THE INVARIANT POLYNOMIAL ALGEBRAS FOR THE GROUPS $I U(n)$ AND $\operatorname{ISO}(n)$

HITOSHI KANETA*

§1. Introduction

By the coadjoint representation of a connected Lie group G with the Lie algebra g we mean the representation $\operatorname{CoAd}(g)={ }^{t} \mathrm{Ad}\left(g^{-1}\right)$ in the dual space g^{*}. Imitating Chevalley's argument for complex semi-simple Lie algebras, we shall show that the $\operatorname{CoAd}(G)$-invariant polynomial algebra on \mathfrak{g}^{*} is finitely generated by algebraically independent polynomials when G is the inhomogeneous linear group $I U(n)$ or $I S O(n)$. In view of a wellknown theorem [8, p. 183] our results imply that the centers of the enveloping algebras for the (or the complexified) Lie algebras of these groups are also finitely generated. Recently much more inhomogeneous groups have been studied in a similar context [2]. Our results, however, are further reaching as far as the groups $I U(n)$ and $I S O(n)$ are concerned [cf. 3, 4, 6, 7, 9].

We shall state our results.
(i) $I U(n)(n \geqq 2)$.

Let G_{n} and g_{n} be the group $I U(n)$ and its Lie algebra respectively, namely

$$
\begin{aligned}
G_{n} & =\left\{\left(\begin{array}{cc}
u & a \\
0 & 1
\end{array}\right) ; u \in U(n), a \in C^{n}\right\}, \\
\mathfrak{g}_{n} & =\left\{\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) ; X \in u(n), x \in C^{n}\right\} .
\end{aligned}
$$

The dual space \mathfrak{g}_{n}^{*} of \mathfrak{g}_{n} can be identified with g_{n} by the following nondegenerate bilinear form \langle,\rangle_{n} on $\mathfrak{g}_{n} \times \mathfrak{g}_{n}$;

$$
\left\langle\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
Y & y \\
0 & 0
\end{array}\right)\right\rangle_{n}=\left\langle\left(\begin{array}{cc}
X & 0 \\
0 & -\operatorname{tr} X
\end{array}\right),\left(\begin{array}{cc}
Y & 0 \\
0 & -\operatorname{tr} Y
\end{array}\right)\right\rangle_{s u(n+1)}+\langle x, y\rangle,
$$

* Grant-in-Aid for Encouragement of Young Scientist 56740065.
where $\langle,\rangle_{s u(n+1)}=$ the Killing form of the Lie algebra $s u(n+1)$ and $\langle x, y\rangle$ $=\operatorname{Re} x^{*} y$. Thus we realize the coadjoint representation CoAd of G_{n} in $\mathfrak{g}_{n}^{*}=\mathfrak{g}_{n}$ as follows.

$$
\left\langle g^{-1}\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) g,\left(\begin{array}{ll}
Y & y \\
0 & 0
\end{array}\right)\right\rangle=\left\langle\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right), \quad \operatorname{CoAd}(g)\left(\begin{array}{ll}
Y & y \\
0 & 0
\end{array}\right)\right\rangle, \quad g \in G_{n}
$$

Let $\mathfrak{S}_{n}=$ be the n-dimensional subspace

$$
\left\{\left(\begin{array}{ccc}
Y_{1} & 0 & 0 \\
0 & \ddots & \vdots \\
& Y_{n-1} & 0 \\
0 & \cdots & 0 \\
0 & y_{n} & 0
\end{array}\right) ; Y_{1}, \cdots, Y_{n-\mathrm{i}}, y_{n} \in \sqrt{-1} \boldsymbol{R}\right\}
$$

of g_{n}^{*}. Set $Z_{j}=Y_{j}+\sum_{k=1}^{n-1} Y_{k}(1 \leqq j \leqq n-1), s_{i}=$ the i-th fundamental polynomial $(0 \leqq i \leqq n-1)$ in Z_{j}, and $t_{i}=s_{i} y_{n}^{2}$.

Theorem 1. The C-algebra of $\operatorname{CoAd}(I U(n))$-invariant polynomial functions on \mathfrak{g}_{n}^{*} is isomorphic, via the restriction map $f \rightarrow f \mid \mathfrak{F}_{n}$, to the C-algebra $C\left[t_{0}, \cdots, t_{n-1}\right]$. The polynomials t_{0}, \cdots, t_{n-1} are algebraically independent over C.
(ii) $I S O(n)(n \geqq 2)$.

Let G_{n} and g_{n} be the group $I S O(n)$ and its Lie algebra respectively, namely

$$
\begin{aligned}
G_{n} & =\left\{\left(\begin{array}{cc}
u & a \\
0 & 1
\end{array}\right) ; u \in S O(n), a \in \boldsymbol{R}^{n}\right\}, \\
\mathfrak{g}_{n} & =\left\{\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) ; X \in s o(n), x \in \boldsymbol{R}^{n}\right\} .
\end{aligned}
$$

Denote by \langle,\rangle_{n} a non-degenerate bilinear form on $\mathfrak{g}_{n} \times \mathfrak{g}_{n}$;

$$
\left\langle\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
Y & y \\
0 & 0
\end{array}\right)\right\rangle_{n}=\left\langle\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
Y & 0 \\
0 & 0
\end{array}\right)\right\rangle_{s o(n+1)}+\langle x, y\rangle,
$$

where $\langle,\rangle_{s o(n+1)}=$ the Killing form of the Lie algebra so $(n+1)$ and $\langle x, y\rangle$ $=x^{*} y$. Identifying the dual space \mathfrak{g}_{n}^{*} of \mathfrak{g}_{n} with \mathfrak{g}_{n} by this form, we define the coadjoint representation CoAd of G_{n} in $g_{n}^{*}=g_{n}$ as in the case (i). If $n=2 l+1(l \geqq 1)$, let \mathscr{S}_{n} be a $(n+1) / 2$-dimensional subspace

$$
\left\{\left(\begin{array}{cccccc}
0 & Y_{1} & 0 & & 0 & 0 \\
-Y_{1} & 0 & & & \vdots & \vdots \\
& \ddots & & & \vdots & \vdots \\
& \ddots & 0 & Y_{l} & 0 & 0 \\
& -Y_{l} & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & y_{l+1} \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right) ; Y_{1}, \cdots, Y_{l}, y_{l+1} \in R\right\}
$$

of \mathfrak{g}_{n}^{*}. If $n=2(l+1)(l \geqq 0)$, let \mathscr{S}_{n} be a $n / 2$-dimensional subspace

$$
\left\{\left(\begin{array}{cccccc}
0 & Y_{1} & 0 & & 0 & 0 \\
-Y_{1} & 0 & & & \vdots & \vdots \\
& \ddots & & & \vdots & \vdots \\
& \ddots & 0 & Y_{l} & 0 & \vdots \\
& -Y_{l} & 0 & 0 & \vdots \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & y_{l+1} \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right\} ; Y_{1}, \cdots, Y_{l}, y_{l+1} \in \boldsymbol{R}\right\}
$$

of \mathfrak{g}_{n}^{*}. Set $s_{i}=$ the i-th fundamental symmetric polynomial in $Y_{1}^{2}, \cdots, Y_{l}^{2}$, and $t_{i}=s_{i} y_{l+1}^{2}(0 \leqq i<l)$. Set, further,

$$
\begin{array}{lll}
s_{l}=Y_{1} \cdots Y_{l}, \quad t_{l}=s_{l} y_{l+1} & \text { for } n=2 l+1 \\
s_{l}=\left(Y_{1} \cdots Y_{l}\right)^{2}, & t_{l}=s_{l} y_{l+1}^{2} & \text { for } n=2(l+1)
\end{array}
$$

Theorem 2. The \boldsymbol{C}-algebra of $\operatorname{CoAd}(I S O(n))$-invariant polynomial functions on \mathfrak{g}_{n}^{*} is isomorphic, via the restriction map $f \rightarrow f \mid \mathfrak{F}_{n}$, to the C-algebra $C\left[t_{0}, \cdots, t_{l}\right]$. The polynomials t_{0}, \cdots, t_{l} are algebraically independent over \boldsymbol{C}.

We shall prove Theorems 1 and 2 in Section 2 and Section 3 respectively.

The author would like to express his sincere thanks to Dr. G. Sekiguchi and Dr. M. Hashizume for their valuable suggestions.

At the end of this section, we shall explain our basic notation. R and C stand for real and complex number fields respectively. Imaginary unit will be denoted by $\sqrt{-1} . \quad \sqrt{-1} R$ means the set of pure imaginary numbers. For nonnegative integers m and $n, M_{m n}(\boldsymbol{R})$ and $M_{m n}(\boldsymbol{C})$ stand for the set of real and complex $m \times n$-matrices respectively, $X^{*}\left(X \in M_{m n}(C)\right)$ means the complex conjugate of the transposed matrix X^{t}. As usual $\operatorname{tr} X$ ($X \in M_{n n}(C)$) means the trace of $X . \quad M_{n 1}(R)$ and $M_{n 1}(C)$ will be denoted by \boldsymbol{R}^{n} and C^{n} respectively. I_{n} is the unit matrix in $M_{n n}(C)$. For positive
integers i and $j, E_{i j}$ means the matrix whose (i, j)-component alone is nonvanishing and is equal to 1 . Set

$$
\begin{aligned}
& U(n)=\left\{u \in M_{n n}(C) ; u^{*} u=I_{n}\right\}, \\
& S O(n)=\left\{v \in M_{n n}(R) ; v^{*} v=I_{n}, \operatorname{det} v=1\right\} .
\end{aligned}
$$

Their Lie algebras will be denoted by $u(n)$ and so(n) respectively. Finally $S_{\varepsilon, n}$ is a transformation of $M_{n+1, n+1}(C)$ sending X to $\left(\begin{array}{ll}I_{n} & 0 \\ 0 & \varepsilon\end{array}\right) X\left(\begin{array}{ll}I_{n} & 0 \\ 0 & \varepsilon\end{array}\right)^{-1}$.

§2. The proof of Theorem 1

Let $G_{n, 0}$ and $G_{n, 1}$ be the matrix group $U(1) \times I U(n)$ and $U(n+1)$ respectively. Denote by $\mathfrak{g}_{n, 0}$ and $\mathfrak{g}_{n, 1}$ the corresponding Lie algebras;

$$
\begin{aligned}
& \mathrm{g}_{n, 0}=\left\{c I_{n+1}+\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) ; c \in \sqrt{-1} \boldsymbol{R}, X \in u(n), x \in \boldsymbol{C}^{n}\right\}, \\
& \mathfrak{g}_{n, 1}=\left\{c I_{n+1}+\left(\begin{array}{cc}
X & x \\
-x^{*} & -\operatorname{tr} X
\end{array}\right) ; c \in \sqrt{-1} \boldsymbol{R}, X \in u(n), x \in \boldsymbol{C}^{n}\right\} .
\end{aligned}
$$

Let for $0<\varepsilon \leqq 1$

$$
G_{n, \varepsilon}=S_{\varepsilon, n}\left(G_{n, 1}\right), \quad \mathfrak{g}_{n, \varepsilon}=S_{\varepsilon, n}\left(\mathfrak{g}_{n, 1}\right),
$$

where $S_{\varepsilon, n}$ is the transformation of $M_{n+1, n+1}(C)$ defined at the end of Section 1. For $\underline{X}=\left(\begin{array}{rr}X & x \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n, 0}, \underline{X}_{\delta}(0 \leqq \delta \leqq 1)$ means the matrix either

$$
\left(\begin{array}{cc}
X & x \\
-\delta^{2} x^{*} & -\operatorname{tr} X
\end{array}\right) \text { for } 0<\delta \leqq 1 \quad \text { or } \quad\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) \text { for } \delta=0
$$

In addition, $\left(c, \underline{X}_{\dot{o}}\right)(c \in \sqrt{-1} R)$ means the matrix $c I_{n+1}+\underline{X}_{\dot{\delta}}$ in $\mathfrak{g}_{n, \dot{\delta}}$. Now the bilinear form $\langle,\rangle_{\delta, n}$ on $g_{n, \delta} \times g_{n, \delta}$ will be defined as follows.

$$
\begin{aligned}
& \left\langle\left(a, \underline{X}_{o}\right),\left(b, \underline{Y}_{\delta}\right)\right\rangle_{\delta, n}=a b+\left\langle S_{\sigma, n}^{-1} \underline{X}_{0}, S_{\delta, n}^{-1} \underline{Y}_{o}\right\rangle_{s u(n+1)} \quad(0<\delta \leqq 1), \\
& \left\langle\left(a, \underline{X}_{0}\right),\left(b, \underline{Y}_{0}\right)\right\rangle_{0, n}=a b+\langle\iota X, \iota Y\rangle_{s u(n+1)}+\langle x, y\rangle .
\end{aligned}
$$

In the above $\langle,\rangle_{s u(n+1)}=$ the Killing form of the Lie algebra $s u(n+1)$, $\langle x, y\rangle=\operatorname{Re} x^{*} y$ and $\iota X=\left(\begin{array}{cc}X & 0 \\ 0 & -\operatorname{tr} X\end{array}\right)$. Since the bilinear forms $\langle,\rangle_{\delta, n}$ are non-degenerate, we can identify the dual space $\mathfrak{g}_{n, \delta}^{*}$ with $\mathfrak{g}_{n, \delta}$. Let $\langle,\rangle_{s, 0, n}$ be the non-degenerate bilinear form on $g_{n, \varepsilon} \times g_{n, 0}(0<\varepsilon \leqq 1)$ defined by

$$
\left\langle\left(a, \underline{X}_{\varepsilon}\right),\left(b, \underline{Y}_{0}\right)\right\rangle_{\varepsilon, 0, n}=(a-\operatorname{tr} X) b+\langle x, y\rangle+\langle\iota(X+\operatorname{tr} X), \iota Y\rangle_{s u(n+1)} .
$$

Thus we have isomorphisms $J_{\varepsilon, n}: \mathfrak{g}_{n, 0}^{*} \rightarrow \mathfrak{g}_{n, 0}^{*}$ and $J_{\varepsilon, n}^{*}: g_{n, \varepsilon} \rightarrow \mathfrak{g}_{n, 0}$ satisfying

$$
\begin{aligned}
\left\langle\left(a, \underline{X}_{\varepsilon}\right),\left(b, \underline{Y}_{0}\right)\right\rangle_{\varepsilon, 0, n} & =\left\langle\left(a, \underline{X}_{\varepsilon}\right), J_{\varepsilon, n}\left(b, \underline{Y}_{0}\right)\right\rangle_{\varepsilon, n} \\
& =\left\langle J_{\varepsilon, n}^{*}\left(a, \underline{X}_{\varepsilon}\right),\left(b, \underline{Y}_{0}\right)\right\rangle_{, n} .
\end{aligned}
$$

Let $\operatorname{Ad}_{\tilde{\delta}}(g)$ be the representation of $G_{n, \dot{\delta}}$ in $\mathfrak{g}_{n, \delta}$ defined by the formula

$$
\operatorname{Ad}_{\dot{\delta}}(g)\left(c, \underline{X}_{\delta}\right)=g\left(c, \underline{X}_{\dot{\delta}}\right) g^{-1} \quad \text { for } g \in G_{n, \delta}(0 \leqq \delta \leqq 1),
$$

while $\operatorname{CoAd}_{\dot{\delta}}$ means the representation of $G_{n, \delta}$ in $\mathfrak{g}_{n, \delta}^{*}$ such that

$$
\left\langle\operatorname{Ad}_{\delta}\left(g^{-1}\right)\left(c, \underline{X}_{\delta}\right),\left(b, \underline{Y}_{\delta}\right)\right\rangle_{\delta, n}=\left\langle\left(a, \underline{X}_{\delta}\right), \operatorname{CoAd}_{\delta}(g)\left(b, \underline{Y}_{\delta}\right)\right\rangle_{\delta, n} .
$$

Denote by $\operatorname{coAd}_{\varepsilon}(0<\varepsilon \leqq 1)$ the representation $J_{\varepsilon, n}^{-1} \operatorname{CoAd}_{\varepsilon} J_{\varepsilon, n}$ of $G_{n, \varepsilon}$ in $\mathrm{g}_{n, 0}^{*}$. In accordance with this notation we write coAd_{0} for CoAd_{0}. To describe the transformation coAd ${ }_{0}(g)$ explicitly, let $\left\{\lambda_{0}, \lambda_{i}, \lambda_{i j}, \omega_{i j}, e_{i}, \sqrt{-1} e_{i}\right.$; $1 \leqq i \leqq n, 1 \leqq i \leqq j \leqq n\}$ be a basis of $g_{n, 0}$ such that

$$
\begin{aligned}
& \lambda_{0}=\sqrt{-1} I_{n+1}, \quad \lambda_{i}=\sqrt{-1} E_{i i}, \quad \lambda_{i j}=\sqrt{-1}\left(E_{i j}+E_{j i}\right), \\
& \omega_{i j}=E_{i j}-E_{j i}, \quad e_{i}=E_{i, n+1} .
\end{aligned}
$$

The dual basis of $g_{n, 0}^{*}$ will be denoted by $\left\{\lambda^{0}, \lambda^{i}, \lambda^{i j}, \omega^{i j}, e^{i}, \sqrt{-1} e^{i}\right\}$.
Lemma 2.1. For $g=\left(\begin{array}{cc}u & a \\ 0 & 1\end{array}\right) \in G_{n, 0} \quad$ and $\quad\left(c, \underline{Y}_{0}\right) \in \mathfrak{g}_{n, 0}^{*} \quad$ it holds that $\operatorname{coAd}_{0}(g)\left(c, \underline{Y}_{0}\right)=\left(c, \underline{Y}_{0}^{\prime}\right)$ with $y^{\prime}=u y$ and

$$
\begin{aligned}
Y^{\prime}= & u Y u^{-1}+\sum_{i=1}^{n}\left\langle\lambda_{i} a, u y\right\rangle \lambda^{i} \\
& +\sum_{i<j}\left(\left\langle\lambda_{i j} a, u y\right\rangle \lambda^{i j}+\left\langle\omega_{i y} a, u y\right\rangle \omega^{i j}\right) .
\end{aligned}
$$

Proof. It suffices to note that $\langle X a, u y\rangle(X \in u(n))$ is equal to $\langle\iota X$, $\left.\iota\left(Y^{\prime}-u Y u^{-1}\right)\right\rangle_{s u(n+1)}$.

Remark 2.2. Bearing in mind that the complexification of the Lie algebra $s u(n+1)$ is isomorphic to the Lie algebra $s l(n+1, C)$, we can easily verify that

$$
\lambda^{i}=\sqrt{-1}\left(\sum_{j \neq i} E_{j j}-n E_{\imath i}\right) / d_{n}, \quad \lambda^{i j}=\lambda_{i j} / c_{n}, \quad \omega^{i j}=\omega_{i j} / c_{n}
$$

with $c_{n}=-4(n+1)$ and $d_{n}=2(n+1)^{2}$ [8, p. 295 or p. 390].
Lemma 2.3. (1) $J_{\varepsilon, n}\left(c, Y_{0}\right)=\left(c, Y_{\varepsilon}^{\prime}\right)$ for $\left(c, Y_{0}\right) \in g_{n, 0}^{*}$, where $y^{\prime}=y / \varepsilon^{2} c_{n}$ and $Y^{\prime}=Y+\operatorname{tr} Y-c / d_{n}$.
(2) $J_{\varepsilon, n}^{*}\left(c, \underline{X}_{\varepsilon}\right)=\left(c^{\prime}, \underline{X}_{0}^{\prime}\right)$ for $\left(c, \underline{X}_{\varepsilon}\right) \in \mathfrak{g}_{n, \varepsilon}^{*}$, where $c^{\prime}=c-\operatorname{tr} X, x^{\prime}=x$ and $X^{\prime}=X+\operatorname{tr} X$.

Proof. Note that $\operatorname{tr} X=\sqrt{-1}\left\langle\iota X, \sum_{i=1}^{n} \iota \lambda^{i}\right\rangle_{s u(n+1)}$. Then (1) follows at once. The second assertion is almost obvious. Observe that $\left(c, \underline{X}_{s}\right) \in \mathfrak{g}_{n, \varepsilon}$
tends to $\left(c, \underline{X}_{0}\right) \in g_{n, 0}$ as $\varepsilon \rightarrow 0$. In other words, contracting the Lie algebra $\mathfrak{g}_{n, 1}$, we obtain the Lie algebra $\mathfrak{g}_{n, 0}$ [4]. Consequently $\operatorname{coAd}_{\varepsilon}$ converge to $c^{c o A d}{ }_{0}$ in the following sense.

Lemma 2.4. Assume $t \in R$ and $\left(b, \underline{Y}_{0}\right) \in \mathfrak{g}_{n, 0}^{*}$, and let $\underline{Z}_{\varepsilon} \in \mathfrak{g}_{n, \varepsilon}(\varepsilon>0)$ be the element corresponding to $\underline{Z}=\left(\begin{array}{ll}Z & z \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n, 0}$. Then

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{coAd}_{\varepsilon}\left(\exp t Z_{\varepsilon}\right)\left(b, Y_{0}\right)=\operatorname{coAd}_{0}\left(\exp t\left(\begin{array}{cc}
Z & z \\
0 & -\operatorname{tr} Z
\end{array}\right)\left(b, Y_{0}\right)\right.
$$

Proof. Evidently it suffices to show that the generators of the semigroups $\operatorname{coAd}_{\varepsilon}\left(\exp t Z_{\varepsilon}\right)$ converge to the generator of the semigroup $\operatorname{coAd}_{0}\left(\exp t\left(\begin{array}{cc}Z & z \\ 0 & -\operatorname{tr} Z\end{array}\right)\right)$. To this end, we can verify easily that

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} & \left\{\left\langle\operatorname{Ad}_{\varepsilon}\left(\exp \left(-t Z_{\varepsilon}\right)\right) J_{\varepsilon, n}^{*-1}\left(a, X_{0}\right), J_{\varepsilon, n}\left(b, Y_{0}\right)\right\rangle_{\varepsilon, n}\right. \\
& \left.-\left\langle\operatorname{Ad}_{0}\left(\exp -t\left(\begin{array}{cc}
Z & z \\
0 & -\operatorname{tr} Z
\end{array}\right)\right)\left(a, X_{0}\right),\left(b, Y_{0}\right)\right\rangle_{0, n}\right\} \longrightarrow 0 \quad(\varepsilon \longrightarrow 0)
\end{aligned}
$$

for any $\left(a, X_{0}\right) \in \mathfrak{g}_{n, 0}$.
Remark 2.5. It is clear that $\operatorname{coAd}_{\dot{\delta}}\left(\exp c I_{n+1}\right)$ is the identity operator for any $c I_{n+1} \in \mathfrak{g}_{n, \delta}$.

Let $F(b, Y, y)$ be the value at $\left(b, Y_{1}\right) \in \mathfrak{g}_{n, 1}^{*}$ of a $\operatorname{CoAd}_{1}\left(G_{n, 1}\right)$-invariant polynomial F. Then the polynomial function $f_{\varepsilon}=F \circ S_{\varepsilon, n}^{-1} \circ J_{\varepsilon, n}$ on $g_{n, 0}^{*}$ is clearly $\operatorname{coAd}_{\varepsilon}\left(G_{n, \varepsilon}\right)$-invariant. By Lemma 2.3 we have

$$
f_{\varepsilon}(b, Y, y)=F\left(b, Y+\left(\operatorname{tr} Y-b / d_{n}\right) I_{n}, y / \varepsilon c_{n}\right),
$$

where the left-hand side stands for the value of f_{s} at $\left(b, Y_{0}\right) \in \mathfrak{g}_{n, 0}^{*}$. Regarding f_{ε} as polynomial in ε^{-1}, let $f(b, Y, y)$ be the coefficient of the ε^{-d} for the highest degree d.

Lemma 2.6. The polynomial function fon $\mathfrak{g}_{n, 0}^{*}$ defined above is $\operatorname{coAd}_{0}\left(G_{n, 0}\right)$ invariant.

Proof. In view of Lemma 2.4 the assertion is an immediate consequence of the fact that $f(b, Y, y)$ coincides with the limit of $\varepsilon^{d} f_{\varepsilon}(b, Y, y)$ as $\varepsilon \rightarrow 0$.

We shall now clarify the relation between a $\operatorname{CoAd}\left(G_{n}\right)$-invariant polynomial function on g_{n}^{*} and a $\operatorname{coAd}_{0}\left(G_{n, 0}\right)$-invariant polynomial function on $g_{n, 0}^{*}$ (recall the notation in Section 1). Note first that $g_{n, 0}=\sqrt{-1} R+g_{n}$, the
sum being orthogonal direct sum of $\mathrm{Ad}_{0}\left(G_{n, 0}\right)$-invariant subspaces. Therefore, $\mathrm{g}_{n, 0}^{*}$ is a direct sum of $\operatorname{coAd}_{0}\left(G_{n, 0}\right)$-invariant subspaces $\sqrt{-1} R$ and $\mathrm{g}_{n}^{*}=\mathrm{g}_{n}$. Moreover, the restriction $\operatorname{coAd}_{0}(g) \mid \sqrt{-1} R$ is the identity operator for $g \in$ $G_{n, 0}$, because so is the restriction $\operatorname{Ad}_{0}(g) \mid \sqrt{-1} R$. The bilinear form \langle,\rangle_{n} on $\mathfrak{g}_{n} \times \mathfrak{g}_{n}$ is nothing but the restriction $\langle,\rangle_{0, n} \mid g_{n} \times \mathfrak{g}_{n}$. It now follows that $\operatorname{coAd}_{0}(g)=\operatorname{CoAd}(g)$ in $\mathrm{g}_{n}^{*} \subset \mathfrak{g}_{n, 0}^{*}$ for any $g \in G_{n}$. On account of Remark 2.5 the set of operators $\left\{\operatorname{coAd}_{0}(g) \mid g_{n} ; g \in G_{n, 0}\right\}$ coincides with $\left\{\operatorname{CoAd}(g) ; g \in G_{n}\right\}$. Bearing these observations in mind, we can easily verify the validity of

Lemma 2.7. A polynomial function $f(b, Y, y)$ on $\mathfrak{g}_{n, 0}^{*}$ is $\operatorname{coAd}_{0}\left(G_{n, 0}\right)$ invariant iff the polynomial function $f(b, Y, y)$ on g_{n}^{*} is $\operatorname{CoAd}\left(G_{n}\right)$-invariant for any b.

Let $I\left(\mathrm{~g}_{n}^{*}\right)$ be the set of all $\operatorname{CoAd}\left(G_{n}\right)$-invariant polynomial functions on $\mathfrak{g}_{n}^{*}=\mathfrak{g}_{n}$, and let r_{n} be the restriction map sending $f \in I\left(\mathfrak{g}_{n}^{*}\right)$ to $f \mid \mathfrak{S}_{n}$ whose image will be denoted by $I\left(\mathscr{S}_{2}\right)$. For the definition of the subspace \mathfrak{S}_{2} of \mathfrak{g}_{n}, see Section 1.

Lemma 2.8. The union of the orbits $\left\{\operatorname{CoAd}\left(G_{n}\right) Y_{0} ; Y_{0} \in \mathscr{S}_{n}\right\}$ is dense in \mathfrak{g}_{n}^{*}. In particular, the map r_{n} is an algebraic isomorphism of $I\left(\mathfrak{g}_{n}^{*}\right)$ onto $I\left(\mathscr{S}_{n}\right)$.

Proof. For a $Y_{0}=\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in g_{n}^{*}$ with $y \in C^{n} \backslash\{0\}$ we shall show that there exists a $g \in G_{n}$ such that $\operatorname{CoAd}(g) Y_{0} \in \mathcal{F}_{n}$. Take, first, a $u \in U(n)$ satisfying $u y=(0, \cdots,-\sqrt{-1}|y|)^{*}$ with $|y|=\left(y^{*} y\right)^{1 / 2}$. We can find an $a \in C^{n}\left(\subset G_{n}\right)$ for which $\underline{Y}_{0}^{\prime}=\operatorname{CoAd}(a \cdot u) \underline{Y}_{0}$ satisfies $Y_{i n}^{\prime}=0(1 \leqq i \leqq n)$. Recall the wellknown fact that any $Y^{\prime \prime} \in u(n-1)$ can be diagonalized by an element of $S U(n-1)$. Now we can find a $v=\left(\begin{array}{ll}v^{\prime} & 0 \\ 0 & 1\end{array}\right) \in S U(n)$ such that $\operatorname{CoAd}(v \cdot a \cdot u) Y_{0}$ $\in \mathscr{S}_{n}$.

Let \tilde{A}_{n} be the subgroup of G_{n} consisting of all $g \in G_{n}$ such that $\operatorname{CoAd}(g) \mathscr{S}_{n} \subset \mathscr{S}_{n}$, and let A_{n} be the subgroup of \tilde{A}_{n} consisting of all $g \in \tilde{A}_{n}$ such that the restriction $\operatorname{CoAd}(g) \mid \mathfrak{S}_{n}$ is the identity operator. The group $\operatorname{CoAd}\left(\widetilde{A}_{n}\right) \mid \mathfrak{S}_{n}$ turns out not to differ so much from the Weyl group of $U(n-1)$ [5, p. 305]. To be more precise, let $\sigma_{i}(1 \leqq i<n-1)$ and τ be the linear transformations on \mathscr{F}_{n} such that

$$
\sigma_{i}:\left(Y_{i}, Y_{i+1}\right) \longrightarrow\left(Y_{i+1}, Y_{i}\right), \quad \tau: y_{n} \longrightarrow-y_{n} .
$$

Denote by W_{n-1} the group generated by $\sigma_{i}(1 \leqq i<n-1)$. Then we can verify easily that $\operatorname{CoAd}\left(\tilde{A}_{n}\right) \mid \mathscr{F}_{n}$, which is isomorphic to the quotient group $\widetilde{A}_{n} / A_{n}$, is generated by W_{n-1} and τ. Note that W_{n-1} is the Weyl group
of $U(n-1)$. We shall now show that the polynomial functions t_{0}, \cdots, t_{n-1} on \mathfrak{S}_{n} (see Section 1) belong to $I\left(\mathfrak{S}_{n}\right)$. Indeed, there exist $\operatorname{CoAd}_{1}\left(G_{n, 1}\right)$ invariant polynomial functions $F_{i}(b, Y)$ on $\mathfrak{g}_{n, 1}^{*}$ such that

$$
\operatorname{det}(t+Y)=t^{n+1}+\sum_{n=1}^{n} F_{i}(b, Y) t^{n-i} \quad(t ; \text { an indeterminate }) .
$$

Applying Lemmas 2.6 and 2.7 to F_{i}, we deduce that $s_{i-1} y_{n}^{2}(1 \leqq i<n)$ lie in $I\left(\mathfrak{S}_{n}\right)$. Denote by T_{n} the set of all polynomial functions on \mathfrak{S}_{n} generated by t_{0}, \cdots, t_{n-1}. We shall show that T_{n} coincides with $I\left(\mathfrak{F}_{n}\right)$. For this purpose it is convenient to introduce another subspace $\tilde{\mathfrak{S}}_{n}$ of \mathfrak{g}_{n}^{*}.

$$
\begin{aligned}
& \tilde{\mathfrak{G}}_{n}=\left\{\left(\begin{array}{ll}
Y & y \\
0 & 0
\end{array}\right) ; Y \text { is a diagonal matrix }\left[Y_{1}, \cdots, Y_{n}\right]\right. \text { and } \\
& \left.\qquad y_{i}=0 \text { except for } i=n\right\} .
\end{aligned}
$$

Let \tilde{r}_{n} be the restriction map sending an $f \in I\left(\mathrm{~g}_{n}^{*}\right)$ to $f \mid \tilde{\mathfrak{F}}_{n}$, whose image will be denoted by $I\left(\tilde{\mathfrak{F}}_{n}\right)$. Set $\tilde{t}_{i}=\tilde{r}_{n} r_{n}^{-1}\left(t_{i}\right)(0 \leqq i \leqq n-1)$ and denote by \tilde{T}_{n} the set of all polynomial functions on $\tilde{\mathscr{F}}_{n}$ generated by $\tilde{t}_{0}, \cdots, \tilde{t}_{n-1}$. Note that an $f\left(Y_{1}, \cdots, Y_{n}, y_{n}\right) \in I\left(\tilde{\mathscr{F}}_{n}\right)$ is invariant under the transformation $y_{n} \rightarrow-y_{n}$ and the permutations $Y_{i} \leftrightarrow Y_{i+1}(1 \leqq i<n-1)$. For a $\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right)$ $\in \widetilde{\mathscr{F}}_{n}$ set $\tilde{Z}_{i}=Y_{i i}+\operatorname{tr} Y(1 \leqq i \leqq n), \tilde{s}_{i-1}=$ the $(i-1)$-th fundamental symmetric polynomial in $\tilde{Z}_{1}, \cdots, \tilde{Z}_{n-1}$. Evidently $\tilde{t}_{i-1}=\tilde{s}_{i-1} y_{n}^{2}$. We claim that \tilde{T}_{n} consists of all polynomials of the form

$$
\sum_{l \geq 0} f_{l}\left(\tilde{Z}_{1}, \cdots, \hat{Z}_{n-1}\right) y_{n}^{2 l}
$$

where f_{l} are symmetric polynomials whose degrees in \tilde{Z}_{i} do not exceed l. In fact, $f_{l} y_{n}^{2 l}$ can be rewritten as

$$
\begin{aligned}
& \sum_{\alpha_{1}, \ldots, \alpha_{n-1} \geq 0} a_{l, \alpha_{1}, \ldots, \alpha_{n-1}} \tilde{s}_{1}^{\pi_{1}} \cdots \tilde{s}_{n-1}^{\alpha_{n}-1} y_{n}^{2 l} \\
& \quad=\sum_{\alpha_{1}, \ldots, \alpha_{n-1} \geqq 0} a_{l, \alpha_{1}, \ldots, \alpha_{n-1}} \tilde{t}_{0}^{\alpha_{0}} \tilde{t}_{1}^{\alpha_{1}} \cdots \tilde{t}_{n-1}^{\alpha_{n}-1}
\end{aligned}
$$

with $\alpha_{0}=-\alpha_{1}-\cdots-\alpha_{n-1}+l \geqq 0$.
Lemma 2.9. $\quad T_{n}=I\left(\mathscr{S}_{n}\right)$ or, equivalently, $\tilde{T}_{n}=I\left(\tilde{\mathfrak{F}}_{n}\right)$.
Proof. We shall proceed by induction on $n \geqq 2$. The case $n=2$ will be discussed in Lemma 2.10. So assume that the lemma holds up to $n-$ $1 \geqq 2$. Define subspaces $\mathfrak{g}_{n}^{\circ}, \tilde{\mathfrak{g}}_{n-1}, \mathfrak{g}_{n-1}$ and \mathscr{W}_{n} of \mathfrak{g}_{n} as follows.

$$
\mathfrak{g}_{n}^{\circ}=\left\{\left(\begin{array}{cc}
X & x \\
0 & 0
\end{array}\right) \in \mathfrak{g}_{n} ; X_{11}=0\right\},
$$

$$
\begin{aligned}
& \tilde{\mathfrak{g}}_{n-1}=\left\{M\left(\mu, X^{\prime}, x^{\prime}\right)=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
0 & X^{\prime} & x^{\prime} \\
0 & 0 & 0
\end{array}\right) ; \mu \in \sqrt{-1} R, X^{\prime} \in u(n-1), x^{\prime} \in C^{n-1}\right\}, \\
& \mathfrak{g}_{n-1}=\left\{M\left(0, X^{\prime}, x^{\prime}\right) \in \tilde{\mathfrak{g}}_{n-1}\right\}, \\
& \mathscr{W}_{n}=\left\{\left(\begin{array}{ccc}
\mu & x & c \\
-x^{*} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) ; \mu \in \sqrt{-1} R, x^{*} \in C^{n-1}, c \in C\right\} .
\end{aligned}
$$

We can identify the group G_{n-1} with the connected subgroup of G_{n} coirresponding to the subalgebra $\underline{g}_{n-1} . \quad \mathfrak{g}_{n}$ is a direct sum of the $\operatorname{Ad}\left(G_{n-1}\right)$ invariant subspaces \mathfrak{g}_{n-1} and \mathscr{W}_{n}. Moreover, since

$$
\operatorname{Ad}(g)\left(\begin{array}{ll}
X & x \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
X^{\prime} & x^{\prime} \\
0 & 0
\end{array}\right) \text { with } X_{11}=X_{11}^{\prime} \text { for } g \in G_{n-1} \text { and }\left(\begin{array}{ll}
X & x \\
0 & 0
\end{array}\right) \in \mathfrak{g}_{n},
$$

it follows that the representation of G_{n-1} in the quotient space $\mathfrak{g}_{n} / \mathfrak{g}_{n}{ }^{\circ}$ is the trivial one. Denote by \mathscr{W}^{\perp} the orthogonal complement of a subspace \mathscr{W} of \mathfrak{g}_{n}. It is easy to verify that

$$
\mathscr{W}_{n}^{\perp}=\left\{\left(\begin{array}{lll}
Y_{1}^{\prime} & 0 & 0 \\
0 & Y^{\prime} & y^{\prime} \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{g}_{n} ; \quad Y_{1}^{\prime}+\operatorname{tr} Y^{\prime}=0\right\} .
$$

Observe that $\mathscr{W}_{n}^{\frac{1}{n}}$ is $\operatorname{CoAd}\left(G_{n-1}\right)$-invariant and that $\left(\begin{array}{ll}Y & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n}$ with $Y \in u(n)$ lies in $\mathscr{W}^{\frac{1}{n}}$ iff Y is a linear combination of $\lambda^{2}, \cdots, \lambda^{n}$ (see Remark 2.2). Besides, $\operatorname{CoAd}(g) \lambda^{1}=\lambda^{1}$ for $g \in G_{n-1}$, because the representation of G_{n-1} in $\mathfrak{g}_{n}^{\circ \perp} \subset \mathfrak{g}_{n}^{*}$ is the trivial one as the representation of G_{n-1} in the quotient space $\mathfrak{g}_{n} / \mathfrak{g}_{n}^{\circ}$. Note also that $\tilde{\mathfrak{g}}_{n-1}$, which we may regard as a subspace of \mathfrak{g}_{n}^{*}, is a direct sum of the $\operatorname{CoAd}\left(G_{n-1}\right)$-invariant subspaces $\mathscr{W}^{\frac{1}{n}}$ and $\left\{\left(\begin{array}{ll}\mu \lambda^{1} & 0 \\ 0 & 0\end{array}\right)\right.$; $\mu \in \boldsymbol{R}\}$. In particular, $\tilde{\mathfrak{g}}_{n-1}$ is $\operatorname{CoAd}\left(G_{n-1}\right)$-invariant. For $\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n}^{*}$ set \tilde{Z}_{i} $=Y_{i i}+\operatorname{tr} Y(1 \leqq i \leqq n)$. Then simple computaion yields that
the diagonal part of $Y=-2 \sqrt{-1} \sum_{i=1}^{n} \tilde{Z}_{i} \lambda^{2} / c_{n}$
with $c_{n}=-4(n+1)$. Define a basis $\left\{\underline{\lambda}_{i}, \underline{\lambda}_{i}, \underline{\omega}_{i j} ; 2 \leqq i \leqq n, 2 \leqq i<j \leqq n\right\}$ of g_{n-1} as for $\mathfrak{g}_{n, 0}$, and denote by $\left\{\underline{\lambda}^{i}, \underline{\lambda}^{i j}, \underline{\omega}^{i j}, 2 \leqq i \leqq n, 2 \leqq i<j \leqq n\right\}$ the dual basis. Now let L_{n} be a linear isomorphism of \mathscr{W}_{n}^{\perp} onto $\mathfrak{g}_{n-1}^{*}=\mathfrak{g}_{n-1}$ defined by

$$
\left\langle\left(\begin{array}{ll}
X^{\prime} & x^{\prime} \\
0 & 0
\end{array}\right), \quad L_{n}\left(\begin{array}{lll}
Y_{1}^{\prime} & 0 & 0 \\
0 & Y^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right)\right\rangle_{0, n-1}=\left\langle\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & X^{\prime} & x^{\prime} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
Y_{1}^{\prime} & 0 & 0 \\
0 & Y^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right)\right\rangle_{0, n} .
$$

It turns out that
(*)

$$
L_{n} \lambda^{i}=\lambda^{i} \quad(2 \leqq i \leqq n)
$$

Assume that the restriction $F \mid \tilde{\mathfrak{g}}_{n-1}$ of an $F \in I\left(\mathfrak{g}_{n}^{*}\right)$ takes the form

$$
\sum_{k \geq 1} \tilde{Z}_{1}^{k} F_{k}\left(\tilde{Z}_{2}, \cdots, \tilde{Z}_{n}, y_{n}, y_{2} \cdots, y_{n-1}, Y_{i j}\right)
$$

at $\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in \tilde{\mathfrak{g}}_{n-1} \subset \mathrm{~g}_{n}^{*}$. In the above $Y_{i j}$ stands for all the off-diagonal components of Y. Since the function \tilde{Z}_{1} on $\tilde{\mathfrak{g}}_{n-1}$ is $\operatorname{CoAd}\left(G_{n-1}\right)$-invariant, so are F_{k}. On account of $(*)$, together with the induction hypothesis, it follows that $F_{k}\left(\tilde{Z}_{2}, \cdots, y_{n}, 0, \cdots, 0\right)$ take the form

$$
\sum_{l \geq 0} f_{k l}\left(\tilde{Z}_{2}, \cdots, \tilde{Z}_{n-1}\right) y_{n}^{2 l}
$$

where $f_{k l}$ are symmetric polynomials whose degrees in \tilde{Z}_{i} are not greater than l. Consequently the restriction $f=F \mid \tilde{\mathscr{S}}_{n}$ is of the form

$$
\sum_{l \geq o} f_{l}\left(\tilde{Z}_{1}, \cdots, \tilde{Z}_{n-1}\right) y_{n}^{2 l},
$$

where

$$
f_{l}\left(\tilde{Z}_{1}, \cdots, \tilde{Z}_{n-1}\right)=\sum_{k \geq 0} \tilde{Z}_{1}^{k} f_{k l}\left(\tilde{Z}_{2}, \cdots, \tilde{Z}_{n-1}\right) .
$$

As we observed before, f_{l} are symmetric polynomials in $\tilde{Z}_{1}, \cdots, \tilde{Z}_{n-1}$. Thus the degrees of f_{l} in $\tilde{Z}_{i}(1 \leqq i \leqq n-1)$ do not exceed l, which proves $F \mid \tilde{\mathfrak{F}}_{n}$ $\in \tilde{T}_{n}$.

Lemma 2.10. $T_{2}=I\left(\widetilde{\mathfrak{F}}_{2}\right)$.
Proof. Throughout the proof let $n=2$. Assume an F in $I\left(g_{n}^{*}\right)$ to be a homogeneous polynomial such that the restriction $f=F \mid \tilde{\mathfrak{F}}_{n}$ takes the form

$$
f\left(Y, y_{2}\right)=\sum_{k=0}^{m} b_{k} Y^{m-2 k} y_{2}^{2 k}
$$

for some positive integer m. We shall show that $m-2 k \leqq k$ if $b_{k} \neq 0$. For $Y, z_{1}, z_{2} \in \sqrt{-1} R \backslash\{0\}$ let α be a real number satisfying

$$
\sqrt{-1}(\cos \alpha, \sin \alpha)=\left(z_{2}, z_{1}\right) /|z| \quad \text { with } \quad|z|=\left(z_{1} z_{1}^{*}+z_{2} z_{2}^{*}\right)^{1 / 2}
$$

Set

$$
a^{*}=\left(a_{1}, a_{2}\right)=\left(\sqrt{-1} c_{n} \cos \alpha \sin \alpha,-\sqrt{-1} n^{-1} d_{n} \sin ^{2} \alpha\right) Y| | z \mid .
$$

See Remark 2.2 for the definition of c_{n} and d_{n}. Denote by g the matrix $\left(\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$. Then simple calculation yields

$$
\operatorname{CoAd}(a \cdot g)\left(\begin{array}{ccc}
Y & 0 & z_{1} \\
0 & 0 & z_{2} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
Y_{\alpha} & 0 & 0 \\
0 & 0 & \sqrt{-1}|z| \\
0 & 0 & 0
\end{array}\right),
$$

where $Y_{\alpha}=Y\left(\cos ^{2} \alpha+1\right) / n$. Consequently $f\left(Y_{\alpha}, \sqrt{-1}|z|\right)$ must be a polynomial in Y, z_{1}, z_{2}, which implies the desired inequality $2(m-2 k) \leqq 2 k$, provided $b_{k} \neq 0$.

Lemmas 2.9 and 2.10 prove the first assertion of Theorem 1, while the second one is obvious in view of the well-known fact; polynomials $f_{i}\left(X_{1}, \cdots\right.$, $\left.X_{n}\right)(1 \leqq i \leqq n)$ in $X_{i}(1 \leqq i \leqq n)$ are algebraically independent if the determinant of the Jacobian $\left(\partial f_{i} / \partial X_{j}\right)$ is a non-zero polynomial.

§3. The proof of Theorem 2

Let $G_{n, 0}$ and $G_{n, 1}$ be the matrix group $I S O(n)$ and $S O(n+1)$ respectively. Denote by $\mathfrak{g}_{n, 0}$ and $\mathfrak{g}_{n, 1}$ the corresponding Lie algebras;

$$
\begin{aligned}
\mathfrak{g}_{n, 0} & =\left\{\left(\begin{array}{ll}
X & x \\
0 & 0
\end{array}\right) ; X \in s o(n), x \in \boldsymbol{R}^{n}\right\}, \\
\mathfrak{g}_{n, 1} & =\left\{\left(\begin{array}{rr}
X & x \\
-x^{*} & 0
\end{array}\right) ; X \in \operatorname{so}(n), x \in \boldsymbol{R}^{n}\right\} .
\end{aligned}
$$

We define $G_{n, \delta}$ and $g_{n, \delta}(0 \leqq \delta \leqq 1)$ in the same manner as in Section 2. For $\underline{X}=\left(\begin{array}{cc}X & x \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n, 0}$ (i.e. $X \in s o(n), x \in R^{n}$), $\underline{X}_{\dot{\delta}}$ stands for the matrix

$$
\left(\begin{array}{cc}
X & x \\
-\delta^{2} x^{*} & 0
\end{array}\right) \in \mathfrak{g}_{n, \delta} .
$$

Let $\langle,\rangle_{\delta, n}$ denote the non-degenerate bilinear form on $\mathfrak{g}_{n, \bar{\delta}} \times \mathfrak{g}_{n, \delta}$ such that

$$
\begin{aligned}
& \left\langle X_{\varepsilon}, Y_{\varepsilon}\right\rangle_{\varepsilon, n}=\left\langle S_{\varepsilon}^{-1} X_{\varepsilon}, S_{\varepsilon, n}^{-1} Y_{\varepsilon}\right\rangle_{s o(n+1)} \quad(0<\varepsilon \leqq 1), \\
& \left\langle X_{0}, Y_{0}\right\rangle_{0, n}=\langle\iota X, \iota Y\rangle_{s o(n+1)}+\langle x, y\rangle
\end{aligned}
$$

where $\langle x, y\rangle=x^{*} y$ and $\iota X=\left(\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right) \in s o(n+1)$. Thanks to the bilinear form we can identify the dual space $\mathfrak{g}_{n, \delta}^{*}$ of $g_{n, \delta}$ with $\mathfrak{g}_{n, \delta}$. Since the bilinear form $\langle,\rangle_{\varepsilon, n}$ is the Killing form of $g_{n, \varepsilon}$, the coadjoint representation CoAd ${ }_{\varepsilon}$ of $G_{n, \varepsilon}$ in $\mathfrak{g}_{n, \varepsilon}^{*}$ is nothing but the adjoint representation $\operatorname{Ad}_{\varepsilon}$ of $G_{n, \varepsilon}$. Another bilinear form $\langle,\rangle_{\varepsilon, 0, n}$ on $\mathfrak{g}_{n, \varepsilon} \times \mathfrak{g}_{n, 0}$ is defined by the relation

$$
\left\langle X_{\varepsilon}, Y_{0}\right\rangle_{\varepsilon, 0, n}=\langle\iota X, \iota Y\rangle_{s o(n+1)}+\langle x, y\rangle .
$$

Let $J_{\varepsilon, n}$ (resp. $J_{\varepsilon, n}^{*}$) be the linear isomorphism of $g_{n, 0}^{*}$ (resp. $g_{n, \varepsilon}$) onto $g_{n, \varepsilon}^{*}$
(resp. $\mathfrak{g}_{n, 0}$) satisfying the following equalities.

$$
\left\langle X_{\varepsilon}, Y_{0}\right\rangle_{\varepsilon, 0, n}=\left\langle X_{\mathrm{s}}, J_{n, \varepsilon} Y_{0}\right\rangle_{\varepsilon, n}=\left\langle J_{n, \varepsilon}^{*} X_{\mathrm{s}}, Y_{0}\right\rangle_{0, n}
$$

Denote by $\operatorname{coAd}_{\varepsilon}$ the representation $J_{\varepsilon, n}^{-1} \operatorname{CoAd}_{\varepsilon} J_{\varepsilon, n}$ of $G_{n, \varepsilon}$ in $\mathfrak{g}_{n, 0}^{*}$. We write coAd_{0} for CoAd_{0}. Set $\omega_{i j}=E_{i i}-E_{j j}(1 \leqq i<j \leqq n)$ and $\omega^{i j}=\omega_{i j} / c_{n}$ with $c_{n}=\left\langle\omega_{i j}, \omega_{i j}\right\rangle_{0, n}$ [cf. 8, p. 390]. Now we can easily verify the following Lemmas 3.1-3.3.

Lemma 3.1. For

$$
g=\left(\begin{array}{ll}
u & a \\
0 & 1
\end{array}\right) \in G_{n, 0} \quad \text { and } \quad\left(\begin{array}{cc}
Y & y \\
0 & 0
\end{array}\right) \in \mathfrak{g}_{n, 0}^{*}
$$

we have

$$
\operatorname{coAd}_{0}\left(\begin{array}{ll}
u & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
Y & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
Y^{\prime} & u y \\
0 & 0
\end{array}\right)
$$

where $Y^{\prime}=u Y u^{-1}+\sum_{i<j}\left\langle\omega_{i j} a, u y\right\rangle \omega^{i j}$.
Lemma 3.2.

$$
\begin{aligned}
& J_{\varepsilon, n}\left(\begin{array}{ll}
Y & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
Y & y / \varepsilon^{2} c_{n} \\
-y^{*} / c_{n} & 0
\end{array}\right), \\
& J_{\varepsilon, n}^{*}\left(\begin{array}{cc}
X & x \\
-\varepsilon^{2} x^{*} & 0
\end{array}\right)=\left(\begin{array}{ll}
X & x \\
0 & 0
\end{array}\right),
\end{aligned}
$$

with $c_{n}=\left\langle\omega_{i j}, \omega_{i j}\right\rangle_{0, n}$.
Lemma 3.3. Assume $t \in \boldsymbol{R}$ and $\underline{Y}_{0} \in \mathfrak{g}_{n, 0}$. and let $\underline{Z}_{\varepsilon} \in \mathfrak{g}_{n, \varepsilon}(0<\varepsilon \leqq 1)$ be the element corresponding to $\underline{Z}=\left(\begin{array}{cc}Z & z \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n, 0}$. Then

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{coAd}_{\varepsilon}\left(\exp t \underline{Z}_{\varepsilon}\right) Y_{0}=\operatorname{coAd}_{0}(\exp t \underline{Z}) Y_{0}
$$

Let $F(Y, y)$ be the value at $\left(\begin{array}{rl}Y & y \\ -y^{*} & 0\end{array}\right) \in \mathfrak{g}_{n, 1}^{*}$ of a $\operatorname{CoAd}_{1}\left(G_{n, 1}\right)$-invariant polynomial function F. The polynomial function $f_{s}=F \circ S_{\varepsilon, n}^{-1} \circ J_{\varepsilon, n}$ on $\mathfrak{g}_{n, 0}^{*}$ is obviously $\operatorname{coAd}_{\varepsilon}\left(G_{n, \varepsilon}\right)$-invariant. Note that the value $f_{\varepsilon}(Y, y)$ of f_{ε} at $\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n, 0}^{*}$ is equal to $F\left(Y, y / \varepsilon c_{n}\right)$. Considering f_{ε} as a polynomial in ε^{-1}, let $f(Y, y)$ be the coefficient of $\left(\varepsilon^{-1}\right)^{d}$ for the highest degree d. On account of Lemma 3.3 we obtain

Lemma 3.4. The polynomial function f defined above is $\operatorname{coAd}_{0}\left(G_{n, 0}\right)$ invariant.

In what follows, we shall freely use the notation introduced in Section 1 for the group $I S O(n)$. Denote by $I\left(\mathfrak{g}_{n}^{*}\right)$ the set of $\operatorname{CoAd}\left(G_{n}\right)$-invariant polynomial functions on \mathfrak{g}_{n}^{*}. Let r be the restriction map sending $f \in I\left(\mathfrak{g}_{n}^{*}\right)$ to $f \mid \mathscr{F}_{2}$, whose image will be denoted by $I\left(\mathscr{F}_{n}\right)$. To describe the symmetry shared by elements of $I\left(\mathscr{S}_{n}\right)$, set $\widetilde{A}_{n}=\left\{g \in G_{n} ; \operatorname{CoAd}(g)\left(\mathscr{S}_{n}\right) \subset \mathfrak{S}_{n}\right\}$ and $A_{n}=$ $\left\{g \in \widetilde{A}_{n} ; \operatorname{CoAd}(g) \mid \mathscr{F}_{n}=\right.$ the identity $\}$. In case $n=2 l+1(l \geqq 1)$, denote by W_{n-1} the group of the linear transformations on \mathscr{F}_{n} generated by the following $\sigma_{i}(1 \leqq i \leqq l)$ and $\tau_{j}(1 \leqq j \leqq l)$;

$$
\sigma_{i}:\left(Y_{i}, Y_{i+1}\right) \longrightarrow\left(Y_{i+1}, Y_{i}\right), \quad \tau_{j}: Y_{j} \longrightarrow-Y_{j} .
$$

If $n=2(l+1)(l \geqq 1)$, let W_{n-1} be the group of the linear transformations on \mathfrak{S}_{n} generated by the above $\sigma_{i}(1 \leqq i<l)$ and the following σ_{l};

$$
\sigma_{l}:\left(Y_{l-1}, Y_{l}\right) \longrightarrow\left(-Y_{l},-Y_{l-1}\right)
$$

Note that the group W_{n-1} is isomorphic to the Weyl group of $S O(n-1)$. In view of Lemma 3.1 we can easily verify that the group $\operatorname{CoAd}\left(\widetilde{A}_{n}\right) \mid \mathscr{S}_{n}$ which is isomorphic to the quotient group $\widetilde{A}_{n} / A_{n}$, is generated by W_{n-1} and $\tau=\operatorname{CoAd}\left(I_{n-1,2}\right)$. Here $I_{n-1,2}=I_{n+1}-2\left(E_{n-1, n-1}+E_{n, n}\right)$. In view of Lemma 3.1τ is a linear transformation of \mathscr{F}_{n} such that $\tau:\left(Y_{l}, y_{l+1}\right) \rightarrow$ $\left((-1)^{s} Y_{l},-y_{l+1}\right)$ with $\varepsilon=0$ or 1 according as n is even or odd. We have seen that any element of $I\left(\mathscr{S}_{n}\right)$ is $\operatorname{CoAd}\left(\widetilde{A}_{n}\right)$-invariant. As is well known, a polynomial f in Y_{1}, \cdots, Y_{l} is W_{n-1}-invariant iff f lies in the algebra $C\left[s_{1}\right.$, $\left.\cdots, s_{l}\right][5, \mathrm{p} .302]$. Note also that $t_{i} \in I\left(\mathfrak{S}_{n}\right)$ for $0 \leqq i \leqq l$. To see this, in case $n=2 l+1$, let $p_{i}(0 \leqq i \leqq l)$ be the $\operatorname{CoAd}_{1}\left(G_{n, 1}\right)$-invariant polynomial functions on $g_{n, 1}^{*}$ such that

$$
\operatorname{det}\left(t+\left(\begin{array}{rr}
Y & y \\
-y^{*} & 0
\end{array}\right)\right)=t^{2 l+2}+p_{l}^{2}(Y, y)+\sum_{1 \leq i \leq l} p_{l-i}(Y, y) t^{2 i}
$$

while in case $n=2(l+1)$, let $q_{i}(0 \leqq i \leqq l)$ be the $\operatorname{CoAd}_{1}\left(G_{n, 1}\right)$-invariant polynomial functions on $\mathfrak{g}_{n, 1}^{*}$ such that

$$
\operatorname{det}\left(t+\left(\begin{array}{rr}
Y & y \\
-y^{*} & 0
\end{array}\right)\right)=t^{2 l+3}+\sum_{1 \leq i \leq l+1} q_{l+1-i}(Y, y) t^{2 i-1}
$$

[8, pp. 410-411]. Evidently p_{i} and $q_{i}(0 \leqq i \leqq l)$ are of degree 2 in y_{1}, \cdots, y_{n} except for p_{l}, which is of degree 1 in y_{1}, \cdots, y_{n}. Applying Lemma 3.4 to polynomials p_{i} and q_{i}, we conclude that $t_{i} \in I\left(\mathscr{S}_{n}\right)$. The determinant of the Jacobian matrix $\left(\partial\left(t_{0}, \cdots, t_{l}\right) / \partial\left(Y_{1}, \cdots, Y_{l}, y_{t+1}\right)\right.$) does not vanish in the polynomial ring, which can be verified by all means. Consequently the
polynomials $t_{i}(0 \leqq i \leqq l)$ are algebraically independent over C. Denote by T_{n} the C-algebra generated by $t_{i}(0 \leqq i \leqq l)$. In what follows we shall show that $T_{n}=I\left(\tilde{S}_{n}\right)$. Observe that a $\operatorname{CoAd}\left(\tilde{A}_{n}\right)$-invariant polynomial f on \mathscr{F}_{n} belongs to T_{n} iff it takes the form

$$
f\left(Y_{1}, \cdots, Y_{l}, y_{l+1}\right)=\sum_{k \geqq 0} f_{k}\left(Y_{1}, \cdots, Y_{l}\right) y_{l+1}^{k}
$$

where the degree of f_{k} in Y_{l} does not exceed k. Indeed, f_{k} being invariant under $W_{n-1}, f_{k} y_{l+1}^{k}$ can be rewritten as

$$
\begin{aligned}
& \sum_{\alpha_{i} \geq 0} a_{\alpha_{1} \cdots \alpha_{l}} s_{1}^{\alpha_{1}} \cdots s^{\alpha_{l}} y_{l+1}^{k}\left(a_{\alpha_{1} \cdots \alpha_{l}} \in C\right) \\
& \quad=\sum_{\alpha_{i} \geq 0} a_{\alpha_{1} \cdots \alpha_{l}} t_{0}^{\alpha_{0}} t_{1}^{\alpha_{1}} \cdots t^{\alpha_{l}}
\end{aligned}
$$

with $2 \alpha_{0}=k-2 \alpha_{1}-\cdots-2 \alpha_{l-1}-(2-\varepsilon) \alpha_{l} \geqq 0$, where $\varepsilon=0$ or 1 according as n is even or odd.

Lemma 3.5. The union of the orbits $\left\{\operatorname{CoAd}\left(G_{n}\right)\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) ;\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in \tilde{\mathfrak{F}}_{n}\right\}$ is dense in \mathfrak{g}_{n}^{*}. In particular, the restriction map $r: I\left(\mathfrak{g}_{n}^{*}\right) \rightarrow I\left(\mathcal{S}_{n}\right)$ is injective.

Proof. It suffices to show that for $Y_{0}=\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n}^{*}$ with $y \neq 0$ there exists a $g \in G_{n}$ such that $\operatorname{Coad}(g) Y_{0} \in \mathscr{S}_{n}$. Take a $u \in S O(n)$ such that $u y=(0, \cdots, 0,|y|)^{*}$ with $|y|=\left(y^{*} y\right)^{1 / 2} . \quad$ Set $\quad Y_{0}^{\prime}=\operatorname{CoAd}(u) Y_{0}=\left(\begin{array}{cc}Y^{\prime} & y^{\prime} \\ 0 & 0\end{array}\right)$, where $y^{\prime}=u y$. We can find an $a=(* * *, 0)^{*} \in \boldsymbol{R}^{n}$ such that $Y_{0}^{\prime \prime}=\operatorname{CoAd}(a) Y_{0}^{\prime}$ $=\left(\begin{array}{cc}Y^{\prime \prime} & y^{\prime} \\ 0 & 0\end{array}\right)$, where $Y^{\prime \prime} \in \operatorname{so}(n)$ takes the form $\left(\begin{array}{ll}Z & 0 \\ 0 & 0\end{array}\right)$ for some $Z \in S O(n-1)$. As is well known, the set $B=\left\{X \in s o(n-1) ;\left(\begin{array}{cc}\tilde{X} & x \\ 0 & 0\end{array}\right) \in \mathscr{S}_{n}\right.$, where $\tilde{X}=\left(\begin{array}{ll}X & 0 \\ 0 & 0\end{array}\right)$ $\in s o(n)\}$ is a maximal abelian subalgebra of $s o(n-1)$. Hence there exists a $v \in S O(n-1)$ such that $v Z v^{-1} \in B$. Thus CoAd $(v \cdot a \cdot u) Y_{0}$ belongs to \mathscr{S}_{n}.

Lemma 3.6. $\quad T_{n}=I\left(\mathscr{F}_{n}\right)$ for $n \geqq 2$.
Proof. Since $\mathfrak{K}_{n}=\left\{\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right) ; y=\left(0, y_{2}\right)^{*}\right\}$ for $n=2$, the assertion is valid. The cases $n=3$, 4 will be separately discussed in the following Lemma 3.7. We thus proceed by induction on n assuming that $T_{n-2}=I_{n-2}\left(\mathscr{S}_{n}\right)$. Define subspaces $\mathscr{W}_{n}, \mathscr{W}_{n}^{0}$ and \underline{g}_{n-2} of \mathfrak{g}_{n} as follows.

$$
\mathscr{W}_{n}=\left\{M(\mu, x, c)=\left(\begin{array}{ccc}
0 \mu & x & c \\
-\mu & 0 \\
-x^{*} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ; \mu \in \boldsymbol{R}, x \in M_{2, n-2}(\boldsymbol{R}), c \in \boldsymbol{R}^{2}\right\}
$$

$$
\begin{aligned}
& \mathscr{W}_{n}^{0}=\left\{M(0, x, c) \in \mathscr{W}_{n}\right\} \\
& \underline{\underline{g}}_{n-2}=\left\{X \in \mathfrak{g}_{n} ; X_{i j}=0 \text { for } 1 \leqq i \leqq 2,1 \leqq j \leqq n+1\right\}
\end{aligned}
$$

We can naturally identify the Lie algebra \mathfrak{g}_{n-2} and the group G_{n-2} with $\underline{\mathfrak{g}}_{n-2}$ and the connected subgroup \underline{G}_{n-2} of G_{n} associated with the subalgebra \mathfrak{g}_{n-2} respectively. For $M(\mu, x, c) \in \mathscr{W}_{n}$ and $g \in \underline{G}_{n-2}$ we have

$$
\begin{equation*}
\operatorname{Ad}(g) M(\mu, x, c)=M(\mu, \tilde{x}, \tilde{c}) \in \mathscr{W}_{n} \tag{3.1}
\end{equation*}
$$

Therefore $\operatorname{Ad}\left(\underline{G}_{n-2}\right)$ leaves $\mathscr{W}_{n}, \mathscr{W}_{n}^{0}$ and \underline{g}_{n-2} invariant. g_{n} being a direct sum of $\operatorname{Ad}\left(\underline{G}_{n-2}\right)$-invariant subspaces \mathscr{W}_{n} and g_{n-2}, it follows that CoAd $\left(\underline{G}_{n-2}\right)$ leaves the orthogonal complements $\mathscr{W}_{\frac{1}{n}}^{\perp}$ and $\underline{g}_{n-2}^{\perp}$ invariant. Since \mathscr{W}_{n}^{0} is $\operatorname{Ad}\left(\underline{G}_{n-2}\right)$-invariant, $\mathscr{W}_{n}^{0 \perp}$ is $\operatorname{CoAd}\left(\underline{G}_{n-2}\right)$-invariant. We can easily verify that $\mathscr{W}_{n}^{\perp}=\underline{\underline{g}}_{n-2}$ and

$$
\mathscr{W}_{n}^{0 \perp}=\left\{Y_{1}\left(E_{12}-E_{21}\right)+X ; X \in \underline{g}_{n-2}, Y_{1} \in \boldsymbol{R}\right\} .
$$

Since the representation of \underline{G}_{n-2} in the quotient space $\underline{g}_{n} / \mathscr{W}_{n}^{0}$ is trivial due to (3.1), so is the representation of \underline{G}_{n-2} in $\mathscr{W}_{n}^{0 \perp}=\mathscr{W}_{n}^{0 \perp} / \underline{g}_{n}^{\perp}$. This implies that the function Y_{1} on $\mathscr{W}_{n}^{0 \perp}$ is $\operatorname{CoAd}\left(\underline{G}_{n-2}\right)$-invariant. Identifying the dual space \underline{g}_{n-2}^{*} of \underline{g}_{n-2} with \mathscr{W}_{n}^{\perp}, define a linear isomorphism L_{n} of $\underline{g}_{n-2}^{*}=\mathscr{W}_{n}^{\perp}$ onto $\underline{g}_{n-2}^{*}=\underline{g}_{n-2}$ by requiring

$$
\left\langle\left(\begin{array}{ll}
X^{\prime} & x^{\prime} \\
0 & 0
\end{array}\right), L_{n}\left(\begin{array}{ll}
Y & y \\
0 & 0
\end{array}\right)\right\rangle_{0, n-2}=\left\langle\iota\left(\begin{array}{ll}
0 & 0 \\
0 & X^{\prime}
\end{array}\right), \iota Y\right\rangle_{s o(n+1)}+\left\langle x^{\prime}, y^{\prime}\right\rangle
$$

for $\left(\begin{array}{cc}X^{\prime} & x^{\prime} \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{n-2}$ and $\left(\begin{array}{cc}Y & y \\ 0 & 0\end{array}\right) \in \mathscr{W}_{n}^{\perp}$ with $y=\left(0, y^{\prime *}\right)^{*} \in \boldsymbol{R}^{n}$. Then $L_{n}\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right)$ $=\left(\begin{array}{ll}Z & y \\ 0 & 0\end{array}\right)$ with $Z=c_{n} Y / c_{n-2}$. The constants c_{n} are defined just before Lemma 3.1. Now let \tilde{f} be the restriction $F \mid \mathscr{W}_{n}^{0 \perp}$ of an $F \in I\left(\mathrm{~g}_{n}^{*}\right)$ assuming the value

$$
\tilde{f}(Y, y)=\sum_{k \geq 0} Y_{1}^{k} \tilde{f}_{k}\left(Y^{\prime}, y\right)
$$

at $\left(\begin{array}{ll}Y & y \\ 0 & 0\end{array}\right) \in \mathscr{W}_{n}^{0 \perp}$, where $Y=\left(\begin{array}{ll}Y_{1} & 0 \\ 0 & Y^{\prime}\end{array}\right)$. Since the function Y_{1} and the subspace \mathscr{F}_{n}^{\perp} are $\operatorname{CoAd}\left(\underline{G}_{n-2}\right)$-invariant, so are \tilde{f}_{k}. In particular, \tilde{f}_{k}, as functions on $\mathscr{H} \frac{1}{n}$, are $\operatorname{CoAd}\left(\underline{G}_{n-2}\right)$-invariant. Denote by f_{k} the rastriction $\tilde{f}_{k} \circ L_{n}^{-1} \mid \tilde{\mathscr{E}}_{n-2}$. By the induction hypothesis f_{k} take the form

$$
\sum_{m \geqq o} f_{k m}\left(Y_{2}, \cdots, Y_{l}\right) y_{l+1}^{m}
$$

where the degree of $f_{k m}$ in Y_{l} does not excead m. Consequently the restriction $\hat{f}=\tilde{f} \mid \mathscr{L}_{n}$ takes the form

$$
\sum_{m \geqq 0} \hat{f}_{m}\left(Y_{1}, \cdots, Y_{l}\right) y_{l+1}^{m}
$$

with

$$
\hat{f}_{m}\left(Y_{1}, \cdots, Y_{l}\right)=\sum_{k \geq 0} Y_{1}^{k} f_{k m}\left(c^{\prime} Y_{2}, \cdots, c^{\prime} Y_{l}\right)
$$

where $c^{\prime}=c_{n-2} / c_{n}$. Therefore the degree of \hat{f}_{m} in Y_{l} does not exceed m. Since $\hat{f}_{m} y_{l+1}^{m}$ is $\operatorname{CoAd}\left(\tilde{A}_{n}\right)$-invariant, $\hat{f}_{m} y_{l+1}^{m}$ (hence, \hat{f} as well) belongs to T_{n}. This concludes the proof of Lemma 3.6.

Lemma 3.7. $T_{n}=I\left(\mathfrak{S}_{n}\right)$ for $n=3,4$.
Proof. It suffices to show that $T_{n} \supset I\left(\mathfrak{F}_{n}\right)$. The case $n=4$ alone will be discussed in detail, for the another one can be dealt with similarly. Let F be a homogeneous polynomial in $I\left(\mathrm{~g}_{n}^{*}\right)$, whose restriction $F \mid \mathfrak{S}_{n}$ may be assumed to be of even degree $2 m$ of the form

$$
f\left(Y, y_{l+1}\right)=\sum_{k=0}^{m} b_{k} Y^{2 m-2 k} y_{l+1}^{2 k} \quad(l=1) .
$$

We must show that $2 m-2 k \leqq 2 k$, provided $b_{k} \neq 0$. For $\left(z_{2}, z_{4}\right)^{*} \in \boldsymbol{R}^{2} \backslash\{0\}$, let α be a real satisfying

$$
(\cos \alpha, \sin \alpha)=\left(z_{4}, z_{2}\right) /|z| \text { with }|z|=\left(z_{2}^{2}+z_{4}^{2}\right)^{1 / 2} .
$$

Moreover, set

$$
u_{\alpha}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & 0 & -\sin \alpha \\
0 & 0 & 1 & 0 \\
0 & \sin \alpha & 0 & \cos \alpha
\end{array}\right), \quad a=-\frac{c_{n} \sin \alpha}{|z|}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Then simple calculation yields the following equality;

$$
\operatorname{CoAd}\left(a \cdot u_{\alpha}\right)\left(\begin{array}{ccccc}
0 & Y & 0 & 0 & 0 \\
-Y & 0 & 0 & 0 & z_{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & z_{4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left[\begin{array}{ccccc}
0 & Y_{\alpha} & 0 & 0 & 0 \\
-Y_{\alpha} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & |z| \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

where $Y_{\alpha}=Y \cos \alpha$. Since $f\left(Y_{\alpha},|z|\right)$ can be rewritten as

$$
\sum_{k=0}^{m} b_{k} Y^{2 m-2 k} z_{4}^{2 m-2 k}\left(z_{2}^{2}+z_{4}^{2}\right)^{2 k-m},
$$

it follows that $m \leqq 2 k$, provided $b_{k} \neq 0$, because $f\left(Y_{\alpha},|z|\right)$ must be a polymomial in Y, z_{2}, z_{4}.

Added in proof. After this paper had been accepted for publication, [10] appeared. [2] is now published (Comm. Math. Phys., 90 (1983), 353-372).

References

[1] L. Abellanas and L. Martinez Alonso, A general setting for Casimir invariants, J. Math. Phys., 16 (1975), 1580-1584.
[2] M. Chaichian, A. P. Demichev and N. F. Nelipa, The Casimir operators of inhomogeneous groups, preprint.
[3] R. Gilmore, Rank 1 expansions, J. Math. Phys., 13 (1972), 883-886.
[4] R. Gilmore, Lie groups, Lie algebras, and some of their applications, John Wiley \& Sons, New York 1974.
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 2, John Wiley \& Sons, New York 1969.
[6] J. Rosen and P. Roman, Some observations on enveloping algebras of noncompact groups, J. Math. Phys., 7 (1966), 2072-2078.
[7] J. Rosen, Construction of invariants for Lie algebras of inhomogeneous pseudoorthogonal and pseudo- unitary groups, J. Math. Phys., 9 (1968), 1305-1307.
[8] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, PrenticcHall, Inc., London 1974.
[9] M. L. F. Wong and Hsin-Yang Yeh, Invariant operators of $I U(n)$ and $I O(n)$ and their eigenvalues, J. Math. Phys., 20 (1979), 247-250.
[10] M. Perroud, The fundamental invariants of inhomogeneous classical groups, J. Math. Phys., 24 (1983), 1381-1391.

Faculty of Education
Tokushima University
Tokushima 770
Japan

