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ON A GENERALIZATION OF THE ABSTRACT MORSE

COMPLEX AND ITS APPLICATIONS

SUK HO HONG

Introduction

Klingenberg refers in [4] the fact that the homology group of the
space A of closed H1 curves on a manifold is isomorphic to that of the
Morse complex. In this paper, we generalize the fact above and at the
same time give a proof to it through cell decomposition method under a
strong non degeneracy condition.

We first introduce so-called generalized Morse complex on a space
X with an action of Lie group G and an invariant energy function E on
X. The case of the space A of closed curves is obviously obtained through
G = S\

Next we apply the Morse complex argument to the space A, where
the isotropy group is closely related to the multiplicity. And we find the
cycle Z(c) constructed by Shikata-Klingenberg [1] is at most finite order
in the homology of the Morse complex. Thus from a close investigation
of the order of the cycle Z(c) on H*(X), we deduce a relation between
the torsion and the divisibility of multiplicities of a certain geodesic.

We would like to thank Professor Y. Shikata for many valuable dis-
cussions who gives me many helpful insight into the field of Morse complex.

§ 1. On G-action which generalizes ^-action on A

1-1. Let X be a Cr+^manifold (r > 0) with a G-action of a compact
Lie group such that the isotropy group I(p) at p e X is discrete for any
p € X Suppose X admits an invariant Morse function E, i.e.,

E:X >R

is cr-function such that E(gp) = E(p) for any g e G and let φ be the
gradient flow of E, then φ is G-equivariant:
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then S(c) and U(c) are called the stable and unstable manifolds respectively.

THEOREM 1. If c is non-degenerated, Codim G>S(c) = index c.

Proof. Denote by TP(M) the tangent space of a submanifold M at
p, then from the non degeneracy assumption above we have a natural
spliting

Tp(U(c))®Tp(G.S(c))=Tp(X)

since

dim U(c) = index c ,

we have

codim G S(c) = index c .

We choose from each G-orbit G c of a critical point c, a representative
c and call them a pure critical point representing c and denote the set
of pure critical point by Γ.

We introduce a polar coordinate system (u, t)c for ueS(Tc(U(c)) and
ί e (0, 00) where S(Te(U(c))\ = {ue Tc(U(c)), \\u\\ = 1} in the unstable mani-
fold U(c) of a critical point c by mapping (u, t)c onto ^(w). We deduce
the following property for the polar coordinate easily:

LEMMA 2. g(u, t)c = (gw, t)gc where we used the notation gu also for
the G-actίon on the tangent space.

It is obvious that if any two flows φt(u), φt>(uf) (u e Tc(U(c)), υ! e Tc,{U(c)))
have an intersection for finite t, t', then they are agree entirely, there-
fore we may refer this fact as follows:

L E M M A 3. If (u, t)c = (u'9 t
f)c, for d eGc, then

u = u', t = f and c = d .

We refer the following property (P) at the strong non degeneracy of E:
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(P): All the critical point c are non degenerate and for any critical

points c, c', the stable and unstable manifolds have a generic intersection.

1-2. We compute H*(X) through a cell decomposition of X. We

first decompose G U(c) into cells: Consider the covering space

π:G >G/I(c)

with the right hand /(c)-action and decompose the base manifold Gjl{c)

into cells {Δ} such that the covering π is trivial over each simplex Δ e {Δ}.

Then A(Δ) — π~x{Δ) splits into a disjoint union {A^Δ)} of homeomorphic

cells in G on which I(c) acts effectively and transitively from the right.

We choose and fix a representative AC(Δ) from the inverse image {A^Δ)}

of each cell Δ in {Δ}.

LEMMA 4. If there exist points p, p\ q, q' such that

peAc(Δ), p'eAXΔ'), q,q'eU(c)

and

pq = pfqf for cells Δ, Δr e {Δ}

then we have

Δ = Δ'9 p — pf and q = qf.

In fact, in the polar coordinate on U(c)9 we have

p(u, t)c = p\u\ f)e

therefore from Lemma 3, we see

pc = pfc

that is

p = p'x, x e I(c).

Since π is I(c)-covering, we have x = id.

PROPOSITION 5. The cell AC(Δ) in G defines a cell AC(Δ)-U(c) in G> U(c)

which is homeomorphic to AC(Δ) X U(c) in the interior.

Proof. If (p, q), (p', q') e AC(Δ) X U(c) are mapped onto the same point

through the multiplication, we have immediately from Lemma 4 that

p — pf and q — c£.
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PROPOSITION 6. The cells Ac(Δ)<U(c), Ac(Δ')U(c) have no interior
intersection for Δ ^ Δf.

Proof. It is also obvious from Lemma 4 that the existence of the
interior intersection

pq=p'q' for p e AC(Δ\ p' e AC(J'),

q, qf e U(c) implies p = p\ Δ = Δ\
Since i7(c) = gU(c) for any gel(c) as sets we finally see that

= U U Ac(Δ) gU(c)
[Δ] gei(c)

= {JAc(Δ) U(c)

that is, the cells Ae(Z) U(c) for Δe{Δ) cover GU(c).

THEOREM 7. TTie cβ/Zs AC(J) U(c) give a cell decomposition of G> U(c).

We see that a subdivision of the decomposition of G ί/(c) induces a
decomposition on bd(G U(c)) as follows: First, property (P) yields that
S(Tc(U(c))) is divided into cells by its intersection with the (weak) stable
manifold S(c_) of critical points c_ of lower indexes than c, in fact the
intersection

( ( ) ) n s(c_)

is an open submanifold S(Tc(U(c))) of dimension

index c — index c_ — 1

and the boundary of each one of the submanifold again splits into a
union of submanifolds of this kind.

Thus taking product by small cell ΔdG to these cells, we can divide
Δ-S(Tc(U(c))) into cells. Therefore for a sufficiently fine decomposition
{Δ} of G we see that the decomposition of Ac(Δ)-S(Tc(U(c))) defines a
natural decomposition of AC(Δ) U(c) through the polar coordinate. Take
a decomposition {Δ} of G so fine that the covering projection π : G —• G/7(c_)
is trivial over Δ for any pure critical point c_ such that S(c_)f]S(Tc(U(c)))
^ φ, then we see that {Δ-bdU(c)} decomposes GbdU(c) into cells, because
bdU(c) is αi-limit of S(Tc(U(c))).
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Let X(ή) denote the union of (weak) unstable manifolds over pure

critical points of index lower than n or equal to n.

X(n)= U G U(c)
ceΓ(n)

Γ(n) = {ceΓ , index c < ή\ .

Then it is easy to see that X(n) can be decomposed into cells in the

method above and

X = U X(n), X(n) C X(n + 1) .
n

Since any έ-submanifold in X is pushed down into X(k) by the flow.

THEOREM 8. The homology Hk(X) may be computed as the homology

Hk(X(n)) of X(n) (k < n) which is obtained as homology of a cell decom-

position given by a subdivision of the cells AC(Δ) U(c).

1-3. We construct an abstract chain complex Jί which is equivalent

to the chain group over the cell complex above and we call it a generalized

Morse complex. We fix an orientation on each cell of {Δ U(c)} by choosing

an orientation in U(c) and also one in Δ e {Δ}c for each pure critical point

ceΓ. We then have an graded chain group C(X) of oriented cell {Δ U(c)}

by defining

άegΔ-U(c) = dim ΔU(c)

= dim Δ + index c .

Let Xn be the union of cells in X(m) of dimension lower than or equal

to n (n> m) and take the boundary operator d in the exact sequence for

the triple (Xn, Xn~\ Xn~2):

3: Hn(X\X^) >Hn-ι(X*-\X*-*)

then it is known that Cn(X) = Hn{Xn,Xn~x) and C(X) turns out to be a

chain complex together with the boundary 3 (see [2], [6]), whose homology

is equal to that of X(m), thus we have

PROPOSITION 9. Under the non degeneracy condition, we have a chain

complex C(X) over graded cells {Δ U(c)} so that

COROLLARY 10. Under the same non degeneracy condition above, we
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see that the homology H*(C(X)) of the cell complex is independent of the

cell decomposition of X, especially that of G.

In order to describe the boundary operator 3, we start with a small

cell e = ΔΊJ(c) in Hn(Xn, X71'1), which is represented as the image of a

(relative) product homeomorphism ψ = φx X φ2 of

Ψι: P—+X

and

φ2. 1 > A

such that π: G -> Gjl(c) is trivial over ψ^I) = Δ:

p χ Jm characteristic map Q χ

multiplication

Since φ* commutes with the boundary homeomorphism, we see that de =

j*φ*d*f for the fundamental class / in Hn(Ik X Im, bd (I*1 X Zm)), as is seen

from the following diagram:

Hn(P X I m , bd(I fc X

The fundamental class / splits into a cross product f X f2 of

k = n — m = dim J

m = index c

corresponding to Δ and to U(c), respectively, therefore from the naturality

as the boundary formula of the cross product, we have that

( - i)Yi x
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= 0>i*9*/i x j*φ*fd + ( - i)*O>i*/i) x

= 3β2 X e2 + ( - l)*βi X 3β2

Here the classes

may be regarded as the classes representing Δ and £7(c) respectively.

Moreover we may replace the cross product above by the multiplication

of G on X because every cell under consideration acts effectively on U(c),

thus we see that

PROPOSITION 11. The boundary operator 3 in the cell decomposition

of Theorem 8 in Section 1 satisfies that

3(2. U(c)) = (32) U(c) + ( - l)kΔ dU(c) , where k = dim 2 .

Finally we investigate 2, Z7(c) geometrically.

They may be considered as the homology classes represented as the

classes of the boundaries

e, e

dU(c) = de2 =

Therefore dU(c) can be regarded as the sum of (m — 1) cells appearing

on the boundary of U(c) with the suitable coefficient, which we can count

as the intersection number of S(Tc(U(c))) with the (weak) stable manifold

S(Δc_) of codimension m — 1 for a cell Δ e G of dimension index c_ —

(m - 1).

LEMMA 12. Lei [Jc_, c] be the intersection number of S(Tc(U(c)))Jand

the stable manifold S(Δc_) of codimension m — 1, then we have

We introduce an abstract chain complex Jέ over the set Γ of the^pure

critical points as the chain group generated over formal elements

{Δc/Δ: cell in G,ceΓ}

with the degree given by

degree Δc = dim 2 + index c

and define the boundary operator d as follows:
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dc =
dΔc = dΔc + ( - ϊ)kJdc where k = dim Δ .

Since we see easily that the chain complex Jt is chain homotopic to

C(X), we deduce the following from Lemma 12, Propositions 9, 11.

THEOREM 13. ΈL*{Jt) = fl*(X).

§2. Relations to torsion and divisibility

2-1. In case of the space A of closed curve, we have a natural S1-

action on A through the action on the parameter;

θ a(t) = a(θ + t) t , θ e S \ a e A .

If we remove the point curves Ao from A, we have the S^action on A — Ao

such that the isotropy I(x) is discrete for any x e A — AQ thus we may

apply our method to the case X = A — A09 G = S\

In this case, we have a well known relation between the order of

Iso (x) and the multipilicity m(x) of x defined as the maximal number m

so that

x = a - a = am for some a e A .

LEMMA 14. ord I(x) = m(x).

We notice that when we consider the S^action on the Morse complex

Jί, then also have a notion of isotropy Iso (x) for a chain xeC. In

particular for a chain represented by a critical ponit c, we have Iso (c)

other than /(c).

LEMMA 15. ord Iso (c) = ord I(c) or 2ord I(c)

= m(c) or 2m(c) .

In fact, if the multiplication by g e I(c) on U(c) preserves the orien-

tation in U(c), we have the first case, otherwise we take double in order

to preserve the orientation and we have the second case.

On the other hand, Klingenberg constructed a energy function E on

the space A which satisfies the condition (C). (cf. Klingenberg [4]).

Therefore if we assume further the strong degeneracy on E, we may apply

Theorem 13 to the space A — S(A0), where S(A0) denotes the stable mani-

fold over Ao and we reproduce the Klingenberg's anouncement [4] on the

homology of A — S(Λ0) with S^-action.
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THEOREM 16. The homology H*(Λ — S(Λ0)) of A — S(ΛQ) is obtained

as the homology of the Morse complex associated with A — S(A0) and E,

provided that E satisfies the strong non degeneracy condition.

It may be possible to weaken the strong non degeneracy condition

to a weak non degeneracy, that is, only assuming the non degeneracy of

each critical point, for this we return in near future.

Our purpose in the remaining is to investigate a relation between a

torsion property of homology H*(X), (reduced to the Morse complex) and

a behavior of the multiplicities which is related to the order of isotropy

as an application of what we have discussed.

Our point is that we can deduce a type of divisibility even for the

Finsler case provided the strong non degeneracy because our method is

entirely topological and does not use the ^-action which comes from

Riemannian structure.

2-2. We investigate a torsion property of a cycle Z(c) in Jt con-

structed by Shikata-Klingenberg [1]. We quickly review here how Z(c)

is constructed over a pure critical point c e Γ. Let m be the order of

isotropy of c, then we have

\\ψa'C = c ,

hence

l/m-dc = dc .

Thus we have an invariant chain dc in Jt under the action of a subgroup

G(fn) of S 1 generated by 1/m and therefore we can split dc into a sum of

invariant chains xt which is invariant under the action of a subgroup

Ht 3 G(m):

n

dc= J]Xi
1

Then the fact that

htxt = xt for ht e Ht

implies that

3((1 - K) . . . (1 - hn)c) = 0 ,

yielding a cycle

Z(c) = (1 - hx) -" (1 - hn)c .
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In order to investigate a further property of the cycle Z(c), we consider
the case n = 1, Hx 2 G(m).

LEMMA 17. Let h = 1/ord Hi then

Z(c) = (1- h)c

is at most a torsion element of ord (Hj).

In fact, take

Δ = [0, h]

and let

y = Δc

then we have

= Z ( c ) - J Xi.

Since Xj is HΊ-invariant, it is expressed as a sum over Hx\

Therefore

may be expressed as Δx1 = Sy'U.
Thus we have

On the other hand, consider v = S1 c then we see that

= - ( Σ

Hence we have that

(ord Hffiy = (ord H,)Z(c) +
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indicating that Z(c) is at most of ord(iϊi) torsion in
Next we take the case n = 2,

and

RΠHzφHi, H2.

LEMMA 18. Let

hx = 1/ord Hλ , Λ2 = 1/ord

αrad Z(c) is of the form

Z(c) = (1 - Λ,X1 - K)c

then it is zero in H*(J!).

In fact, take Δ = [0, h] and let

y = Δ{1 - h)c

then we see that

dy = Z(c) - ΔiX - h2)dc

= Z(c) - i ( l - fh)Xl

= Z(c)-(l-h2)S1-u

by the same u and by the same reasoning as in the case 1. Thus we
see that

3y = Z(c) .

In general, from a similar computation, we see easily that for n ̂  2,
the homology class Z(c) is zero, also we may remark that for the case
n = 1 the homology classes (1 — h)Z(c) is zero.

In [1] Shikata-Klingenberg deduced a modified divisibility lemma using
a chain bounding the cycle Z(c) + -9Z(c), for the involution -9 in A keeping
E invariant. Thus their theory is related to the Riemannian structure
of the underlying manifold at this point. But we can cut this point off
from the Riemannian structure by taking Z(c) or (1 — h)Z(c).

PROPOSITION 19. We may apply Shikata-Klingenberg theory to the
cycle Z(c) or (1 — h)Z{c) to have the divisibility lemma in the modified form
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even in case we do not have the involution #, like in non symmetric Finsler
space.

Remark 1. Shikata-Klingenberg theory uses πx(Λ) = 0 on the way,
therefore Katok's Finsler example on S2 has nothing to do with the pro-
position above.

Remark 2. Shikata-Klingenberg's modified divisibility lemma is
roughly as follows: Under a certain non degeneracy assumption as πt{A)
= 0, there exists a series {cj of critical points in Λ, so that

m(Ci) 12m(Ci+,) o r m(Ci

where the m(c) is the multiplicity of the curve c in A and is related to
the order of isotropy I{c).
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