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KAHLERIAN SUBMANIFOLDS IN A COMPLEX PROJECTIVE

SPACE WITH SECOND FUNDAMENTAL FORM

OF POLYNOMIAL TYPE

RYOICHI TAKAGI

Let PN be an iV-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature, and M be a
Kahlerian submanifold in PN. Let H be the second fundamental tensor

of M, and V be the covariant derivative of type (1, 0) on M. We proved
in [5] that, if M is locally symmetric, then

(1) FmH = 0 for some positive integer m .

So it will be a natural question to ask what Kahlerian submanifolds
satisfy the above condition (1). In this paper we give some partial solu-
tions to it. First we show that the condition (1) is equivalent to

(2) FdR = 0 for some positive integer d ,

where R denotes the curvature tensor of M. On the other hand, the
curvature tensor R of every Kahlerian C-space satisfies the condition (2)
([4]). Thus every Kahlerian C-space holomorphically embedded in PN

satisfies the condition (1) too. Next we prove that, if M is a Kahlerian
hypersurface with condition (1) in PN, then M is totally geodesic or a
complex quadric. Finally we give some examples of Kahlerian submani-
fold in PN satisfying FΉ = 0 but FH Φ 0.

§ 1. Preliminaries

In this section we survey briefly the notion of Kahlerian submani-
fold in PN (for the detail, see e.g. [2]). Let M be an ^-dimensional
Kahlerian submanifold in Pn+q. We use the following convention on the
range of indices unless otherwise stated: A, B, = 1, , n, n + 1, ,
n + q; ίJ,-- = 1, -β ,[n; a,wβ, = n + 1, ., n + q. Let {eί9 , en+q}
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be a local field of unitary frames in Pn+q such that, restricted to M,

eu , en are tangent to M. Denote its dual frame field by ω1, , ωn*q.

The connection forms ωi with respect to ωA and the connection V on Pn+q

are related by

(1.1) VeAeB = Σ ^G

B(eA)ec .
G

Restrict the forms under consideration to M. Then, since ωa = 0, the

forms ωa

t can be written as

(1.2) ω? = Σ hhωi > hh = K

The quadratic form £ | i f i Λjp</ω* ωi is called the second fundamental form

of M in the direction of eα. The curvature form Ω) of M is defined by

λ;
(1.3) Ω) = dωj + Σ ωj Λ

λ

It can be expressed as

(1.4) β} = Σ -

The equation of Gauss is given by

(1.5) R)u =

where 2c denotes the constant holomorphic sectional curvature of Pn+q.

The value c itself is not important in this paper. The Ricci tensor S =

(Sij) of M is defined by

(1.6) Si3 = Σ Λ?*j = (Λ + I)c34, - Σ Λ&Λίy .
& a,*

We define the higher covariant derivatives h"1...imj and ha

iχ^.im-5 of Λĵ  in-

ductively as follows.

(1.7) = dΛfx...*. ~ Σ Σ Λf,...̂ .̂ .̂..*. <

r = l j

+ Σ A?i».i. ω°β •
β

+

Then the component of the tensor FmH used in the introduction is nothing

but K...iM.
LEMMA 1.1 ([2]). The following relation holds.



COMPLEX PROJECTIVE SPACE 63

£ r = l

m-2 1 _

Σ 1 Y 1 /,« Uβ Uβ

r=ι r\(m — r)\ «,M,*

where the summation on σ is taken over all permutations of {1, , /n}.

In particular, ha

ix...im is symmetric with respect to iί9 , ίm9 and ha

ijli; — 0.

§2. Results and proofs

In this section we denote by M a Kahlerian submanifold in Pn+q and

keep the notation in Section 1.

DEFINITION. Denote the tangent space of a manifold AT at a point p

by TP(N). For a point p of M we denote by ΛΓp the normal space of

TP(M) in Tp(Pn+q), and by iVp

c the complexification of iV?. Let m(^ 2) be

an integer. To each point p of M we assign the complexification of the

subspace of Np spanned by the vectors Y^aht1...im(p){e^v over C, which we

denote by Hm(p).

Remark that Lemma 1.1 implies

(2.1) Σ λ*V.i.A e fl, + • + # „ _ ! .

LEMMA 2.1. Assume there exist two integers r and ί such that r > i

^2 and Hr±(H2+ •-+ H£). Then (1) Hs J_ (H2 + .. + fl,) /or any

integer s with s Ξ> r, α^d (2) i?"2r_2 JL ( ^ + + fli+1).

Proo/. Let a be any integer such that 2<La< β. Then the assump-

tion can be rewritten as

(2.2) Σ K...irh jx...ja = 0 .

In order to show (1) it suffices to show Hr+1 _[_ (iJ2 + + iϊ,). Taking

the covariant derivative of (2.2) with respect to βfc, we have

a a

The second term of the left hand side of this equation vanishes by (2.1)

and (2.2), which shows (1). Now by (1) we have

(2.3) Σ K...Ur_Ji jί...ja = 0 .
a

Taking the covariant derivative of (2.3) with respect to ek, we have
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Σ hii' -iir-ihji - jak ~t~ Σ Mi—itr-iϋftji — ja = ^ '

It follows from Lemma 1.1 that the second term of the left hand side of

this equation is equal to

2r-2 _

2(r — 2)c Σ hϊi—ib.»i2r-<βibkh"j1...ja

δ = l
2r-4 ^ _ _

b=i β,e,σ b\ (2r — 4 — b)l lσ(lr"lσ(b) **<&+i> ι*<2r-a> ' JI ̂ O

But the first term vanishes by (1), and the second also vanishes by (1)

s i n c e b + l ^ r or 2r — 2 — b^ir. q.e.d.

DEFINITION. Let d be an integer with d ^> 3. Define a sequence

{̂ z}i=i,2,.. of integers inductively as follows. First put dx = 2 and d2 = d.

Assume <ifc was defined for k = 1, , ί. Let {cm} be a sequence of integers

defined by cx = cf̂  and cm+1 = 2cw — 2. Then put dί+ί = cm where m = dt

— <£<_!. The sequence {dj shall be said to be associated with an integer d.

LEMMA 2.2. Assume there exists an integer d ^ 3 such that Hd _[_ H2.

Let {dt} be the sequence of integers associated with d. Then the vector

spaces Hdί, Hd2, are mutually orthogonal.

Proof. Since Hd _[_ H2, applying Lemma 2.1(2) d2 — dx times, we find

Hd3 JL (Hdl + + Hd2). Repeat this argument to obtain

Hdi J_ (Hdl + + Hdz + + Hdi_^)

for each positive integer ί. q.e.d.

The following Theorem gives our problem a geometric meaning.

THEOREM 2.3. Let M be an n-dίmensional Kdhlerian submanifold in

Pn+q. Let R be the curvature tensor of M, H be the second fundamental

tensor of M, and V be the covarίant derivative of type (1, 0) on M. Then

the following two conditions are equivalent.

(A) There exists a positive integer d such that VdR = 0.

(B) There exists a positive integer m such that FmH = 0.

Proof. By (1.5) the condition (A) is equivalent to

(C) Hd+2 JL H2 .

Thus clearly (B) implies (A). Now assume (C). If Hm Φ {0} for all integers
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m ( ^ 2), then Lemma 2.2 implies that for each point p of M there exists a

sequence Hdχ(p), Hd2(p), of infinitely many mutually orthogonal nonzero

vector subspaces of N£, which is a contradiction. q.e.d.

Now we state a relation between two integers d and m in Theorem

2.3.

THEOREM 2.4. Let M, Pn+q, R, H and V be as in Theorem 2.3. Assume

that M is neither flat nor totally geodesic, and that there exists a positive

integer d such that FdR = 0 and Fd^R Φ 0. Let m be the positive integer

determined by FmH = 0 and F^-'^Hφ 0. Let {c?J be the sequence of integers

associated with d + 2. Then m ^ dq+1 — 2.

Proof. By Lemma 2.2 we see that there exist a positive integer i

and a point p of M such that the subspaces Hdχ(p), Hd2(p), , Hdi(p) of

Np are mutually orthogonal and Hd.(p) Φ {0} and Hdi+X(p) = {0}. Since

dimc Nξ = q, we have £ <̂  q. This and the definition of m give m + 2 <£

c?i+1 ^ dq+1, q.e.d.

Here we consider our problem in the case of codimension 1.

THEOREM 2.5. Let M be a Kdhlerίan hypersurface in Pn+ί. Let H be

the second fundamental tensor of M and V be the covariant derivative of

type (1, 0) on M. Assume there exists a positive integer m such that FmH

= 0. Then M is totally geodesic or a part of a complex quadric.

Proof. Since q = 1, we may omit the index a. In the case where

m = 1, our theorem has been already proved by B. Smyth [3]. So assume
ra+l

m JΞ> 2. Let an index a (resp. r) stand for any index ί such that h^ Φ 0
TO + l

(resp. hf^i = 0). The set of such indices α's is not empty. In fact, if
m+l

empty, we have h^ = 0 for each i, which implies Hm+1 = 0. In this

proof, let the index i run from 1 to m — 1, and the index u run from 0

to ί — 1. By Lemma 1.1, we can rewrite
u

ha...aς^ι = 0

as follows.
U m + l /γyj I O I D Ί,

w=Qυ==e+2 \m + 2 + £ — v — w,
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Then Em.lt0 is given by

which yields

(2.1)

m + 1

since hς^i Φ 0.
Moreover Em_2i0

m m + 1 _

m

Σ hjς^hji =
j

is given by

=

0

o,

) Σ h^ah^rahn + ( ,) Σ hjς^h^hjt = 0 ,
772 / y \ m — 1/ i

which, together with (2.1), implies

m - l _

Σ hjZ^hji = 0 .

Repeat this argument m — 3 more times to obtain

(2.2) Σ hjς^hji = 0 for ί > 2 .

Next Em.hί is given by

( 2T7Z\ m m + 1 — / 2τ?2 \ m m + 1 —

) Σ K'£^ha'^hji + ( I Σ hjZ^hς^hji = 0 ,
m / j \m — 1/ J

which, together with (2.1), yields
m _

ΣihjZΪΪrhji = 0 .

Just as we obtained (2.2), we have from Em_2Λ, , Euί and (2.2)

(2.3) Σ hj^hjt - 0 for I ̂  2 .

Similarly, from ί^-^, -,EU2, (2.2) and (2.3) we have

(2.4) Σ hja^prhj{ = 0 for ̂  ̂  2 .

In particular, from (2.2), (2.3) and (2.4) we have
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This and (1.6) mean that the Ricci tensor of M is parallel. Now our
theorem is reduced to Takahashi's one [6]. q.e.d.

§ 3. Examples of FΉ = 0 but VH Φ 0

In this section we give three examples of a Kahlerian submanifold in
+ +

Pn satisfying V2H = 0 but VH Φ 0. They are given as orbits in Pn under

certain Lie subgroups of the special unitary group SU(n + 1). We fix a

flat Hermitian metric on Cn+1. Let S be a hypersphere in Cn+ί centered

at the origin. Let π be the canonical projection of S onto Pn. For a

point p of S we denote by Hp the linear subspace of TP(S) orthogonal

to the 1-dimensional linear subspace Rl(p), where / denotes the complex

structure of Cn+\ The restriction π*]Hp of the differential map π* of π at

p to Hp is an isometric isomorphism of Hp onto Tπip)(Pn). For v e Tp(Cn + 1)

(resp. v e TP(S)) we denote by υ8 (resp. υH) the orthogonal projection of u

to TP(S) (resp. Hp). Let X be any element of the Lie algebra $u(n + 1)

of SU(n + 1). Then the 1-parameter subgroup exp tX of SU(n + 1) induces

Killing vector fields both on Cn + 1 and P n , which are denoted by X* and

X* respectively. The restriction X* \s is a Killing vector field of S, which

is also denoted by X* for simplicity. Clearly π*X* = X%. Let V (resp.

V) denote the connection on S (resp. Pn). Then we have

(3.1) VXY* = (YX(p))s for X, Ye 2u(n + 1) ,

where we put x = X*. In fact, if we denote by V the flat connection on

Cn + 1, then

Moreover the following formula is fundamental.

(3.2) ^ U ) y * = ^((F^y*)*) for X, Ye 2u(n + 1) .

Let G be a Lie subgroup of SU(n + 1). We consider an orbit M =

G(p) = π(G(p)), where p = τr(p). Denote the normal space of TP(M) (resp.
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TP(S)) in Tp(Pn) (resp. TP(M)) by N (resp. N). Let x, yeTp(M)9 and Y

be any element of the Lie algebra g of G such that y = Y*. Then the

JV-component of a vector FΛΫ* is not independent of a choice of Y, which

is denoted by a(x, y). a is just the second fundamental form of M at p.

The image of a is called the first normal space of M at p. Similarly we

can define the first normal space of M in S at p. From (3.1) and (3.2)

we have

LEMMA 3.1. Let the notation be as above. If the vectors (XY(p))N

where X9 Ye g span the normal space N9 then the first normal space of M

at p coincides with the normal space iV.

In the following we shall give a Lie subalgebra g of §u(n + 1) and

a point p satisfying the assumption of Lemma 3.1. Let £(^ 3) be an

integer, and let the indices A9 B, stand for 2^ + 1 values 1, , l9 0,

1, -•-,£. Denote by EAB the matrix (8CASDB)' Define the elements Hiy XAB

of the Lie algebra Zl{n + 1) of the special linear group by

(3 3) \ ί — a ~~ a \ — > ' ^ /

[XAB = EAB — EBA , where A = A .

Let ί) be the complex vector space generated by the vectors Hl9 , Ht9

and λl9 - -, λe be the dual forms of Hl9 , He. Then the vectors Hi and

XAB generate a complex simple Lie algebra gj of type Be in the sence of

E. Cartan in such a way that § is a Cartan subalgebra of gx and a vector

XAB is a root vector belonging to a root λA + λB with respect to \ where

λ0 = 0 and ^ = — λt (i = 1, , £) (cf. [1]). It is easily seen that, with

respect to an ordering λ1 > > λi9 the set {λx — λ2, , λ£_t — ^, ^} is a

fundamental root system. Let {Λl9 , Λ£} be the corresponding funda-

mental weight system. Then the above description (3.3) of gj is nothing

but the one of the irreducible representation pί of gt with the highest
2

weight Λt = λlm Define a representation /?2 of Qt on /\ C2^+1 by

(3.4) p2(X)(eA Λ efi) = XeA A eB + eA A XeB , l e & .

Then |02 is irreducible and the highest weight is equal to Λ2 = λx + ί2.

Let gw be a compact real form of gx such that gw C §1(2^ + 1), and Gu be

the Lie subgroup of SU(2£ + 1) with the Lie algebra gα. We want to show

that g = gM and p = eί A e2 satisfy the assumption of Lemma 3.1. For this

it suffices to show that the vectors
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(3.5) p2(X)p2(Y)(p), X, Y e 9 l

span the complexification Nc of the normal space of an orbit Gu(p) in

TP(S) over C. Hereafter we abbreviate eA A eB to A A B. Let the indices

i9j run from 3 to £. Since EAB(ec) = δBCeA, it follows from (3.3) and (3.4)

that the complexification ^(p) of Tp(Gu(p)) is spanned by the 4^ — 5

vectors

= 1 Λ 2 , fl 2(p) = 1 Λ 2 ,

= (E-lo - EQί)l A 2 = 2 Λ 0 , X2(p).= ( ^ - £0 2)l Λ 2 = - 1 Λ 0 ,

Xa(p) = (En - Eώl Λ 2 = - 2 Λ i , Xdp) = (Ett - E-2Ϊ)1 A 2 = 1 Λ i ,

Xn(p) = (El2 - E-2i)l A 2 = 2 Λ i , Xdjp) - (^ 2 - E-2i)l A 2 = - 1 Λ j ,

Xb(p) = 1 Λ Ϊ + 2 Λ 2 .

Therefore the space iV07 is spanned by the vectors

1 Λ Ϊ - 2 Λ 2 , 1 Λ 2 , 2 Λ I, i Λ 0, ί Λ I, i A 2, i Λ j , 0 Λ I, 0 Λ 2 ,

0 Λ ί , l Λ 2 , I Λ ιy 2 Λ i, Ϊ Λ J, ί Λ .

On the other hand, the following vectors are of the form (3.5)

XϊX-1(p) = 2AΪ, I , I i ( p ) = 2Λ2, XΛXι<j>) = i Λ0, X2ίX-1(p)=-0 Aί,

X j i X r t ί p ) = i Λ ; , X-2jXn(p) = iΛj+ δtj2 A 2, XΏXtl(p) = ί Λ 1 ,

XπX< s(p) = - i Λ 2 , ^ X H ( p ) = Ϊ Λ j , X a X B (p) = ί Λ l ,

Xϊ2X2i(p) = - 2 Λ Ϊ , X Π X H ( P ) = Ϊ Λ 2 + Ϊ Λ 2 .

Thus we have proved that G — Gu and p = e1 Ae2 satisfy the assumption

of Lemma 3.1.

Now we assert that the second fundamental tensor H of our orbit

M = Gu(π(p)) in P*, where N = 2£2 + £, satisfies FΉ = 0 but Fίf ^ 0.

Indeed, let R be the curvature tensor of M. Then we proved in [4] that

F2R = 0 but FE Φ 0. This and (1.5) imply

Σ h«mha

mr = 0 , Σ Λ?y*Λ?» ̂  0 .
α a

Hence every normal vector hiJkt = (ΛfyW) is orthogonal to the complexi-

fication of the first normal space of M at every point. Thus, owing to
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Lemma 3.1, we have ha

ιjke{p) = 0. By homogeneity of M we find h*m = 0,

ha

ίjk Φ 0, which proves our assertion.

We have two more examples of Kahlerian submanifold in Pn such
+ +

that F2H = 0 but VH Φ 0. But we omit to descrive them since their con-

structions are essentially the same as above. We only mention that they

are given as C-spaces Mx = M(A£, au a£) and M2 = M(D£, a2) holomorphically

embedded in Pn (see [4] for the notation). Under the same notation, the

previous example is a C-space M(Biy a2). We remark that dimc M = 2S

~ 1 (I ^ 2), dimc M2 = U - 7 {I ^ 4), codimc Mx = £2 and codimc M2 =

2^2 + 3 ^ + 6.
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