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THE INVARIANT POLYNOMIAL ALGEBRAS FOR
THE GROUPS IU (n) AND ISO(n)

HITOSHI KANETA*

§1. Introduction

By the coadjoint representation of a connected Lie group G with the
Lie algebra g we mean the representation CoAd(g) = ‘Ad (g~") in the dual
space g*. Imitating Chevalley’s argument for complex semi-simple Lie
algebras, we shall show that the CoAd (G)-invariant polynomial algebra
on g* is finitely generated by algebraically independent polynomials when
G is the inhomogeneous linear group IU(n) or ISO(n). In view of a well-
known theorem [8, p. 183] our results imply that the centers of the enve-
loping algebras for the (or the complexified) Lie algebras of these groups
are also finitely generated. Recently much more inhomogeneous groups
have been studied in a similar context [2]. Our results, however, are
further reaching as far as the groups IU(n) and ISO(n) are concerned
[cf. 8, 4, 6, 7, 9].

We shall state our results.

(1) IU(n) (n=2).

Let G, and g, be the group IU(n) and its Lie algebra respectively,
namely

G, = {(g ‘11); ueU(n), ac C"} ,

g, = {<}(§ g), Xeuln), xe C"} .

The dual space gf of g, can be identified with g, by the following non-
degenerate bilinear form (, ), on g,Xg,;
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where {, ),,,+n = the Killing form of the Lie algebra su(n+1) and (x, )
= Re x*y. Thus we realize the coadjoint representation CoAd of G, in
a¥ = g, as follows.

(e ()= () omaal] ). sec.

Let ©, = be the n-dimensional subspace

Y, 0

.0
0 ;
Yn—l 0 ’ Yla Tty Yn—iy Yu € _IR
0---0 0

of gk, Set Z, =Y, + >3 Y, (1<j<n-—1), s, =the i-th fundamental
polynomial 0 £ i< n — 1) in Z, and ¢, = s,)2.

THEOREM 1. The C-algebra of CoAd (JU(n))-invariant polynomial func-
tions on gf is isomorphic, via the restriction map f—f|9,, to the C-algebra
Clty, ---,t,_..]. The polynomials t, ---, t,., are algebraically independent
over C.

(ii) ISO(n) (n = 2).

Let G, and g, be the group ISO(n) and its Lie algebra respectively,
namely

G, = {((1; ‘;); ueSO(n), ac R"} )

g, = {<)O( g), Xeso(n), xe R”} .

Denote by {, ), a non-degenerate bilinear form on g,Xg,;

(@0 G .= o) (o 0w+ =2

where (, Yo+ = the Killing form of the Lie algebra so(n + 1) and (%, y)
= x*y. Identifying the dual space g} of g, with g, by this form, we define
the coadjoint representation CoAd of G, in g¥f = g, as in the case (i). If
n=2l4+1({=1), let , be a (n + 1)/2-dimensional subspace
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0 Y 0 0 0
-Y, 0 Co
.0 Y 00 ; Y, -, Y, yia€eR
~Y, 0 0 0
0----0 0 0 .,
L o....0 00 0

of g¥. fn=2(+1) (I=0), let O, be a n/2-dimensional subspace

N

0 Y, 0 0 0 \
—Y 0 S
0 Y, 0
b -——YL Ol 0 : > Yl) T Yh queR&‘
0----0 0 0 O
0----0 0 0 y,.,
0----0 0 0 O
of g¥. Set s, = the i-th fundamental symmetric polynomial in Y3 ---, Yj,

and ¢, = s,v7,, (0 <1 <l). Set, further,

ss;=Y, - Y, =8y, forn=20+1,
s, =(Y,--- Y), t,=sy., forn=2I+1).

TrEOREM 2. The C-algebra of CoAd (ISO(n))-invariant polynomial func-
tions on g¥ is isomorphic, via the restriction map f—f|9,, to the C-algebra
Clé, - -+, t]. The polynomials t,, - - -, t, are algebraically independent over C.

We shall prove Theorems 1 and 2 in Section 2 and Section 3 respec-
tively.

The author would like to express his sincere thanks to Dr. G. Seki-
guchi and Dr. M. Hashizume for their valuable suggestions.

At the end of this section, we shall explain our basic notation. R
and C stand for real and complex number fields respectively. Imaginary
unit will be denoted by v/ —1. +—1R means the set of pure imaginary
numbers. For nonnegative integers m and n, M, (R) and M, (C) stand
for the set of real and complex m X n-matrices respectively, X*(X ¢ M,,.(C))
means the complex conjugate of the transposed matrix X! As usual tr X
(X e M,,(C)) means the trace of X. M, (R) and M, (C) will be denoted
by R* and C" respectively. I, is the unit matrix in M, (C). For positive
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integers i and j, E;, means the matrix whose (i, j)-component alone is non-
vanishing and is equal to 1. Set
Un)={ueM,(C); utu=1},
SO(n) = {ve M, (R); viv =1, detv=1}.
Their Lie algebras will be denoted by wu(n) and so(n) respectively.
-1
Finally S, , is a transformation of M,,,, ,.,(C) sending X to (g" (:)X(é" 0) .

13

§2. The proof of Theorem 1

Let G,, and G, , be the matrix group U(1) X IU(n) and U(n + 1) respec-
tively. Denote by g,, and g, , the corresponding Lie algebras;

Guo = {CIM + <}0( g), cev—1R, Xe u(n), xeC”} ,

X x

o ~trX>; cev—1R, X e u(n), xeC”}.

gn,l = {CI‘n+1 + <

Let for 0<e<£1
Gn,e = Se,n<Gn,l)a Qe = Se,n(ﬁn.l))
where S, , is the transformation of M, ,, ,.,(C) defined at the end of Section

1. ForX:(Xx

0 0> €d,0 X; (056 < 1) means the matrix either

<X * > for 0 <d L1 or (X x) for 6 =0.
—ox* —tr X 00

In addition, (¢, X;) (c € v —1R) means the matrix cI,,, + X, in g,,. Now
the bilinear form (, );, on g,; X g,; will be defined as follows.

{a, X5), (b, X5))s,, = ab + (S X;, SiiYsdeunsn 0<ssy,
<(a) XO)’ (b7 X0)>0,n = ab + <[X, [Y>su(n+1) + <x7 y> .

In the above {, Yy.n+1 = the Killing form of the Lie algebra su(n + 1),

X
{x, y> = Re x*y and zX:(O _th

non-degenerate, we can identify the dual space g¥; with g,, Let {,>.,.,
be the non-degenerate bilinear form on g, .Xg,, (0 <e < 1) defined by

e, X2, (0, Xo))eon = (@ — tr X)b + (x, y) + dX + tr X), ¢Y) 0y -

>. Since the bilinear forms (, ), , are

Thus we have isomorphisms J. ,: g¥,—g¥, and J¥,: g, .—g,,, satisfying
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<(a; _Xe)’ (ba XO)>S,0,n = <(a7 X—s)’ Je,n(b7 XO)>e,n
= <J:<n(a7 ‘Xs)a (b> XO)>0,7L .
Let Ad; (g) be the representation of G, in g, ; defined by the formula

Ad; (g)(c, X;) = glc, X»)gt  for geG,,; 0<6< 1),
while CoAd; means the representation of G, ; in g¥, such that

<Ad5 (g—l)(c’ }_(6)7 (b, Z5)>5,n = <(a’ ‘Xﬁ), COAd5 (g)(b’ Xﬁ)>6,n .
Denote by coAd.(0 < e < 1) the representation J;CoAd.J,, of G, . in

g¥,. In accordance with this notation we write coAd, for CoAd,, To
describe the transformation coAd, (g) explicitly, let {4, 2;, A;;, @, €;, ¥ — Le;;
1<i<n, 1Zi<j< n}be a basis of g,, such that

20 =V _lIn+1 ) Zi = —lEu l} zij =« "‘l(Eij + Eji) ’

W;; = Eij - Eji s e; = Ei,n+l .

The dual basis of gf, will be denoted by {2°, 7', 2, 0¥, €, v —1e*}.

LEmmA 2.1. For g= (g ‘{) eG,, and (c,Y)egt, it holds that

coAd, (g)(c, Yo) = (c, Y) with ¥y’ = uy and
Y =uYu' + 37, {Aa, uyr
+ 2hics e, uyp2 + {oya, wy)o') .
Proof. It suffices to note that (Xea, uy) (Xecu(n)) is equal to (X,
Y — uYu ™)

Remark 2.2. Bearing in mind that the complexification of the Lie
algebra su(n 4+ 1) is isomorphic to the Lie algebra si(n + 1, C), we can
easily verify that

A= —I(ij' E;; — nE)d,, = Zij/cn , oV = wy;/c,
with ¢, = —4(n + 1) and d, = 2(n + 1)* [8, p. 295 or p. 390].
Lemma 2.3. (1) J..(c,Y) = (c,Y) for (c, Y;) € g}y, where y = yl'c,
and Y =Y+ tr Y — ¢/d,.

@) Jile, X)=(c, X)) for (c, X.)egk., wherec' =c—trX, ¥’ =xand
X =X+ tr X

Proof. Note that tr X = v/ —1{X, >, tA)yumsn. Then (1) follows at
once. The second assertion is almost obvious. Observe that (¢, X.) eg,..
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tends to (¢, X;) €., as e—>0. In other words, contracting the Lie algebra
8.1, We obtain the Lie algebra g,, [4]. Consequently coAd. converge to
coAd, in the following sense.

LemmA 2.4. Assumete R and (b, Y,) egt,, and let Z.cg,. (¢ > 0) be

the element corresponding to Z = (g g) €@, Then

lim coAd, (exp tZ)(b, ¥;) = coAd, (exp t(g tzZ)(b, Y).
e—0 —1r

Proof. Evidently it suffices to show that the generators of the semi-
groups coAd, (exptZ,) converge to the generator of the semigroup

coAd, (exp t<Z “

0 —tr Z)) To this end, we can verify easily that

4 cAd exp (— 2D 50, X, Tl YO
—(ady(exp—(7 2 ))a, X, 0, Y0) }—>0 —>0)

for any (a, X;) € gn,0

Remark 2.5. It is clear that coAd, (expcl,,,) is the identity operator
for any cl,.,,€g,.s

Let F(b, Y,y) be the value at (b, Y)) eg¥, of a CoAd, (G, )-invariant
polynomial F. Then the polynomial function f, = FoS;iod., on gf, is
clearly coAd, (G, )-invariant. By Lemma 2.3 we have

fb, Y, y) = F(b, Y + (tr Y — b/d,)I,, ylec,) ,

where the left-hand side stands for the value of £, at (b, ;) € gF,. Regarding
f. as polynomial in ¢, let f(b, Y,y) be the coefficient of the ¢ ¢ for the
highest degree d.

Lemma 2.6. The polynomial function f on g% defined above is coAd, (G, ,)-
invariant.

Proof. In view of Lemma 2.4 the assertion is an immediate consequence
of the fact that f(b, Y, y) coincides with the limit of ¢%f.(d, Y, y) as e—0.

We shall now clarify the relation between a CoAd (G,)-invariant poly-
nomial function on g} and a coAd, (G, ,)-invariant polynomial function on
¥, (recall the notation in Section 1). Note first that g, , = v—1R + g,, the
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sum being orthogonal direct sum of Ad, (G, ,-invariant subspaces. There-
fore, g¥, is a direct sum of coAd, (G, )-invariant subspaces v — 1R and g} = g,.
Moreover, the restriction coAd,(g)|v/—1R is the identity operator for g e
G,.., because so is the restriction Ad,(g)|v/—1R. The bilinear form (, ),
on g, X g, is nothing but the restriction {, ), ,|g, X g,. It now follows that
coAd, (g) = CoAd (g) in g} Cg}, for any ge G,. On account of Remark 2.5
the set of operators {coAd,(g)|g.; g € G,,,} coincides with {CoAd (g); g€ G,}.
Bearing these observations in mind, we can easily verify the validity of

Lemma 2.7. A polynomial function f(b, Y,y) on g¥, is coAd,(G,.)-
invariant iff the polynomial function f(b, Y,y) on gf is CoAd (G,)-invariant
for any b.

Let I(g¥) be the set of all CoAd (G,)-invariant polynomial functions on
g¥=g,, and let r, be the restriction map sending fe I(g¥) to f|$, whose
image will be denoted by I($,). For the definition of the subspace §, of
g, see Section 1.

Lemma 2.8. The union of the orbits {CoAd (G,)Y,; Y, € .} is dense in
g¥. In particular, the map r, is an algebraic isomorphism of I(g¥) onto I1(9,).

Proof. For a Y, = (g g) € gF with y € C™\{0} we shall show that there

exists a g € G, such that CoAd (g)Y, € 9,. Take, first, a u e U(n) satisfying
uy = (0, -- -, —/—1|y)* with |y| = (y*y)2. We can find an ac C" (CG,)
for which Y, = CoAd (e¢-w)Y, satisfies Y/, =0 (1 < i< n). Recall the well-
known fact that any Y” e u(n — 1) can be diagonalized by an element of
SU(n —1). Now we can find a v= (8/ (1)> € SU(n) such that CoAd (v-a-u)Y,
€9,

Let A, be the subgroup of G, consisting of all ge G, such that
CoAd (2)9,C$,, and let A, be the subgroup of A, consisting of all ge 4,
such that the restriction CoAd(g)|9, is the identity operator. The group
CoAd (4))|9, turns out not to differ so much from the Weyl group of
U(n — 1) [5, p. 305]. To be more precise, let o, 1 < i< n—1) and 7z be
the linear transformations on £, such that

o;0 (Yy, Vi) —> (Y, Y) T2V > = Yn o

Denote by W,_, the group generated by ¢, 1 < i< n—1). Then we can
verify easily that CoAd (4,)|9,, which is isomorphic to the quotient group
A,JA,, is generated by W,_, and . Note that W,_, is the Weyl group
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of U(n — 1). We shall now show that the polynomial functions ¢, -- -,
t,., on 9, (see Section 1) belong to I(9,). Indeed, there exist CoAd, (G,,,)-
invariant polynomial functions Fy(b, Y) on g¥, such that

det(t + Y) =t + >, Fy(b, Y)t* (¢; an indeterminate) .

Applying Lemmas 2.6 and 2.7 to F,, we deduce that s;,_,y2 (1 < i< n) lie
in I1(9,). Denote by T, the set of all polynomial functions on £, generated
by to, -+, t,-.. We shall show that T, coincides with I(©,). For this pur-
pose it is convenient to introduce another subspace 9, of g*.

$ — {(g J(V)) Y is a diagonal matrix [Y,, -- -, ¥,] and

y, = 0 except for i = n} .

Let 7, be the restriction map sending an fe I(g}) to f|9,, whose image
will be denoted by I(9,). Set i, = 7,r;'(¢t) O <i<n—1) and denote by
T the set of all polynomial functions on 5,2 generated by %, - -, f,_1
Note that an f(Y;, ---, Y,,y)el (55") is invariant under the transformation
¥y, — — ¥, and the permutations Y, < Y,,, 1 <i<n-—1). Fora (g %)
€D, set Z, =Y, +trY(1 <i<n), §_, =the (i — 1)-th fundamental sym-
metric polynomial in Z, - -, Z,_,. Evidently #,_, = §,_,y.. We claim that
T consists of all polynomials of the form

Zz;ofl(zx, ) Zn—l)yil )

where f, are symmetric polynomials whose degrees in Z, do not exceed I
In fact, f,y* can be rewritten as

aa1 aan—14210
ZM ,,,,, an—120 @t ar, e an—S1 "0 821
— Faofa Fan—
- Zﬂh-”, an—120 alvalv"'xan—ltootll R o
with ¢y = —a;, — -+ —a,_, +1=0.

Lemma 2.9. T, = I(,) or, equivalently, T, = I(D,).

Proof. We shall proceed by induction on n > 2. The case n = 2 will
be discussed in Lemma 2.10. So assume that the lemma holds up to n —
1= 2. Define subspaces g, §,-1, 9,-; and 7", of g, as follows.

<) X x) }
n = €Gns Xn =0 ’
g {<0 A
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¢ 0 0
Goor = {M(y, X', x) :(0 X’ x’); revy—1R X' euln — 1), x’eC"*‘} )
0 0 0

gn—l = {M(()’ X’? x/)e gn—l}’

L ox c
W, =<l—x¥0 0|; pes—1R, x*eC ', ceC}.
00 0
We can identify the group G,_, with the connected subgroup of G, cor-
responding to the subalgebra g, ;. g, is a direct sum of the Ad(G,_,)-
invariant subspaces g,_, and %",. Moreover, since
X X ay , X
Ad (g)(o g) - (0 ’5) with X, = X}, for ge G, , and (o ’5) eq,

it follows that the representation of G,_, in the quotient space g,/g?° 1s
the trivial one. Denote by %+ the orthogonal complement of a subspace
W of g,. It is easy to verify that

Y, 0 0
W =40 Y y’)egn; Y+ tr Y =0¢.

0 0 0
Observe that %7 is CoAd(G,_,)-invariant and that (3’ 8) cg, with Ye w(n)

lies in # '} iff Y is a linear combination of 2%, ---, 2* (see Remark 2.2).
Besides, CoAd(g)2' = 2' for ge G,_,, because the representation of G,_,

o

in g.+Cg¥ is the trivial one as the representation of G,_; in the quotient
space g,/a.. Note also that §,_;, which we may regard as a subspace of

g¥, is a direct sum of the CoAd (G, _))-invariant subspaces # "+ and {(‘E’)‘a1 8),
nte R}. In particular, §,_; is CoAd (G, _)-invariant. For <37 g) eg* set Z,
=Y, +trY (1 <i<n). Then simple computaion yields that

the diagonal part of ¥ = — 2/ =157, Z.2/c,
with ¢, = — 4(n + 1). Define a basis {2, 4, 0;;; 2=<i=<n, 2Zi<j=n}
of g,.; as for g,, and denote by {4, 27, 0, 2<i < n, 2<1<j < n} the

dual basis. Now let L, be a linear isomorphism of #7} onto g¥, = g,_,
defined by

X Y] 00 0 0/0/ Y{O/O
<(0 ’5) Ln(O Y 0)>M_1 =<(o X x) (o Y o)>o’n.

0 o0 o 0 0 0 \0 O O
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It turns out that

(*) L =2 2gin).

Assume that the restriction F|§,_, of an Fe I(g}) takes the form
pa Zka(Zm R Zm Vs Y2+ %y Ya1s Yij)

at (3/ %) €§3,.1Cg¥. In the above Y;; stands for all the off-diagonal com-
ponents of Y. Since the function Z, on §.-: is CoAd (G,_,)-invariant, so

are F,. On account of (x), together with the induction hypothesis, it fol-
lows that Fk(Zz, s ¥,, 0, ---,0) take the form

leosz(zz, R Zn_l)yff s

where f,, are symmetric polynomials whose degrees in Z, are not greater
than 1. Consequently the restriction f = F|9, is of the form

Zz;ofz(zx, Ty Zn_x)yff ’
where
fL(Zh Ty Zn—l) = Zk;o Z;kaz(zm Tty Zn~1) .

As we observed before, f, are symmetric polynomials in Zl, SR Z~n_1. Thus

the degrees of f, in Z, (1<i<n—1) do not exceed I, which proves F ]f)n
eT.

Lemma 2.10. T, = I(D,).

Proof. Throughout the proof let n = 2. Assume an F in I(g¥) to be

a homogeneous polynomial such that the restriction f = FI@H takes the
form

Y, y) = Dot b Yyl

for some positive integer m. We shall show that m — 2k < k if b, = 0.
For Y, 2z, z,e v/ —1R\{0} let « be a real number satisfying

v —=1(cos @, sina) = (2, 2)/|z| with |z| = (2,2} + 2z,25)"
Set
a* = (a, a) = (V—1c,cosasine, —v —1n-'d, sin’ @)Y/ z|.
See Remark 2.2 for the definition of ¢, and d,. Denote by g the matrix

(C.OS « —sm oc>. Then simple calculation yields
sine cosa
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Y 0 z Y, 0 0
CoAd(a-g)f0 0 z|=1{0 0 «/—llzl) ,
0 0 0 0 0 0
where Y, = Y(cos’« + 1)/n. Consequently f(Y,, ¥ —1|z|) must be a poly-

nomial in Y, z, z,, which implies the desired inequality 2(m — 2k) < 2k,
provided b, + 0.

Lemmas 2.9 and 2.10 prove the first assertion of Theorem 1, while the
second one is obvious in view of the well-known fact; polynomials f,(X,, - - -,
X,)(1=<i<n)in X, (1 £i< n) are algebraically independent if the deter-
minant of the Jacobian (3f,/0X;) is a non-zero polynomial.

§3. The proof of Theorem 2

Let G,, and G, ; be the matrix group ISO(n) and SO(n + 1) respec-
tively. Denote by g,, and g, ; the corresponding Lie algebras;

Qo = {(X x); Xeso(n), xe R”} ,

0 0
Gt = {( X x); Xeso(n), xe R"} .
—x* 0

We define G, ; and g,; (0 <0 < 1) in the same manner as in Section 2.

For X = <)0( 36) €4, (i.e. Xeso(n), xeR"), X; stands for the matrix

X x
(—52x* 0) € 8ns -

Let {,); , denote the non-degenerate bilinear form on g, ; X g, such that

<Xs’ Ya>£,n = <S;,th, Se_:rILYe>so(n+1) (O < 3 g 1) >
<X0’ Y0>0,n = <lX’ lY>so(n+1) =+ <x7 y> 5

where (x,y) = x*y and X = <())( 8) eso(n + 1). Thanks to the bilinear

form we can identify the dual space g}; of g, with g,,. Since the bilinear
form {, )., is the Killing form of g,,., the coadjoint representation CoAd,
of G, . in g¥, is nothing but the adjoint representation Ad. of G,,.. Another
bilinear form <, >.,, on g, . X g,, 1s defined by the relation

<Xsy Yo>e,0,n = <‘X7 5Y>so(n+1) + <x, y> .

Let J,, (resp. J¥,) be the linear isomorphism of gF, (resp. g, .) onto gF,.
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(resp. g,.,) satisfying the following equalities.
<Xea Y0>e,0.n = <Xe’ Jn,eYo>e,n = <J;k,eXsy Y0>0,n .

Denote by coAd, the representation J; ! CoAd. ., of G, .in g¥, We write
coAd, for CoAd,. Set v, =E, - E,; 1 <£i<j£n) and 0¥ = o,/c, with
¢, = {wyy, w30, [cf. 8, p.390]. Now we can easily verify the following
Lemmas 3.1-3.3.

LEemma 3.1. For

e (s D)o ma (e

we have

w0ads (5 1)) 5)=(5 %)
0 1/\0 0 0o 0/’

where Y/ = uYu' + 3., {w;a, uydo.

NSRS
on 0 0 ——y*/cn 0 ’

s 2= (F%)
P\ —efx* 0 0 o/’

with c, = <wij7 wil>0,n-

LEmma 3.2.

LeEmMA 3.3. Assume te R and Y,egq,, and let Z.cq, . (0<<1) be

Z Z) € Qno Then

the element corresponding to Z = (0 0

lim coAd, (exp tZ.)Y, = coAd, (exptZ2)Y, .

=0

Let F(Y,y) be the value at (__;fk 36) e gt of a CoAd, (G, )-invariant
polynomial function F. The polynomial function f, = FoS;lod, , on gf,
is obviously coAd, (G, )-invariant. Note that the value f(Y,y) of f. at
(g g) e gk, is equal to F(Y, y/ec,). Considering f. as a polynomial in e,
let f(Y,y) be the coefficient of (¢-*)? for the highest degree d. On account
of Lemma 3.3 we obtain

Lemma 3.4. The polynomial function f defined above is coAd, (G, )-
invariant.
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In what follows, we shall freely use the notation introduced in Section
1 for the group ISO(n). Denote by I(g¥) the set of CoAd(G,)-invariant
polynomial functions on g¥. Let r be the restriction map sending fe I(g¥)
to f19,, whose image will be denoted by I($,). To describe the symmetry
shared by elements of I(9,), set A, = {ge G,; CoAd (g)($,)C 9.} and A, =
{ge A,; CoAd(g)|9, = the identity}. In case n = 2[+ 1 (I > 1), denote by
W, ., the group of the linear transformations on §, generated by the fol-
lowing o, 1 i< D and r;, A ZjZ D)

0.0 (Y, Y,) — (Y., Y), Tj.

0 Y, —> =Y.

If n=20+1)({=1), let W,_, be the group of the linear transformations
on ©, generated by the above ¢, (1 < i < I) and the following g,;

o: (Y., Y)— (=Y, -Y_).

Note that the group W,_, is isomorphic to the Weyl group of SO(n — 1).
In view of Lemma 3.1 we can easily verify that the group CoAd(4,)|9,
which is isomorphic to the quotient group A,/A,, is generated by W,_,
and ¢ = CoAd({,,,). Here I, ,,=1,,,—2E, .., + E,,.). In view of
Lemma 3.1 ¢ is a linear transformation of §, such that c: (Y, y,.) —
((—=1)°Y,, —y,.1) with ¢ = 0 or 1 according as n is even or odd. We have
seen that any element of I(§,) is CoAd (4,)-invariant. As is well known,
a polynomial fin Y;, ---, Y, is W,_,-invariant iff f lies in the algebra Cls,,
.-+, 8] [5, p.302]. Note also that ¢, e I(9,) for 0 < i< I. To see this, in
case n =2 + 1, let p, (0 £ i <I) be the CoAd, (G, )-invariant polynomial
functions on g}, such that

det (t =+ <_yY* ‘3;)) = t"** 4+ pi(Y, y) + Zlgiglpl—-i(x N,
while in case n = 2(I + 1), let ¢, (0 < i <) be the CoAd, (G, )-invariant
polynomial functions on g¥, such that

det(t + ( Y; y)) = 4 Y i Que-(Y, )T
—y% 0

[8, pp. 410-411]. Evidently p; and ¢, (0 < i < [) are of degree 2 in y, ---,
¥, except for p,, which is of degree 1 in y,, ---, v,. Applying Lemma 3.4
to polynomials p, and ¢,, we conclude that ¢, ¢ I(9,). The determinant of
the Jacobian matrix @, - - -, t)/o(Y,, ---, Y}, ¥,.,)) does not vanish in the
polynomial ring, which can be verified by all means. Consequently the



56 HITOSHI KANETA

polynomials ¢, (0 < i < 1) are algebraically independent over C. Denote
by T, the C-algebra generated by ¢, (0 <i < {). In what follows we shall
show that T, = I(9,). Observe that a CoAd (4,)-invariant polynomial f
on 9, belongs to T, iff it takes the form

f(Yn Tty Yz, yl+l) = Zlcgofk(Yb Tty Yz)y;cn ’

where the degree of f, in Y, does not exceed k. Indeed, f, being invariant
under W,_,, f.y%,, can be rewritten as

&
Zai;(l Qoo St 0 8" (@ay...0, € C)
= Z«iZOGarnaltgotfl R A

with 2a, = kB — 20, — -+ - — 20, — (2 — &)a; = 0, where ¢ =0 or 1 ac-
cording as n is even or odd.

LemMA 3.5. The union of the orbits {CoAd (Gn)(g %), (g g) € -55n} is

dense in gf. In particular, the restriction map r: I(g*) — 1(Q,) is injective.

Proof. Tt suffices to show that for Y, = (g %) egf with y == 0 there

exists a ge G, such that Coad(g)Y, e §,. Take a ue SO(n) such that

wy = (0, ---,0,|y)* with [y]=(y*9)"". Set Yi= C°Ad<“>Y°=(§' 3/)’

where y' = uy. We can find an a = (xxx, 0)* € R* such that Yy = CoAd (a)Y;

_ (¥ , where Y” e so(n) takes the form Z 0 for some Ze SO(n — 1).
0 0 00

As is well known, the set B = {X eso(n — 1); (g{ 95) € 9,, where X= (g{ g)

€ so(n)} is a maximal abelian subalgebra of so(n — 1). Hence there exists
a ve SO(n — 1) such that vZv~'e B. Thus CoAd (v-a-u)Y, belongs to 9,.

LemMma 3.6. T, = I(9,) for n = 2.

Proof. Since §, = {(g %), y=(0, yz)*} for n = 2, the assertion is valid.

The cases n = 3, 4 will be separately discussed in the following Lemma
3.7. We thus proceed by induction on n assuming that T,..=1I, (9.
Define subspaces # ,, # and g,-, of g, as follows.

Opxec
W, = { M, x,¢) = :ﬁ* 00 ; peR, xeM,, (R), ce R

0 00
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WY = (MO, x,c)e W},
4, ={Xeg; X, =0for 1<i<2 1<j<n+1}.

We can naturally identify the Lie algebra g,_, and the group G,_, with
g.-. and the connected subgroup G, ., of G, associated with the subalgebra
... respectively. For M(y, x,c)e ", and ge G, , we have

3.1) Ad ()M, x,¢) = M(u, 3,0 e W', .

Therefore Ad(G,_,) leaves ¥ ,, #7 and g, , invariant. g, being a
direct sum of Ad(G,_,)-invariant subspaces #", and g,.,, it follows that
CoAd (G, ;) leaves the orthogonal complements %7 and gL, invariant.
Since 77 is Ad (G,.y)-invariant, 7% is CoAd (G, .)-invariant. We can
easily verify that #7- = g,_, and

Wt = {Yl(Elz —E,) + X; Xe O -2 YleR} .

Since the representation of G,_, in the quotient space g,/#", is trivial due
to (3.1), so is the representation of G, , in #7%' = »7/g-. This implies
that the function Y; on #% is CoAd (G, _,)-invariant. Identifying the dual
space gf_, of g,_, with #7, define a linear isomorphism L, of g¥,= 77
onto g¥ , = g,_, by requiring

G 502 D= (G ) M

for ()0( ’5) cg,., and (g g) el with y=(0,y%)* e R". Then L, (g/ g)
=<OZ g) with Z = ¢,Y/c,_,. The constants ¢, are defined just before Lemma
3.1. Now let f be the restriction F|# % of an F e I(g¥) assuming the value

f(Y’ ¥) = 2lizo Ylkfk(Y/y ¥)

at <(¥ %)e“// oL where Y = <(¥ ! %,) Since the function Y, and the sub-

space ¥+ are CoAd (G,_,)-invariant, so are f.. In particular, f,, as func-
tions on #'L, are CoAd(G, ,-invariant. Denote by f, the restriction
fioL:*19, .. By the induction hypothesis f, take the form

Zm;Ofkm(YZ) T Yl).yl”il s

where the degree of f,, in Y, doss not excead m. Conseguently ths re-
striction f = |9, takes the form
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ZmEO fm(Yb ] Yl)y;n+1
with
fm(Yb R Yl) = Zk;o Ylkfkm(C,YZ’ Ty C/Yl) s

where ¢’ = ¢,_,/c,. Therefore the degree of f, in Y, does not exceed m.
Since f,y7, is CoAd (4,)-invariant, f,y", (hence, f as well) belongs to T.,.
This concludes the proof of Lemma 3.6.

Lemma 3.7. T, = I(9,) for n =3, 4.

Proof. It suffices to show that T, © 1($,). The case n = 4 alone will
be discussed in detail, for the another one can be dealt with similarly.
Let F be a homogeneous polynomial in I(g}), whose restriction F|9, may
be assumed to be of even degree 2m of the form

FY, ) = 20 b Y™ ylk ) =1).

We must show that 2m — 2k < 2k, provided b, = 0. For (z,, 2)* € R*\{0},
let « be a real satisfying

(cos a, sin a) = (z,, 2,)/|z| with |z| = (2} + 2)*.

Moreover, set

1 0 0 0 1

0 cosa 0 —sina c,sina | O
U,= , aQ = —— P

0 0 1 0 |2 0

0 sine 0 cosa 0

Then simple calculation yields the following equality;

([0 YO OO 0 Y,0 0 0
—Y 0 0 0 z ~Y,0 0 0 0
CoAd(a-u)| 0 0 0 0 0|=| 000 0 0],
0000 z 00 0 0 [z
00000 0000 0

where Y, = Ycosa. Since f(Y,, |2]) can be rewritten as
S YR o

it follows that m < 2k, provided b, + 0, because f(Y,, |z]) must be a poly-
momial in Y, 2, z,.
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Added in proof. After this paper had been accepted for publication,

appeared. [2] is now published (Comm. Math. Phys., 90 (1983),

353-372).

(1]
[2]
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