W. H. Fleming and M. Nisio Nagoya Math. J. Vol. 93 (1984), 71-108

ON STOCHASTIC RELAXED CONTROL FOR PARTIALLY OBSERVED DIFFUSIONS

W. H. FLEMING AND M. NISIO

§1. Introduction

In this paper we are concerned with stochastic relaxed control problems of the following kind. Let X(t), $t \ge 0$, denote the state of a process being controlled, Y(t), $t \ge 0$, the observation process and $p(t, \cdot)$ a relaxed control, that is a process with values probability measures on the control region Γ . The state and observation processes are governed by stochastic differential equations

(1.1)
$$\begin{cases} dX(t) = \alpha(X(t))dB(t) + \int_{\Gamma} \mathcal{T}(X(t), u)p(t, du)dt \\ X(0) = \xi \end{cases}$$

and

(1.2)
$$\begin{cases} dY(t) = h(X(t))dt + dW(t) \\ Y(0) = 0 \end{cases}$$

where B and W are independent Brownian motions with values in \mathbb{R}^n and \mathbb{R}^m respectively, (put m = 1 for simplicity).

The problem is to maximize a criterion of the form

$$J = Ef(X(T))$$

by a suitable choice of admissible relaxed control p. In a customary version of stochastic control under partial observation, $p(t, \cdot)$ is measurable with respect to σ -field generated by the observation process Y(s), $s \leq t$. Instead of discussing the problem of this type, we treat some wider class of admissible relaxed controls (see § 2), inspired by Fleming-Pardoux [8]. Roughly speaking, our problem is the following; Let

Received September 13, 1982.

This research was supported in part by the National Science Foundation under contract MCS 79-03554 and in part by the Air Force Office of Scientific Research under contract AF-AFOSR 81-0116.

W. H. FLEMING AND M. NISIO

(1.3)
$$L(T) = \exp\left\{\int_{0}^{T} h(X(s))dY(s) - \frac{1}{2}\int_{0}^{T} |h(X(s))|^{2} ds\right\}.$$

Then B and Y turn out as independent Brownian motions under a new probability \mathring{P} , defined by

(1.4)
$$\frac{d\mathring{P}}{dP} = L^{-1}(T)$$

appealing to the so-called Girsanov transformation. For admissibility we merely require that $p(t, \cdot)$ is independent of future increments of $Y(\theta) - Y(s)$, θ , $s \ge t$, and B, with respect to \mathring{P} . Moreover we are concerned with q(dt, du) instead of p(t, du)dt. (see Definition 1). Thus the criterion J can be expressed as

(1.5)
$$J = \mathring{E}f(X(T))L(T)$$

where \mathring{E} stands for the expectation with respect to \mathring{P} , and X(t) is a solution of the following system equation;

(1.6)
$$dX(t) = \alpha(X(t))dB(t) + \int_{\Gamma} \tilde{\gamma}(X(t), u)q(dt, du).$$

Under Lipschitz continuity and boundedness of α and $\hat{\tau}$, (1.6) has a unique solution (Theorem 1).

In Section 2 we introduce some metric spaces which are appropriate to our optimization problems. In Section 3 we prove the compactness of spaces of solutions and relaxed controls q. This guarantees the existence of optimal one (Theorem 3).

In the latter half we treat a nonlinear semigroup associated with relaxed control under partial observation. In this case we regard, as the state space, the unnormalized conditional distribution $\Lambda(t)$ of X(t) given past observation and control. Hence $\Lambda(t)$ is a process valued in measures on \mathbb{R}^n and satisfying the Zakai equation. Thus our problems turn out as optimization problems of measure valued processes. After we prove the continuity of $\Lambda(t)$ with respect to initial distribution X(0) and data of past observation and control, (see Theorem 5), we construct a nonlinear semigroup S(t), $t \geq 0$, on a Banach lattice of bounded and uniformly continuous functions, defined on the space of measures (Theorem 7). Following Fleming [6], we show that the generator of S(t) relates to a dynamic programming equation, so-called Mortensen's equation.

§2. Notations and preliminaries

Let $(\Omega, F, \mathring{P})$ be a probability space. Let *B* and *Y* be *n*-dimensional and 1-dimensional Brownian motions, defined on $(\Omega, F, \mathring{P})$ respectively. Γ is a given convex compact subset of R^k , called a control region. $M(\Gamma)$ denotes the totality of positive finite measures defined on $B(\Gamma)(=$ Borel field of Γ). By $\hat{M}([0 \ T] \times \Gamma)$ we denote the set of all mappings $\lambda: [0 \ T]$ $\times B(\Gamma) \to [0 \ T]$ such that

- 0) $\lambda(0, A) = 0 \quad \forall A \in B(\Gamma)$
- i) $\lambda(t, \Gamma) = t \quad \forall t \geq 0$
- ii) $\lambda(t, \cdot) \in M(\Gamma)$ for all t > 0
- iii) $\lambda(t, A)$ is increasing in t for all $A \in B(\Gamma)$
- iv) $\sup_{A \in B(\Gamma)} |\lambda(s, A) \lambda(t, A)| = |t s|.$

From (ii) and (iii), λ determines a measure on $[0 \ T] \times \Gamma$ and $\lambda([s, t], \cdot) \equiv \lambda(t, \cdot) - \lambda(s, \cdot) \in M(\Gamma)$, if t > s, and $\lambda([s, t], \Gamma) = t - s$.

- Let q be a mapping; $[0 T] \times B(\Gamma) \times \Omega \rightarrow [0, 1]$, such that
- v) for all $A \in B(\Gamma)$, $q(\cdot, A, \cdot)$ is $B[0 \ T] \times F$ -measurable
- vi) $q \in \hat{M}([0 \ T] \times \Gamma)$ \mathring{P} -almost surely.

DEFINITION 1. $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ is called an admissible (relaxed) system, if ξ is an *n*-random vector on $(\Omega, F, \mathring{P})$, which is independent of (B, Y, q), B and (Y q) are independent and the increments $(Y(t) - Y(s), t \ge s)$ are independent of $\sigma_s(Y, q) (= \sigma$ -field generated by $Y(\theta), \theta \le s$ and $q(\theta, A), \theta \le s, A \in \mathbf{B}(\Gamma)$).

DEFINITION 2. The component q of \mathscr{A} is called a relaxed control, and we denote it by $q_{\mathscr{A}}$ when \mathscr{A} is stressed. $\lambda \in \hat{M}([0 \ T] \times \Gamma)$ can be regarded as a relaxed control. \mathfrak{A} denotes the totality of admissible systems.

Let $\alpha(x)$ be a symmetric $n \times n$ matrix valued function on \mathbb{R}^n and γ an *n*-vector continuous function on $\mathbb{R}^n \times \Gamma$. We assume the following conditions

$$\begin{array}{ll} (\mathrm{A1}) & |g(x,\,u)| \leq b, \quad \forall x \in R^n, \ u \in \Gamma \ g = \alpha, \ \varUpsilon \\ (\mathrm{A2}) & |g(x,\,u) - g(x',\,u)| \leq K |x - x'|, \ \forall x, \ x' \in R^n \ u \in \Gamma, \ g = \alpha, \ \varUpsilon. \end{array}$$

For an admissible system $\mathscr{A} = (\Omega, F, \dot{P}, \xi, B, Y, q)$ we consider the stochastic differential equation (SDE in short)

(2.1)
$$\begin{cases} dX(t) = \alpha(X(t)dB(t) + \int_{\Gamma} \mathcal{T}(X(t), u)q(dt, du)) \\ X(0) = \xi. \end{cases}$$

THEOREM 1. There exists a unique solution X of (2.1) which is $\sigma_t(\xi, B, q)$ -progressively measurable and has continuous paths.

Proof. We apply a usual successive approximation method. We define X_n in the following way

(2.2)
$$X_{0}(t) = \xi$$
$$X_{n+1}(t) = \xi + \int_{0}^{t} \alpha(X_{n}(s)) dB(s) + \int_{0}^{t} \int_{\Gamma} \mathcal{T}(X_{n}(s), u) q(ds, du)$$
$$n = 0, 1, 2, \cdots$$

Then, X_n is $\sigma_i(\xi, B, q)$ -progressively measurable and has continuous paths by (iv) and (A1).

$$\begin{split} X_{n+1}(t) - X_n(t) &= \int_0^t \left(\alpha(X_n(s)) - \alpha(X_{n-1}(s)) dB(s) \right) \\ &+ \int_0^t \int_\Gamma \left(\mathcal{T}(X_n(s), u) - \mathcal{T}(X_{n-1}(s), u)) q(ds, du) \right) \end{split}$$

So, using (A1) and (A2) we see

$$egin{aligned} & \left(\int_0^t \int_{\Gamma} | \varUpsilon(X_n(s),\, u) - \varUpsilon(X_{n-1}(s),\, u) | \, q(ds,\, du)
ight)^2 \ & \leq \int_0^t \int_{\Gamma} |\varUpsilon(X_n(s),\, u) - \varUpsilon(X_{n-1}(s),\, u) |^2 q(ds,\, du) q(t,\, \Gamma) \ & \leq Kt \int_0^t \int_{\Gamma} |X_n(s) - X_{n-1}(s) |^2 q(ds,\, du) \ & = Kt \int_0^t |X_n(s) - X_{n-1}(s) |^2 ds \,. \end{aligned}$$

Putting $\rho_n(t) = E |X_{n+1}(t) - X_n(t)|^2$, we have

$$ho_n(t) \leq K_{\scriptscriptstyle 1} \int_{\scriptscriptstyle 0}^t
ho_{n-1}(s) ds\,, \qquad ext{for } \, orall t \leq T\,,$$

with some $K_1 = K_1(T)$. This implies

(2.3)
$$\rho_n(t) \leq \frac{t^{n-1}K_1^{n-1}}{(n-1)!} \mathring{E} |\xi|^2.$$

Therefore

$$\sum\limits_{n} \mathring{E} |X_{n+1}(t) - X_n(t)| \leq \sum \sqrt{
ho_n(t)} < \infty \; .$$

This implies that $X_n(t)$ converges \mathring{P} -almost surely. Hence $X(t) = \lim_{n \to \infty} X_n(t)$

can be regarded as $\sigma_t(\xi, B, q)$ -progressively measurable and moreover a martingale inequality tells us that, as $n \to \infty$,

(2.4)
$$\int_0^t \alpha(X_n(s)) dB(s) \to \int_0^t \alpha(X(s)) dB(s) \text{ uniformly in } t \in [0, T],$$

P-almost surely. On the other hand

$$egin{aligned} \sup_{t\leq T} \left|\int_0^t \int_{\Gamma} \varUpsilon(X_n(s),\,u) - \varUpsilon(X(s),\,u) q(ds,\,du)
ight| \ &\leq \int_0^T \int_{\Gamma} |\varUpsilon(X_n(s),\,u) - \varUpsilon(X(s),\,u)| \, q(ds,\,du) \ &\leq K \int_0^T \min\left(|X_n(s) - X(s)|,\,2b
ight) ds \,. \end{aligned}$$

By virtue of the convergence theorem we get, as $n \to \infty$,

(2.5)
$$\int_0^t \int_\Gamma \tilde{\gamma}(X_n(s), u) q(ds, du) \to \int_0^t \int_\Gamma \tilde{\gamma}(X(s), u) q(ds, du),$$

uniformly in $t \in [0, T]$, \mathring{P} -almost surely.

Combining (2.4) and (2.5) with (2.2), X turns out as a solution of (2.1) and $X_n(t)$ converges to X(t) uniformly in $t \in [0 T]$ \mathring{P} -almost surely. Hence X has continuous paths.

Let Y be a $\sigma_t(\xi, B, q)$ -progressively measurable solution of (2.1). Then, applying a routine method, we can easily see for $\forall t$,

$$X(t) = Y(t)$$
 P-almost surely.

This completes the proof of Proposition 2.1.

L denotes the Prohorov metric for probability measures. That is following, [11]. Let ε_{21} be the infinimum of ε such that

 $\mu_1(F) \leq \mu_2(U_{\epsilon}(F)) + \varepsilon \quad ext{ for all closed subset } F,$

where $U_{\epsilon}(F)$ is the ϵ -neighbourhood of F. ϵ_{12} is defined by switching μ_1 and μ_2 . Set

(2.6)
$$L(\mu_1, \mu_2) = \max(\varepsilon_{12}, \varepsilon_{21}).$$

Put

(2.7)
$$M(\Gamma, t) = \{\lambda \in M(\Gamma); \lambda(\Gamma) = t\}, t > 0.$$

Define a metric ρ_t as follows

(2.8)
$$\rho_t(\lambda_1, \lambda_2) = L\left(\frac{\lambda_1}{t}, \frac{\lambda_2}{t}\right), \qquad \lambda_i \in M(\Gamma, t) .$$

Since Γ is compact, $(M(\Gamma, t), \rho_i)$ is a compact metric space. Put $D = \{r_i, r_i, r_i\}$ rational $\in [0, T], i = 1, 2, \cdots\}$ and

(2.9)
$$\tilde{M}_{T} = \prod_{i=1}^{\infty} M(\Gamma, r_{i}).$$

We endow \tilde{M}_{T} with a metric \tilde{d}_{T} such that

(2.10)
$$\tilde{d}_{T}(\tilde{\lambda},\tilde{\mu}) = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \rho_{r_{n}}(\lambda_{n},\mu_{n})$$

where $\tilde{\lambda} = (\lambda_1, \lambda_2, \cdots)$ and $\tilde{\mu} = (\mu_1, \mu_2, \cdots)$. Hence $\tilde{\lambda}_k, k = 1, 2, \cdots$ is a \tilde{d}_T -Cauchy sequence, iff $\lambda_{k,i}, k = 1, 2, \cdots$ is a ρ_{τ_i} -Cauchy sequence for any component *i*. Therefore again $(\tilde{M}_T, \tilde{d}_T)$ is a compact metric space.

Since $\lambda \in \tilde{M}([0 \ T] \times \Gamma)$ is determined by $\tilde{\lambda} = (\lambda(r_1), \lambda(r_2), \cdots) \in \tilde{M}_r$, we define a metric \hat{d}_T on $\hat{M}([0 \ T] \times \Gamma)$ by

(2.11)
$$\hat{d}_T(\lambda, \mu) = \tilde{d}_T(\tilde{\lambda}, \tilde{\mu}) .$$

PROPOSITION 2.1. $\hat{M}([0 \ T] \times \Gamma, \hat{d}_{T})$ is a compact metric space.

Proof. Let $\lambda_k(r_i, \cdot)$ converge to $\lambda_{(i)}$ in ρ_{r_i} . Then $\lambda_{(i)} \in M(\Gamma, r_i)$ and for $g \in C_b(\Gamma)$ (= bounded continuous function on Γ).

(2.12)
$$\int_{\Gamma} g(u)\lambda_k(r_i, du) \to \int g(u)\lambda_{(i)}(du), \quad \text{as } k \to \infty.$$

Define $\lambda(r_i, A)$ by $\lambda(r_i, A) = \lambda_{(i)}(A)$. Then putting g = 1 in (2.12), we see

$$\lambda(r_i,\,\Gamma)=r_i$$

Let $r_i > r_j$ and set $R(A) = \lambda(r_i, A) - \lambda(r_j, A)$. Then R is a signed measure on Γ . Since $\lambda_k(r_i, \cdot) - \lambda_k(r_j, \cdot) \in M(\Gamma, r_i - r_j)$ and $\lambda_k(r_i, \cdot) - \lambda_k(r_j, \cdot)$ converges to R weakly by (2.12). R turns out as a positive measure and $R \in M(\Gamma, r_i - r_j)$. This means

(2.13)
$$\lambda(r, A)$$
 is increasing in rational r

and

$$(2.14) \qquad |\lambda(r_i, A) - \lambda(r_j, A)| \leq |\lambda(r_i, \Gamma) - \lambda(r_j, \Gamma)| = r_i - r_j.$$

Now we will construct λ which corresponds to $(\lambda(r_i, \cdot), i = 1, 2, \cdots) \in \tilde{M}_{\tau}$, in the following way,

(2.15)
$$\lambda(t, A) = \lim_{r \downarrow \downarrow t} \lambda(r_i, A) .$$

Then λ clearly satisfies the conditions (0) ~ (iv), namely $\lambda \in M([0 \ T] \times \Gamma)$ and $\hat{d}_T(\lambda_k, \lambda) \to 0$, as $k \to \infty$.

Remark. $\rho_i(\lambda_k(t), \lambda(t)) \leq (4/r_i) |t - r_i| + \rho_{r_i}(\lambda_k(r_i), \lambda(r_i))$ by condition (iv). Hence

$$\lambda_k(t) \rightarrow \lambda(t)$$
 in ρ_t .

For $g \in C([0 \ T] \times \Gamma)$ (= continuous function on $[0 \ T] \times \Gamma$)

(2.16)
$$\int_0^t g(s, u) \lambda_k(ds, du) \to \int_0^t g(s, u) \lambda(ds, du), \quad \text{as } k \to \infty.$$

Proof of (2.16). Since g is uniformly continuous, $g([2^n t]/2^n, u)$ converges to g(t, u) uniformly on $[0 \ T] \times \Gamma$, where [c] is the largest integer $\leq c$. Suppose $\sup_{s,u} |g([2^n s]/2^n, u) - g(s, u)| < \varepsilon$. Then

$$egin{aligned} & \left| \int_0^t \int_{\Gamma} g(s, u) \lambda_k(ds, du) - \int_0^t \int_{\Gamma} g(s, u) \lambda(ds, du)
ight| \ & \leq \int_0^t \int_{\Gamma} \left| g(s, u) - g\Big(rac{[2^n s]}{2^n}, u\Big)
ight| (\lambda_k(ds, du) + \lambda(ds, du)) \ & + \left| \int_0^t \int_{\Gamma} g\Big(rac{[2^n s]}{2^n}, u\Big) \lambda_k(ds, du) - \int_0^t \int_{\Gamma} g\Big(rac{[2^n s]}{2^n}, u\Big) \lambda(ds, du)
ight| \ & \leq 2 arepsilon t + 2 \mathrm{nd} \ \mathrm{term.} \end{aligned}$$

Appealing to (2.15), we see that the 2nd term tends to 0, as $k \to \infty$, for any *n*. Hence we can conclude (2.16).

Let ζ_i , i = 1, 2, be $\tilde{M}_T(\text{or } \hat{M}([0 \ T] \times \Gamma))$ -valued random variables, which may be defined on different probability spaces. ν_i denotes the probability distribution of ζ_i . So, ν_i is a probability on $(\tilde{M}_T, \tilde{d}_T)$ (or $(\hat{M}([0 \ T] \times \Gamma), \hat{d}_T)$ respectively). Let $\tilde{m}_T(\text{or } \hat{m}_T)$ denote the totality of $\tilde{M}_T(\text{or } \hat{M}([0 \ T] \times \Gamma))$ valued random variables. We endow the following Prohorov metric $\tilde{D}_T(\text{or } \hat{D}_T)$ on $\tilde{m}_T(\text{or } \hat{m}_T$ resp.),

(2.17)
$$\begin{split} \tilde{D}_{T}(\zeta_{1},\,\zeta_{2}) &= L(\nu_{1},\,\nu_{2}) \\ \tilde{D}_{T}(\zeta_{1},\,\zeta_{2}) &= L(\nu_{1},\,\nu_{2}) \,. \end{split}$$

Since \tilde{M}_{T} and $\hat{M}([0 \ T] \times \Gamma)$ are compact metric spaces, $(\tilde{m}_{T}, \tilde{D}_{T})$ and $(\hat{m}_{T}, \hat{D}_{T})$ are also compact spaces.

For $\mathscr{A} = (\mathscr{Q}, F, \mathring{P}, \xi, B, Y, q)$, we sometimes denote ξ by $\xi_{\mathscr{A}}$ and so on, when any confusion might occur. Let $X(=X_{\mathscr{A}})$ be a solution of (2.1) for \mathscr{A} . Then (X, ξ, B, Y, q) becomes a $M_T = C([0, T] \to R^n) \times R^n \times C([0, T] \to R^n) \times ([0, T] \to R^n) \times \hat{M}([0, T] \times \Gamma)$ valued random variable. Endowing M_T with a usual metric $d_T(=$ sum of metric of each component) M_T turns out as a complete separable metric space. Let m_T denote the totality of M_T -valued random variables and D_T the Prohorov metric on m_T . Hereafter we denote (X, ξ, B, Y, q) by (X, \mathscr{A}) for simplicity if no confusion occurs. We also say that $\mathscr{A}_n \to \mathscr{A}$ (in Prohorov topology), if $(\xi_n, B_n, Y_n, q_n) \to$ (ξ, B, Y, q) in Prohorov topology. Ω_n, F_n, P_n can also depend on n. $\xi_{\mathscr{A}},$ $B_{\mathscr{A}}$ and $(Y_{\mathscr{A}}, q_{\mathscr{A}})$ are independent for any $\mathscr{A} \in \mathfrak{A}$ and $B_{\mathscr{A}}$ is a Brownian motion. Therefore we have

PROPOSITION 2.2. $\mathscr{A}_n \to \mathscr{A}$, iff $\xi_n \to \xi$ in law and $(Y_n, q_n) \to (Y, q)$ in Prohorov topology.

Now we put the set $\mathscr{P}_{\mu} = \text{totality of probability distributions of } (Y_{s}, q_{s}), \mathscr{A} \in \mathfrak{A}(\mu), \mathfrak{A}(\mu) \text{ defined later (3.8). Since } \xi_{s}, B_{s} \text{ and } (Y_{s}, q_{s}) \text{ are independent for } \mathscr{A} \in \mathfrak{A}, \mathscr{P}_{\mu} \text{ does not depend on } \mu, \text{ say } \mathscr{P}. \text{ Moreover } \pi \in \mathscr{P}, \text{ iff } \pi \text{ is a probability on } C([0 \ T] \to R^{i}) \times \hat{M}([0 \ T] \times \Gamma) \text{ such that the first component } y \text{ is a Brownian motion under } \pi \text{ and its increments } y(t) - y(s) \text{ is independent of } \sigma_{s}(y, \lambda) \text{ for } t > s, \text{ where } \lambda \text{ is the second component, (see § 2 of Fleming-Pardoux [8]). Since } C([0 \ T] \to R^{i}) \times \hat{M}([0 \ T] \times \Gamma) \text{ is a product of complete separable metric space, it becomes a complete separable metric space. So we introduce the Prohorov topology on <math>\mathscr{P}$. Then \mathscr{P} is a compact metric space, because the first component is a Browian motion and $\hat{M}([0 \ T] \times \Gamma)$ is a compact metric space. Now we have

Proposition 2.3.

i) $\mathscr{P} = totality$ of probability distribution of $(Y_{\mathscr{A}}, q_{\mathscr{A}}), \ \mathscr{A} \in \mathfrak{A}$, is a compact metric space with Prohorov metric.

ii) $\mathscr{P} = totality$ of probability distribution of $(Y_{\mathscr{A}}, q_{\mathscr{A}}), \mathscr{A} \in \mathfrak{A}(\mu)$, for any μ .

iii) For $\mathscr{A}, \mathscr{A}' \in \mathfrak{A}(\mu), D_T((X_{\mathscr{A}}, \mathscr{A}), (X_{\mathscr{A}'}, \mathscr{A}')) = 0$ iff probability distribution of $(Y_{\mathscr{A}}, q_{\mathscr{A}}) = probability$ distribution of $(Y_{\mathscr{A}'}, q_{\mathscr{A}'})$.

§3. Existence of optimal relaxed control

Let N be a compact subset of probability measures on R^n with Prohorov metric. Put P_{η} = Probability law of η and

$$\mathfrak{N} = \{(X, \mathscr{A}); P_{\xi} \in N\}$$

PROPOSITION 3.1. \Re is a compact subset of (m_T, D_T) .

Proof. By the condition (A1), $\{X_{\mathscr{A}}; P_{\mathfrak{e}_{\mathscr{A}}} \in N\}$ is totally bounded in Prohorov topology. $B_{\mathscr{A}}$ and $Y_{\mathscr{A}}$ are Brownian motions for any $\mathscr{A} \in \mathfrak{A}$. Since $\hat{m}_{\mathcal{T}}$ is compact, $\{q_{\mathscr{A}}; \mathscr{A} \in \mathfrak{A}\}$ is totality bounded. Therefore

$$\mathfrak{N} = \{ (X, \mathscr{A}); P_{\xi} \in N \}$$

is a totally bounded subset of (m_T, D_T) .

Now we will show that \Re is closed. Let (X_k, \mathscr{A}_k) , $k = 1, 2, \cdots$ be a Cauchy sequence. Using Skorobod's theorem, we can construct $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*)$ and $(X^*, \xi^*, B^*, Y^*, q^*)$ on a probability space $(\Omega^*, F^*, \mathring{P}^*)$, so that

(3.1) $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*)$ has the same probability law as $(X_k, \xi_k, B_k, Y_k, q_k)$, $k = 1, 2, \cdots$.

(3.2) As $k \to \infty$, $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*)$ converges to $(X^*, \xi^*, B^*, Y^*, q^*)$ in d_T metric, \mathring{P}^* -almost surely.

Hence ξ^* , B^* and (Y^*, q^*) are independent and B^* and Y^* are Brownian motions. Moreover we see that, for a.a. $\omega(\mathring{P}^*)$, $q^*(\cdot, \omega) \in \widehat{M}([0 \ T] \times \Gamma)$ and $\widehat{d}_T(q_k^*(\cdot, \omega), q^*(\cdot, \omega))$ tends to 0 as $k \to \infty$, by virtue of Proposition 2.2. On the other hand (2.15) implies that $q^*(t, A, \cdot)$ is F^* -measurable. Since $q(t, A, \omega)$ is continuous in $t, q^*(\cdot, A, \cdot)$ is $B_1[0 \ T] \times F^*$ -measurable. Namely q^* satisfies the conditions (v) and (vi). (3.2) again tells us that $Y^*(t)$ $-Y^*(r_i)$ is independent of $\sigma_s(Y^*, q^*)$ whenever $s \leq r_i \leq t$. Since Y^* has continuous paths, this implies that $Y^*(t) - Y^*(s)$ is independent of $\sigma_s(Y^*, q^*)$, Therefore $\mathscr{A}^* = (\Omega^*, F^*, \mathring{P}^*, \xi^*, B^*, Y^*, q^*) \in \mathfrak{A}$.

Next we will show that X^* is a solution of (2.1) for \mathscr{A}^* .

$$(3.3) \qquad \left| \int_{0}^{t} \int_{\Gamma} \widetilde{\tau}(X_{k}^{*}(s,\omega), u) q_{k}^{*}(ds, du, \omega) - \int_{0}^{t} \int_{\Gamma} \widetilde{\tau}(X^{*}(s,\omega), u) q^{*}(ds, du, \omega) \right|$$
$$\leq \int_{0}^{t} \int_{\Gamma} |\widetilde{\tau}(X_{k}^{*}(s,\omega), u) - \widetilde{\tau}(X^{*}(s,\omega), u)| q_{k}^{*}(ds, du, \omega) + \left| \int_{0}^{t} \int_{\Gamma} \widetilde{\tau}(X^{*}(s,\omega), u) (q_{k}^{*}(ds, du, \omega) - q^{*}(ds, du, \omega)) \right|$$

 $\begin{array}{ll} \text{the 1st term} & \leq K \int_0^t |X_k^*(s,\,\omega) - X^*(s,\,\omega)| \, q_k^*(ds,\,\Gamma,\,\omega) \\ \\ & = K \int_0^t |X_k^*(s,\,\omega) - X^*(s,\,\omega)| \, ds \,. \end{array}$

Since $X_k^*(\cdot, \omega)$ converges to $X^*(\cdot, \omega)$ uniformly in [0, T], the 1st term

converges to 0, as $k \to \infty$. Appealing to Remark of Proposition 2.1, the 2nd term converges to 0, as $k \to \infty$. So, we have

$$(3.4) \qquad \int_0^t \int_{\Gamma} \tilde{\tau}(X_k^*(s,\,\omega),\,u)q_k^*(ds,\,du,\,\omega) \longrightarrow \int_0^t \int_{\Gamma} \tilde{\tau}(X^*(s,\,\omega)q^*(ds,\,du,\,\omega)\,.$$

Using a routine method we get

(3.5)
$$\int_0^t \alpha(X_k^*(s)dB_k^*(s)) \longrightarrow \int_0^t \alpha(X^*(s)dB^*(s)) \quad \text{in proba } (\mathring{P}^*).$$

From (3.4) and (3.5), we conclude that X^* is a solution of (2.1) for \mathscr{A}^* . This completes the proof of Proposition 3.1.

COROLLARY. If
$$\mathscr{A}_k \to \mathscr{A}$$
, then $(X_k, \mathscr{A}_k) \to (X, \mathscr{A})$ in D_T .

Let f and h be bounded and uniformly continuous functions on \mathbb{R}^n . Define a pay-off function $J(\mathscr{A})$ as follows,

(3.6)
$$J(\mathscr{A}) = \mathring{E}f(X_{\mathscr{A}}(T))L(T, \mathscr{A})$$

where \mathring{E} stands for the expectation in $(\Omega, F, \mathring{P})$, and

(3.7)
$$L(T, \mathscr{A}) = \exp\left(\int_{0}^{T} h(X(s)) dY(s) - \frac{1}{2} \int_{0}^{T} |h(X(s))|^{2} ds\right)$$

where $X = X_{\mathscr{A}}$ and $Y = Y_{\mathscr{A}}$.

For a probability measure μ , we denote

(3.8)
$$\mathfrak{A}(\mu) = \{\mathscr{A} \in \mathfrak{A}; P_{\xi} = \mu\}$$

i.e. the set of all admissible system where initial distribution equals to μ . For a given μ we want to maximize $J(\mathscr{A})$ by a suitable choice of $\mathscr{A} \in \mathfrak{A}(\mu)$.

THEOREM 2. There exists an optimal admissible system $\tilde{\mathscr{A}} \in \mathfrak{A}(\mu)$, that is

(3.9)
$$\sup_{{}^{\mathscr{A}}\in\mathfrak{A}(\mu)}J(\mathscr{A})=J(\widetilde{\mathscr{A}})\,.$$

Proof. Let $\mathscr{A}_{k} \in \mathfrak{A}(\mu)$ be approximately optimal, i.e.

(3.10)
$$\lim_{k\to\infty} J(\mathscr{A}_k) = \sup_{\mathscr{A}\in\mathfrak{A}(\mu)} J(\mathscr{A}) \,.$$

By virtue of Proposition 3.1, some subsequence $(X_{k_i}, \mathscr{A}_{k_i})$ converges to (X, \mathscr{A}) in Prohorov topology. For simplicity we may assume $(X_k, \mathscr{A}_k) \rightarrow$

 (X, \mathscr{A}) as $k \to \infty$. Again Skorobod's theorem tells us that their suitable version satisfy (3.1) and (3.2). So we again assume that (X_k, \mathscr{A}_k) and (X, \mathscr{A}) satisfy (3.1) and (3.2), since $J(\mathscr{A})$ depends on only probability law.

From boundedness of f and h, we have

$$(3.11) \qquad \mathring{E}(f(X_k(T))L(T, \mathscr{A}_k))^2 \le \|f\|^2 e^{2T\|h\|}, \qquad k = 1, 2, \cdots$$

Hence $\{f(X_k(T))L(T, \mathscr{A}_k), k = 1, 2, \dots\}$ is uniformly integrable. On the other hand $L(T, \mathscr{A}_k)$ tends to $L(T, \mathscr{A})$ in proba. Appealing to the convergence theorem we get

(3.12)
$$\lim_{k\to\infty} J(\mathscr{A}_k) = J(\mathscr{A}) \; .$$

Combining (3.12) with (3.10), we complete the proof.

Remark. Appealing to Corollary of Proposition 3.1, we see that if $\mathscr{A}_k \to \mathscr{A}$, then $J(\mathscr{A}_k) \to J(\mathscr{A})$.

Now we treat the following case; $r(x, u) = b_1(x) + b_2(x)u$ where $b_2(x)$ is $n \times k$ matrix.

THEOREM 3. If $r(x, u) = b_1(x) + b_2(x)u$, then $q = q_{\mathscr{A}}$ can be replaced by a Γ -valued $\sigma_t(q)$ -progressively measurable process U (i.e. usual admissible control under partial observation). That is, $X = X_{\mathscr{A}}$ is a unique solution of the following S.D.E.

(3.13)
$$\begin{cases} dX(t) = \alpha(X(t))dB(t) + \tilde{\gamma}(X(t), U(t))dt\\ X(0) = \xi \end{cases}$$

where $B = B_{\mathscr{A}}$ and $\xi = \xi_{\mathscr{A}}$.

Proof. Our required U is obtained by the following lemma.

LEMMA. There exists a $\sigma_i(q)$ -progressively measurable Γ -valued process U such that

(3.14)
$$\int_0^t \int_{\Gamma} uq(ds, du) = \int_0^t U(s)ds, \quad \text{for } \forall t \leq T.$$

Proof. Define U_k as follows

$$(3.15) \quad U_k(t,\omega) = \begin{cases} 2^k \int_{\Gamma} u(q(t,\,du,\,\omega) - q(t-2^{-k},\,du,\,\omega))\,, & \text{for } t \ge 2^{-k} \\ \frac{1}{t} \int_{\Gamma} uq(t,\,du,\,\omega)\,, & \text{for } 0 < t < 2^{-k}\,. \end{cases}$$

Since Γ is convex compact, $U_k(t, \omega) \in \Gamma$ and $\sigma_\iota(q)$ -progressively measurable. Moreover the compactness of Γ tells us that $\{U_k, k = 1, 2, \cdots\}$ is weakly totally bounded in $L^2([0 \ T] \times \Omega)$. Hence some subsequence converges weakly and their suitable convex combinations converge strongly, say $\sum_{p=\ell}^{N\ell} \sigma_p^\ell U_{n_p}(t, \omega)$ converges to $U(t, \omega)$ in $L^2([0 \ T] \times \Omega)$, as $\ell \to \infty$. So U is a Γ -valued $\sigma_\iota(q)$ -progressively measurable process.

On the other hand the definition of U_k implies

(3.16)
$$\int_0^t U_k(s, \omega) ds \to \int_\Gamma uq(t, du, \omega) \left(= \int_0^t \int_\Gamma uq(ds, du, \omega) \right).$$

as $k \to \infty$. Taking the convex combination of U_{n_p} , we can conclude that U satisfies (3.14) by bounded convergence theorem.

Now we return to the proof of Theorem 3. Since ξ , B and U are independent, (3.13) has a unique solution. So it is enough to show that $X = X_s$ satisfies (3.13). By the Lemma we can see

(3.17)
$$\int_0^t b_2(X(s)) \int_{\Gamma} uq(ds, du) = \int_0^t b_2(X(s)) U(s) ds.$$

Using "
$$\int_{0}^{t} b_{1}(X(s))q(ds, du) = \int_{0}^{t} b_{1}(X(s))ds$$
", we have
(3.18) $\int_{0}^{t} \int_{\Gamma} \tilde{\gamma}(X(s), u)q(ds, du) = \int_{0}^{t} \tilde{\gamma}(X(s), U(s))ds$.

This completes the proof of Theorem 3.

DEFINITION 3. A Γ -valued process U is called an admissible control under partial observation, if ξ , B and (Y, U) are independent and Y(t) - Y(s) is independent of $\sigma_s(Y, U)$. Precisely speaking $\mathscr{A}_U = (\Omega, F, \mathring{P}, \xi, B, Y, U)$ is called an admissible usual system.

An admissible control U can be regarded as the following relaxed control q,

$$(3.19) q(t, A, \omega) = \int_0^t \delta_{U(s, \omega)}(A) ds = |s \leq t; U(s, \omega) \in A|$$

where δ_a is the δ -measure at a. Appealing to Theorems 2 and 3, we can derived,

COROLLARY. If $r(x, u) = b_1(x) + b_2(x)u$, then there exists an optimal admissible usual system $\tilde{\mathscr{A}}_{U}$. That is,

$$(3.20) J(\tilde{\mathscr{A}}_{U}) = \sup_{\mathscr{A}_{U}: \text{ad. usual sys}} J(\mathscr{A}_{U}) = \sup_{\mathscr{A} \in \mathfrak{A}(u)} J(\mathscr{A}) \ .$$

This fact was directly proved by Haussmann [9] and in a slightly different form by Fleming-Pardoux [8].

§4. Approximation by usual controls

For $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ we define P_n by

(4.1)
$$P_n(t, A, \omega) = \begin{cases} \frac{1}{t} q(t, A, \omega) & 0 < t < 2^{-n} \\ (q(t, A, \omega) - q(t - 2^{-n}, A, \omega))2^n, & 2^{-n} \le t \end{cases}$$

namely P_n is an approximate time derivative of q. $P_n(\cdot, A, \cdot)$ is $\sigma_l(q)$ progressively measurable and $P_n(t, \cdot, \omega)$ is a probability on Γ . Define q_n by

(4.2)
$$q_n(t, A, \omega) = \int_0^t P_n(s, A, \omega) ds$$

Then q_n satisfies the conditions (v) and (vi) and $\mathscr{A}_n = (\Omega, F, \mathring{P}, \xi, B, Y, q_n) \in \mathfrak{A}$. Since we have

$$(4.3) \quad |q_n(t,A,\omega)-q(t,A,\omega)| \leq 2^{-n} + 2^n \int_{t-2^{-n}}^t |q(s,A,\omega)-q(t,A,\omega)| \, ds \,,$$
 for a.a. $\omega(\mathring{P}) \,,$

the condition (iv) implies, as $n \to \infty$,

(4.4)
$$\sup_{A} |q_n(t, A, \omega) - q(t, A, \omega)| \to 0, \text{ uniformly on } [0, T].$$

and

(4.5)
$$\hat{d}_T(q_n(\cdot, \omega), q(\cdot, \omega)) \longrightarrow 0.$$

Fix $u_0 \in \Gamma$ arbitrarily and define $P_{n,k}$ by

(4.6)
$$P_{n,k}(t, A, \omega) = \begin{cases} P_n \Big(\frac{[2^k t]}{2^k}, A, \omega \Big), & \text{for } t \ge 2^{-k} \\ \delta_{u_0}(A) & \text{for } t < 2^{-k}. \end{cases}$$

Then $P_{n,k}$ is a step function in the time variable t. Put $q_{n,k}$ as follows.

(4.7)
$$q_{n,k}(t, A, \omega) = \int_0^t P_{n,k}(s, A, \omega) ds.$$

We call $q_{n,k}$ a switching relaxed control with interval 2^{-k} . It is clear that $(\Omega, F, \mathring{P}, \xi, B, Y, q_{n,k}) \in \mathfrak{A}$ and

(4.8)
$$|q_{n,k}(t, A, \omega) - q_n(t, A, \omega)| \leq 2^{n-k-1}t + 2^{-k}.$$

Therefore we get

(4.9)
$$\lim_{k\to\infty} \sup_{t\leq T,A} |q_{n,k}(t,A,\omega)-q_n(t,A,\omega)|=0.$$

Now we conclude the following proposition,

PROPOSITION 4.1. For $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q) \in \mathfrak{A}$, there exists an approximate sequence of switching relaxed control q_k with interval 2^{-k} , such that $q_k(\cdot, A, \cdot)$ is $\sigma_t(q)$ -progressively measurable and moreover

(4.10)
$$\lim_{k\to\infty} \sup_{0\leq t\leq T,A} |q_k(t,A) - q(t,A)| = 0, \qquad \mathring{P}\text{-almost surely}$$

and

(4.11)
$$\lim_{k\to\infty} \hat{d}_r(q_k, q) = 0, \quad \mathring{P}\text{-almost surely}.$$

Putting $\mathscr{A}_{k} = (\Omega, F, \mathring{P}, \xi, B, Y, q_{k})$, we can see the following corollary, by virtue of the Remark of Theorem 2.

COROLLARY. There exists an approximate admissible switching system \mathcal{A}_k , such that

$$(4.12) \qquad \qquad \mathscr{A}_k \longrightarrow \mathscr{A}, \qquad as \ k \to \infty.$$

Hence $J(\mathcal{A}_k)$ converges to $J(\mathcal{A})$.

THEOREM 4. There exists a Γ -valued $\sigma_i(q)$ -progressively measurable process U_k , such that

(4.13)
$$q_k(t, A, \omega) = \int_0^t \delta_{U_k(s,\omega)}(A) ds$$

approximates q in the following sence; $\mathscr{A}_{k} = (\Omega, F, \mathring{P}, \xi, B, Y, q_{k})$ satisfies (4.12).

Proof. By the Corollary of Proposition 4.1, we may assume that \mathscr{A} is an admissible switching system with interval 2^{-N} . Appealing to a Chattering Lemma [5], we will construct our desired U_{k_i} in the following way.

Let $\{u_1, \dots, u_m\}$ be an ε -net of Γ , and $V_1, \dots, V_m \in B(\Gamma)$ a partition of Γ such that

$$(4.14) |u_i - u| < \varepsilon for \forall u \in V_i.$$

Since a given q is a switching relaxed control, it can be written by

$$q(t, A, \omega) = \int_0^t p(s, A, \omega) ds$$

with p of step function in s. Define $\hat{p} = \hat{p}_{\epsilon}$ and $\hat{q} = \hat{q}_{\epsilon}$ as follows,

$$(4.15) \qquad \qquad \hat{p}(s, \{u_i\}, \omega) = p(s, V_i, \omega)$$

and

(4.16)
$$\hat{q}(t, \{u_i\}, \omega) = \int_0^t \hat{p}(s, \{u_i\}, \omega) ds.$$

Then $\hat{p}(t, \cdot, \omega)$ is a discrete probability on Γ and for $\forall g \in C(\Gamma)$

(4.17)
$$\int_{\Gamma} g(u) \hat{p}_{\varepsilon}(t, du, \omega) \longrightarrow \int_{\Gamma} g(u) p(t, du, \omega), \quad \text{as} \quad \varepsilon \downarrow 0.$$

Define $heta_i, i = 0, \cdots, m$ as follows: Let $j^{2^{-N}} \leq s_1 < s_2 < (j+1)2^{-N}$,

(4.18)
$$\theta_0(\omega) = s_1$$
$$\theta_i(\omega) = \sum_{\ell=1}^i \int_{s_1}^{s_2} \hat{p}(t, \{u_\ell\}, \omega) dt + s_1, \qquad i = 1, \cdots, m.$$

Then $s_1 = heta_0(\omega) \le heta_1(\omega) \le \cdots \le heta_m(\omega) = s_2$ and

(4.19)
$$\int_{s_{1}}^{s_{2}} \int_{\Gamma} g(u)\hat{q}(dt, du, \omega) = \int_{s_{1}}^{s_{2}} \int_{\Gamma} g(u)\hat{p}(t, du, \omega)dt$$
$$= \sum_{i=1}^{m} g(u_{i}) \int_{s_{1}}^{s_{2}} \hat{p}(t, \{u_{i}\}, \omega)dt = \sum_{i=1}^{m} g(u_{i})(\theta_{i}(\omega) - \theta_{i-1}(\omega))$$
$$= \int_{s_{1}}^{s_{2}} g(U(t, \omega))dt = \int_{s_{1}}^{s_{2}} \int_{\Gamma} g(u)\delta_{U(t, \omega)}(du)dt$$

where

(4.20)
$$U(t, \omega) = U_{\varepsilon, s_1, s_2}(t, \omega) = u_i \quad \text{on } [(\theta_{i-1}(\omega), \theta_i(\omega))].$$

Therefore $U_{\varepsilon,s_1,s_2}(t)$ is $\sigma_{j_2-N}(q)$ -measurable. Putting $\varepsilon = 2^{-k}$, $s_1 = \ell 2^{-k}(k > N)$, we define U_k by

(4.21)
$$U_k(t,\omega) = U_{2^{-k},\ell^{2-k},(\ell+1)2^{-k}}(t,\omega)$$
for $\ell 2^{-k} \le t \le (\ell+1)2^{-k}, \ \ell = 0, \ 1, \ 2 \cdots$

Consider the SDE

(4.22)
$$\begin{cases} d\xi_k(t) = \alpha(\xi_k(t))dB(t) + \tilde{\gamma}(\xi_k(t), U_k(t))dt \\ \xi_k(0) = \xi . \end{cases}$$

If we regard $U_k(t)$ as $\delta_{U_k(t)}$, then ξ_k turns out a solution of (2.1) for $\mathscr{A}_k = (\Omega, F, \mathring{P}, \xi, B, Y, q_k)$ where $q_k(t, A, \omega) = \int_0^t \delta_{U_k(s,\omega)}(A) ds$. Moreover (4.19) means

$$(4.23) q_k(\ell 2^{-k}, \cdot, \omega) = \hat{q}_{2^{-k}}(\ell 2^{-k}, \cdot, \omega), \ell = 0, 1, \cdots, [2^{\ell}T].$$

Hence, combining with (4.17), we can see that, as $k \to \infty$,

(4.24)
$$\hat{d}_{T}(q_{k}, q) \longrightarrow 0$$
, P -almost surely.

Evidently this completes the proof.

§5. Continuity of conditional expectation

According to [8] we define L pathwise. Hereafter we assume the following smoothness on h.

(A3) $h, \frac{\partial h}{\partial x_i}, \frac{\partial^2 h}{\partial x_i \partial x_j}$ $i, j = 1, \dots, n$ are bounded and uniformly continuous. Putting $X = X_{s}$, Ito's formula tells us that

(5.1)

$$\int_{0}^{T} h(X(t))dY(t) = h(X(T))Y(T) - \int_{0}^{T} Y(t)dh(X(t))$$

$$= h(X(T))Y(T) - \sum_{ij} \int_{0}^{T} Y(t)\frac{\partial h}{\partial x_{i}}(X(t))\alpha_{ij}(X(t))dB_{j}$$

$$\int_{0}^{T} Y(t)A(t, q)h(X(t))dt$$

where

(5.2)
$$A(t,q)h = \frac{1}{2} \sum a_{ij}(x) \frac{\partial^2 h}{\partial x_i \partial x_j} + \sum R_i(t,x,\omega;q) \frac{\partial h}{\partial x_i}$$

with

(5.3)
$$R(t, x, \omega; q) = \overline{\lim_{n \to \infty}} 2^n \int_{\Gamma} \mathcal{I}(x, u) (q(t, du, \omega) - q(t - 2^{-n}, du, \omega)).$$

So, R is $\sigma_t(q)$ -progressively measurable for any x, and Lipschitz continuous with respect to x. Moreover for any (x, ω) ,

(5.4)
$$R(t, x, \omega; q) = \frac{\partial}{\partial t} \int_{\Gamma} \tilde{\tau}(x, u) q(t, du, \omega) \quad \text{for a.a. } t.$$

For $y \in C([0 \ T] \to R^n)$ and $\lambda \in \hat{M}([0 \ T] \times \Gamma)$ we define \mathscr{L} by

$$\mathcal{L}(\theta, \xi, B, y, \lambda)$$

$$(5.5) \qquad = \exp\left[y(\theta)h(\eta(\theta)) - \int_{0}^{\theta} y(s)A(s,\lambda)h(\eta(s))ds - \frac{1}{2}\int_{0}^{\theta} |h(\eta(s))|^{2}ds - \sum_{ij}\int_{0}^{s} y(s)\frac{\partial h}{\partial x_{i}}(\eta(s))\alpha_{ij}(\eta(s))dB_{j}(s)\right]$$

where η is a solution of S.D.E.

(5.6)
$$\begin{cases} d\eta(t) = \alpha(\eta(t)) dB(t) + \int_{\Gamma} \tilde{\tau}(y(t), u) \lambda(dt, du) \\ \eta(0) = \xi. \end{cases}$$

Applying a successive approximation, we can see that η is a Borel function of ξ , B and λ . Hence \mathscr{L} is Borel measurable with respect to θ , ξ , B, y, λ . From (A1) and (A3) we have the following evaluation,

$$e^{-F(y,\theta)} \exp\left[-\sum_{i,j} \int_{0}^{\theta} y(t) \frac{\partial h}{\partial x_{i}}(\eta(t)) \alpha_{ij}(\eta(t)) dB_{j}(t) - \frac{1}{2} \int_{0}^{t} \sum_{j} \left(y(t) \sum_{i} \frac{\partial h}{\partial x_{i}}(\eta(t)) \alpha_{ij}(\eta(t))\right)^{2} dt\right]$$

$$\leq \mathscr{L}(\theta, \xi, B, y, \lambda) \leq e^{F(y,\theta)} \exp\left[-\sum_{i,j} \int_{0}^{\theta} \cdots dB_{j}(t) - \frac{1}{2} \int_{0}^{t} \cdots dt\right]$$
where
$$F(y, \theta) = K_{1}(\sup|y(t)| + 1)^{2}(\theta + 1).$$

$$F(y, heta)=K_{\scriptscriptstyle 1}(\sup_{t\leq heta}|y(t)|+1)^2(heta+1)$$
 .

Since $(C[0 \ T] \to R^n)$, $\| \|$ and $(\hat{M}[0 \ T) \times \Gamma, \hat{d}_r)$ are complete separable metric spaces, the regular conditional probability $P((X, \xi, B, Y, q) \in \cdot | Y = y,$ $q = \lambda$) exists. This regular conditional probability is nothing but the probability distribution of $(\eta, \xi, B, y, \lambda)$, because (ξ, B) and (Y, q) are independent. Putting $\mu = P_{\xi}(=$ probability distribution of ξ), we have a version of conditional expectation as follows.

(5.8)
$$\begin{split} \mathring{E}(f(X(\theta))L(\theta,\mathscr{A})/Y = y, q = \lambda) &= \mathring{E}f(\eta(\theta))\mathscr{L}(\theta, \xi, B, y, \lambda) \\ &= \int \mathring{E}f(\eta(\theta, x))\mathscr{L}(\theta, x, B, y, \lambda)d\mu(x), \quad \text{for bounded Borel } f, \end{split}$$

where $\eta(\theta, x)$ is a solution of (5.6) with $\eta(0, x) = x$. The right side of (5.8) is Borel measurable with respect to θ , y, λ , which depends on f and μ . So we denote the right side of (5.8) by $C(\theta, y, \lambda, \mu, f)$. Moreover $C(\theta, y, \lambda, \mu, f)$. λ, μ, f) depends on the value of y and λ up to time θ . Stressing μ we denote \mathring{E} by \mathring{E}_{μ} . That is,

(5.9)
$$C(\theta, Y, q, \mu, f) = \mathring{E}_{\mu}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{T}(Y, q)) \\ = \mathring{E}_{\mu}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{\theta}(Y, q)), \qquad \mathring{P}\text{-almost surely.}$$

Using (5.7) we have

$$(5.10) e^{-F(Y,\theta)} \leq C(\theta, Y, q, \mu, 1) \leq e^{F(Y,\theta)}$$

Now we define $C(\theta, Y, q, \nu, f)$ for a positive measure ν as follows

W. H. FLEMING AND M. NISIO

(5.11)
$$C(\theta, Y, q, \nu, f) = \|\nu\| C\left(\theta, Y, q, \frac{\nu}{\|\nu\|}, f\right)$$

where $\|\nu\| = \nu(R^n)$ and we apply the same notations \mathring{E}_{ν} for a general positive measure ν , that is

(5.12)
$$\check{E}_{\nu}(f(X(\theta))L(\theta, \mathscr{A})/\sigma_{\theta}(Y, q)) = C(\theta, Y, q, \nu, f)$$

with $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ for $P_{\varepsilon} = \nu/||\nu||$. The left side of (5.12) stands for

$$(5.13) \qquad \mathring{E}_{\nu}(f(X(\theta))L(\theta,\mathscr{A})/\sigma_{\theta}(Y,q)) = \|\nu\|\mathring{E}_{\nu/\|\nu\|}(f(X(\theta))L(\theta,\mathscr{A})/\sigma_{\theta}(Y,q)).$$

Since ξ is independent of (B, Y, q), the right side of (5.13) does not depend on a special choice of ξ .

Define $\Lambda(\theta, y, \lambda, \nu)(A)$ by

(5.14)
$$\Lambda(\theta, y, \lambda, \nu)(A) = C(\theta, y, \lambda, \nu, \chi_A), \quad A \in \boldsymbol{B}_n.$$

Then $\Lambda(\theta, y, \lambda, \nu)$ is a positive measure on \mathbb{R}^n and for any bounded Borel function f.

(5.15)
$$\langle f, \Lambda(\theta, y, \lambda, \nu) \rangle = C(\theta, y, \lambda, \nu, f)$$

where $\langle f, \Lambda \rangle = \int_{\mathbb{R}^n} f(x) \Lambda(dx)$. From (5.10) we see

(5.16)
$$\|\nu\|e^{-F(y,\theta)} \leq \|\Lambda(\theta, y, \lambda, \nu)\| \leq \|\nu\|e^{F(y,\theta)}$$

On the other hand $\mathscr{L}(\theta, \xi, B, y, \lambda)$ is continuous in θ , \mathring{P} -almost surely, and (5.7) implies the uniformly integrability of $\{\mathscr{L}(\theta, \xi, B, y, \lambda), \theta \in [0, T]\}$. Hence $\| \Lambda(\theta, y, \lambda, \nu) \| = \| \nu \| \mathring{\mathcal{L}}(\theta, \xi, B, y, \lambda)$ is continuous in θ .

Define a metric \varDelta on $M(\mathbb{R}^n)$ (= totality of positive measure on \mathbb{R}^n) as follows

(5.17)
$$\Delta(\mu,\nu) = L\left(\frac{\mu}{\|\mu\|}, \frac{\nu}{\|\nu\|}\right) + |\|\mu\| - \|\nu\|| + \left|\frac{1}{\|\mu\|} - \frac{1}{\|\nu\|}\right|.$$

Then $(M(\mathbb{R}^n), \Delta)$ is a complete separable metric space and ν_k , $k = 1, 2, \cdots$ is a Cauchy sequence, iff $\langle f, \nu_k \rangle$ converges for any $f \in C_b(\mathbb{R}^n)$, as $k \to \infty$. and $\lim_{k\to\infty} \langle 1, \nu_k \rangle (= ||\nu_k||) > 0$. Recalling Prohorov's theorem we have

PROPOSITION 5.1. $N \supset M(\mathbb{R}^n)$ is Δ -totally bounded, iff there exist positive constants c and c' and for $\forall \varepsilon > 0$ there is a compact subset $K_{\varepsilon} \subset \mathbb{R}^n$ such that

$$(5.18) c' \leq \|\nu\| \leq c \quad and \quad \nu(K^c_*) < \varepsilon \quad for \ \nu \in N.$$

Put m = totality of $M(\mathbb{R}^n)$ -valued random variables, which may be defined on different probability spaces. We endow the Prohorov metric on m, (called δ metric), namely

$$\delta(\zeta_1,\,\zeta_2)=L(\mu_1,\,\mu_2)$$

where μ_i is the probability distribution of ζ_i . Then (m, δ) is a complete separable metric space, because $(\mathcal{M}(\mathbb{R}^n), \Delta)$ is a complete separable metric space.

Concerning the continuity of Λ , we can prove the following theorem.

THEOREM 5. If $y_k \to y$ in $C([0 \ T] \to R^1)$, $\nu_k \to \nu$ in Δ , $\lambda_k \to \lambda$ in \hat{d}_T and $\theta_k \to \theta$, then

(5.19)
$$\Lambda(\theta_k, y_k, \lambda_k, \nu_k) \longrightarrow \Lambda(\theta, y, \lambda, \nu) \quad in \ \varDelta.$$

Proof. Firstly we remark that

(5.20)
$$\int_0^s R(t, x, \lambda_k) dt \longrightarrow \int_0^s R(t, x, \lambda) dt.$$

Recalling the definition of R for $\lambda \in \hat{M}([0 \ T] \times \Gamma)$ (see (5.3)), we get, for any x,

(5.21)
$$R(t, x, \lambda_k) = \lim_{\lambda \to \infty} \int_{\Gamma} \mathcal{I}(x, u) (\lambda_k(t, du) - \lambda_k(t - 2^{-n}, du)) 2^n$$
for a.a. t.

Hence the bounded convergence theorem implies

(5.22)
$$\int_{0}^{s} R(t, x, \lambda_{k}) dt = \lim_{n \to \infty} \left[\int_{0}^{s} \int_{\Gamma} 2^{n} \mathcal{I}(x, u) \lambda_{k}(t, du) dt - \int_{2^{n}}^{s} \int_{\Gamma} 2^{n} \mathcal{I}(x, u) \lambda_{k}(t - 2^{-n}, du) dt \right]$$
$$= \int_{\Gamma} \mathcal{I}(x, u) \lambda_{k}(s, du) .$$

Since $\lambda_k \to \lambda$ in \hat{d}_T , (5.22) means (5.20).

Consequently we can easily see

LEMMA. If $\phi_k \to \phi$ and $\psi_k \to \psi$ in $C([0 \ T] \to R^n)$ and $C([0 \ T] \to R^i)$ respectively, then

(5.23)
$$\int_0^s R(t, \phi_k(t), \lambda_k) \psi_k(t) dt \longrightarrow \int_0^s R(t, \phi(t), \lambda) \psi(t) dt .$$

Putting $\Lambda_k = \Lambda(\theta_k, y, \lambda_k, \nu_k)$ and $\Lambda = \Lambda(\theta, y, \lambda, \nu)$, we will show

(5.24)
$$\langle f, \Lambda_k \rangle \longrightarrow \langle f, \Lambda \rangle \quad \text{for } f \in C_b(\mathbb{R}^n)$$

Consider the SDE on $(\Omega_k, F_k, \mathring{P}_k)$

(5.25)
$$\begin{cases} d\eta_k(t) = \alpha(\eta_k(t)) dB_k(t) + \int_{\Gamma} \tilde{r}(\eta_k(t), u) \lambda_k(dt, du) \\ \eta_k(0) = \xi_k \end{cases}$$

and on $(\Omega, F, \mathring{P})$

(5.26)
$$\begin{cases} d\eta(t) = \alpha(\eta(t)) dB(t) + \int_{\Gamma} \mathcal{I}(\eta(t), u) \lambda(dt, du) \\ \eta(0) = \xi \end{cases}$$

where ξ_k and ξ have probability distributions $\nu_k/||\nu_k||$ and $\nu/||\nu||$ respectively. Since $\{(\eta_k, \xi_k, B_k), k = 1, 2, \dots\}$ is totally bounded in Prohorov topology and any convergent subsequence tends to (η, ξ, B) in Prohorov topology, $(\eta_k, \xi_k, B_k), k = 1, 2, \dots$ itself converges to (η, ξ, B) in Prohorov topology. Appealing to Skorobod's theorem, we will assume that $\Omega_k = \Omega$, $F_k = F$, $\mathring{P}_k = \mathring{P}$ and \mathring{P} -almost surely $\eta_k \to \eta$ in $C([0 \ T] \to R^n), B_k \to B$ in $C([0 \ T] \to R^n)$ and $\xi_k \to \xi$ in R^n . Therefore the lemma guarantees

(5.27)
$$\int_{0}^{\delta_{k}} y_{k}(s) A(s, \lambda_{k}) h(\eta_{k}(s)) ds \longrightarrow \int_{0}^{\delta} y(s) A(s, \lambda) h(\eta(s)) ds,$$
$$\mathring{P}-\text{almost surely.}$$

Furthermore, using a routine method we have

(5.28)
$$\int_{0}^{\theta_{k}} y_{k}(s) \frac{\partial h}{\partial x_{i}}(\eta_{k}(s)) \alpha_{ij}(\eta_{k}(s)) dB_{k,j}(s)$$
$$\longrightarrow \int_{0}^{\theta} y(s) \frac{\partial h}{\partial x_{i}}(\eta(s)) \alpha_{ij}(\eta(s)) dB_{j}(s) \quad \text{in proba } \mathring{P}.$$

Hence we have

(5.29) $\mathscr{L}(\theta_k, \xi_k, B_k, y_k, \lambda_k) \longrightarrow \mathscr{L}(\theta, \xi, B, y, \lambda)$ in proba \mathring{P} .

Since (5.7) means the uniformly integrability of $\{f(\eta_k(\theta_k)\mathcal{L}(\theta_k, \xi_k, B_k, y_k, \lambda_k), k = 1, 2, \dots\}$, (5.29) implies (5.24).

By virtue of Proposition 5.1, (5.16) and (5.20) guarantee the totally boundedness of $\{\Lambda_k, k = 1, 2, \dots\}$. Consequently, again (5.24) tells us that Λ_k converges to Λ in metric Λ . This completes the proof of Theorem 5.

Now we apply this theorem to admissible systems.

THEOREM 6. Let $\mathscr{A}_{k} = (\Omega_{k}, F_{k}, \mathring{P}_{k}, \xi_{k}, B_{k}, Y_{k}, q_{k})$ and $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q)$ where ξ_{k} and ξ have probability distributions $\nu_{k}/||\nu_{k}||$ and $\nu/||\nu||$ respectively. If $(Y_{k}, q_{k}) \rightarrow (Y, q)$ in Prohorov topology, $\nu_{k} \rightarrow \nu$ in Λ and $\theta_{k} \rightarrow \theta$, then

(5.30)
$$\Lambda(\theta_k, Y_k, q_k, \nu_k) \longrightarrow \Lambda(\theta, Y, q, \nu)$$
 in metric δ .

Proof. By the assumption $\mathscr{A}_k \to \mathscr{A}$ in Prohorov topology. Hence $(X_k, \mathscr{A}_k) \to (X, \mathscr{A})$ in Prohorov metric D_T , by virtue of Corollary of Proposition 3.1. By Skorobod's theorem we can construct copies (X_k^*, \mathscr{A}_k^*) and (X^*, \mathscr{A}^*) of (X_k, \mathscr{A}_k) and (X, \mathscr{A}) respectively, so that $\mathscr{Q}_k^* = \mathscr{Q}^*, F_k^* = F^*, \dot{P}_k^* = \dot{P}^*$ and \dot{P}^* -almost surely $(X_k^*, \xi_k^*, B_k^*, Y_k^*, q_k^*) \to (X^*, \xi^*, B^*, Y^*, q^*)$ in d_T . For non-exceptional $\omega \in \mathscr{Q}^*$, we put $\lambda_k = q_k^*(\cdot, \omega), y_k = Y_k^*(\cdot, \omega), \lambda = q^*(\cdot, \omega)$ and $y = Y^*(\cdot, \omega)$. Then y_k, λ_k, y and λ satisfy the condition of Theorem 5, Theorefore we have

(5.31)
$$\Lambda(\theta_k, Y_k^*, q_k^*, \nu_k) \longrightarrow \Lambda(\theta, Y^*, q^*, \nu), \qquad \mathring{P}^*\text{-almost surely.}$$

On the other hand Theorem 5 tells us that the mapping $\Lambda(\theta, \cdot, \cdot, \nu)$; $C([0 \ T] \to R^i) \times (\hat{M}([0 \ T] \times \Gamma)) \to M(R^n)$ is continuous. So $\Lambda(\theta, Y, q, \nu)$ is a random variable, i.e. $\Lambda(\theta, Y, q, \nu) \in m$. Consequently (5.31) implies (5.30).

Recalling Corollary of Theorem 4, we get

COROLLARY. For any $\mathscr{A} \in \mathfrak{A}(\mu)$, there exists an approximate admissible switching system $\mathscr{A}_k \in \mathfrak{A}(\mu)$, such that

(5.32) $\Lambda(\theta_k, Y_k, q_k, \nu) \longrightarrow \Lambda(\theta, Y, q, \nu)$ in metric δ

where $\mu = \nu / \|\nu\|$.

§6. Semigroup

Let C be the Banach lattice of the totality of bounded continuous mappings from $(M(\mathbb{R}^n), \Delta)$ into \mathbb{R}^1 , with supremum norm and the order \leq , i.e.

(6.1)
$$\phi \leq \psi \iff \phi(\nu) \leq \psi(\nu) \quad \text{for } \forall \nu \in M(\mathbb{R}^n).$$

For $\nu \in M(\mathbb{R}^n)$, $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$ and $\phi \in C$ we define J by

(6.2)
$$J(t, \mathscr{A}, \nu, \phi) = \mathring{E}(\phi(\Lambda(t, Y, q, \nu)))$$

(6.3)
$$\begin{split} \mathring{E}[\mathring{E}(\phi(\Lambda(t, Y, q, \nu)/\sigma(Y, q))] \\ = \int_{C([0\ T] \to R^1) \times \widehat{M}([0\ T] \times \Gamma)} \mathring{E}(\phi(\Lambda(t, y, \lambda, \nu))\pi(dy, d\lambda)) \end{split}$$

where π is the probability distribution of (Y, q). Since $\mathring{E}(\phi(\Lambda(t, y, \lambda, \nu)))$ depends only on ϕ, ν, t, y and $\lambda, J(t, \mathcal{A}, \nu, \phi)$ can be denoted by $J(t, \pi, \nu, \phi)$.

Define $S(t)\phi$ by

(6.4)
$$S(t)\phi(\nu) = \sup_{\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)} J(t, \mathscr{A}, \nu, \phi).$$

Then by Proposition 2.3 (ii) and (6.3) we have

(6.5)
$$S(t)\phi(\nu) = \sup_{\pi \in \mathscr{P}} J(t, \pi, \nu, \phi).$$

PROPOSITION 6.1. $J(t, \pi, \nu, \phi)$ is continuous in $(t, \pi, \nu) \in [0 \ T] \times \mathscr{P} \times M(\mathbb{R}^n)$.

Proof. Let $t_k \to t$, $\pi_k \to \pi$ and $\nu_k \to \nu$ in their topologies. Take $\mathscr{A}_k \in \mathfrak{A}(\nu_k/||\nu_k||)$ (and $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$) such that the probability distribution of (y_k, q_k) (and (Y, q)) is π_k (and π respectively). Then $\mathscr{A}_k \to \mathscr{A}$ by Proposition 2.2. Therefore Theorem 6 guarantees that $\Lambda(t_k, \pi_k, \nu_k, \phi) \to \Lambda(t, \pi, \nu, \phi)$ in metric δ that is in the Prohorov topology. By Skorobod's theorem we can take a copy Λ_k^* of $\Lambda(t_k, \pi_k, \nu_k, \phi)$ and Λ^* of $\Lambda(t, \pi, \nu, \phi)$ so that Λ_k^* converges to Λ_k^* almost surely on $(\Omega^*, F^*, \mathring{P}^*)$. Since ϕ is bounded continuous, we see that

(6.6)
$$\begin{cases} J(t_k, \pi_k, \nu_k, \phi) = \mathring{E}_k \phi(\Lambda(t_k, Y_k, q_k, \nu_k)) = \mathring{E}^* \phi(\Lambda_k^*) \\ J(t, \pi, \nu, \phi) = \mathring{E} \phi(\Lambda(t, Y, q, \nu)) = \mathring{E}^* \phi(\Lambda^*) \\ \mathring{E}^* \phi(\Lambda_k^*) \to \mathring{E}^* \phi(\Lambda^*) . \end{cases}$$

This completes the proof of Proposition 6.1.

Since \mathscr{P} is a compact metric space by Proposition 2.3 (i), we can conclude the following proposition.

PROPOSITION 6.2. $S(t)\phi \in C$ whenever $\phi \in C$. That is, S(t) is a mapping from C into C. Recalling Corollary of Theorem 6, we see

(6.7)
$$S(t)\phi(\nu) = \sup_{\substack{\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)\\ \mathscr{A}: \text{ swisching syst.}}} J(t, \mathscr{A}, \nu, \phi) \,.$$

THEOREM 7. $S(t + \theta) = S(t)S(\theta)$, S(0) = identity.

Proof. Consider the SDE on $(\Omega, F, \mathring{P})$, for $\lambda \in \widehat{M}([0 \ T] \times \Gamma)$

(6.8)
$$\begin{cases} d\eta(t) = \alpha(\eta(t)) dB(t) + \int_{\Gamma} \tilde{\gamma}(\eta(t), u) \lambda(dt, du) \\ \eta(0) = \xi. \end{cases}$$

Since a solution $\eta(\cdot, \xi, B, \lambda)$ is unique, η satisfies the following relation

(6.9)
$$\eta(t+\theta,\xi,B,\lambda) = \eta(\theta,\eta(t,\xi,B,\lambda),B_t^+,\lambda_t^+)$$

where $B_t^+(s) = B(t+s) - B(t)$, $\lambda_t^+(s, A) = \lambda(t+s, A) - \lambda(t, A)$.

Using Ito's formula we get

$$\begin{array}{ll} (6.10) \quad \mathscr{L}(t+s,\xi,B,y,\lambda) = \mathscr{L}(t,\xi,B,y,\lambda)\mathscr{L}(s,\eta(t,\xi,B,\lambda),B_{t}^{+},y_{t}^{+},\lambda_{t}^{+})\,.\\\\ \text{Define } v\colon [0\ T] \times R^{n} \times C([0\ T] \to R^{1}) \times \hat{M}([0\ T] \times \Gamma) \times C_{b}(R^{n}) \to R^{1} \text{ by}\\\\ (6.11) \qquad v(t,x,y,\lambda,f) = \mathring{E}f(\eta(t,x,B,\lambda))\mathscr{L}(t,x,B,y,\lambda) \end{array}$$

where \mathring{E} of the right side stands for the expectation with respect to B, since the starting point x is not random. From (6.10) and (6.11) we have

(6.12)
$$v(t + s, x, y, \lambda, f) = \tilde{E}f(\eta(t + s, x, B, \lambda))\mathscr{L}(t + s, x, B, y, \lambda)$$
$$= \mathring{E}[\mathscr{L}(t, x, B, y, \lambda)\mathring{E}(f(\eta(s, \eta(t, x, B, \lambda), B_{\iota}^{+}, \lambda_{\iota}^{+}) \times \mathscr{L}(s, \eta(t, x, B, \lambda), B_{\iota}^{+}, y_{\iota}^{+}, \lambda_{\iota}^{+}/\sigma_{\iota}(B))].$$

Since $\eta(t, x, B, \lambda)$ is $\sigma_{\iota}(B)$ -measurable, we see

(6.13)
$$\begin{array}{l} E(f(\eta(s, \eta(t, x, B, \lambda), B_t^+, \lambda_t^+) \mathscr{L}(s, \eta(t, x, B, \lambda), B_t^+, y_t^+, \lambda_t^+) / \sigma_t(B))) \\ = v(s, \eta(t, x, B, \lambda), y_t^+, \lambda_t^+, f) \end{array}$$

and, combining with (6.12) we get

(6.14)
$$v(t+s, x, y, \lambda, f) = \check{E}v(s, \eta(t, x, B, \lambda), y_t^+, \lambda_t^+, f)\mathscr{L}(t, x, B, y, \lambda)$$
$$= v(t, x, y, \lambda, v(s, \cdot, y_t^+, \lambda_t^+, f)).$$

Recalling (5.8) and (5.15) we get

(6.15)
$$\langle f, \Lambda(t, y, \lambda, \nu) \rangle = \langle v(t, \cdot, y, \lambda), \nu \rangle, \quad f \in C_b(\mathbb{R}^n).$$

Hence, by (6.14), we have

(6.16)

$$\langle f, \Lambda(t+s, y, \lambda, \nu) \rangle = \langle v(t+s, \cdot, y, \lambda), \nu \rangle$$

$$= \langle v(t, \cdot, y, \lambda, v(s, \cdot, y_t^+, \lambda_t^+, f)), \nu \rangle$$

$$= \langle v(s, \cdot, y_t^+, \lambda_t^+, f), \Lambda(t, y, \lambda, \nu) \rangle$$

$$= \langle f, \Lambda(s, y_t^+, \lambda_t^+, \Lambda(t, y, \lambda, \nu)) \rangle, \quad f \in C_b(R^n).$$

Consequently

(6.17)
$$\Lambda(t+s, y, \lambda, \nu) = \Lambda(s, y_t^+, \lambda_t^+, \Lambda(t, y, \lambda, \nu)) \, .$$

Since (6.17) holds for any $y \in C([0 \ T] \to R^1)$ and $\lambda \in \hat{M}(0 \ T] \times \Gamma)$, we have, for any $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q) \in \mathfrak{U}(\nu/||\nu||)$,

(6.18) $\Lambda(t+s, Y, q, \nu) = \Lambda(s, Y_t^+, q_t^+, \Lambda(t, Y, q, \nu)), \text{ }\dot{P}\text{-almost surely.}$

This implies

(6.19)
$$J(t + s, \mathscr{A}, \nu, \phi) = E\phi(\Lambda(t + s, Y, q, \nu))$$
$$= \mathring{E}[\mathring{E}(\phi(\Lambda(t + s, Y, q, \nu)/\sigma_{T}(Y q)))]$$
$$= \mathring{E}\phi(\Lambda(s, Y_{t}^{+}, q_{t}^{+}, \Lambda(t, Y, q, \nu)))$$
$$= \mathring{E}\mathring{E}(\phi(\Lambda(s, Y_{t}^{+}, q_{t}^{+}, \Lambda(t, Y, q, \nu))/\sigma_{t}(Y, q))) .$$

Under the regular conditional probability $\mathring{P}(/\sigma_t(Y,q)), (B_t^+, Y_t^+)$ is a(n+1)dimensional Brownian motion, (Y_t^+, q_t^+) independent of (B, ξ) and Y_t^+ is $\sigma_s(Y_t^+, q_t^+)$ -Brownian motion, i.e. independent increments. Hence $\eta(t, \xi, B, q), B_t^+$ and (Y_t^+, q_t^+) are independent under conditional probability $\mathring{P}(\cdot/\sigma_t(Y,q)), \mathring{P}$ -almost surely, although the probability distribution of q_t^+ might depend on the past value of $(Y(\theta), q(\theta, A), \theta \leq t, A \in B(\Gamma))$. Hence there exists a null set $N \in \sigma_t(Y, q)$, such that for $\omega \notin N$, $(\Omega, F, \mathring{P}(\cdot/\sigma_t(Y,q)))$ $(\omega), \eta(t, \xi, B, q), B_t^+, Y_t^+, q_t^+) \in \mathfrak{A}$. Therefore

(6.20)
$$\mathring{E}(\phi(\Lambda(s, Y_{\iota}^{+}, q_{\iota}^{+}, \Lambda(t, Y, q, \nu))/\sigma_{\iota}(Y, q))) \leq (S(s)\phi)(\Lambda(t, Y, q, \nu)),$$
$$\mathring{P}\text{-almost surely}.$$

Combining (6.20) with (6.19), we have

$$(6.21) J(t+s, \mathscr{A}, \nu, \phi) \leq S(t)(S(s)\phi)(\nu).$$

Taking the supremum with respect to $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$, we have

(6.22)
$$S(t+s)\phi(\nu) \leq S(t)(S(s)\phi)(\nu)$$

For the converse inequality we will show some lemmas

LEMMA 1. Let $N \subset (M(\mathbb{R}^n), \Delta)$ be totally bounded. Then $\{\Lambda(t, Y_s, q_s, \nu); \\ \mathscr{A} \in \mathfrak{A}(\nu/||\nu||), \nu \in N\}$ is totally bounded in (m, δ) .

Proof. Consider the SDE, for $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, Y, q) \in \mathfrak{A}(\nu/||\nu||).$

(6.23)
$$\begin{cases} d\eta(t) = \alpha(\eta(t)) dB(t) + \int_{\Gamma} \tilde{\gamma}(\eta(t), u) \lambda(dt, du) \\ \eta(0) = \xi. \end{cases}$$

Then, using this unique solution $\eta(t) = \eta(t, \xi, B, \lambda)$ we have

(6.24)
$$\Lambda(t, y, \lambda, \nu)(A) = \|\nu\| \mathring{E} \chi_A(\eta(t)) \mathscr{L}(t, \xi, B, y, \lambda).$$

Hence, by (5.7)

STOCHASTIC RELAXED CONTROL

(6.25)
$$\begin{split} \Lambda^2(t,\,y,\,\lambda,\,\nu)(A) &\leq \|\nu\|^2 \mathring{P}(\eta(t)\in A) \mathring{E}\mathscr{L}^2(t,\,\xi,\,B,\,y,\,\lambda) \\ &\leq \|\nu\|^2 \mathring{P}(\eta(t)\in A) \exp\left[2K_2(t\,+\,1)(\|y\|_t\,+\,1)^2\right] \end{split}$$

where $||y||_t = \sup_{s \le t} |y(s)|$. This means

(6.26)
$$\Lambda(t, y, \lambda, \nu)(A) \leq \|\nu\| \sqrt{\mathring{P}(\eta(t) \in A)} \exp\left[K_2(t+1)(1+a)^2\right],$$
whenever $\|y\|_{\iota} \leq a$.

On the other hand the condition (A1) implies that, for $\varepsilon' > 0$, there exists $b = b(\varepsilon', t, N)$ such that

$$(6\ 27) \quad \mathring{P}(|\eta(t,\,\xi,\,B,\,\lambda)| > b) < \varepsilon' \quad \text{for } \forall \lambda \in \hat{M}([0 \ T] \, \times \, \Gamma), \ \mathscr{A} \in \mathfrak{A}\Big(\frac{\nu}{\|\,\nu\,\|}\Big), \ \nu \in N.$$

Since Y is a Brownian motion, for $\varepsilon > 0$ there exists $a = a(\varepsilon)$ such that

$$(6.28) \qquad \qquad \mathring{P}(\sup_{s < t} |Y(s)| \le a) > 1 - \varepsilon \qquad \text{for } \forall \mathscr{A} \in \mathfrak{A} \,.$$

Putting $\varepsilon' = \varepsilon^2 e^{-2K_2(1+t)(1+a(\varepsilon))^2}$, (6.26) gives

$$(6.29) A(t, y, \lambda, \nu)(K^c) < \varepsilon ||\nu|| for \ \lambda \in \hat{M}([0 \ T] \times \Gamma)$$

whenever $||y||_t < a$, where the compact set K is given by

$$(6.30) K = \{x \in R^n \colon |x| \le b(\varepsilon', t, N)\}.$$

Therefore combining (6.28) and (6.29), we see, for $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$,

$$(6.31) \qquad 1-\varepsilon < \mathring{P}(\sup_{s\leq t}|\,Y(s)|\leq a(\varepsilon)) \leq \mathring{P}(\varLambda(t,\,Y,\,q,\,\nu)(K^c)<\varepsilon\,\|\nu\|)\;.$$

Recalling the condition " $0 < c' \le ||\nu|| \le c$ for $\forall \nu \in N$ ", (6.31) implies Lemma 1 by virtue of Proposition 5.1.

Applying Prohorov's theorem, Lemma 1 gives

LEMMA 2. For $\varepsilon > 0$ and a totally bounded set $N \subset (M(\mathbb{R}^n), \Delta)$ there exists a compact set $\tilde{N} = \tilde{N}(\varepsilon, t, N) \subset (M(\mathbb{R}^n), \Delta)$ such that

(6.32)
$$\mathring{P}(A(t, Y, q, \nu) \in \widetilde{N}) > 1 - \varepsilon \quad \text{for } \mathscr{A} \in \mathfrak{A}\left(\frac{\nu}{\|\nu\|}\right), \ \nu \in N.$$

LEMMA 3. Suppose that $M(\mathbb{R}^n) = M_0 \cup \cdots \cup M_\ell$ is a Borel partition of $M(\mathbb{R}^n)$. Let $\nu_i \in M_i$ and $\mathscr{A} = (\Omega_i, F_i, \mathring{P}_i, \xi_i, B_i, Y_i, q_i) \in \mathfrak{A}(\nu_i/||\nu_i||)$. For any fixed $\mathscr{A} = (\Omega, F, P, \xi, B, Y, q) \in \mathfrak{A}(\nu/||\nu||)$ we define $\tilde{\Omega}, \tilde{F}, \mathring{P}, \xi, \tilde{B}, \tilde{Y}, \tilde{q}$ as follows.

W. H. FLEMING AND M. NISIO

$$egin{aligned} &\hat{arDelta} = arDelta imes arOmega_0 imes arOmega_1 imes \cdots imes arOmega_\ell, & ilde{F} = F imes F_0 imes \cdots imes F_\ell, \ & \dot{P} = \dot{P} imes \dot{P}_1 imes \cdots imes \dot{P}_\ell, & ilde{\xi} = \xi \ & ilde{B}(heta) \,, \quad heta \leq t \ & B(t) + \sum_{i=0}^\ell B_i(heta - t) arLambda_{M_i}(arLambda(t, \, Y, \, q, \,
u)) \,, \quad heta \geq t \,. \end{aligned}$$

 \tilde{Y} is defined in the same way.

$$ilde{q}(heta,A) = egin{cases} q(heta,A)\,, & heta \leq t \ q(t,A) + \sum\limits_{i=0}^t q_i(heta_i-t,A) oldsymbol{\chi}_{\scriptscriptstyle Mi}(arLett(t,Y,q,
u))\,, & heta \geq t\,. \end{cases}$$

Then $\widetilde{\mathscr{A}} = (\widetilde{\varOmega}, \widetilde{F}, \mathring{P}, \mathring{\xi}, \widetilde{B}, \widetilde{Y}, \widetilde{q}) \in \mathfrak{A}(\nu / \|\nu\|).$

Proof. ξ is independent of $\{(B, Y, q), (\xi_i, B_i, Y_i, q_i), i = 0, \dots, \ell\}$. So $\tilde{\xi}$ is independent of $(\tilde{B}, \tilde{Y}, \tilde{q})$.

 $ilde{B}$ is a Brownian motion, because for $g \in C_b((R^n)^k)$ and $heta_j \geq t, j = 1, \dots, k$,

(6.33)
$$\begin{split} \overset{\mathring{E}(g(\tilde{B}_{j}(\theta_{j}) - \tilde{B}(t), j = 1, \cdots, k)/\sigma_{\iota}(B, Y, q) \vee \sigma(Y_{i}, q_{i}), i = 0, \cdots, \ell) \\ &= \overset{\mathring{E}_{i}(g(B_{i}(\theta_{j} - t), j = 1, \cdots, k)) \quad \text{if } \Lambda(t, Y, q, \nu) \in M_{i} \,. \end{split}$$

Hence $(\tilde{B}(s) - \tilde{B}(t), s \ge t)$ is a Brownian motion which is independent of $\sigma_t(B, Y, q) \lor \sigma(Y_0, q_0) \lor \cdots \lor \sigma(Y_t, q_t)$, since B_i is a Brownian motion. This implies that $(\tilde{B}(s) - \tilde{B}(t), s \ge t, B(\theta), \theta \le t)$ is independent of $((Y, q), (Y_i, q_i), i = 0, \cdots, \ell)$, since B is independent of $((Y, q), (Y_i, q_i), i = 0, \cdots, \ell)$. Therefore \tilde{B} is independent of (\tilde{Y}, \tilde{q}) , because (\tilde{Y}, \tilde{q}) is measurable with respect to $\sigma(Y, q, Y_0, q_0, \cdots, Y_t, q_t)$.

Using a similar calculation as (6.33), we see that for $g \in C_b$ (R^k) and $\theta_j \ge \theta \ge t, j = 1, \dots, k$

$$(6.34) \quad \begin{split} \tilde{E}(g(\tilde{Y}(\theta_j)-\tilde{Y}(\theta),j=1,\cdots,k/\sigma_\iota(Y,q)\vee\sigma_{\theta-\iota}(Y_0,q_0,\cdots,Y_\iota,q_\ell)))\\ &= \mathring{E}_i(g(Y_i(\theta_j)-Y_i(\theta),j=1,\cdots,k)), \quad \text{ if } \Lambda(t,Y,q,\nu)\in M_i. \end{split}$$

Therefore $(\tilde{Y}(s) - \tilde{Y}(\theta), s \ge \theta)$ is a Brownian motion which is independent of $\sigma_{\theta}(\tilde{Y}, \tilde{q})$.

It is clear that \tilde{q} satisfies the conditions (v) and (vi), from the definition of \tilde{q} . This completes the proof of Lemma 3.

Now we prove the inequality (6.35) for Theorem.

(6.35)
$$S(t+s)\phi(\nu) \ge S(t)(S(s)\phi)(\nu).$$

Since $J(s, \pi, \nu, \phi)$ is continuous in π, ν and \mathscr{P} is compact, $J(s, \pi, \nu, \phi)$ is continuous in ν uniformly in $\pi \in \mathscr{P}$, namely for $\varepsilon > 0$ there exists $\delta(\varepsilon, \nu) = \delta(\varepsilon, \nu, s, \phi)$ such that, if $\Delta(\nu', \nu) > \delta(\varepsilon, \nu)$ then

$$(6.36) |J(s, \pi, \nu', \phi) - J(s, \pi, \nu, \phi)| < \varepsilon.$$

Hence

(6.37)
$$|S(s)\phi(\nu') - S(s)\phi(\nu)| < \varepsilon, \quad \text{if } \Delta(\nu',\nu) < \delta(\varepsilon,\nu).$$

Applying Lemma 2 for $N = \{\nu\}$, given $\varepsilon > 0$ we can take a compact set \tilde{N} as in (6.32). From (6.36) and (6.37) we can take a Borel partition of \tilde{N} , say $\tilde{N} = M_1 \cup \cdots \cup M_{\epsilon}$, such that, if $\nu', \nu'' \in M_{\epsilon}$, then

$$(6.38) |J(s,\pi,\nu',\phi) - J(s,\pi,\nu'',\phi)| < \varepsilon$$

and

$$(6.39) |S(s)\phi(\nu') - S(s)\phi(\nu'')| < \varepsilon.$$

Fix $\nu_i \in M_i$, $i = 1, \dots, \ell$, arbitrarily and take $\mathscr{A}_i \in \mathfrak{A}(\nu_i/||\nu_i||)$ such that

where $\pi_i = \text{probability distribution of } (Y_{\mathcal{A}_i}, q_{\mathcal{A}_i})$. Then, by (6.38) ~ (6.40), we see

$$(6.41) \quad J(s,\pi_i,\nu',\phi) \geq J(s,\pi_i,\nu_i,\phi) - \varepsilon \geq S(s)\phi(\nu_i) - 2\varepsilon \geq S(s)\phi(\nu') - 3\varepsilon \\ \text{for } \nu' \in M_i \,.$$

Let $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$ and $M_0 = \tilde{N}^c$ and take $\nu_0 \in M_0(\mathbb{R}^n)$ and $\mathscr{A}_0 \in \mathfrak{A}(\nu_0/||\nu_0||)$ arbitrarily. Then M_i , $i = 0, \dots, \ell$ is a Borel partition of $M(\mathbb{R}^n)$. According to Lemma 3 we have $(\tilde{\Omega}, \tilde{F}, \mathring{P}, \xi, \tilde{B}, \tilde{Y}, \tilde{q}) \in \mathfrak{A}(\nu/||\nu||)$. Then

$$(6.42) \begin{aligned} J(t+s,\,\tilde{\mathscr{A}},\,\nu,\,\phi) &= \tilde{E}\phi(\Lambda(t+s,\,\tilde{Y},\,\tilde{q},\,\nu)) \\ &= \mathring{E}\phi(\Lambda(s,\,\tilde{Y}_{\iota}^{\,+},\,\tilde{q}_{\iota}^{\,+},\,\Lambda(t,\,Y,\,q,\,\nu))) \\ &= \mathring{E}[\mathring{E}(\phi(\Lambda(s,\,\tilde{Y}_{\iota}^{\,+},\,\tilde{q}_{\iota}^{\,+},\,\Lambda(t,\,Y,\,q,\,\nu))/\sigma_{\iota}(Y,\,q))]. \end{aligned}$$

On the other hand, by (6.41) we have

$$\begin{split} \widetilde{E}(\phi(\Lambda(s, \widetilde{Y}_{t}^{+}, \widetilde{q}_{t}^{+}, \Lambda(t, Y, q, \nu))/\sigma_{t}(Y, q))) \\ &= \sum_{i=0}^{\ell} \left[\mathring{E}_{i}\phi(\Lambda(s, Y_{i}, q_{i}, \Lambda(t, Y, q, \nu))]\chi_{M_{i}}(\Lambda(t, Y, q, \nu)) \right] \\ &= \sum_{i=0}^{\ell} J(s, \mathscr{A}_{i}, \Lambda(t, Y, q, \nu))\chi_{M_{i}}(\Lambda(t, Y, q, \nu)) \end{split}$$

W. H. FLEMING AND M. NISIO

$$\geq \sum_{i=0}^{t} S(s)\phi(\Lambda(t, Y, q, \nu))\chi_{M_{i}}(\Lambda(t, Y, q, \nu)) - 3\varepsilon - \|\phi\|\chi_{M_{0}}(\Lambda(t, Y, q, \nu)) \\ = S(s)\phi(\Lambda(t, Y, q, \nu)) - 3\varepsilon - \|\phi\|\chi_{M_{0}}(\Lambda(t, Y, q, \nu)) .$$

Combining with (6.42) we see

(6.43)
$$J(t + s, \tilde{\mathscr{A}}, \nu, \phi) \geq \mathring{E}(S(s)\phi)(\Lambda(t, Y, q, \nu)) - 3\varepsilon - \|\phi\| \mathring{P}(\Lambda(t, Y, q, \nu) \notin \tilde{N}) \\ \geq \mathring{E}(S(s)\phi)(\Lambda(t, Y, q, \nu)) - 3\varepsilon - \|\phi\| \varepsilon.$$

Since $\tilde{\mathscr{A}} \in \mathfrak{A}(\nu/||\nu||)$ we see

$$(6.44) S(t+s)\phi(\nu) \geq \mathring{E}(S(s)\phi)(\Lambda(t, Y, q, \nu)) - \varepsilon(3 + \|\phi\|).$$

Taking the supremum with respect to $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$, we conclude

(6.45)
$$S(t+s)\phi(\nu) \ge S(t)(S(s)\phi)(\nu) - \varepsilon(3+\|\phi\|).$$

Tending $\varepsilon \downarrow 0$, we get our desired inequality (6.35). This completes the proof of Theorem 7.

§7. Generator and properties of S(t).

We can easily see:

PROPOSITION 7.1. The following properties hold,

- (i) monotone, $S(t)\phi \leq S(t)\psi$ whenever $\phi \leq \psi$
- (ii) contraction, $||S(t)\phi S(t)\psi|| \le ||\phi \psi||$
- (iii) continuity, $S(\theta)\phi(\nu) \to S(t)\phi(\nu)$ as $\theta \to t$,

uniformly on any compact set of $M(\mathbb{R}^n)$.

That is, S(t) is a monotone contraction weakly continuous semigroup on C.

Proof. (i) From the definition of J, (7.1) is clear

(7.1)
$$J(t, \pi, \nu, \phi) \leq J(t, \pi, \nu, \psi), \quad \text{if } \phi \leq \psi$$

Hence taking the supremum with respect to $\pi \in \mathcal{P}$, we have (i).

(ii)
$$|S(t)\phi(\nu) - S(t)\psi(\nu)|$$

 $\leq \sup_{\substack{\mathscr{A} \in \mathfrak{A}(\nu/\|\nu\|)}} |\mathring{E}\phi(\Lambda(t, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu)) - \mathring{E}\psi(\Lambda(t, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu))|$
 $\leq \|\phi - \psi\|.$

Hence taking the supremum with respect to $\nu \in M(\mathbb{R}^n)$, we have (ii).

(iii) By Proposition 6.1. $J(t, \pi, \nu, \phi)$ is continuous in $(t, \pi, \nu) \in [0 T]$ $\times \mathscr{P} \times M(\mathbb{R}^n)$. Since \mathscr{P} is compact, $S(t)\phi(\nu)$ is continuous in (t, ν) . Hence it is uniformly continuous on $[0 T] \times F$ where F is compact in $M(\mathbb{R}^n)$. This implies (iii). Now we calculate the generator of S(t), according to [6]. We introduce the following set \mathscr{D} of functions ϕ which depend on finitely many scalar products. Fix $H_N \in C^{\infty}([0 \ \infty) \rightarrow [0, 1])$ such that $H_N(x) = 1$ on $[0 \ N]$, = 0 on $[N + 1, \infty)$ and decreasing in x.

(7.2)
$$\mathscr{D} = \{ \phi; M(\mathbb{R}^n) \longrightarrow \mathbb{R}^1; \phi(\nu) = F(\langle f_1, \nu \rangle, \cdots, \langle f_\ell, \nu \rangle) H_N(\langle 1, \nu \rangle) \\ \text{with } F \in C_b^{\infty}(\mathbb{R}^\ell), f_1, \cdots, f_\ell \in C_b^{\infty}(\mathbb{R}^n), \ \ell = 1, 2, \cdots, N = 1, 2, \cdots \}$$

where C_0^{∞} denotes the space of C^{∞} functions with compact supports and C_b^{∞} the space of C^{∞} functions with any bounded derivative. Clearly $\mathscr{D} \subset C$. Moreover we have

PROPOSITION 7.2. For $\phi \in C$ there exists $\Phi_k \in \mathscr{D}$ such that $\Phi_k(\nu) \xrightarrow[k \to \infty]{} \phi(\nu)$ for any $\nu \in M(\mathbb{R}^n)$.

Proof. We can apply the same method as [6]. Let $v(x_i, 2^{-N})$ (= open ball with center x_i , radius 2^{-N}) $i = 1, 2, \cdots$ be a covering of \mathbb{R}^n with $\bigcup_{i=1}^{k_N} v(x_i, 2^{-N}) \supset [-N, N]^n$ (say I_N). Let g_i^N , $\ell = 1, 2, \cdots$ be a \mathbb{C}^{∞} -partition of unity such that

(7.3)
$$\operatorname{supp} g_{\ell}^{N} \subset v(x_{i}, 2^{-N}) \text{ for some } i$$

(7.4)
$$\sum_{\ell=1}^{P_N} g_\ell = 1 \text{ on } I_N.$$

Take $y_{\ell}^{\scriptscriptstyle N} \in \operatorname{supp} g_{\ell}^{\scriptscriptstyle N} \cap I_{\scriptscriptstyle N}$ arbitrarily. Putting $c_{\ell}^{\scriptscriptstyle N}(\nu) = \langle g_{\ell}^{\scriptscriptstyle N}, \nu \rangle$, we define $\nu_{\scriptscriptstyle N}$ by

(7.5)
$$\nu_N = \sum_{\ell=1}^{P_N} c_\ell^N(\nu) \delta_{\nu_\ell^N} .$$

Then $\|\nu\| \ge \|\nu_N\| \ge \nu(I_N)$ and for $g \in C_b(R^n)$

(7.6)
$$\langle g, \nu_N \rangle \rightarrow \langle g, \nu \rangle, \text{ as } N \rightarrow \infty.$$

Hence

(7.7)
$$\Delta(\nu_N, \nu) \to 0$$
, as $N \to \infty$.

Denote $F_{N}(z_{1}, \cdots, z_{p_{N}}; \phi) = \phi(\sum_{\ell=1}^{p_{N}} z_{\ell} \delta_{y_{\ell}^{N}})$. That is,

(7.8)
$$\phi(\nu_N) = F_N(\langle g_1^N, \nu \rangle, \cdots, \langle g_{\nu_N}^N, \nu \rangle; \phi)$$

Therefore, by (7.6), we have

(7.9)
$$\phi(\nu_N) \to \phi(\nu) \quad \text{as} \quad N \to \infty$$
.

From the definition of H_N , $\lim_{N\to\infty} H_N(\langle 1,\nu \rangle) = 1$ for any $\nu \in M(\mathbb{R}^n)$. Hence

(7.9) gives

$$(7.10) \quad F_N(\langle g_1^N, \nu \rangle, \cdots, g_{p_N}^N, \nu \rangle; \phi) H_N(\langle 1, \nu \rangle) \to \phi(\nu), \quad \text{as} \quad N \to \infty .$$

Take $\tilde{F}_{N} \in C_{b}^{\infty}(R^{p_{N}})$ such that

(7.11)
$$\|\tilde{F}_N - F_N\|_{L_{\infty}(I_{N+1})} < 2^{-N}.$$

Then we have

$$|ar{F}_{\scriptscriptstyle N}(\langle g_1^{\scriptscriptstyle N},
u
angle, \, \cdots, \langle g_{\scriptscriptstyle P_{\scriptscriptstyle N}}^{\scriptscriptstyle N},
u
angle) H_{\scriptscriptstyle N}(\langle 1,
u
angle)
onumber \ - F_{\scriptscriptstyle N}(\langle g_1^{\scriptscriptstyle N},
u
angle, \, \cdots, \langle g_{\scriptscriptstyle P_{\scriptscriptstyle N}}^{\scriptscriptstyle N},
u
angle : \phi) H_{\scriptscriptstyle N}(\langle 1,
u
angle) | < 2^{-N} \, .$$

Combining with (7.10), we complete the proof.

We calculate the generator of S(t), recalling (6.7). For an admissible switching system $\mathscr{A} \in \mathfrak{A}(\nu/||\nu||)$, we have the following Zakai equation for $\Lambda(t) = \Lambda(t, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu)$, (see Theorem 5.2 in [8]),

(7.12)
$$\begin{cases} d\langle f, \Lambda(t) \rangle = \langle A(U(t))f, \Lambda(t) \rangle dt + \langle hf, \Lambda(t) \rangle dY(t) \\ \langle f, \Lambda(0) \rangle = \langle f, \nu \rangle \quad \text{for } f \in C^2_b(R^n), \end{cases}$$

where

$$Y = Y_{s}$$
, $A(u) = \sum_{ij} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_i \Upsilon_i(x, y) \frac{\partial}{\partial x_i}$

and U(t) is a $\sigma_t(q)$ -progressively measurable process for q (see Theorem 4). Therefore using a routine method we have

$$(7.13) \qquad \qquad \mathring{E}|\langle f, \Lambda(t) \rangle - \langle f, \nu \rangle|^2 \leq K_{\mathfrak{d}}(t+1) \int_{\mathfrak{g}}^t \mathring{E} \langle 1, \Lambda(\theta) \rangle^2 d\theta$$

(7.14)
$$\mathring{E}\langle 1, \Lambda(t) \rangle = \langle 1, \nu \rangle = \|\nu\|$$

and

(7.15)
$$\mathring{E} \| \Lambda(t) \|^2 \le \| \nu \|^2 e^{K_4 t}$$

where K_3 and K_4 are independent of \mathscr{A} . Combining these evaluations, we have

(7.16)
$$\mathring{E}|\langle f, \Lambda(t)\rangle, -\langle f, \nu\rangle|^2 \leq K_2 \|\nu\|^2 (t+1) t e^{\kappa_4 t}.$$

Let $\Phi \in \mathcal{D}$, say $\Phi(\nu) = F(\langle f_1, \nu \rangle, \dots, \langle f_\ell, \nu \rangle)H_N(\langle 1, \nu \rangle)$. For simplicity we put $f_0 = 1$, and $\tilde{F}(z_0, z_1, \dots, z_\ell) = F(z_1, \dots, z_\ell)H_N(z_0)$. Appealing to Ito's formula, we see

STOCHASTIC RELAXED CONTROL

$$d\varPhi(\Lambda(t)) = \sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \Lambda(t) \rangle, \dots, \langle f_{\ell}, \Lambda(t) \rangle) \langle A(U(t))f_{i}, \Lambda(t) \rangle dt$$

$$(7.17) \qquad + \frac{1}{2} \sum_{i,j=0}^{\ell} \frac{\partial^{2} \tilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, \Lambda(t) \rangle, \dots, \langle f_{\ell}, \Lambda(t) \rangle) \langle hf_{i}, \Lambda(t) \rangle \langle hf_{j}, \Lambda(t) \rangle dt$$

$$+ \sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_{i}} (\langle f_{0}, \Lambda(t) \rangle, \dots, \langle f_{\ell}, \Lambda(t) \rangle) \langle hf_{i}, \Lambda(t) \rangle dY(t) .$$

Using (7.16) we have, for $s \leq 1$,

(7.18)
$$\int_{0}^{s} \mathring{E} \bigg| \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \Lambda(t) \rangle, \cdots, \langle f_{i}, \Lambda(t) \rangle \rangle \langle A(U(t))f_{i}, \Lambda(t) \rangle \\ - \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{i}, \nu \rangle \rangle \langle A(U(t))f_{i}, \nu \rangle \bigg| dt \leq K_{s} \|\nu\| s^{3/2}$$

and

(7.19)
$$\int_{0}^{s} \mathring{E} \bigg| \frac{\partial^{2} \widetilde{F}}{\partial z_{i} \partial z_{j}} \langle \langle f_{0}, \Lambda(t) \rangle, \cdots, \langle f_{i}, \Lambda(t) \rangle \rangle \langle hf_{i}, \Lambda(t) \rangle \langle hf_{j}, (t) \rangle \\ - \frac{\partial^{2} \widetilde{F}}{\partial z_{i} \partial z_{j}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{i}, \nu \rangle \rangle \langle hf_{i}, \nu \rangle \langle hf_{j}, \nu \rangle \bigg| dt \leq K_{5} \|\nu\| s^{3/2}$$

with K_5 which is independent of \mathscr{A} and ν .

Define $G\Phi$ as follows

(7.20)
$$G\Phi(\nu) = \sup_{u \in F} \left(\sum_{i=0}^{\ell} \frac{\partial \tilde{F}}{\partial z_i} (\langle f_0, \nu \rangle, \cdots, \langle f_\ell, \nu \rangle) \langle A(u) f_i, \nu \rangle \right) \\ + \frac{1}{2} \sum_{i_j=0}^{\ell} \frac{\partial^2 \tilde{F}}{\partial z_i \partial z_j} (\langle f_0, \nu \rangle, \cdots, \langle f_\ell, \nu \rangle) \langle hf_i, \nu \rangle \langle hf_j, \nu \rangle.$$

Since \tilde{F} is smooth and $\langle A(u)f_i, \nu \rangle$ continuous in u and ν , $G\Phi(\nu)$ is continuous in ν . Moreover $G\Phi(\nu) = 0$ whenever $\|\nu\| \ge N + 1$. Therefore $G\Phi$ is bounded. This implies that $G\Phi \in C$ for $\Phi \in \mathcal{D}$.

We remark that

$$\begin{split} \sum_{i} \int_{0}^{s} \mathring{E} \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle \rangle \langle A(U(t)f_{i}, \nu) \rangle dt \\ &\leq \int_{0}^{s} \sup_{u \in \Gamma} \left(\sum_{i=0} \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle \rangle \langle A(u)f_{i}, \nu \rangle \right) dt \\ &= s, \sup_{u \in \Gamma} \left(\sum_{i=0}^{\ell} \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle \rangle \langle A(u)f_{i}, \nu \rangle \right) \\ &= \sup_{u \in \Gamma} \sum_{i=0}^{\ell} \int_{0}^{s} \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle \rangle \langle A(u)f_{i}, \nu \rangle dt \\ &\leq \sup_{U; \text{ usual control for switch relaxed syst.}} \sum_{i=0}^{\ell} \int_{0}^{s} \mathring{E} \frac{\partial \widetilde{F}}{\partial z_{i}} \langle \langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle \rangle \langle A(U(t))f_{i}, \nu \rangle dt. \end{split}$$

Taking the supremum of left side of (7.21) with respect to U(t) for switching admissible systems, we have

(7.22)
$$\frac{1}{s} \sup_{U; \text{ switch syst.}} \sum_{i=0}^{\ell} \int_{0}^{s} \mathring{E} \frac{\partial \widetilde{F}}{\partial z_{i}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle A(U(t)) f_{i}, \nu \rangle dt = G \Phi(\nu).$$

On the other hand $(7.17) \sim (7.19)$ tell us that

$$\begin{split} \left| \mathring{E} \varPhi(A(s, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu)) - \varPhi(\nu) - \int_{0}^{s} \sum_{i=0}^{\ell} \mathring{E} \frac{\partial \widetilde{F}}{\partial z_{j}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle A(U(t)) f_{i}, \nu \rangle \\ + \frac{1}{2} \sum_{ij=0}^{\ell} \frac{\partial^{2} \widetilde{F}}{\partial z_{i} \partial z_{j}} (\langle f_{0}, \nu \rangle, \cdots, \langle f_{\ell}, \nu \rangle) \langle hf_{i}, \nu \rangle \langle hf_{j}, \nu \rangle dt \right| \\ \leq 2K_{5} (n+1)^{2} \|\nu\| s^{3/2}. \end{split}$$

Appealing to (7.22) we have

(7.24)
$$\left| \frac{1}{s} (S(s)\Phi(\nu) - \Phi(\nu)) - G\Phi(\nu) \right| \le 2K_5(n+1)^2 \|\nu\| s^{1/2}$$

Recalling (5.16) we have

$$(7.25) \quad \|\Lambda(s, Y_{\mathfrak{s}}, q_{\mathfrak{s}}, \nu)\| \geq \|\nu\| e^{-K_1(a+1)^2(s+1)} \qquad \text{whenever } \sup_{t\leq s} |Y_{\mathfrak{s}}(t)| \leq a.$$

Since $Y_{\mathscr{A}}$ is a Brownian motion, a martingale inequality implies

(7.26)
$$\mathring{P}(\sup_{t\leq s}|Y_{\mathscr{I}}(t)|\geq a)\leq \frac{s}{a^2}$$

Putting $a = 1/\sqrt{\epsilon}$ and $\tilde{N}(\epsilon) = (N+1)e^{\kappa_1(a+1)^2(s+1)}$, we see, from (7.25) and (7.26)

$$(7.27) \qquad \mathring{P}(\|A(s, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu)\| \le N+1) \le \mathring{P}\left(\sup_{t \le s} |Y_{\mathscr{A}}(t)| > \frac{1}{\sqrt{\varepsilon}}\right) < \varepsilon s$$

whenever $\|\nu\| \ge \widetilde{N}(\varepsilon)$.

Therefore, if $\|\nu\| \ge \tilde{N}(\varepsilon)$, then

$$(7.28) E|\varPhi(\varLambda(s, Y_{\mathscr{A}}, q_{\mathscr{A}}, \nu))| \leq \|\varPhi\| \varepsilon s.$$

This implies, by virtue of " $\Phi(\nu) = G \Phi(\nu) = 0$ for $\|\nu\| \ge \tilde{N}(\varepsilon)$ ",

(7.29)
$$\frac{1}{s}(S(s)\Phi(\nu) - \Phi(\nu)) - G\Phi(\nu)| \le \|\Phi\|\varepsilon$$
, whenever $\|\nu\| \ge \tilde{N}(\varepsilon)$.

Appealing to (7.24), we have

(7.30)
$$\left| \frac{1}{s} (S(s)\Phi(\nu) - \Phi(\nu)) - G\Phi(\nu) \right| \le (1 + ||\Phi||)\varepsilon,$$

whenever $s \le \varepsilon/(2K_{\rm s}(n+1)^2\tilde{N}(\varepsilon))^2.$

This implies that $1/s(S(s)\Phi(\nu) - \Phi(\nu))$ converges to $G\Phi(\nu)$ uniformly on $M(\mathbb{R}^n)$, as $s \downarrow 0$.

THEOREM 8. $\mathscr{D}(\mathfrak{G}) \supset \mathscr{D}$ and

$$(7.31) \qquad \qquad \Im \Phi = G \Phi \quad on \quad \mathscr{D}$$

that is, the generator is an extension of G.

§8. Time discrete approximation

First we recall an approximation theorem of Proposition 4.1 and Theorem 4, namely, for $\mathscr{A} = (\Omega, F, \mathring{P}, \xi, B, T, q)$ there exists an approximate usual control U_n , such that

(8.1)
$$U_n$$
 is an $\sigma_i(q)$ -progressively measurable Γ -valued process

(8.2) $q_n(t, A) = \int_0^t \delta_{U_n(s)}(A) ds$ is a switching relaxed control of $\mathscr{A}_n = (\Omega, F, \mathring{P}, \xi, B, Y, q_n)$

and

$$(8.3) \quad J(t,\mathscr{A},\nu,\phi) = \lim_{n\to\infty} J(t,\mathscr{A}_n,\nu,\phi) \text{ for } \forall \phi \in C.$$

Now we define a usual admissible system $\tilde{\mathscr{A}} = (\Omega, F, \mathring{P}, \xi, B, Y, U)$ as follows: $(\Omega, F, \mathring{P}, \xi, B, Y)$ satisfies the same conditions as an admissible (relaxed) system, U is a Γ -valued process, ξ , B and (Y, U) are independent and Y is a $\sigma_t(Y, U)$ -Brownian motion.

 \mathfrak{A} denotes the totality of usual admissible systems, and we apply similar notations as for the relaxed case. Putting $\tilde{q}_{U}(t, A) = \int_{0}^{t} \delta_{U(s,\omega)}(A) ds$, we see $\mathscr{A}_{U} = (\Omega, F, P, \xi, B, Y, \tilde{q}_{U}) \in \mathfrak{A}$. Thus a usual admissible system can be regarded as an admissible (relaxed) system. Moreover a unique solution \tilde{X} of the SDE,

(8.4)
$$\begin{cases} d\tilde{X}(t) = \alpha(\tilde{X}(t))dB(t) + \gamma((t), U(t))dt\\ \tilde{X}(0) = \xi \end{cases}$$

gives a unique solution $X_{\mathscr{A}_n}(=\hat{X})$.

Since (ξ, B) and (Y, U) are independent, we can calculate

W. H. FLEMING AND M. NISIO

 $\mathring{E}(f(\widehat{X}(\theta))L(\theta, \widetilde{\mathscr{A}})/\sigma_{\iota}(Y, U))$

in the same way as (5.8), and get

where $\lambda_{v}(t, A) = \int_{0}^{t} \delta_{v(s)}(A) ds$. We remark that, if $v(t) = v^{*}(t)$, a.a. t, then $\lambda_{v} = \lambda_{v^{*}}$. The unnormalized conditional distribution $\tilde{A}(t, \tilde{\mathcal{A}}, v)$ is defined by (8.6) $\langle f, \tilde{A}(\theta, \tilde{\mathcal{A}}, v) \rangle = \mathring{E}_{v} \langle f(\hat{X}(\theta)) L(\theta, \tilde{\mathcal{A}}) / \sigma_{t}(Y, U) \rangle$ for $f \in C_{b}(\mathbb{R}^{n})$.

Hence (8.5) implies

(8.7) $\tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v) = \Lambda(\theta, Y, q_v, v),$ \mathring{P} -almost surely. We sometimes put $\tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v) = \tilde{\Lambda}(\theta, Y, U, v)$ and $\tilde{J}(\theta, \tilde{\mathscr{A}}, v, \phi) = \mathring{E}\phi(\tilde{\Lambda}(\theta, \tilde{\mathscr{A}}, v)) = \tilde{J}(\theta, Y, U, v, \phi).$

We approximate U_n of (8.1) (say W for simplicity) by a switching usual control, by a routine method, i.e. \tilde{U}_k and $\tilde{U}_{k,p}$ are defined as follows

Then $\lim_{k\to\infty} \lim_{p\to\infty} \tilde{U}_{k,p}(t) = W$ in $L^2([0 \ T] \times \Omega)$. This fact implies that there exists an approximate switching usual control W_k , which is $\sigma_t(U)$ -progressively measurable and satisfies

(8.8)
$$\mathring{E}\int_0^T |W_k(s) - W(s)|^2 ds \to 0, \quad \text{as} \quad k \to \infty$$

and

(8.9)
$$\widetilde{J}(t, Y, W, \nu, \phi) = \lim_{k \to \infty} \widetilde{J}(t, Y, W_k, \nu, \phi)$$

By (8.8) some subsequence of W_k converges to W a.e. in $[0 \ T] \times \Omega$, we assume " $W_k \to W$ a.e." for simplicity. Therefore, for a.a. $\omega(\mathring{P})$,

(8.10)
$$\int_{\Gamma} g(u)\tilde{q}_{W_{k}}(t, du) = \int_{0}^{t} \int_{\Gamma} g(u)\delta_{W_{k}}(du)ds$$
$$= \int_{0}^{t} g(W_{k}(s))ds \xrightarrow[k \to \infty]{} \int_{0}^{t} g(W(s))ds = \int_{\Gamma} g(u)\tilde{q}_{W}(t, du)$$
for any t and $g \in C_{b}(\Gamma)$

This implies, as $k \to \infty$.

(8.11)
$$\hat{d}_{T}(\tilde{q}_{W_{k}}, \tilde{q}_{W}) \rightarrow 0$$
, \mathring{P} -almost surely.

Hence by Propositions 2.2 and the Corollary of Proposition 3.1 we see

(8.12)
$$\mathscr{A}_{W_k} \to \mathscr{A}_W \text{ and } (X_{W_k}, \mathscr{A}_{W_k}) \to (X_W, \mathscr{A}_W) \text{ in } D_T.$$

Therefore Theorem 6 implies that, for $\forall \theta$,

(8.13)
$$\tilde{A}(\theta, Y, W_k, \nu) \rightarrow \tilde{A}(\theta, Y, W, \nu)$$
 in metric δ .

So we have

PROPOSITION 8.1. For $\mathscr{A} = (\Omega, F, P, \xi, B, Y, q)$ there exists a switching usual control W_k , $k = 1, 2, \dots$, which is $\sigma_t(q)$ -progressively measurable and for any θ

$$\widehat{\Lambda}(\theta, Y, W_k, \nu) \rightarrow \Lambda(\theta, Y, q, \nu)$$
 in metric δ , as $k \rightarrow \infty$.

This means that switching usual controls are rich enough in the class of relaxed controls.

Put $\widetilde{\mathfrak{A}}_{N}$ = totality of usual admissible systems whose usual controls are switching with time interval 2^{-N} , i.e. $\widetilde{\mathscr{A}} = (\Omega, F, \mathring{P}, \xi, B, Y, U) \in \widetilde{\mathfrak{A}}_{N}$, iff $U(t) = U([2^{N}t]/2^{N})$. We denote $\widetilde{\mathscr{A}} \in \widetilde{\mathfrak{A}}_{0}$, if U is constant control. So $\widetilde{\mathfrak{A}}_{0} \subset \widetilde{\mathfrak{A}}_{N}$. When $P_{\xi} = \nu/||\nu||$, we say $\widetilde{\mathscr{A}} \in \widetilde{\mathfrak{A}}_{N}(\nu/||\nu||)$. Put $\widetilde{\mathfrak{A}} = \bigcup_{N=0}^{\infty} \widetilde{\mathfrak{A}}_{N}$.

From Proposition 8.1 we see

(8.14)
$$S(t)\phi(\nu) = \sup_{\substack{\mathscr{X} \in \mathfrak{A}(\nu/\|\nu\|) \\ N \to \infty}} J(t, \widetilde{\mathscr{X}}, \nu, \phi)$$
$$= \lim_{\substack{N \to \infty \\ \mathscr{X} \in \mathfrak{A}_{\nu}(\nu/\|\nu\|) \\ \widetilde{\mathscr{I}}(t, \widetilde{\mathscr{X}}, \nu, \phi)}$$

Define $Q = Q_N$ by

(8.15)
$$Q\phi(\nu) = \sup_{\vec{x} \in \mathfrak{A}_N(\nu/\|\nu\|)} J(2^{-N}, \tilde{\mathscr{A}}, \nu, \phi) .$$

We remark that

(8.16)
$$J(2^{-N}, \tilde{\mathscr{A}}, \nu, \phi) = \mathring{E}\phi(\tilde{A}(2^{-N}, Y, U(0), \nu))$$
$$= \int_{\Gamma} \mathring{E}(\phi(\tilde{A}(2^{-N}, Y, U(0), \nu))/U(0) = u)P_{U_0}(du)$$

Since $(Y(\theta), \theta \ge 0)$ is independent of U(0),

(8.17)
$$\mathring{E}(\phi(\tilde{A}(2^{-N}, Y, U(0), \nu/U(0) = u))) = \tilde{J}(2^{-N}, Y, u, \nu, \phi)$$

Moreover the value of the left side depends only on N, u, ν, ϕ , since Y is a Brownian motion with respect to $\mathring{P}(\cdot/U(0) = u)$. We put W. H. FLEMING AND M. NISIO

(8.18)
$$\tilde{J}(2^{-N}, Y, u, \nu, \phi) = \Phi_N(u, \nu; \phi)$$

and

(8.19)
$$\tilde{Q}\phi(\nu) = \sup_{u \in F} \Phi_N(u, \nu, \phi).$$

Then $\Phi_N(u, \nu, \phi)$ is continuous in $(u, \nu) \in \Gamma \times (M(\mathbb{R}^n), \Delta)$ and $\tilde{J}(2^{-N}, Y, u, \nu, \phi) \leq \tilde{Q}\phi(\nu)$. Combining with (8.12), we see

(8.20)
$$Q\phi(\nu) \leq \tilde{Q}\phi(\nu) = \sup_{\substack{\vec{x} \in \mathfrak{A}_{0}(\nu/\|\nu\|)\\ \vec{x} \in \mathfrak{A}_{0}(\nu/\|\nu\|)}} \tilde{J}(2^{-N}, \tilde{\mathscr{A}}, \nu, \phi) \\ \leq \sup_{\substack{\vec{x} \in \mathfrak{A}_{N}(\nu/\|\nu\|)}} \tilde{J}(2^{-N}, \tilde{\mathscr{A}}, \nu, \phi) = Q\phi(\nu) .$$

Hence we have

$$(8.21) \hspace{1.5cm} Q_{\scriptscriptstyle N} = \tilde{Q} \, .$$

Since Γ is compact, using a measurable selection theorem, we can take a Borel measurable mapping, $v = v_{\phi} \colon M(\mathbb{R}^n) \to \Gamma$ such that

(8.22)
$$\Phi_N(v_{\phi}(\nu), \nu, \phi)) = \sup_{u \in \Gamma} \Phi_N(u, \nu, \phi)$$

This gives

(8.23)
$$Q\phi(\nu) = \tilde{J}(2^{-N}, Y, \upsilon_{\phi}(\nu), \nu, \phi)$$

We have, for $\widetilde{\mathscr{A}} \in \widetilde{\mathfrak{A}}_{N}(\nu/||\nu||)$

(8.24)
$$J(2^{-N+1}, \tilde{\mathscr{A}}, \nu, \phi) = E\phi(\Lambda(2^{-N+1}, Y, U, \nu)) \\ = \mathring{E}\phi(\tilde{\Lambda}(2^{-N}, Y_{2^{-N}}, U_{2^{-N}}, \tilde{\Lambda}(2^{-N}, Y, U, \nu))) \\ \leq (Q\phi)(\tilde{\Lambda}(2^{-N}, Y, U, \nu)) \leq Q(Q\phi)(\nu) \\ = Q^2\phi(\nu) .$$

Define $U_2 = U_{2,\phi,\nu}$ by

(8.25)
$$U_2(t) = \begin{cases} v_{Q\phi}(\nu), \ 0 \le t \le 2^{-N} \\ v_{\phi}(\tilde{A}(2^{-N}, Y, v_{Q\phi}(\nu), \nu)), \ 2^{-N} < t \end{cases}$$

Then $\mathscr{A}^* = (\Omega, F, \mathring{P}, \xi, B, Y, U_2) \in \tilde{\mathfrak{A}}_{N}(\nu/||\nu||)$ and

$$J(2^{-N+1}, \mathscr{A}^*, \nu, \phi) = E\phi(\Lambda(2^{-N+1}, Y, U_2, \nu))$$

$$= \mathring{E}\mathring{E}(\phi(\tilde{\Lambda}(2^{-N}, Y_{2^{-N}}, \upsilon_{\phi}(\tilde{\Lambda}(2^{-N}, Y, \upsilon_{Q\phi}(\nu), \nu)), \tilde{\Lambda}(2^{-N}, Y, \upsilon_{Q\phi}(\nu), \nu))/\sigma_{2^{-N}}(Y)))$$

$$= \mathring{E}(Q\phi)(\tilde{\Lambda}(2^{-N}, Y, \upsilon_{Q\phi}(\nu), \nu))$$

$$= Q(Q\phi)(\nu) = Q^2\phi(\nu).$$

Combining with (8.24), we have

(8.27)
$$Q^{2}\phi(\nu) = \sup_{\mathscr{J} \in \mathfrak{A}_{N}(\nu/||\nu||)} \tilde{J}(2^{-N+1}, \mathscr{\tilde{A}}, \nu, \phi)$$
$$= \tilde{J}(2^{-N+1}, \mathscr{A}^{*}, \nu, \phi).$$

Repeating a similar calculation we see

(8.28)
$$Q^{k+1}\phi(\nu) = \sup_{\mathscr{I} \in \mathfrak{A}_{N}(\nu/\|\nu\|)} \widetilde{J}((k+1)2^{-N}, \mathscr{\tilde{A}}, \nu, \phi)$$

and an optimal one $U_{k+1} = U_{k+1,\nu,\phi}$ is given successively by

$$U_{{}_{k+1}}(t) = egin{cases} U_{{}_{k},
u, \, {}_{k} \phi}(t) \;, & 0 \leq t \leq k 2^{-N} \ v_{\phi}(ilde{\varLambda}(k 2^{-N}, \, Y, \, U_{{}_{k},
u, \, {}_{k} \phi},
u) \;, & k 2^{-N} < t \;. \end{cases}$$

Recalling (8.14) we see, for binary t (say $j2^{-p}$)

$$\lim_{N \to \infty} \sup_{\mathscr{J} \in \mathfrak{A}_N(\nu/||\nu||)} \tilde{J}(t,\,\widetilde{\mathscr{A}},\nu,\phi) = S(t)\phi(\nu) = \lim_{N \to \infty} Q_N^{\lfloor 2^N t \rfloor} \phi(\nu)$$

and an approximate optimal usual switching control is given by $U_{k,\nu,\phi}$.

References

- [1] A. Bensoussan and J. L. Lions, Application des inéquations variationnelles en contrôle stochastique, Dunod, Paris 1978.
- [2] P. Billingsley, Convergence of Probability Measures, John Wiley 1968.
- [3] J. M. Bismut, Partially observed diffusions and their control, SIAM. J. Control Optim., 20 (1982), 302-309.
- [4] M. H. A. Davis and M. Kohlmann, On the nonlinear semigroup of stochastic control under partial observations, preprint.
- [5] W. H. Fleming, Generalized solutions in optimal stochastic control, Differential games and control theory II, Lect. Notes in pure and Appl. math., **30**, Dekker.
- [6] —, Nonlinear semigroup for controlled partially observed diffusions, SIAM. J. Control Optim., 20 (1982), 286-301.
- [7] and M. Nisio, On the existence of optimal stochastic controls, J. Math. Mech., 15 (1966), 777-794.
- [8] and E. Pardoux, Optimal control for partially observed diffusions, SIAM.
 J. Control Optim., 20 (1982), 258-285.
- [9] U. G. Haussman, On the existence of optimal controls for partially observed diffusions, SIAM. J. Control Optim., 20 (1982), 385-407.
- [10] M. Nisio, Stochastic Control Theory, ISI Lect. Note 9, McMillan India, 1981.
- [11] K. R. Parthasarathy, Probability Measures on Metric Spaces, Acad. Press, 1967.
- [12] A. V. Skorobod, Studies in the Theory of Random Processes, Addism-Wesly, 1965 (orig. Russian).

W. H. FLEMING AND M. NISIO

W. H. Fleming Division of Applied Mathematics Brown University Prividence R. I. USA

M. Nisio Department of Mathematics Kobe University Rokko, Kobe 657 Japan