1}>\left(x_{1}\right)$, be the decomposition into the sum of $\operatorname{Gal}(H / \boldsymbol{Q}(\sqrt{p}))$-orbits D_{i} of length $h / 2$. Here we assume $h=h(-p) \not \equiv 0 \bmod 4$. Then by Lemma (1.11)

$$
\begin{aligned}
& (g-\sqrt{p})=2 D_{1}+E_{1}-\sum\left(w\left(x^{\sigma}\right)\right)-d(0) \\
& (g+\sqrt{p})=2 D_{2}+E_{2}-\sum\left(w\left(x^{\sigma}\right)\right)-d(0)
\end{aligned}
$$

for $\boldsymbol{Q}(\sqrt{ } p)$-rational, w-invariant divisors $D_{i}>0$. Let $\sigma=\sigma_{2}$ be the Frobenius element of the rational prime 2. Then $\sigma\left(D_{1}\right)=D_{2}$, i.e., $\left(D_{1} \otimes F_{4}\right)^{(2)}=$ $D_{2} \otimes \boldsymbol{F}_{4}$. By (1.10), we see that $D_{1} \otimes \boldsymbol{F}_{4}=\left(y_{1}\right)+\sum_{i=2}^{(h-2) / 4}\left(y_{i}\right), \quad y_{1}$ is the \boldsymbol{F}_{2}-rational fixed point of w (see (1.10)). By the same way as above, we get a rational function f^{+}on $\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{4}$ such that $\left(f^{+}\right)=\left(y_{1}\right)+2 \sum_{i=2}^{(h-2) / 4}\left(y_{i}\right)+$ $E^{\prime}-d^{\prime}$ (cusp), for an effective divisor E^{\prime} and an integer $d^{\prime}, 1 \leqq d^{\prime} \leqq d$ (see (1.10)). Then $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{4}\right) \leqq 1+4 d-(h-2) / 4$.

Case $p \equiv-1 \bmod 8$. Set $D_{1}=\sum_{i=1}^{h}\left(x_{i}\right), D_{2}=\sum_{i=1}^{h}\left(x_{h+i}\right)$. Then

$$
(g-1)=\left\{\begin{array}{l}
D+E-\sum\left(w\left(x^{\sigma}\right)\right)-d(0) \\
\text { or } \\
2 D_{1}+E_{1}-\sum\left(w\left(x^{\sigma}\right)\right)-d(0)
\end{array}\right.
$$

for \boldsymbol{Q}-rational, w-invariant divisors $E>0, E_{1}>0$. In both cases, by the same way as above, we get a rational function f^{+}on $\mathscr{X}_{0}^{+}(p) \otimes F_{2}$ defined over \boldsymbol{F}_{2} such that $\left(f^{+}\right)=\sum_{i=1}^{h}\left(y_{i}\right)+E^{\prime}-d^{\prime}$ (cusp) for an effective divisor E^{\prime} and an integer $d^{\prime}, 1 \leqq d^{\prime} \leqq d$. Then $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq 1+2 d-h$ and $\# \mathscr{X}_{0}^{+}(p)\left(F_{4}\right) \leqq 1+4 d-h$ (see (1.10)).

Case $p \equiv 3 \bmod 8$. Set $D_{1}=\sum_{i=1}^{h}\left(x_{i}\right), D_{2}=\sum_{i=1}^{3 h}\left(x_{i}\right)$. Then

$$
(g-1)=D+E-\sum\left(w\left(x^{\sigma}\right)\right)-d(0)
$$

or

$$
(g+1)=2 D_{2}+E_{2}-\sum\left(w\left(x^{\sigma}\right)\right)-d(0),
$$

for Q-rational, w-invariant divisors $E>0, E_{2}>0$. In the first case, the same argument as above shows that there is a rational function f^{+}on $\mathscr{X}_{0}^{+}(p) \otimes \boldsymbol{F}_{2}$ defined over \boldsymbol{F}_{2} such that $\left(f^{+}\right)=2 \sum_{i=1}^{h}\left(y_{i}\right)+E^{\prime}-d^{\prime}$ (cusp), for an effective divisor E^{\prime} and an integer $d^{\prime}, 1 \leqq d^{\prime} \leqq d$. Then $\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right) \leqq$ $2+2 d-2 h$, and $\# \mathscr{X}_{0}^{+}(p)\left(F_{4}\right) \leqq 1+4 d-h$ (see (1.10)). The second case yields better estimates.

§ 3. Rational points on $\boldsymbol{Y}_{1}\left(p^{\boldsymbol{r}}\right)$ defined over quadratic fields

In this section we prove Theorem A in the introduction. Let k be a quadratic field, x a k-rational point on $Y_{1}\left(p^{r}\right)$ for $r \geqq n^{\prime}=n^{\prime \prime}(k, p)$ (see (1.8)). In this case, it is easy to see that $n^{\prime}(k, p)=n^{\prime \prime}(k, p)$ (see (1.7), (1.8)). So we can apply the propositions in Section 2. Moreover, we see that we have only to show $n(k, p)<n^{\prime}(k, p)$ (see Section 0). Applying Proposition (2.3), we get the result of the theorem except for $p=13,37$, $43,67,97,163$ and $193(p<300, \neq 5,7,151,199,227,277)$. See table (4.3).
(3.1). Proof for $p=43,67,73,97,163$ and 193. We can apply (2.4), (2.5) and (2.6) in the last section to these cases. Wada [32] shows that the characteristic polynomials of the Hecke operator T_{2} on the C-vector space of holomorphic cusp forms of weight 2 belonging to $\left\langle\Gamma_{0}(p),\left(\begin{array}{cc}0 & -1 \\ p & 0\end{array}\right)\right\rangle$ for $p<250$. According to his table, we get

Table 4.

p	characteristic polynomial of T_{2}	$\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{2}\right)$	$\# \mathscr{X}_{0}^{+}(p)\left(\boldsymbol{F}_{4}\right)$	$h(-p)$
43	$x+2$	5	5	1
67	$x^{2}+3 x+1$	6	6	1
73	$x^{2}+3 x+1$	6	6	4
97	$x^{3}+4 x^{2}+3 x-1$	7	7	4
163	$x\left(x^{5}+5 x^{4}+3 x^{3}-15 x^{2}-16 x+3\right)$	8	10	1
193	$\left(x^{2}+3 x+1\right) \times$	8	12	4
	$\left(x^{5}+2 x^{4}-5 x^{3}-7 x^{2}+7 x+1\right)$	8		

With these and Proposition (2.6), we get the proof.
(3.2). Proof for $p=13$.
(3.2.1). Rational points on $Y_{1}(13)$ defined over quadratic fields k.

Let x be a k-rational point on $Y_{1}(13)$. There is an elliptic curve E defined over k with a k-rational point P of order 13 such that the pair $(E, \pm P)$ represents x ([2] VI Proposition (3.2)). By (1.5), (1.7), we can apply Lemma (1.9). So there is a rational function g (defined over \boldsymbol{Q}) on $X_{1}(13)$ such that

$$
(g)=(x)+\left(x^{\sigma}\right)-\left(0_{i}\right)-\left(0_{i_{\sigma}}\right)(\neq 0)
$$

for $1 \neq \sigma \in \operatorname{Gal}(k / \boldsymbol{Q})$ see (2.1). g defines an involution γ of $X_{1}(13)$ such that $X_{1}(13) \mid\langle\gamma\rangle \simeq \boldsymbol{P}^{1}$. The automorphism [5] $\in \bar{\Gamma}(13)$ (see § 1) of $X_{1}(13)$ is of degree 2 , and $X_{1}(13) /\langle[5]\rangle \simeq P^{1}$ (see (1.4)). Hence $\gamma=[5]$, and so $x^{\sigma}=$ $\gamma(x), 0_{i_{\sigma}}=\gamma\left(0_{i}\right)\left(\neq 0_{i}\right)$. (Note that if a proper smooth curve X defined over a field is hyperelliptic of genus $\geqq 2$, the involution γ satisfying $X \mid\langle\gamma\rangle \simeq \boldsymbol{P}^{1}$ is unique.) Then $\left\{x, x^{\sigma}=\gamma(x)\right\}$ defines a \boldsymbol{Q}-rational point on $Y_{1}(13) /\langle\gamma\rangle$ and $0_{i} \otimes \boldsymbol{F}_{q} \neq \gamma\left(0_{i}\right) \otimes \boldsymbol{F}_{q}$ for any rational prime q. There exists an elliptic curve F defined over \boldsymbol{Q} such that the image of $G_{\boldsymbol{Q}}=\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ of the Galois representation on $F_{13}(\overline{\boldsymbol{Q}})$ is contained in $\left\{\left(\begin{array}{cc}\langle 5\rangle & * \\ 0 & *\end{array}\right)\right\}\left(\subset G L_{2}\left(\boldsymbol{F}_{13}\right)\right)$, and $F \simeq E$ over C.
(3.2.2). Suppose that there is a k-rational point x on $Y_{1}(169)$. There is an elliptic curve E defined over k with a k-rational point P of order 13^{2} such that the pair $(E, \pm P)$ represents x ([2] VI Proposition (3.2)). Let x^{\prime} be a k-rational point on $Y_{1}(13)$ which is represented by the pair $\left(E^{\prime}, \pm P^{\prime}\right)_{l k} \overline{\overline{\mathrm{dfn}}}(E /\langle 13 \cdot P\rangle, \pm P \bmod \langle 13 \cdot P\rangle)_{l k}$, and ρ^{\prime} the Galois representation on $E^{\prime}{ }_{13}(\bar{k})$. Then

$$
\rho^{\prime}\left(G_{k}\right) \hookrightarrow\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & *
\end{array}\right)\right\}
$$

As was seen in (3.2.1), there is an elliptic curve F defined over \boldsymbol{Q} such that the image of G_{Q} under the Galois representation ρ on $F_{13}(\overline{\boldsymbol{Q}})$ is contained in $\left\{\left(\begin{array}{cc}\langle 5\rangle & * \\ 0 & *\end{array}\right)\right\}$ and $E^{\prime} \simeq F$ over C. Since F has multiplicative reduction at $q=2$ (see (1.9)), there exists a quadratic extension K of k over which $E^{\prime} \simeq F$. Thus

$$
\rho\left(G_{K}\right) \subset\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & *
\end{array}\right)\right\} .
$$

So $\rho\left(G_{Q}\right) \leftharpoonup\left\{\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right)\right\}$, which contradicts to the fact that $X_{\text {sp. Car }}(13)(\boldsymbol{Q})$
consists of the cusps $0, \infty\left(; X_{\mathrm{sp} . \mathrm{Car}}(p) \simeq X_{0}\left(p^{2}\right)\right.$, see [7], [21]).
Remarks (3.3). (3.3.1). The modular curve $X=X_{1}(16)$ is of genus 2 and $\# J_{1}(16)(\boldsymbol{Q})=20$ (see [6]). Let $X \xrightarrow{2} Y \xrightarrow{2} X_{0}(16)$ be the natural covering, γ the generator of $\operatorname{Gal}(X / Y)$. Then $Y=X /\langle\gamma\rangle \simeq P^{1}$. Let x be a k-rational point on $Y_{1}(16)$. If $q=3$ (resp. $=5$) does not remain prime in k, then $x \otimes \kappa(\mathfrak{q})$ and $x^{\sigma} \otimes \kappa(\mathfrak{q})$ are 0 -cusps for a prime \mathfrak{q} of k lying over q (see (1.9)). Then we get a rational function g on X, defined over \boldsymbol{Q}, such that $(g)=(x)+\left(x^{\sigma}\right)-\left(0_{i}\right)-\left(0_{i_{\sigma}}\right)$ (see (2.2)). Thus $x^{\sigma}=\gamma(x)$ and $0_{i_{\sigma}}=\gamma\left(0_{i}\right)$ $\left(\neq 0_{i}\right)$ (see (3.2)). Therefore if $q=3$ or 5 ramifies in $k, Y_{1}(16)(k)=\phi$. Let k be an imaginary quadratic field such that the class number of k is prime to 5 and that the rational prime 2 does not split in k. Then the fact that $Z / 5 Z \subset J_{1}(16)(Q)$ and the descent ([17] Chapter III) show $\# J_{1}(16)(k)<\infty$. Moreover, if 3 splits in k or 5 does not remain prime in k, using Mazur's idea "formal immersion" [18], we see $Y_{1}(16)(k)=\phi$.
(3.3.2). The modular curve $X_{1}(11)$ is an elliptic curve with conductor (11). The defining equation of $X_{1}(11)$ is

$$
y^{2}+y=x^{3}-x^{2}
$$

and $X_{1}(11)(Q) \simeq Z / 5 Z$ (see [35] p. 82). The numbers of the $\boldsymbol{F}_{q^{i}}$-rational points for $q=2,3$ of $\mathscr{X}=\mathscr{X}_{1}(11)$ are as follows:

$$
\begin{array}{ll}
\# \mathscr{X}\left(\boldsymbol{F}_{2}\right)=5, & \# \mathscr{X}\left(\boldsymbol{F}_{4}\right)=5 \\
\# \mathscr{X}\left(\boldsymbol{F}_{3}\right)=5, & \# \mathscr{X}\left(\boldsymbol{F}_{9}\right)=15
\end{array}
$$

(loc. cit.). Therefore $X_{1}(11)(k)_{\text {tor }} \simeq Z / 5 Z$ for quadratic fields k. So we have $Y_{1}(11)(k)=\phi$ if and only if the rank of $X_{1}(11)(k)$ is 0 . For example if k is an imaginary quadratic field such that the class number of k is prime to 5 and the rational prime 11 does not split in k, then $Y_{1}(11)(k)=\phi$. This can be shown by the descent; see [17] Chapter III.
(3.3.3). By the argument in (3.2.1), we have already known that the k-rational points on $Y_{1}(13)$ are parametrized by the $\boldsymbol{Q} \cup\{\infty\}$-values of a rational function on $X_{1}(13) \mid\langle\gamma\rangle \simeq P_{Q}^{1}$ of degree 1. If the rational prime $q=2$ does not split in k or $q=3$ ramifies in k, then $x \otimes \kappa(\mathfrak{q})=x^{\sigma} \otimes \kappa(\mathfrak{q})$ for a k-rational point x on $X_{1}(13)$ and a prime q of k lying over q. Therefore by (3.2.1) in such a case $Y_{1}(13)(k)=\phi$.
(3.4). Proof for $p=37$. Let $X_{1}(37) \xrightarrow{9} X \xrightarrow{2} X_{0}(37)$ be the natural coverings, $J=J(X)$ the jacobian variety of X and $A=\operatorname{Coker}\left(J_{0}(37) \rightarrow J\right)$
(see (1.4)). Then A has everywhere good reduction over $\boldsymbol{Q}(\sqrt{37})$ ([2] V).
Lemma (3.4.1). Let p be a prime number congruent to $1 \bmod 4$, $X_{1}(p) \xrightarrow{(p-1) / 4} X \xrightarrow{2} X_{0}(p)$ the natural coverings, and $J=J(X)$ the jacobian variety of X. If there is a prime factor of $(1 / 4) B_{2,(\underline{p})}$ which is prime to the class number of $\boldsymbol{Q}(\sqrt{p})$, then there is a factor $(/ \boldsymbol{Q}(\sqrt{p}))$ of Coker $\left(J_{0}(p) \rightarrow J\right)$ with finite Mordell-Weil group ($/ \mathbf{Q}(\sqrt{p})$). Here $B_{2,(\underline{p})}$ is the (second) generalized Bernoulli number associated to the quadratic residue symbol (몸) (see [13]).

Proof. Let $0^{\prime}, 0^{\prime \prime}$ be the 0 -cusps of X. The order of $\operatorname{cl}\left(\left(0^{\prime}\right)-\left(0^{\prime \prime}\right)\right)$ is $(1 / 4) B_{2,(\underline{p})}$ [11]. Let q be a prime number which is prime to the class number of $\boldsymbol{Q}(\sqrt{p})$ and divides (1/4) $B_{2,(\underline{p})}$. Let B be a quotient ($/ \boldsymbol{Q}$) of Coker $\left(J_{0}(p) \rightarrow J\right)$ such that B is \boldsymbol{Q}-simple and the order of the image $\mathrm{cl}\left(\left(0^{\prime}\right)-\left(0^{\prime \prime}\right)\right)$ on B is divisible by q, then $Z / q Z \subset B$. B has everywhere good reduction over $\boldsymbol{Q}(\sqrt{p})$, see [2] V , and is isogenous to a product $C \times C^{\sigma}$ of an abelian variety C over $\boldsymbol{Q}(\sqrt{p})$. Further C is isogenous over $\boldsymbol{Q}(\sqrt{p})$ to C^{σ} for $1 \neq \sigma \in \operatorname{Gal}(\boldsymbol{Q}(\sqrt{p}) / \boldsymbol{Q})$, see [31] Chapter 7. Then B is isogenous over \boldsymbol{Q} to $\operatorname{Re}_{\boldsymbol{Q}(\sqrt{p}) / \boldsymbol{Q}}(C)$, where $\operatorname{Re}_{\boldsymbol{Q}(\sqrt{\bar{p}}) / \boldsymbol{Q}}$ is the restriction of scalars (see [4], [33]). Hence $\operatorname{rk} B(\boldsymbol{Q})=\operatorname{rk} C(\boldsymbol{Q}(\sqrt{p}))$. Applying the descent to $C(\mid \boldsymbol{Q}(\sqrt{p}))$ (see [17] Chapter III), we have $\# C(\boldsymbol{Q}(\sqrt{p}))<\infty . \square$

Lemma (3.4.2). Let $A=\operatorname{Coker}\left(J_{0}(37) \rightarrow J\right)$ as above. Then $A(\boldsymbol{Q}) \simeq$ $Z / 5 Z$.

Proof. $\left.(1 / 4) B_{2,},{ }_{(}{ }^{37}\right)=5$ and the class number of $\boldsymbol{Q}(\sqrt{37})=1 . \quad A$ is isogenous over $\boldsymbol{Q}(\sqrt{37})$ to a product of two elliptic curves, so that A is Q-simple. Using the table of the characteristic polynomials of the Hecke operators on the C-vector space $S_{2}\left(\Gamma_{0}(37)\right.$, ($\left.{ }^{37}\right)$) of the holomorphic cusp forms of weight 2 with the neben character (${ }^{37}$) belonging to $\Gamma_{0}(37), \mathrm{p}$. 207 of [31], we see that $\# A(\boldsymbol{Q})_{\text {tor }}=5$. Then Lemma (3.4.1) is applied to yield $A(Q) \simeq Z / 5 Z$.

Suppose that there is a k-rational point x on $Y_{1}(37)$. Consider the Q-rational section $i(x)=\operatorname{c1}\left((x)+\left(x^{\sigma}\right)-\left(0_{i}\right)-\left(0_{i_{g}}\right)\right)$ of A, where $1 \neq \sigma \in$ $\operatorname{Gal}(k / \boldsymbol{Q})$, see Section 2. Then $i(x) \otimes \boldsymbol{F}_{q}=0$ for $q=2,3$ and 5 (see (1.9)), so we get $i(x)=0$, see (3.4.2). There is a rational function g on X (defined over \boldsymbol{Q}) such that $(g)=(x)+\left(x^{c}\right)+\left(\gamma\left(0_{i}\right)\right)+\left(\gamma\left(0_{i_{g}}\right)\right)-(\gamma(x))-$ $\left(\gamma\left(x^{\sigma}\right)\right)-\left(0_{i}\right)-\left(0_{i_{o}}\right)$, where $1 \neq \sigma \in \operatorname{Aut}\left(X / X_{0}(37)\right)$, see $\left(2.1^{\prime}\right)$.

Claim. $\quad x \neq \gamma(x), \neq \gamma\left(x^{\sigma}\right)$.
Proof. If $x=\gamma(x)$, then x is a fixed point of γ with the modular invariant $j(x)=1728$. This contradicts that $x \otimes \kappa(\mathfrak{q})=0_{i} \otimes \kappa(\mathfrak{q})$ for the primes $\mathfrak{q} \mid 2$ of k. If $x=\gamma\left(x^{\sigma}\right)$, then $\left\{x, x^{\sigma}=\gamma(x)\right\}$ defines a Q-rational point on ($Y_{0}(37)$). But we know that the non-cuspidal \boldsymbol{Q}-rational points on $X_{0}(37)$ have everywhere potentially good reduction, [19] Section 5, p. 32.

Let \mathscr{X} be the normalization of the projective j-line $\mathscr{X}_{0}(1) \simeq \boldsymbol{P}_{Z}^{1}$ in X. Then \mathscr{X} is smooth over $Z[1 / 37]$, see [2].

Case $0_{i} \neq 0_{i_{\sigma}}$. In this case $\gamma\left(0_{i}\right)=0_{i}$ and $(g)=(x)+\left(x^{\sigma}\right)-(\gamma(x))-$ $\left(\gamma\left(x^{\sigma}\right)\right)(\neq 0)$. Let $E_{\eta}=(x)+\left(x^{o}\right)$ and E be the flat closure of E_{η} on $\mathscr{X} \otimes \boldsymbol{Z}_{2}$. Then $E \otimes \boldsymbol{F}_{2}=\left(0_{i} \otimes \boldsymbol{F}_{2}\right)+\left(\gamma\left(0_{i} \otimes \boldsymbol{F}_{2}\right)\right)$. The argument similar to Lemma (1.11) shows that there is a rational function on $\mathscr{X}_{0}(37) \otimes \boldsymbol{F}_{2}$ of degree one. This is a contradiction.

Case $0_{i}=0_{i_{\sigma}}$. Let $E_{\eta}=(x)+\left(x^{o}\right)+2\left(\gamma\left(0_{i}\right)\right)$ and E be the flat closure of E_{η} on $\mathscr{X} \otimes \boldsymbol{Z}_{2}$. Then $E \otimes \boldsymbol{F}_{2}=2\left(0_{i} \otimes \boldsymbol{F}_{2}\right)+2\left(\gamma\left(0_{i} \otimes \boldsymbol{F}_{2}\right)\right)$. The argument as in Lemma (1.11) shows that there is a double covering $g^{\prime}: \mathscr{X}_{0}(37) \otimes \boldsymbol{F}_{2} \rightarrow$ $\boldsymbol{P}_{F_{2}}^{1}$, such that $\left(g^{\prime}\right)_{\infty}=2\left(0 \otimes \boldsymbol{F}_{2}\right)$. Then $0=0 \otimes \boldsymbol{F}_{2}$ is a fixed point of the (unique) hyperelliptic involution \bar{S} of $\mathscr{X}_{0}(37) \otimes \boldsymbol{F}_{2}$. The hyperelliptic involution S of $X_{0}(37)$ sends the cusp $0=\binom{0}{1}$ to a non cuspidal \boldsymbol{Q}-rational point, see [19] Section 5. As noted as before, $S(0) \otimes F_{2}$ is not a cusp (see loc. cit.), so that $\bar{S}=S \otimes F_{2}$ does not fix $0=0 \otimes F_{2}$. Thus we get a contradiction.

For an imaginary quadratic field $k, Y_{1}(p)(k)=\phi$ if a rational prime p remains prime in k, except for finitely many p ([18] §4). For a real quadratic field k, we use Mazur's idea "formal immersion" (loc. cit.) to show the following.

Proposition (3.5). Let $p \geqq 17$ be a rational prime congruent to $1 \bmod 4$. If there exists a prime factor of $(1 / 4) B_{2,(\underline{p})}$ which is prime to the class number of $\boldsymbol{Q}(\sqrt{p})$, then $Y_{1}(p)(\boldsymbol{Q}(\sqrt{p}))=\phi$.

Proof. Let $X_{1}(p) \xrightarrow{(p-1) / 4} X \xrightarrow{2} X_{0}(p)$ be the natural coverings, $J=$ $J(X)$ the jacobian variety of X, and $A=\operatorname{Coker}\left(J_{0}(p) \rightarrow J\right)$. Then by Lemma (3.4.1), there exists a quotient $B(/ \boldsymbol{Q})$ of A with finite Mordell-Weil group over $\boldsymbol{Q}(\sqrt{p})$. As $p>(1+3)^{2}$, Lemma (1.8) is applied for $q=3$. The rest owes to [18] Section 4.

Corollary (3.6). Let p be a prime number congruent to $1 \bmod 8$. Then $Y_{1}(p)(\boldsymbol{Q}(\sqrt{p}))=\phi$.

Proof. (1/4) $B_{2,(\underline{p})} \equiv 0 \bmod 2$ (see, e.g. [17] Chapter II §12).

§4. Further results

Let k be an algebraic number field of degree $d, n=n(k, p)$ and $n^{\prime \prime}=n^{\prime \prime}(k, p)$ as in Section 1 (1.8). Applying propositions in Section 2, we can estimate n in some cases.

Theorem (4.1). Let k be any cubic field. Then

$$
\begin{aligned}
& n(k, 2) \leqq 5 \\
& n(k, 3)=2 \\
& n(k, 17) \leqq 1
\end{aligned}
$$

For $p=19,23,41,47,59,71$ and the primes $p \leqq 79, \neq 97, \neq 109$, satisfying $\# J_{0}^{-}(p)(\boldsymbol{Q})<\infty$, we have $n(k, p)=0$.

Proof. For $p<300$, the result follows from Proposition (2.3), (1.4), (1.8), Lemma (1.12), except for $p=19,23,157,163,193$, (277) (see table (4.3)). Using Corollary (2.5), we get the result for $p=157,163$, 193 (see (3.1)). The characteristic polynomial of the Hecke operator T_{2} on $S_{2}\left(\left\langle\Gamma_{0}(157),\left[\begin{array}{cr}0 & -1 \\ 157 & 0\end{array}\right]\right\rangle\right)$ (see (3.1)) is $x^{5}+5 x^{4}+5 x^{3}-6 x^{2}-7 x+1$ (see [32]). Thus $\# \mathscr{X}_{0}^{+}(157)\left(\boldsymbol{F}_{2}\right)=8$ and $\# \mathscr{X}_{0}^{+}(157)\left(\boldsymbol{F}_{4}\right)=10$. For $p=19,23$, if there exists a k-rational point x on $Y_{1}(p)$, then there exists a rational function g on $X=X_{1}(p)$, defined over \boldsymbol{Q}, such that $(g)=\sum\left(x^{\sigma}\right)-\sum\left(0_{i_{g}}\right)$, see (1.9), (2.1)). For $p=23$, we know $\# \mathscr{X}_{1}(23)\left(F_{2}\right)=11$ ([9] §4). Using the upper semicontinuity (see [34] (7.7.1)1), we get a contradiction.
(4.1.1) Proof for $p=19$. Let $1 \neq \gamma \in \operatorname{Aut}(X / Y)$ (see (1.4)). If $\left(\gamma^{*} g\right)=(g)$, then $\gamma(x)=x^{\tau}$ for a $\tau \in \operatorname{Isom}_{Q}(k, \bar{Q})$. Then x is a fixed point if $\tau=1$, or $\left\{x^{\sigma}\right\}_{\sigma}=\left\{\gamma^{i}(x)\right\}_{i=0,1,2}$ if $\tau \neq 1$. The fixed points of γ have the modular invariant $j=0$ (see (1.1), (1.4)). So by Lemma (1.9) the first case above does not occur. In the second case, $\left\{x^{\sigma}\right\}_{\sigma}$ defines a \boldsymbol{Q}-rational point on Y, hence on $X_{0}(19)$. But the Q-rational points on $X_{0}(19)$ are the cusps and the points represented by the elliptic curve $C / Z[(1+\sqrt{-19}) / 2]$. So $\left(\gamma^{*} g\right) \neq(g)$ is shown. Let $D=\sum_{i=1}^{6}\left(x_{i}\right)$ be the \boldsymbol{Q}-rational divisor of $X_{1}(19)$, where x_{i} are the fixed points of γ on $X_{1}(19)$ (see (1.4)). Then by Lemma (1.11), $1 /\left(\gamma^{*} g / g-1\right) \in H^{0}\left(X_{1}(19), \mathcal{O}(D)\right)$. The Riemann-Roch theorem and a
theorem of Clifford (see below) then show $\operatorname{dim}_{Q} H^{0}\left(X_{1}(19), \mathcal{O}(D)\right)<1+3$.
(4.1.2) Theorem (Clifford; see e.g. [5]). Let X be a proper smooth curve $/ C$ of genus $\geqq 1, E$ an effective divisor such that $\operatorname{dim}_{c} H^{0}(X, \mathcal{O}(K-E))>0$, where K is the canonical divisor. Then

$$
\operatorname{dim}_{C} H^{0}(X, \mathcal{O}(E)) \leqq 1+\frac{1}{2} \operatorname{deg}(E)
$$

The equality holds if and only if $E=0, E \sim K$ or $E \sim \pi^{*} F$ if X is hyperelliptic, where $\pi: X \rightarrow \boldsymbol{P}^{1}$ is a double covering and F is a divisor of \boldsymbol{P}^{1}.

It is easy to see the following.
(4.1.3). Let X be a proper smooth curve and γ an automorphism of X of degree $m(\geqq 1)$ defined over \boldsymbol{Q}. Let E be an effective, \boldsymbol{Q}-rational divisor of X such that $\gamma^{*} E=E$ and γ^{*} acts faithfully on $H^{0}(X, \mathcal{O}(E))$. Then $\operatorname{dim}_{Q} H^{0}(X, \mathcal{O}(E)) \geqq 1+\varphi(m)$, where $\varphi(m)$ is the Euler number of m.

Let $\tilde{\gamma}$ be the generator of $\bar{\Gamma}_{0}(19)=\Gamma_{0}(19) / \pm \Gamma_{1}(19)$ (see (1.4)), which is of order 9. Then D is $\tilde{\gamma}^{*}$-invariant and $H^{0}\left(X_{1}(19), \mathcal{O}(D)\right)^{\langle *\rangle}=\boldsymbol{Q} \cdot 1$. If $\operatorname{dim}_{Q} H^{0}\left(X_{1}(19), \mathcal{O}(D)\right) \geqq 2$, then $\tilde{\gamma}^{*}$ acts faithfully on $H^{0}\left(X_{1}(19), \mathcal{O}(D)\right)$ and $\operatorname{dim}_{Q} H^{0}\left(X_{1}(19), \mathcal{O}(D)\right) \geqq 1+\varphi(9)=7$ by (4.1.3). This is a contradiction.
(4.1.4) Proof for $p>300$ (e.g. $p=383,419,429,491$, cf. [17] p. 151]) (and for $p=277$ if $\left.\# J_{0}^{-}(277)(Q)<\infty\right)$. By Corollary (2.5), if $Y_{1}(p)(k) \neq \phi$, then $\# \mathscr{X}_{0}(p)\left(\boldsymbol{F}_{4}\right) \leqq 2(1+4 \cdot 3)-s \leqq 24$. But we know $\# \mathscr{X}_{0}(p)\left(F_{4}\right) \geqq 2+(p+1) / 12$ (see [24] Theorem 3). Hence $Y_{1}(p)(k)=\phi$ for $p>300$ (, and $\mathrm{p}=277$) if $\# J_{0}^{-}(p)<\infty$.

Remark (4.2). The above method used for $(p, d)=(19,3)$ can be applied to some other cases. For example, it gives an alternating proof for $(p, d)=(5,2)$. In this case, under the notation in (4.1.1), (4.1.2) and the Riemann-Roch theorem show $\operatorname{dim}_{Q} H^{0}(X, \mathcal{O}(D)) \leqq 1+2$. But if $\operatorname{dim}_{Q} H^{0}(X, \mathcal{O}(D)) \geqq 2$, then it must be $\geqq 1+4$ by (4.1.3).
(4.3). Table for $p<300$.

Let k be an algebraic number field of degree d. For the pairs (p, d) in the following table, we get $n(k, p)<n^{\prime \prime}(k, p)$. See (1.4), (1.8), [32], [35] table 5, pp. 135-141.

Table 5.

p	d	$s(p)$	$h(-p)($ for $p \geqq 23)$
2	2,3	8	
3	2, 3, 4, 5	12	
5	2	4	
7	2	2	
11	2	6	
13	2	6	
17	2, 3	8	
19	2, 3	8	
23	2,3	6	3
29	2	6	6
31	2	6	3
37	2	2	2
41	2, 3	8	8
43	2	4	1
47	2, 3, 4	10	5
53	2	6	6
59	2, 3, 4, 5	12	3
61	2	6	6
67	2	4	1
71	2, 3, 4, 5, 6	14	7
73	2	4	4
79	2, 3, 4	10	5
83	2, 3, 4, 5	12	3
89	2, 3, 4, 5	12	12
97	2	4	4
101	2, 3, 4, 5, 6	14	14
103	2, 3, 4	10	5
107	2, 3, 4, 5	12	3
109	2	6	6
113	2, 3	8	8
127	2, 3, 4	10	5
131	2, 3, $\cdots, 9$	20	5
137	2, 3	8	8
139	2, 3, 4, 5	12	3
149	2, 3, 4, 5, 6	14	14
151	?	14	7
157	2, 3	6	6
163	2, 3	4	1

Table 5. Continued

p	d	$s(p)$	$h(-p)($ for $p \geqq 23)$
167	$2,3, \cdots, 10$	22	11
173	$2,3,4,5,6$	14	14
179	$2,3, \cdots, 9$	20	5
181	$2,3,4$	10	10
191	$2,3, \cdots, 12$	26	13
193	2,3	4	4
197	$2,3,4$	10	10
199		$?$	18
211	$2,3,4,5$	12	9
223	$2,3,4,5,6$	14	3
227	,$?$	20	7
229	$2,3,4$	10	5
233	$2,3,4,5$	12	10
239	$2,3, \cdots, 14$	30	12
241	$2,3,4,5$	12	15
251	$2,3, \cdots, 13$	28	12
257	$2,3,4,5,6,7$	16	7
263	$2,3, \cdots, 12$	26	16
269	$2,3, \cdots, 10$	22	13
271	$2,3, \cdots, 10$	22	22
277	,$?$	6	11
281	$2,3, \cdots, 9$	20	6
283	$2,3,4,5$	12	20
293	$2,3, \cdots, 8$	18	3

References

[1] Z. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York and London (1966).
[2] P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, Proceedings of the International Summer School on Modular functions of one variable, vol. II, Lecture Notes in Math., 349, Springer-Verlag, Berlin-Heiderberg-New York (1973).
[3] B. H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., 776, Springer-Verlag, Berlin-Heiderberg-New York (1980).
[4] A. Grothendieck, Fondements de la géométrie algébrique, Sém. Bourbaki, 19571962.
[5] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York (1977).
[6] M. A. Kenku, Certain torsion points on elliptic curves defined over quadratic fields, J. London Math. Soc., (2) 19 (1979), 233-240.
[7] -, The modular curve X_{0} (169) and rational isogeny, J. London Math. Soc., (2) 22 (1980), 239-244.
[8] - On the modular curves $X_{0}(125), X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc., (2) 23 (1981), 415-427.
[9] -, Rational torsion points on elliptic curves defined over quadratic fields, to appear.
[10] D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., (3) 33 (1976), 193-237.
[11] D. Kubert, S. Lang, Units in the modular function fields I, II, III, Math. Ann., 218 (1975), 67-96, 175-189, 273-285.
[12] S. Lang, Elliptic Functions, Addison-Wesley, Reading Math. (1973).
[13] -, Cyclotomic Fields, Addison-Wesley, Reading Math. (1973).
[14] Yu. I. Manin, The p-torsion of elliptic curves is uniformly bounded, Math. USSRIzv., 3 (1969), 433-438.
[15] ——, Parabolic points and zeta functions of modular curves, Math. USSR-Izv., 6 (1972), 19-64.
[16] B. Mazur, Rational points on modular curves, Proceedings of Conference on Modular Functions held in Bonn, Lecture Notes in Math., 601, Springer-Verlag, Berlin-Heiderberg-New York (1977).
[17] -, Modular curves and the Eisenstein ideal, I.H.E.S. Publ. Math., 47 (1977), 33-186.
[18] ——, Rational isogenies of prime degree, Invent. Math., 44 (1978), 129-162.
[19] - P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61.
[20] -, J. Tate, Points of order 13 on elliptic curves, Invent. Math., 22 (1973), 41-49.
[21] J. F. Mestre, Points rationnels de la courbe modulaire $X_{0}(169)$, Ann. Inst. Fourier, 30, 2 (1980), 17-27.
[22] A. Ogg, Rational points on certain elliptic modular curves, Proc. Symposia in Pure Math. XXIV, AMS (1973), 221-231.
[23] --, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449-462.
[24] ——, Diophantine equation and modular forms, Bull. Amer. Math. Soc., 81 (1975), 14-27.
[25] F. Oort, J. Tate, Group schemes of prime order, Ann. Sci. Ecole Norm. Sup. série 4,3 (1970), 1-21.
[26] M. Raynaud, Schémas en groupes de type (p, \ldots, p), Bull. Soc. Math. France, 102 (1974), 241-280.
[27] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math., 101 (1975), 555-562.
[28] J. P. Serre, p-torsion des courbes elliptiques (d’àpres Y. Manin), Sém. Bourbaki 1969/70 pp. 281-294, Lecture Notes in Math., 180, Springer-Verlag, Berlin-Heiderberg-New York (1971).
[29] J. P. Serre, Corps Locaux, Publ. Inst. de Math. de Univ. de Nancago Hermann, Paris (1968).
[30] G. Shimura, On elliptic curves with complex multiplication as factors of jacobians of modular function fields, Nagoya Math. J., 43 (1971), 199-208.
[31] -, Introduction to the Arithmetic theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Iwanami Shoten, Tokyo-Princeton Univ. Press, Princeton, N.J.
[32] H. Wada, A table of Hecke operators II, Proc. Japan Acad., 49 (1973) 380-384.
[33] A. Weil, Adèles and Algebraic Groups, Lecture Notes, Inst. for Advanced Study, Princeton, N.J.
[34] Éléments de Géométrie Algébrique III (par A. Grothendieck), I.H.E.S. Publ. Math., 17 (1963).
[35] Modular Functions of One Variable IV (Ed. By B. J. Birch and W. Kuyk), Lecture Notes in Math., 476, Springer-Verlag, Berlin-Heiderberg-New York (1975).

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo 113
Japan

[^0]: Received December 1, 1983.

 * Supported in part by Japan-U.S. exchange fund.

