ON DEGREES AND GENERA OF CURVES ON SMOOTH QUARTIC SURFACES IN \boldsymbol{P}^{3}

SHIGEFUMI MORI

Our result is motivated by the results [GP] of Gruson and Peskin on characterization of the pair of degree d and genus g of a non-singular curve in P^{3}. In the last step, they construct the required curve C on a singular quartic surface when $g \leqq(d-1)^{2} / 8$. Here we consider curves on smooth quartic surfaces.

The author expresses his hearty thanks to Professor Hartshorne who pointed out a mistake in the earlier version of this paper, and to Professor Iitaka who kindly allowed the author to use his word processor to write up this paper.

Theorem 1. Let k be an algebraically closed field of characteristic 0 and $d>0$ and $g \geqq 0$ be integers. Then there is a non-singular curve C of degree d and genus g on a non-singular quartic surface X in P^{3} if and only if (1) $g=d^{2} / 8+1$, or (2) $g<d^{2} / 8$ and $(d, g) \neq(5,3)$.

Remark 2. Under the notation of Theorem 1, $g=d^{2} / 8+1$ if and only if C is a complete intersection of X and a hypersurface of degree $d / 4$, which will be proved in the proof below.

Proof of the only-if-part (\Rightarrow) of Theorem 1. Let $H=\mathcal{O}_{X}(1)$. Since $(H \cdot H)>0$, one has

$$
(C \cdot H)^{2}-(H \cdot H) \cdot(C \cdot C)=d^{2}-8(g-1) \geqq 0
$$

by Hodge index theorem, because X is a $K 3$ surface and $K_{C}=\mathcal{O}_{c}(C)$. One has $d^{2} \equiv 0,1,4,1(\bmod 8)$ according as $d \equiv 0,1,2,3(\bmod 4)$. If $d^{2}-8(g-1)=0$ then the classes of $\mathcal{O}_{X}(C)$ and $\mathcal{O}_{X}(H)$ are proportional. Since X is a $K 3$ surface and $(H \cdot H)=4$, Pic X is torsion-free and H is not divisible, whence $\mathcal{O}_{X}(C)$ is a multiple of $\mathcal{O}_{X}(H)$, which implies that C is a complete intersection of X and a hypersurface of degree $d / 4$. It

[^0]remains to show that $d^{2}-8(g-1)>8$ when $d^{2}-8(g-1)>0$, and we will treat three cases $d^{2}-8(g-1)=8,1,4$.

Case (1) $d^{2}-8(g-1)=8:$ Let $d=4 d^{\prime}\left(d^{\prime} \geqq 1, d^{\prime} \in Z\right)$, then $2(g-1)$ $=2\left(2 d^{\prime 2}-1\right)$. Let $E=d^{\prime} H-C$, then $(E \cdot H)=0$ and $\left(E^{2}\right)=-2$. Since X is a $K 3$ surface, one has

$$
h^{0}(E)+h^{0}(-E) \geqq \chi(\mathcal{O}(E))=2+\left(E^{2}\right) / 2=1 .
$$

Thus E or $-E$ gives a curve E^{\prime} such that $\left(E^{\prime} \cdot H\right)=0$, which contradicts the very ampleness of H.

Case (2) $d^{2}-8(g-1)=1:$ Let $d=2 d^{\prime}-1\left(d^{\prime} \geqq 1, d \in Z\right)$, then $2(g-1)=\left(d^{\prime 2}-d^{\prime}\right)$. Let $E=d^{\prime} H-2 C$, then $(E \cdot H)=2$, and $\left(E^{2}\right)=0$.

Thus as in Case (1), $h^{0}(E)+h^{0}(-E) \geqq 2$. Since $(E \cdot H)=2$ for ample H, one has $h^{0}(-E)=0$ and $h^{0}(E) \geqq 2$. Thus $|E|$ has an effective member E_{0}. If $E^{\prime}=\left(E_{0}\right)_{\text {red }}$ is irreducible, then $\left(E^{\prime 2}\right)=0$ and $\left(E^{\prime} \cdot H\right)=1,2$ for very ample H. Thus $E^{\prime} \cong P^{1}$ and $\left(E^{\prime 2}\right)=-2$, which contradicts $\left(E^{\prime 2}\right)=0$. Hence $\left(E_{0}\right)_{\text {red }}$ is reducible and by $\left(E_{0} \cdot H\right)=2$ for very ample H, one has $E_{0}=E_{1}+E_{2}$, where $E_{1}, E_{2} \cong P^{1}, \sharp\left(E_{1} \cap E_{2}\right) \leqq 1$, and the intersection of E_{1} and E_{2} is transverse. Then $\left(E_{0}^{2}\right)=-4+2\left(E_{1} \cdot E_{2}\right) \leqq-2$, which contradicts $\left(E_{0}^{2}\right)=0$.

Case (3) $d^{2}-8(g-1)=4:$ Let $d=4 d^{\prime}-2\left(d^{\prime} \geqq 1, d^{\prime} \in Z\right)$, then $2(g-1)=4\left(d^{\prime 2}-d^{\prime}\right)$. If $E=d^{\prime} H-C$, then $(E \cdot H)=2$ and $\left(E^{2}\right)=0$. Thus one gets a contradiction as in Case (2). If $d=5$ and $g=3$, then $d>2 g-2$. Thus $h^{0}\left(\mathcal{O}_{c}(1)\right)=3$, which implies that C is a plane curve, but this contradicts the genus formula for plane curves. Thus " \Rightarrow " is proved.

Proposition 3. Let d and g be integers such that $0 \leqq g \leqq d-3$. If char $k \neq 2$, then there exist a non-singular Kummer surface X_{0} and effective divisors H_{0}, C_{0} on X_{0} such that
(1) $\left(H_{0}^{2}\right)=4,\left(H_{0} \cdot C_{0}\right)=d,\left(C_{0}^{2}\right)=2 g-2$,
(2) H_{0} is numerically effective,
(3) C_{0} is numerically effective if $g \geqq 2$,
(4) $Z H_{0}+Z C_{0}$ is a direct summand of Pic X_{0}.

Proof. Let $k=d-g-3 \geqq 0$. Let Y_{1} and Y_{2} be elliptic curves with an isogeny $f: Y_{1} \rightarrow Y_{2}$ of degree $2 k+1$. Let $P, Q \in Y_{1}$ be non-zero points such that $2 P=0, f(2 Q) \neq 0$. Let X_{0} be the non-singular Kummer surface

associated to $Y_{1} \times Y_{2}$. Then $Y_{1} \times 0, Q \times Y_{2}$, the graph of $f, P \times f(P)$, and $P \times 0$ give irreducible curves D, F, E, A, and B in X_{0} such that $D \cong E \cong$ $A \cong B \cong P^{1}$, and F is an elliptic curve, with the configuration as in the picture with all the intersections transverse (cf. [MM] or [SI]). Let H_{0} $=D+3 F$, and $C_{0}=E+g F$. Then (1) is clear; (2) follows from ($H_{0} \cdot D$) $=1$ and $\left(H_{0} \cdot F\right)=1$; (3) follows from $\left(C_{0} \cdot E\right)=g-2$ and $\left(C_{0} \cdot F\right)=1$; and (4) follows from $\left(H_{0} \cdot B\right)=1,\left(H_{0} \cdot A\right)=0,\left(C_{0} \cdot B\right)=0$, and $\left(C_{0} \cdot A\right)=1$. q.e.d.

Remark 4. Let k be the field of complex numbers. Then, in the local versal deformations space Def of X_{0}, the locus where H_{0} and C_{0} lift as line bundles is an 18 -dimensional smooth subvariety Pol, and there is a dense subset Pol^{\prime} of Pol such that if $q \in \mathrm{Pol}^{\prime}$, then the surface X and line bundles H and C on X lying over q satisfy the conditions:
(1) $\left(H^{2}\right)=4,(H \cdot C)=d,\left(C^{2}\right)=2 g-2$,
(2) H is numerically effective,
(3) C is numerically effective if $g \geqq 2$, and
(4) $\operatorname{Pic} X=Z H+Z C$.

Indeed (1) is clear, whence X is algebraic by [K, Theorem 8], and (4) follows from [K, Theorem 14]. As for (2) and (3), $2 H_{0}$ and $2 C_{0}$ (if $g \geqq 2$) are base point free by (1) of Theorem 5. The obstructions for lifting sections of $\mathcal{O}\left(2 H_{0}\right)$ and $\mathcal{O}\left(2 C_{0}\right)$ (if $g \geqq 2$) to Pol lie in $H^{1}\left(\mathcal{O}\left(2 H_{0}\right)\right.$) and $H^{1}\left(\mathcal{O}\left(2 C_{0}\right)\right)$ which are both 0 by Ramanujam's vanishing theorem.

We now quote results by Saint-Donat:
Theorem 5 (Saint-Donat [SD] or cf. [MM]). Let X be a K3 surface defined over an algebraically closed field of characteristic $\neq 2$. Let H be
a numerically effective divisor on X. Then one has
(1) H is not base point free if and only if there exist irreducible curves E, Γ, and an integer $k \geqq 2$ such that $H \sim k E+\Gamma,\left(E^{2}\right)=0,\left(\Gamma^{2}\right)=$ $-2,(E \cdot \Gamma)=1$. In this case, every member of $|H|$ is of the form $E^{\prime}+\Gamma$, where E^{\prime} is a sum of k effective divisors E_{1}, \cdots, E_{k} such that $E_{i} \sim E$ for all i.
(2) Let $\left(H^{2}\right) \geqq 4$. Then H is very ample if and only if
(i) there is no irreducible curve E such that $\left(E^{2}\right)=0,(E \cdot H)=1,2$,
(ii) there is no irreducible curve E such that $\left(E^{2}\right)=2, H \sim 2 E$, and
(iii) there is no irreducible curve E such that $\left(E^{2}\right)=-2,(E \cdot H)=0$.

Proposition 6. Let X, H, C be as in Remark 4. Then H is very ample and $|C|$ contains an irreducible smooth member.

Proof. We will first check that H satisfies the conditions (i)-(iii) in (2) of Theorem 5. We denote by disc (A, B) the determinant of the intersection matrix of divisors A and B. If there is a divisor E such that $\left(E^{2}\right)=-2,(E \cdot H)=0$, then $\operatorname{disc}(E, H)=-8$ is divisible by $\operatorname{disc}(H, C)=$ $8(g-1)-d^{2}$. However, by $g \leqq d-3$, one has $d^{2} \geqq(g+3)^{2}>8 g$ and $\operatorname{disc}(H, C)<-8$. This is a contradiction. Thus (iii) is checked, (i) is checked in the same way, and (ii) is obvious because H is a part of the basis of Pic X. Hence H is very ample. Assume that $g \geqq 2$. Then we use (1) of Theorem 5 to show that C is base point free. If C is not base point free, then there is a divisor E such that $\left(E^{2}\right)=0,(E \cdot C)=1$. Then $\operatorname{disc}(E, C)=-1$ is divisible by disc (H, C), which is a contradiction, as we have seen above. Thus C is base point free and $|C|$ has an irreducible smooth member because $\left(C^{2}\right)>0$. Let $g=1$. Then the equation

$$
(x H+y C)^{2}=2 x(2 x+d y)=-2
$$

does not have integral solutions x, y, because $d \geqq g+3=4$.
Hence X does not contain smooth rational curves by Remark 4, (4). By $\left(C^{2}\right)=0,|C|$ or $|-C|$ contains an effective member. By $(C \cdot H)=d>0$, $|C|$ contains an effective member C_{0}. Thus C is numerically effective because otherwise C_{0} contains an irreducible curve $Z \cong \boldsymbol{P}^{1}$, which is a contradiction. Hence by (1) of Theorem 5, C is base point free, and C is a multiple of an elliptic pencil. Since C is a part of the basis of Pic $X,|C|$ is an elliptic pencil, and it contains a smooth elliptic curve. Let $g=0$. Since $\left(C^{2}\right)=-2$ and $(C \cdot H)>0$, one has $C \sim E+D$, where
$E \cong P^{1}$ and D is an effecitve divisor. Since disc (H, C) divides disc (H, E), one has $8+(C \cdot H)^{2} \leqq 8+(E \cdot H)^{2}$. Thus $(D \cdot H) \leqq 0$, and $D=0$. Hence $C=E$, and Proposition 6 is proved.

We can now finish the proof of the if-part (\Leftrightarrow) of Theorem 1. We use induction on d. We omit the proof for $(d, g)=(1,0),(2,0),(3,1)$, since they are well known. We may assume that $g<d^{2} / 8$, otherwise C is given as a complete intersection. We may also assume that $g \geqq d-2$ by Remark 4 and Proposition 6. Thus as shown by the picture, one sees

$d \geqq 6$. First, we assume that $(d, g) \neq(9,10)$. Let $d^{\prime}=d-4$, and $g^{\prime}=$ $g-d+2$. Then $d^{\prime 2}-8 g^{\prime}=d^{2}-8 g>0$ and $\left(d^{\prime}, g^{\prime}\right) \neq(5,3)$. Thus by the induction hypothesis, there exist a non-singular quartic X^{\prime} and a non-singular curve C^{\prime} on it of degree d^{\prime} and genus g^{\prime}. Let H^{\prime} be an irreducible hyperplanesection of X^{\prime}, and $C=C^{\prime}+H^{\prime}$. Since $d^{\prime}=d-4$ $\geqq 2$, one sees $\left(C \cdot C^{\prime}\right)=2\left(g^{\prime}-1\right)+d^{\prime} \geqq 0$, and C is numerically effective. Since $\left(H^{\prime 2}\right)=4, C$ is base point free by (1) of Theorem 5 . If we denote by the same C, a smooth member of $|C|$, then C has degree d and genus g. Thus C and X are the required pair for d, g. For $(d, g)=(9,10)$, let $d^{\prime}=1, g^{\prime}=0$, and C^{\prime} a straight line on a smooth quartic surface X^{\prime}. Let H^{\prime} be an irreducible hyperplanesection of X and $C=C^{\prime}+2 H^{\prime}$. Then, one sees that C, X are the required pair as in the above argument. This proves Theorem 1.

References

[GP] L. Gruson and C. Peskin, Genre des courbes algébrique de l'espace projectif (II), Ann. Sci. Ecole Norm. Sup., Paris, 4^{e} série, t. 15 (1982), 401-418.
[K] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J.

Math., 86 (1964), 751-798.
[MM] S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus 11, to appear in the proceedings of Japan France symposium on algebraic geometry, 1982.
[SD] B. Saint-Donat, Projective models of K-3 surfaces, Amer. J. Math., 96 (1974), 602-639.
[SI] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Cambridge University Press, 1977, 119-136.

Department of Mathematics

Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: Received November 17, 1983.

