
Y. Teranishi
Nagoya Math. J.
Vol. 95 (1984), 137-161

THE VARIATIONAL THEORY OF HIGHER-ORDER

LINEAR DIFFERENTIAL EQUATIONS

YASUO TERANISHI

11. Introduction

In his paper [2], [3], D. A. Hejhal investigated the variational theory
of linear polynomic functions. In this paper we are concerned with the
variational theory of higher-order differential equations. To be more
precise, consider a compact Riemann surface having genus g > 1. As is
well known, we can choose a projective coordinate covering SI = (Ua, za).
Fix this coordinate covering of X. We shall be concerned with linear
ordinary differential operators of order n defined in each projective
coordinate open set Ua

where coefficients PUa(za), ',pn,a(za) are holomorphic in Ua. Differential

operators {Ln,a(Pa\za)} are called a semi-canonical form if PUa(za) = 0 for

all a.

Let λ e H\X, Φx) be a complex line bundle on X. Differential operators

{Ln,a(Pa\za)} are called Λ-related if in each intersection Uaf]Uβ

(i.2) LUP« I z.)y =

We shall prove an analogous theorem of the Laguerre-Forsyth's basic
differential invariants.

THEOREM 1.1. Let {Ln,a(Pa\za)} be a λ-related semi-canonical form, then

(θm,a(za)) e Γ(X, Θ{^)) (m = 2, 3, , ή)

where θmia(za) is holomorphic function in Ua defined by:

-k-2>! ( d V p (z)
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Conversely for given θm{z) e Γ(W, (P(fcm)) (m = 2, 3, , ή), we can define dif-

ferential polynomials of {θm{z)}

And differential operators {Ln,a(Pa\za)} are a λ-related semi-canonical form.

If φha(za), , φnia(za) are τι linearly independent holomorphic solutions

of the ^-related semi-canonical differential equation Ln,a(Pa\za)y = 0 and

σ is any element of SL(n, C) then the vector valued holomorphic function

φa(za) = '(pi.αOSα), , ^,αOO) satisfies in each intersection £7αn Uβ

(1.3) 9>β(*β) = ^ ( c α ^ + daβ)
ι'*φfaύ

for some ôαj3 e SL(τz, C), and the composition φ'a — a o ̂  satisfies a relation

of the form (1.1) with ^ replaced by p'aβ = σopaβoσ~\ Therefore the

mapping <pa and φf

a are considered as describing equivalent flat vector

bundles of rank n on X.

There is a natural one to one correspondence between the cohomology

set H\X, SL(n, C)) and the quotient space Hom {π,{X\ SL(n, C)/SL(n, C),

where SL(n, C) acts on Hom (π^X), SL(n, C)) by inner automorphisms.

The homomorphism obtained from a Λ-related semi-canonical equation is

called a monodromy representation. The fundamental group πx{X) is des-

cribed canonically as a group with 2g generators σu -- ,σg, τu •• ,τβ.

and the commutator relation [σl9 r j [σgy τg] = 1.

Introducing the complex variety

(1.4) N = {{Xu •••,Xs,Y1, - , Y g ) e SL(n, Cf* \ [Xu ¥>]••• [Xg, Yg] = 1 } ,

the mapping which associates to an element p e Hom (π1{X)iSL{n, C)) the

point (P{σ1\ -,p(σg), p{τx), ,p(τg)) 6 N identifies HomfaCX"), SL(n, C))

with the complex analytic variety N and the cohomology set H\X, SL(n, C))

with the quotient space V = N/SL(n, C) where SL(n, C) acts on N by

inner automorphisms. (See Gunning [5]). The tangent space to the variety

V at a point corresponding to the monodromy representation p of a λ-

related semi-canonical differential equation is identified with the coho-

mology group IΓfaίX), Ad0 p) of the group πx(X) with coefficients in the

space of n X n matrices of trace zero under the group representation

Aάp.

By Theorem 1.1, we can introduce a complex analytic mapping be-

tween the vector space 0^=2JΓ(X, Θ(fcm)) and the variety JV, and the tangent
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space to the image at a monodromy representation p e N is identified with

the space of the period classes of the Prym differentials Γ(X, 01)O(Ado p)).

We shall introduce the transvectants which are known in the classical

invariant theory and using them describe the period classes of the Prym

differentials (The variational formula).

The formulas also suggest a close relationship with Eichler coho-

mology groups. Many formulas in this paper can be found in Hejhal

([2], [3]) under the restriction 2 < n < 6 and we shall eliminate this restric-

tion using invariant theoretic method.

The author wishes to express his hearty thanks to Professors H.

Morikawa and H. Popp for their kind advices and encouragements.

§2. The basic differential equations and the monodromy represen-
tation

Let X be a compact Riemann surface of genus g > 1. Since the

genus of X is greater than one, as is well known we can find a coordi-

nate covering 21 = {(Ua, za)} such that the coordinate transformations of

this coordinate covering are projective linear transformations

(2.1) za = aaβ (
aββ + daβ \caβ daβ

Such a coordinate covering 21 is called a projective coordinate covering

of X

We denote by La(n) the set of all the homogeneous monic linear dif-

ferential operators of degree n defined in a projective coordinate open set

(2.2) ^ .CP.W

where coefficients Pha(za), , Pn,a(za) are holomorphic on Ua and ί * ) is

the binomial coefficient.

We denote by Ln(P\z) the collection of local differential operators:

(2.3) Ln(P\z) = (Lnta(Pa\z*)),

and denote by &{rί) the set of all Ln(P\z).

For a given complex line bundle λ e H\X, Θx), we associate an element

Ln(P I z) e L(n) which satisfies the following transformation relation in Ua

nuβ
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(2.4) Ln<a{PaIza)y =

DEFINITION 2.1. Differential operators Ln(P\z) satisfying the relation

(2.4) is called a Λ-related differential operator.

DEFINITION 2.2. Differential operators Ln(P\z) e L(ri) is called a semi-

canonical form if Pha(za) = 0 for all a.

LEMMA 2.1. Let λ e H\X, Θx) be a complex line bundle on X, and

Ln(P\z) be a λ-related differential operator. Then

(2.5) PUa(*J = (-

+ ((
2 \dzβ) \dzβ

For the proof, see ([1], Lemma 3.5).

PROPOSITION 2.1. Let λ e H\X, Θx) be a complex line bundle on X, and

Ln(P \z) be a λ-related semi-canonical form. Then

degree (λ) = (n - ΐ)(g - 1).

Proof. From Lemma 2.1, λaβ satisfies the differential equation

The solutions of this equation are given by

Since the transition function of the canonical line bundle is defined by

K.fa) = (-^SL) ' = (c«βzβ + d^2 i n uanuβ,

and

degκaβ = 2(g-ΐ),

it follows that

d e g (λaβ) = (n- ΐ)(g - 1 ) . Q.E.D.

We shall now prove an analogous theorem of the Laguerre-Forsyth's

basic differential invariants.
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THEOREM 2.1. Let SI = (Ua9 za) be a projectiυe coordinate coυering of

X, λeH\X,Θx) be a complex line bundle of X, and let Ln(P\z) be a λ-

related semi-canonical form. In each projectiυe coordinate open set Ua we

introduce holomorphic functions θmia(za) (m = 2, 3, , ή) by:

(9 to ft (?\-1V( ΛY (m-2)\m\(2m-k-2)\ft (?\
2 fcΌv (m - k - ΐ)\ (m - k)\ (2m - S)\ k\

X

Then

where K is the canonical line bundle of X.

Conυersely if local holomorphic functions θm,a(za) represent an element

of JΓ(X, (P(κm)) (m = 2, 3, , ή), then there is a complex line bundle λ e

H\X, Θx) and, if we put

(2.7) PM = Σ
2

Σ ( ) (
m=2\m/ (m — 1)! (m + ί — 1)! \ dza

the semi-canonical form Ln(P\z) defined in each projectiυe coordinate open

set Ua by

is a λ-related semi-canonical form.

To prove Theorem 2.1, we need some lemmas

LEMMA 2.2. Let (^ ^) e SL(2, C), then we haυe;

Z + d)h(
\cz + d

= Σ (- iy{m)^ψ-^cz + d ) ( ( f ) Λ ) (
P=O \pj [w]m_p Wdz/ /\cz + d

and

(cz + d))

Σ ( - l)p

0
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where

(w(w + 1) (w + £ - 1) if

and

(2.10)
. ^ =

Proof. For the proof of (ii), see ([1] Lemma 1.12).
Let us prove by (i) by induction on m. It is obvious for m — 0.

Assume (i) for m and let us prove (i) for m + 1. Since αd — be = 1

dz \ cz -\- d / \ dz \ cz -f- d

and

dz\q=o \p'[uϋ]m-ί) Wdz

O

s (-
= Σ (- iy((m)-ψ~ - ί-HLΛ-ψB-ip -l-w-2m))

cz+

>cz

By a simple calculation, we find

/ m\ [w]m _ / m \ [w]m / _ -, _ / m + 1
i j o / k L , \p — 1/ΓH>L_«+I \ »

^ 1 ω 2 m )

p/[w]m.p \p-l/[w]m.p+1 \ p ) [w]m+1_e
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Hence we have

z + d
m + 1 / T O I 1 \ Γ7I,Ί / / Λ \m + l-p \ / „ - i U \

= Σ(-i)Ί —^^^^-c^cz + dy^^^^ll^-Λ Λ)(^+A).
p=o \ p /[w]m+1_p WdzJ )\cz+d)

This completes the proof. Q.E.D.

LEMMA 2.3. Let X be a compact Riemann surface of genus g > 1, let

^ϊ = {Ua, za} be a projectίve coordinate covering of X such that the transition

functions are given by

z = aaβzβ + baβ (aaβ baβ\
CaβZβ + daβ \caβ daβ)

and let λ e H\X, Θx) be a complex line bundle on X. Then linear differ-

ential operators Ln(P\z) is a λ-related semi-canonical form if and only if

coefficients {Pm,a(za)} satisfy in each Uaf]Uβ

\ ^ •*••*•/ JL2,β\'έβ/ \*-Όcβ£β ~T~ ^aβ/ *2,c\~a)

and for m = 3, 4, , n,

Pm,β(zβ) = (caβzβ + daβ)-2m(Pnta(za)

<2,12) + Σ2 (~ M ™)(m - ϊ)(m - 2) . . . (m

Proof. Ln(P\z) is a λ""'-related semi-canonical form if and only if in

each UaΓ\Uβ

Ln,β(Pβ\zβ)y =

Since aaβdaβ — baβcaβ = 1, we have

dza = 1

and by Proposition 2.1,

λaβ(zβ) = (caβzβ + daβy-'eaβ,

λvhere eaβ is a complex number.

By virtue of Lemma 2.2, we have
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f ) ? Γ w T

dza) (caβzβ + daβ)

and denoting

(α), = a(a - 1) (α - I + 1),

it follows that
Σ (")*\-,..(*«

Comparing the coefficient of (d/dz^y, we obtain the desired result.

Q.E.D.

LEMMA 2.4. Let F(z) be any polynomial whose degree is less than n.

Then

(2.13)

Proof. For a non negative integer m less than n, we introduce the

polynomial Fm(z) by

= Σ ( - D'( nMe - l) ( * - / »

Since Fm(l) = 0, it follows that

± (- ιγ( n)s(s - i) . a - m + l) = o.

We can now conclude (2.13) by induction on the degree of F(z). Q.E.D.

Proof of Theorem 2.1 By virtue of Lemma 2.3, we have
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1 iίp = 0

where 1 ™ϊ [
1) (m — p) if p > 0 .

Therefore we have;

ra-2 ϊjι-£-2 4 f™ 0Λ /

θm,β(zβ) = (caβZβ + daβy^ Σ Σ Σ ( - D p + ? (
<=o JJ=O s=o I p ) \

(2.14)

0Λ / 0

(

- 2/ - p], + ϊ f , v

where

A ί l
""' 2 (m-£- 1)! (m - ^)! (2m - 3)! ̂ !

By a straightforward calculation we obtain; the coefficient of

(ca?zβ + daβ)-^{-£^Spt(za) in θm(zβ)

— £ — t) \£ — s/ [m —
m-ί

dβί))»—*φ», «> 0 Σ ( - i)'

(2ι» - £ - 2)!

(/ - s)\ (m - £ - t)\ (m - £ + t + s - 1)!

where c(m, s, t) is a constant depending sololy on m, s, t.

Since

VV iv ( 2 m - . 0 - 2 ) !
f^s (£ - s)\ (m - ^ - t)\ (m - £ + t + s - 1)!

= JL_ f1 ( - 1)^ a)(2s + 2a + 2t- £ - 2)\
~~ a\ έo \ ̂  / (2s + α + 2ί — £ — 1)!

where a = m — t — s,

and since (2s + 2α + 2ί - ^ - 2)!/(2s + a + 2t - £ - 1)! is a polynomial

of degree a — 1 with respect to £, we have

V / 1 V ( 2 m - 4 - 2 ) !
(£ - s)\ (m - £ - t)\ (m - £ + t + s - 1)!

α!
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By virtue of Lemma 2.4, if a > 0 then it follows that

α! =̂o

This means that the coefficient of (caβzβ + daβ)-2m(dldzβ)
sPt,a(za) (m > t + s)

in θm,β(Zβ) is zero.

We can now conclude

,a(za) = (caβzβ

Conversely if we put,

we can verify that the semi-canonical form defined by (2.18) is ^-related

if and only if the equation (2.14) holds. But we have shown that in the

equation (2.14) there are no terms with p + q > 0, hence the right hand

side of (2.14) is equal to

This completes the proof. Q.E.D.

THEOREM 2.2. Let X be a compact Rίemann surface of genus g > 1

and for a projectίve coordinate covering 2ί = {Ua, za}, let {θm,a(za)} e Γ(% &(fcm))

(m = 2, 3, , ή). In each coordinate open set Ua, consider the differential

equation

d

where {P£>a(za)} are defined by

τ> ( \ 4- (t\ (£ -ϊ)l(2m- 1)!
JL it \Z ) / I I - N '

'α α ^2 \m) (m — l)!(m + i — 1)! V dz{

Selecting n linearly independent holomorphic solutions φha(za) φn,a(za)

of the differential equation (2.15), introduce the vector-valued functions in

each coordinate open set Ua as follows
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hen in each intersection Ua (Ί Uβ there is a unique matrix paβ e SL(n, C)

ich that

φa(za) = paβ(caβZβ + daβy-nφβ(zβ)

where ca is a non zero constant

'onversely if holomorphic vector valued functions {φa(za)} defined in each

rojectίve open set Ua satisfy (2.16), then {θm,a(za)} defined by (2.6) is an

lement of Γ(u, Θ(ιcm)).

Proof, By Theorem 2.1, the semi-canonical form LJJP\z) is a A-related

ifferential operator. Therefore if φUa(za), , φn,a(za) are n linearly inde-

endent solutions of the differential equation (2.15), λβtaφlta(za), , λβiΰφΛta(za)

re linearly independent solutions of (2.15) in Uβ. Hence there is a non

ingular n X n matrix paβ and {φa(za)} satisfy in Ua Π Uβ

ψa(za) = paβ(caβZβ + daβy~nφβ(zβ) .

ince Ln(P\z) is a semi-canonical form, the Wronskian of functions φUa(za),

2,a(za), , φn,a(za) is constant. Hence the matrix paβ is contained in

>L(n, C). The converse is obvious from Theorem 2.1. Q.E.D.

3. The transvectant

In this paragraph we shall introduce differential operators called the

ransvectants. The transvectant is the one of basic methods to create

:ew covariants from given covariants and is known since 19-th century

a the classical invariant theory, we shall now generalize the classical

ransvectants.

Let 2ί = (Ua, za) be a projective coordinate covering of a Riemann

urface X such that the coordinate transition functions are given by

Za = ίL 9 with σaβ = (a^ M e SL(2, C).

Let p be a point in X, and consider in various neighborhoods Ua of

he point nx X n2 matrix valued holomorphic functions fa(za) such that, if

he point p is contained in Z7βΠ Uβ, {fa(za)} satisfy;

3 - 1 ) fXza) = (caβzβ + daβ)-niAaβfβ(zβ)

where mx is a integer and Aaβ e GL(n, C).
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Similarly let {ga(za)} be n3 X n2 matrix valued holomorphic functions such

that, in a neighborhood Ua Π Uβ of p, {ga(za)} satisfy

(3.2) S « W = KPaβfiβ f ^aβ) 'I

where m2 is a integer and Baβ e GL(n2, C) .

DEFINITION 3.1. Denoting (m)k ft e {0,1, 2, •} by

_ ί ( m ( m - 1) (/w - ft + 1) if ft > 0
( m ) f c = 1 l if ft = o ,

assume {m^)r{m2)r Φ 0. Then the r-th transvectant (fa(za), ga(za)}r of /„(

and ga(za) is defined as follows

(mί)£(m2)r_£ \dza

where *( ) stands for the transposed matrix.

PROPOSITION 3.1. Suppose matrix valued functions fa(za), ga(za) satisfy

(3.1), (3.2), and if (m1)r(m2)r Φ 0, then the r-th transvectants (fa(za), ga(za))r

satisfy the following transformation relation

(3.3) (fa(za\ ga(za)Y = (caβzβ + daβr-ini+m*Aaβ(fβ(zβ), gβ(zβ)Y Baβ

Proof. By virtue of (ii) in Lemma 2.2, we have

i M yfM
{m,y \ dza)

= Aaβ(caβzβ + daβr~^ ± (~ 1Y( £ ) ( d y ^ cξβ(caβzβP=O \p/ (m^t-p

and

(m2y \ dza

— R (n 9 4- rl \M-™z V ( Λ\4 ^\ (djdz$vgβ{Zj) p ( ,
— J5aβ\yaβZβ -h daβ) 2-i \ λ ) \ J 7—ς caβ\caβZβ ~r

Hence, putting

f, g) = ( έ (- iy(r,

\β=o \ g / (m2)r_£_q \caβzβ + daβ) ) '
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we obtain

</*(*«), gX*«)Y = (CaβZβ + daβγ>-^^AaβM(f, g) <Baβ .

We shall show that

Putting i — p = j, r — £ — q = k and p + q = s, denote a(j, k, s) by

a(j, k, s) = the coefficient of ( - i (
πώjl kl \caβzβ + daβ

in M(f,g).

Then we find

0 if s > 0 .

This shows

M{f9 g) = (fβ(zβ\ gβ{zβ)Y . Q.E.D.

By virtue of (ii) in Lemma 2.2, the following proposition is clear.

PROPOSITION 3.2. If matrix valued holomorphic functions {fa(za)} satisfy

the relation (3.1) in each Ua Π Uβi then matrix valued functions (dldza)
mi+1fa(za)

satisfy in Uaf]Uβ;

( Λ \rai + l / Λ \rai + l

- p - ) fa(za) = (caβzβ + daβ)
m*+2Aaβ I-A-) fβ(zβ).

dza) \dzβl
§4. The Eichler cohomology groups

We shall review some basic facts and definitions about Eichler co-

homology groups associated to the given protective structure on the

Riemann surface X. Let 21 = {Ua, za} be a projective coordinate covering

of X such that the coordinate transition functions are given by

za = ^βZ^b^ /aaβ b λ e S L ( 2 j c ) . n ^ n ^

and let λ e H\X, Φx) be a complex line bundle defined by transition functions

(4.1) Zaβ(zβ) = CaβZβ + daβ.

For any integer n ^ 0 consider the subsheaf Pn{λ~n) c Θ(λ~n) consisting
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of holomorphic sections of λ~n which are polynomials of degree ^ n. If

p e Ua is a point of X and fe Θ(λ~n)p is a germ of section at p, then / is

represented by a holomorphic function fa(za), and in Ua Π t ^ {/«(>£«)} are

related by

fβ(zβ) = ( c β ^ + d ^ Y ^ J .

By Proposition 3.1, we have an exact sequence of sheaves

(4.2) 0 > Pn(λ-n) > Θ(λ~n) -^—> Θ(λn+2) > 0 for any n ^ 0.

From this exact sequence 4.2, we obtain for any integer n I> 0 an exact

sequence of complex vector spaces

0 > Γ(X, Θ(κn+1λ-n)) -^-> H\X, Pn(λ-n)) -ί^> Γ(X, Φ(κn+1λ-n))* > 0 ,

where Γ(—)* stands for the dual vector space to Γ(-). The groups

H\X, Pn(λ~n)) are the Eichler cohomology groups of the Riemann surface

X.

§5. The monodromy representations

We shall investigate flat vector bundles coming from monodromy

representations of the fundamental group of X.

Let {(pa(za)} be the holomorphic vector functions satisfying (2.16) in

Ua Π Uβ, and denote the Wronskian matrix of φa(za) by Fa(za):

(5.1) - _ , r _

If p in a point of Ua Π t^, there is a holomorphic vector valued function

Φaβ(p) such that,

(5.2) Fa(p)ΦGβ(p) = <Qα^(p) for p e C7α Π ^ .

(5.3)

Thus {Φαj3(p)} are considered cocycles as describing a holomorphic

vector bundle Φ, and flat vector bundles {ρaβ} are analytically equivalent

to Φ.

We introduce vector valued functions fyίfe) = (p*i(2f«), , 9>*n(̂ α)) i1 1

each coordinate open set ([7α, zα) by
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(5.4) *<p*(za) = the n-th row of FJiz^1.

{φΐ(za)} satisfy in each intersection Ua Π Uβ

(5.5) φ*(za) - λ»aj\zβX<P;})φ*(zβ) .

Let

ΘU*) = ViUZa)} ( l £ i £ dim Γ(X, 0(/e2))

On,,(z) = {θn, U*a)} (l^k^ d i m Γ(X, 0(κn))

be a basis of the complex vector space Γ(X, Θ(fc2)) © ® (X, 0(κn)), and

let (Θ2(z), ", θn{z)) be a point in the vector space Θ^=2 Γ(X, ^(Λ:771)). We

shall introduce local coordinate {• , t[2\ , tf\ , ^w), •} at the point

(θ£z\ , 0n(e)) in ®Γ,=2 AX, (P(A:™)) by

(5.6) {• , tf\ , if, . . ., tΐ\ } > {̂ 2fe ί), θiz, t\ , 0n(s, 0}

where ί̂ m) (2 < m ^L ή) are complex numbers such that \t(

e

m)\ are small

enough, and

dim Γ(X, Θ{κm))

Let {φa(za, t)} (resp. φa(za)) be vector valued holomorphic functions corre-

sponding to the point (Θ2(z9 t), , θn(z, t)) (resp. (02(̂ )> > θn{z)) in the

vector space Θ L 2 /"(X, ^(Λ:771)) by Theorem 2.2. Then in each intersection

UaΓ\Uβ vector valued holomorphic functions {φa(za,t)} satisfy;

f>«(̂ α, 0 = (CaβZβ + dnβy-npaβ(t)φβ(Zβ, t)

where paβ(t) e SL(n, C), and paβ(t)\t=0 = paβ.

It is easy to verify that paβ(i) varies complex analytically with the

choice of the parameter t = (- - - t\m) •)•

We consider semi-canonical forms La(Pa(zayt)\z);

(5.8) W P A . o,j . (-^-) + Σ

corresponding to an element (Θ2(z, t), , θn(z, t)) e 0^ = 2 Γ(X, 0(*;m)), where

Pί,a(Za, t) are defined by
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p , Λ = v V (£) (£ - l ) ! ( 2 ι » - l ) ! / d V-m

• (θnjza) + tmjθmj<a(za))

and

(5.10) ΘJz, t) = θm{z) + Σ tmjθmί{z) for m = 2, 3, , n .

In each coordinate neighborhood Ua with local coordinate za, select a

point pa, and consider the differential equations

(5.11) La{Pa(za, t), za)y(zaί t) = 0

under the initial conditions;

/I 0\

where p is a point in Ua and Ftttt(za) is the Wronskian matrix of the dif-

ferential equation (5.11).

If Ua and W both are chosen sufficiently small, there are unique

holomorphic solutions φa(za7 t) satisfying (5.7).

By an easy calculation, we can verify that the vector valued functions

(dldtmj)φa(za9t)\t=0 satisfy the non-linear differential equations:

,
f=i\ί)\m)(jn-\)\(m

DEFINITION 5.1. Lei 21 = {(Ua, za)} be a projective coordinate covering

of a compact Riemann surface X, let {qa(za)} e Γ(% (9(/cm)) (m = 2, 3, , n)

and let {pβ(£β)} be vector valued holomorphic functions satisfying the rela-

tion (2.16) in each UaΓ)Uβ. We define the matrix valued holomorphic

differential 1-forms #[f'9](2«) in each coordinate open set Ua as follows

fi»*χz)= v ( ) ( ) ( ) ( ) d
" κ " « t i U A J ( s i - l ) ! ( r a + ί - l ) ! \

(5.13)



DIFFERENTIAL EQUATIONS 153

LEMMA 5.1. If p is a point of UaΓ) Uβ, n X n matrix valued holomorphic

1-forms {e^q\za)} satisfy in Ua Π Uβ

Proof. Denoting the vector valued holomorphic function Aa(za) by

d \n~e , J d

A straightforward computation shows that

Aa(za) =
m) irn — 1)!

where <,) w ~ m stands for n — m-th transvectant.

By a property of the transvection, {Aa(za)} satisfy in Ua Π Uβ

Aa(za) = p β / ί ( c β ^ + daβ)
n+1Aβ(zβ).

Applying the relation (5.5), it follows that

Aα(zα) 'φa(za) = paβκaβ(zβ)Aβ(zβ)
 tφβ(zβ)p^ .

This completes the proof. Q.E.D.

LEMMA 5.2. Lei p be a non negative integer, then

x(x+ 1) "(x + n - 1) _ r,1 , - v/p + ί\(p + n +
Tz! ^ ( i ; l ^ A n - £

where

( x \ = x(x -1) -̂ (x - ^ + 1)
U/ ~ """^ ! ""

Proof. Putting

n —

and

!

n(x) and Gn(x) are polymomials of degree n.

We shall prove by induction on n;
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Fn(x) = Gn(x).

If n = 1, the assertion is obvious. For any polynomial p(x), we define

the difference operator Δp by Ap(x) — p(x) — p(x — 1). Since j( ~t j ==

, we have

J F ^ ) = Fn.t(x), and JGn(x) = G^x).

By the induction's hypothesis, Δ(Fn(x) — Gn(x)) = 0. Therefore F(x) — G(x)

must be a constant.

Since

Fn(0) = -J± ( - D'( " ))(P + D(P + 2) (P + n) = 0 and G,(0) = 0 ,

the proof is thereby concluded.

The following lemma is an immediate consequence of Lemma 5.2.

LEMMA 5.3. Let n and m be positive integers and let p be a non nega-

tive integer, then

<-o (p + £ + l)(p + ^ + 2) .(p + ^ + m)

+ 1) (rn + n — 1)
+ 2) •• (p + n + m) '

DEFINITION 5.2. Let 21 = {(Ua, za)} be a protective coordinate covering

of a compact Riemann surface X, let {qa(za)} e Γ(% Θ{κm)) (m = 2, 3, , n)

and let {^α(^J} be vector valued holomorphic functions satisfying the rela-

tion (2.16) in each Ua Π Uβ. We define the matrix valued holomorphic

differential 1-forms {*5c/'s](^α)} by

a v a) tL

Moreover we introduce the matrix valued holomorphic functions {Bmia(za)}

in each Ua as follows
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PROPOSITION 5.1. In each intersection UaΓ\Uβ, the following relations

hold.

( i ) *ft>*KzJ = Ad(paβ)*0f«X*β)
(ii) θ[^ - *0?.*] = dBm,a

Proof First of all, we shall prove

(5.15, . » . « ( , . ) - ( _ i r - '

By virtue of Lemma 5.3 it follows that

& / (i + k + m)(£

(n - k- ΐ)l(k+ m - 1)!
(m-ΐ)l(n

Hence we have;

a xa/ ^ (m-ΐ)\ml
(5.16)

n; (~ mn -k-ΐ)\(m + k-ϊ)ϊ
ml

On the other hand, the n — m-th transvectant for vector valued func-

tions φa(za) and φΐ(za) is given by

i n-m

(5.17) = 1 - Σ ( - l)* + B - r o (n - Λ - 1)! (m + k - 1)!
((n - I)!)2 *=o

comparing (5.16) and (5.17), we obtain (5.15).

By a property of the transvectant, we conclude

*flc/'g]fe) = Ad (

By a direct computation, one can verify the part (ii). Q.E.D.

We denote by Adoρ the flat vector bundle over X defined by the

transition functions Ad0 paβ acting on the space of n X n matrices of trace

zero.

If we normarize the vector valued function φa(za) so that the Wronskian
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matrix Fa(za) of φa(za) is equal to the unit matrix at a point p in Ua, from

(5.17) (resp. (5.13)) it follows that

W [ / ' β ] ( * β ) ) = 0 (resp. Tr{θ}^\za)) = 0).

Therefore matrix valued holomorphic 1-form *θι*i(3β (resp. θL

a

φ'qΊ) is a Prym

differential contained in the space Γ(X, &uo(Adop)).

LEMMA 5.4. Let {θι^emj\z^\ be matrix valued holomorphic differential

1-forms in each coordinate open set (Ua9 za) by (5.13), and after passing

to a refinement of the covering 21 if necessary, select holomorphic matrix

valued functions Ga(za) e ΘuT suc^ that

- dGa(za) = 0? '«>3(*β) and Ga(pa) = 0

where pa is a point in Ua.

Then the following variational formulas hold in each Ua;

(5.18) - A _ φ χ Z a 9 t)\t=Q = Ga(za)φa(za).
otmj

Proof. Since the vector valued functions (dldtmj)φa(za, t)\t=0 satisfy the

differential equation (5.11) in Ua, an easy calculation shows

-^-ψa(Za, * ) U = ( " Γ θa[φ, θnJ]).φa(za) . Q.E.D.

We shall consider the complex variety V — N/SL(n, C)

N = {(Xu , Xg9 Yu •, Yg) e SL(n, cy*\[Xu YJ, , [Xg9 Yg] = 1}

where [, ] stands for the commutation and SL(n, C) acts on N by the

inner automorphisms. By Theorem 2.2, any element of ®i = 2 Γ(X, Θ(tcm))

defines a flat vector bundle {pαβ} on X.

We define the complex analytic mapping

θ: ®Γ(X,Θ(fcm)) >V
(5.19)

(#2, , θm) i > (pfa), , p(σg), p(τd, '-, p(τg) mod Sl(n, C)

where p denotes the representation associated with the flat vector bundle

defined by the transition functions {ραβ}.

THEOREM 5.1. Let {Uα, zα} be α protective coordinate covering of a

Rίemann surface X, and let {paβ(t)} be cocycles defined by (5.7), then the
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following variational formulas hold in each intersection Uaf]Uβ;

P.&)-1

1£-p.&)\<-° = M(p;?)Ga(z.) - Gβ(zβ)

otmj

l£j ^ dim Γ(X, &(κm)).
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Proof. Since φa(za, t) = λlj1 paβ(t)φa(zβ, t), we have

Jφ.(z» O|(-o λ:j^(t)\t^φβ(zβ) + λyp.
O'Vi Otmj θtmj

By Lemma 5.2 it follows t h a t

^\
Za, t)\t=Q = p;}Ga(za)paβφβ(zβ)

, t ) \ t . o .

dtnJ

and

-φβ(zβ9 ί) | ί=o = Gβ(zβ)φβ(zβ) .

Hence we can conclude

= (Ad (p^)Ga(za) - Gβ(zβ))φβ)(zβ).

This completes the proof. Q.E.D.

We shall investigate the differential equation (5.11) in a small neigh-

borhood of the origin in the parameter space t (see (5.6)).

LEMMA 5.5. Let X(z), Y(z) be vector valued functions defined as follows

X(z) = ,(n - 1 - a) Y(z) = ( _

where a = 0, 1, 2, , n - 1 and z(a) = za/al

We introduce the n X n matrix valued function Mn(m)(z) by

Mntn(z) = <X(z), Y(z)y-m

where (,)n~m stands for the n — m-th transvectant.

Then we obtain]

(1) the maximum degree of components in Mn,m(z) is equal to 2(m — 1)

(2) Tr (Mnti(z), Mntk(w)) = ckδίk(z - wY^
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where δik is the Kronecker delta and ck is a non zero rational constant

dependent sololy on (/, ή).

Proof. From definition the following properties hold

( i )
cz + d

(ii) (
cz + d

where σ = ί a ΛeSL(2,C) and σ—> Aσ is the n-th symmetric represen-

tation of SL(2, C).

By virtue of Proposition 3.1. we have

= (cz + d)-«»-
cz + d

In particular, putting σt = (Q •?] (peC), σ2 = ί _ 1 Λ we have

(5.20) Mn,m(z + p) = AσιMn,m(z)A7ϊ

and

(5.21) MU- 1/2) = 2- ϊ(-I>A.,M(«)A-1.

It follows from (5.20) that the maximum degree d of components in the

matrix Mntm(z) is not greater than 2(m — 1). If d < 2(m — 1), again by

(5.20) we have Mn,m(0) = 0. Since a straightforward computation shows

that the (n, n — m + 1) component in the matrix Mn%m(z) is not zero, the

maximum degree of components in the matrix Mn,m(z) is equal to 2{m — 1).

From (5.20), (5.21), for any non zero complex numbers z, w we have

Tr (Mn,4(s), Mn,k(w)) = Tr (M n i l(* - iι;), Mn,fc(0)) .

T r ( M n > ί ( - 1/s), M n t f c (- 1M) = r ^ - % - ^ - 1 ^ Tr (Mn,t(e), Mn,fc(u;))

Tr ( M n ι t ( i ^ - ^ ) , Mnιfc(0)) = T r ( M n i < ( - l/«), M n , f c (- 1/ιc;)) .

Hence we conclude;

Tr(Mn ι l(z), Mntk(w)) - ckδtk(z - w)^

where ck is a constant.

We shall show that the constant cfc is not zero.

By a direct computation the (p, q) component Mn^m(z) in the matrix

Mnt7n(z) is given as follows,
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(£ - 1)! (2m - 1)!

(TO - 1)!(TO + ^ - 1

where we denote for any integer £

£>0

££0

Since the degree of the (p, q) component in the matrix Mn<m(z) is TO — 1 if

and only if p = q, the coefficient of 2m'1wm~1 in the polynomial Tr (Mn<m(z),

Mn,m(w)) of 2 variables z, w is equal to

m/ (m - 1)! (m + I - 1)!

Since

- l ) ί (2m- 1)!

1) U - 1\Y
- 1)! Vp - I/) '

i f f l (-!)'("-"•)-
,m/ (m — 1)! fco V ^ / (^4_m)(^ + m + i). . .(^ + 2m —1)

/ rc\(2πι- 1)! (n - 1)!
~~ \m/ (m - 1)! (n + m- 1)!

the coeflficient of <ε
m"1w;m~1 in the polynomial Tr(Mn>wι(z), Mni7rι(w)) is not

zero. This means that the constant cfc is not zero. Q.E.D.

Let us introduce vector valued holomorphic functions Xa(za), Ya(za),

Mn,vlya(za) in each projective coordinate open set (Ua, za) by

Xa(za) = X{zX Ya{za) = Y(za) and Mn,nM = ^ - . - ( ^

Then {Xα(zΩ)} correspond to semi-canonical form

and Ya(za) = X*(za).

By virtue of Proposition 5.1 for any element θm,a(za) e Γ(% Θ(κm)),

(5.22) (Mn,mta(za)θm,a(z«)) e TO Ad0 /o)

and
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(5.23)

DEFINITION 5.3. The C-linear mapping βm from the complex vector

space of holomorphic /n-differentials Γ(X, &(κm)) to the vector space

Γ{X,Θι'\MΰP))ldΓ(X, &(Aάop)) is defined by

βn: Γ(X, Θ{κ™)) > Γ(X, ^ 0(Ado P))ldΓ{X, tf(Ad0 P))

{<?„,,„(*.)} ' > {Mn,m,a(z«)θm,Xza)}lmod dΓ(X, &(AάΰP)).

THEOREM 5.2. Let θ be the complex analytic mapping defined by (5.19);

θ: © Γ(X, &{κm)) • V

and let p be the n-th symmetric tensor representation of the fundamental

group πt(X). Then the mapping θ is non-singular at the origin (0, , 0)

e ΘΓ(X, Θ{κm)) and the tangent space to the image at the point pe V can

be identified with the (n2 — 1) (g — ί)-dimensίonal subspace of H\X, Ad0 p)

consisting of the period classes of the Prym differentials Γ(X, (9U0(Aά0p)).

Proof By virtue of Lemma 5.1 and Theorem 5.1, the tangent vector

paβ(t)-^paβ(t)\^ e
3t

is equal to the period class of the Prym differential {Mn,m(za)θmί<x(za)} up to

a non-zero constant. By (5.23) and recalling {θmj,a}(l ^ j < άimΓ(X, Θ(tcm))

is a basis of Γ(X, ^(^m)), we can conclude that the image in H\X, Ad0 p) of

the mapping on the tangent space induced by the mapping θ: ®Γ(X, (D(/cm))

-> V is the space of period classes of the Prym differentials Γ(X, 0liO(Ado p)).

Since it follows from the Riemann-Roch theorem that

dim 0 Γ(X, Θ(κm)) = (n* - ΐ)(g - 1)
m = 2

and

άimΓ(X, V'XAdoP))ldΓ(X, ®(Aάop)) = (n> - l)(g - 1),

the mapping θ is non-singular. This completes the proof. Q.E.D.

By Theorem 5.2, the mapping

θ βm: φ Γ(X, (P(*-)) — I& ^V^LBL
' dΓ(X, &(AdΰP)

is an isomorphism. Hence the following diagram holds:
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0 > 0 Γ(X, <?(*»)) > Θ H\X, P^.oί*-'"-1')) > ®Γ(X, Θ{κ™))* > 0

dΓ(X,Θ(AdoP)) r / L dΓ(X,Θ(AdoP) 1

where lows sequences are exact and [ ]* stands for the dual vector space.

Hence two vector spaces 0JEF(X, P2(TO_1)(Λ;-1)) and H\X9 Ad0 p) are canoni-

cally isomorphic. (See [4], [6])
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