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ON STOCHASTIC RELAXED CONTROL FOR

PARTIALLY OBSERVED DIFFUSIONS

W. H. FLEMING AND M. NISIO

§ 1. Introduction

In this paper we are concerned with stochastic relaxed control pro-
blems of the following kind. Let X(t), t>0, denote the state of a process
being controlled, Y(t), t>0, the observation process and p{t, •) a relaxed
control, that is a process with values probability measures on the control
region Γ. The state and observation processes are governed by stochastic
differential equations

idX(t) = a(X(t))dB(t) + J^ r(X(t), u)p(t, du)dt

U(0) = ξ

and

(dY(t) = h(X(t))dt + dW(t)

where B and W are independent Brownian motions with values in Rn

and Rm respectively, (put m — 1 for simplicity).
The problem is to maximize a criterion of the form

J=Ef(X(T))

by a suitable choice of admissible relaxed control p. In a customary
version of stochastic control under partial observation, p(t, •) is measur-
able with respect to <x-field generated by the observation process Y(s)9

s < t. Instead of discussing the problem of this type, we treat some
wider class of admissible relaxed controls (see § 2), inspired by Fleming-
Pardoux [8]. Roughly speaking, our problem is the following; Let
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(1.3) L(T) = exp {£h(X(s))dY{s) - \\]\HX(s

Then B and Y turn out as independent Brownian motions under a new

probability P, defined by

(1.4) ^ = L'\T)

appealing to the so-called Girsanov transformation. For admissibility we

merely require that p(t, •) is independent of future increments of Y(θ) —

Y(s), θ, s>t, and B, with respect to P. Moreover we are concerned with

q(dt, du) instead of p(t9 du)dt. (see Definition 1). Thus the criterion J

can be expressed as

(1.5) J = Ef(X{T))L{T)

where E stands for the expectation with respect to P, and X(f) is a

solution of the following system equation;

(1.6) dX(t) = a(X(t))dB(t) + f T(X(t\ u)q(dt, du).

Under Lipschitz continuity and boundedness of a and T, (1.6) has a unique

solution (Theorem 1).

In Section 2 we introduce some metric spaces which are appropriate

to our optimization problems. In Section 3 we prove the compactness of

spaces of solutions and relaxed controls q. This guarantees the existence

of optimal one (Theorem 3).

In the latter half we treat a nonlinear semigroup associated with

relaxed control under partial observation. In this case we regard, as the

state space, the unnormalized conditional distribution Λ(t) of X(t) given

past observation and control. Hence Λ(t) is a process valued in measures

on Rn and satisfying the Zakai equation. Thus our problems turn out

as optimization problems of measure valued processes. After we prove

the continuity of Λ(t) with respect to initial distribution X(0) and data

of past observation and control, (see Theorem 5), we construct a nonlinear

semigroup S(t), t>0, on a Banach lattice of bounded and uniformly

continuous functions, defined on the space of measures (Theorem 7).

Following Fleming [6], we show that the generator of S(t) relates to a

dynamic programming equation, so-called Mortensen's equation.
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§ 2. Notations and preliminaries

Let (Ω, F, P) be a probability space. Let B and Y be ^-dimensional
and 1-dimensional Brownian motions, defined on (Ω, F, P) respectively.
Γ is a given convex compact subset of Rk, called a control region. M(Γ)
denotes the totality of positive finite measures defined on Z?(Γ)(=Borel
field of Γ). By M([0 T] X Γ) we denote the set of all mappings λ: [0 T]
X B(Γ) -> [0 T] such that

0) Λ(0, A) = 0 VAeB(Γ)
i) λ(t, r) = t n > o
ii) Λ(ί, )eM(Γ) for all ί > 0
iii) (̂ί, A) is increasing in Z for all A e B{Γ)
iv) sup^€jB(Γ) |Λ(s, A) - λ(t, A)\ = \t- s\.

From (ii) and (iii), λ determines a measure on [0 T] X Γ and Λ([s, ί], •)
ΞΞ Λ(£, •) - λ(s, •) e M(Γ), if t > s, and Λ([s, β, Γ) = t - s.

Let g be a mapping; [0 ϊ7] X 5(Γ) X β -> [0, 1], such that
v) for all AeB(Γ), q( , A, •) is B[0 T] X F-measurable
vi) q € M([0 T] X Γ) P-almost surely.

DEFINITION 1. si = (β, F, P, ξ, B, Y, q) is called an admissible (re-
laxed) system, if ξ is an ^-random vector on (Ω> F, P), which is independ-
ent of (B, y, q), B and (Y q) are independent and the increments (Y(t) —
Y(s), t> s) are independent of σs{Y, q)(= σ-Άelά generated by Y(θ), θ < s
and q(θ, A), θ < s, Ae B(Γ)).

DEFINITION 2. The component q of si is called a relaxed control,
and we denote it by q^ when J/ is stressed, λ e M([0 T] X Γ) can be
regarded as a relaxed control. 2ί denotes the totality of admissible systems.

Let a(x) be a symmetric n X n matrix valued function on Rn and Γ
an n-vector continuous function on Rn X Γ. We assume the following
conditions

(Al) \g(x, u)\ <b, VχeRn, ueΓ g = a,r

(A2) \g(x, u) - g(x\ u)\<K\x- x'\, vx, χTeRnueΓfg = a,r.

For an admissible system si ~ (Ω, F, P, ξ, B, Y, q) we consider the
stochastic differential equation (SDE in short)

(2.1)
idX(t) = a(X(t)dB(t) + f r(X(t), u)q(dt, du)
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THEOREM 1. There exists a unique solution X of (2.1) which is

σt(ξ, B9 qyprogressiυely measurable and has continuous paths.

Proof. We apply a usual successive approximation method. We define

Xn in the following way

Xo(t) = £

(2.2) Xn+1(t) = £ + f a(Xn(s))dB(s) + P f r(Xn(s), u)q(ds, du)
Jo Jo J r

n = 0, 1,2, •••.

Then, Xn is σ,(f, J5, ^-progressively measurable and has continuous paths

by (iv) and (Al).

Putting Pn(t) = E\Xn+ι(t) - Xn(t)\\ we have

pn(t) < K^ pn_ί(s)ds, for
Jo

with some Kx = Kλ(T). This implies

(2.3) Pn(t) < f"ljg\
(n — 1J

Therefore

Xπ+ι(t) - Xn(0 = \\a(Xn(s)) - «(
JO

+ f f
Jo J Γ

So, using (Al) and (A2) we see

" ( s ) > u) ~ r ( x

< \l f \ΐ(Xn(s), «) - nX.Λs), M)P9(dβ, du)g(ί, Γ)
Jo J Γ

<Kt\Ί \Xn(s) - XUs)fq(ds, du)
Jo J Γ

1(0 - xn{t)\ < Σ JP~M < °°
n

This implies that XJJ) converges P-almost surely. Hence X(t) = lim^̂ eo Xn(i)
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can be regarded as σt(ξ, B, g)-progressively measurable and moreover a

martingale inequality tells us that, as n—> oo,

(2.4) P a(Xn(s))dB(s) -> Γ a<X(s))dB(s) uniformly in ί e [0, T],
Jo Jo

P-almost surely. On the other hand

sup I f * f T(Xn(s), u) - r(X(β), u)q(ds, du)
t<τ | Jo J Γ

< Γ ί \ΐ(XM, u) - ΐ(X(s), u)\q(ds, du)
Jo J Γ

min (\Xn(s) - X(s)\, 2b)ds.

By virtue of the convergence theorem we get, as n—> oo,

(2.5) f' ί r(Xn(s), u)q(ds, du) -* Γ f r(X(s), u)q(ds, du),
Jo J Γ JO J Γ

uniformly in t e [0, T], P-almost surely.

Combining (2.4) and (2.5) with (2.2), X turns out as a solution of (2.1)

and Xn(t) converges to X(t) uniformly in t e [0 T] P-almost surely. Hence

X has continuous paths.

Let Ybe a σt(ξ9 B, g)-progressively measurable solution of (2.1). Then,

applying a routine method, we can easily see for v£,

X(t) = Y(t) P-almost surely.

This completes the proof of Proposition 2.1.

L denotes the Prohorov metric for probability measures. That is

following, [11]. Let ε21 be the infinimum of ε such that

μi(F) < μ2(U£F)) + ε for all closed subset F,

where U£F) is the ε-neighbourhood of F. ε12 is defined by switching μx

and μ2. Set

(2.6) L(μl9 μ2) = max (ε12, ε21) .

Put

(2.7) M(Γ, t) = {λe M(Γ); λ(Γ) = t}9 t > 0 .

Define a metric pt as follows

(2.8) Pt(2u Λ) = ί A , ^ ) , λ< e M(Γ, t).
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Since Γ is compact, (M(Γ9 t), pt) is a compact metric space. Put D = {r{9

rational e [0, T], i = 1, 2, •} and

(2.9) Mτ= f[M(Γ,rd.
i=l

We endow Mτ with a metric dτ such that

(2.10) dτ(l β) = Σ-^ Prn(λw μn)

where λ = (λl9 λ2, •) and μ = (μl9 μ2, •)• Hence λk, k = 1, 2, is a dτ-

Cauchy sequence, iff λkti9 k = 1, 2, is a /orί-Cauchy sequence for any

component i. Therefore again (MT9 dτ) is a compact metric space.

Since λeM([0 T] x Γ) is determined by λ = (^(n), λ(r2)9 • ) e M r , we

define a metric dΓ on M([0 Γ] X Γ) by

(2.11) dτ(λ, μ) = d r α , /2) .

PROPOSITION 2.1. M([0 T] x Γ, dΓ) is a compact metric space.

Proof. Let λk(ri9 •) converge to λω in /orί. Then ί(<) eM(Γ9 rt) and for

^ 6 Cb(Γ)(=bounded continuous function on Γ).

(2.12) g(u)λk(rί9 du) ~» g(u)λω(du), as k -> oo .

Define λ(rt, A) by λ(ri9 A) = ^(i)(A). Then putting g = 1 in (2.12), we see

Let r4 > Γj and set R(A) = λ(ri9 A) — λ(rj9 A). Then R is a signed

measure on Γ. Since Λfo> •) — A^j, •) € Mi/7, r̂  — r;) and Λ(̂ <> *) — h(?j> •)

converges to R weakly by (2.12). R turns out as a positive measure and

R e M(Γ9 rt — r,). This means

(2.13) λ(r, A) is increasing in rational r

and

(2.14) \λ(ri9 A) - 2(r,, Λ)| < μ(r ί? Γ) - λ(rj9 Γ)\ = r< - rs .

Now we will construct λ which corresponds to (λ(ri9 •), i = 1, 2, •) e

MΓ, in the following way,

(2.15) λ(t,A) = limλ(ri,A).
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Then λ clearly satisfies the conditions (0) ~ (iv), namely λ e M([0 T] X Γ)

and dτ(λk, λ) -> 0, as k-+ oo.

Remark. pt(λk(t), λ(t)) < (4/r4) |ί - r,| + prt(λk(rd9 λ(rd) by condition (iv).

Hence

in ft.

For ^eC([0 T] X Γ) ( = continuous function on [0 Γ] X Γ)

(2.16) g(s, u)λk(ds, du) -> g(s, u)λ(ds, du), as & -> 00 .
Jo Jo

Proof of (2.16). Since g is uniformly continuous, g([2ni\l2n, u) con-

verges to g(t, u) uniformly on [0 T] X Γ, where [c] is the largest integer

< c. Suppose sup,,π |g([2ns]/2n, u) - g(s, u)\<ε. Then

Γ f S(s, u)λk(ds, du) - [l ί g(s, ύ)λ(ds, du)
Jo J Γ Jo J r

f. ί, K-?3-' w)^s-du) - ί ί,
< 2εί + 2nd term.

Appealing to (2.15), we see that the 2nd term tends to 0, as Jfe-> 00, for

any n. Hence we can conclude (2.16).

Let ζi9 ί = 1, 2, be MΓ(or M([0 T] X Γ))-valued random variables,

which may be defined on different probability spaces. vt denotes the proba-

bility distribution of ζt. So, vt is a probability on (Mτ, dτ) (or (M([0 T] X Γ),

dτ) respectively). Let mτ(or mτ) denote the totality of Mτ(or M([0 T] X Γ))-

valued random variables. We endow the following Prohorov metric

DT(OY Dτ) on mτ(oγ mτ resp.),

( 2 π ) i5Γ(Ci, Q =
D(ζu ζ2) =

Since Mτ and M([0 T] X Γ) are compact metric spaces, (mτ, Dτ) and

(mT9 Dτ) are also compact spaces.

For j / = (Ω, F, P, ξ, B, Y, q), we sometimes denote ξ by ξ^ and so on,

when any confusion might occur. Let X(= XJ be a solution of (2.1) for s/.

Then (X, ξ, B, Y, q) becomes a Mτ = C([0, T] -• i2w) X J?w X C([0 Γ] -> Λn)

X ([0 T] -> i?1) x M([0 T] X Γ) valued random variable. Endowing Mτ
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with a usual metric dτ(= sum of metric of each component) Mτ turns

out as a complete separable metric space. Let mτ denote the totality of

Mτ~valued random variables and Dτ the Prohorov metric on mτ. Hereafter

we denote (X, ξ, B, Y, q) by (X, sf) for simplicity if no confusion occurs.

We also say that si n —• si (in Prohorov topology), if (ξn, Bn, Yn, qn) ->

(ξ, B, Y, q) in Prohorov topology. Ωn, Fn9 Pn can also depend on n. f J/,

B^ and (Y^, qj) are independent for any si e% and B^ is a Brownian

motion. Therefore we have

PROPOSITION 2.2. sin->si, iff ξn-+ξ in law and (Yn, qn) -> (Y, q) in

Prohorov topology.

Now we put the set &>μ = totality of probability distributions of (Y ,̂ qj)9

si e 2ί(μ), SI(̂ ) defined later (3.8). Since £„, B^ and (Y ,̂ g^) are independent

for si e SI, ^ does not depend on μ, say 0*. Moreover π e ^ , iff π is a

probability on C([0 Γ] -> R1) X M([0 JΓ] X Γ) such that the first compo-

nent y is a Brownian motion under π and its increments y(t) — y(s) is

independent of σs(y, X) for t > 5, where Λ is the second component, (see

§ 2 of Fleming-Pardoux [8]). Since C([0 T] -> i?1) X M([0 T] X Γ) is a prod-

uct of complete separable metric space, it becomes a complete separable

metric space. So we introduce the Prohorov topology on ^ . Then 9P is

a compact metric space, because the first component is a Browian motion

and M([0 T] X Γ) is a compact metric space. Now we have

PROPOSITION 2.3.

i ) gβ = totality of probability distribution of (Y*, qj)9 si e2ί, is a

compact metric space with Prohoroυ metric.

ii) 0* = totality of probability distribution of (Y^, qj, si e 2l(μ), for

any μ.

iii) For si, si' e 2I(μ), DT{{X^ si\ (X,,, si')) = 0 iff probability distri-

bution of (Y^, qj) = probability distribution of (Y ,̂, q^).

§ 3. Existence of optimal relaxed control

Let N be a compact subset of probability measures on Rn with Pro-

horov metric. Put Pv = Probability law of η and

PROPOSITION 3.1. 31 is a compact subset of (mT9 Dτ).
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Proof. By the condition (Al), {X,; Pξ eN} is totally bounded in

Prohorov topology. B^ and Y^ are Brownian motions for any s/ e Si.

Since rhτ is compact, {q^ stf e SI} is totality bounded. Therefore

is a totally bounded subset of (mτ, Dτ).

Now we will show that 91 is closed. Let (Xk, j / k ) , k = 1, 2, be a

Cauchy sequence. Using Skorobod's theorem, we can construct (X*, ξ*,

£*, y?, 9?) and (X*, £*, B*5 Y*, g*) on a probability space (fl*, F*, P*),

so that

(3.1) (X*, f *, Bf, Y*, g*) has the same probability law as (Xfc, ξk, Bk, Yk,

qk), fe = l,2, •••.

(3.2) As fe-> co, (X*, f*, 5*, Y*, g*) converges to (X*, £*, B*, Y*, g*) in

dΓ metric, P*-almost surely.

Hence f*, £ * and (Y*, g*) are independent and 5* and Y* are Brownian

motions. Moreover we see that, for a.a. ω(P*)> g*( , ω) e M([0 T] X Γ)

and dτ(qt(-, ω), g*( , ω)) tends to 0 as A—> oo, by virtue of Proposition 2.2.

On the other hand (2.15) implies that g*(£, A, •) is F*-measurable. Since

q(t, A, ω) is continuous in t, g* ( , A, •) is 5j[0 T] X F*-measurable. Name-

ly g* satisfies the conditions (v) and (vi). (3.2) again tells us that Y*(£)

— Y^CrJ is independent of σ/Y*, g*) whenever s < Γt < t. Since Y* has

continuous paths, this implies that Y*(ί) — Y*(s) is independent of σs(Y*9

g*), Therefore J ^ * = (β*, F*, P*, f *, B*, Y*, g*) e ST.

Next we will show that X* is a solution of (2.1) for J / * .

(3.3) | P ί r(X?(s, ω), u)q*(ds, du, ω) - Γ ί r(X*(s, ω), w)g*(ώ, dw, ω)
ίJo J Γ JO J Γ

< Γ f |r(Z*(s, ω), «) - ΐ(X*(s, ω), u)\q*(ds, du, ω)
Jo J Γ

+ ! f! f r(X*(β, α>), u)(9?(ds, d«, ω) - Q*(ds, du, ω))
I Jo J Γ

the 1st term < K Γ |X*(s, ω) - X*(s, ω)| g?(ds, Γ, ω)
Jo

|X?(s, ω) - X*(s, ω) | ds .

Since X?( , ω) converges to X*( , ω) uniformly in [0, Γ], the 1st term

Jo
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converges to 0, as k -> oo. Appealing to Remark of Proposition 2.1, the
2nd term converges to 0, as k-+ oo. So, we have

(3.4) P ί T(X*(s, ω), u)qt(d8, du, ω) • Γ f r(X*(s, ω)q*(ds, du, ω).
J o J Γ Jo J Γ

Using a routine method we get

(3.5) Γ a(X*(s)dB*(s)) > Γ a(X*(s)dB*(s)) in proba (P*) .
Jo Jo

From (3.4) and (3.5), we conclude that X* is a solution of (2.1) for
si*. This completes the proof of Proposition 3.1.

COROLLARY. // sik -> J/, then (Xk, s/k) -> (X, #4) in Dτ.

Let / and h be bounded and uniformly continuous functions on Rn.
Define a pay-off function J(stf) as follows,

(3.6) JtaO = Ef(XAT))L(T, ^)

where E stands for the expectation in (Ω, F, P), and

(3.7) L(T, j*) = exp ( £ h(X(s))d Y(s) - i_

where Z = X^ and Y = Y,.
For a probability measure μ, we denote

(3.8) «0ι) = { ^ 6 ί t ; P ^ = M

i.e. the set of all admissible system where initial distribution equals to μ.
For a given μ we want to maximize J(sf) by a suitable choice of

si e %(μ).

THEOREM 2. There exists an optimal admissible system stf e 2ϊ(μ), that
is

(3.9) sup

Proof. Let j / f c e 2I(/̂ ) be approximately optimal, i.e.

(3.10) lim J(sik) = sup J(si).

By virtue of Proposition 3.1, some subsequence (Xk0 s/kι) converges to
(X, s/) in Prohorov topology. For simplicity we may assume (Xk, sik) —>
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(X, stf) as &-> oo. Again Skorobod's theorem tells us that their suitable

version satisfy (3.1) and (3.2). So we again assume that (Xk, sέk) and

(X, stf) satisfy (3.1) and (3.2), since J(s/) depends on only probability law.

From boundedness of / and h, we have

(3.11) E(f(Xk(T))L(T, stfk)f < ||/||V™, k = 1, 2, . .

Hence {f(Xk(T))L(T, s/k), k = 1, 2, •} is uniformly integrable. On the

other hand L(T, stfk) tends to L(T, s/) in proba. Appealing to the con-

vergence theorem we get

(3.12) ]imJ(s/k) =

Combining (3.12) with (3.10), we complete the proof.

Remark. Appealing to Corollary of Proposition 3.1, we see that if

j / f e —> sf, t h e n J{stf k) —> J(s/).

Now we treat the following case; r(x, u) = bx(x) + b2(x)u where b?(x)

is^n X k matrix.

THEOREM 3. If r(x, ύ) = bx(x) + b2(x)u, then q = q^ can be replaced

by a Γ-valued σt(q)-progressively measurable process U (i.e. usual admissible

control under partial observation). That is, X — X^ is a unique solution of

the following S.D.E.

(dX(t) = a(X(t))dB(t) + ϊ(X(t), U(t))dt

U(0) = ξ
where B — B^ and ξ = ξ^.

Proof. Our required U is obtained by the following lemma.

LEMMA. There exists a σt(q)-progressively measurable Γ-valued process

U such that

(3.14) P ί uq(ds, du) = P U(s)ds, for *t < T.
Jo J Γ Jo

Proof. Define Uk as follows

2k ί u(q(t, du, ω) - q(t - 2~k, du, ω)), for t > 2~k

(3.15) Uk(t,ω)= J r

— uq(t,du,ω), for 0 <t<2~k.
t Jr
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Since Γ is convex compact, Uk(t, ω)eΓ and ^(^-progressively measurable.

Moreover the compactness of Γ tells us that {Uk, k — 1, 2, •} is weakly

totally bounded in L2([0 T] X 42). Hence some subsequence converges

weakly and their suitable convex combinations converge strongly, say

ΣζίtσpUnp(t, ω) converges to U(t, ω) in L2([0 T] X Ω), as ^-> oo. So U is

a Γ-valued σX^-progressively measurable process.

On the other hand the definition of Uk implies

(3.16) Uk(s, ω)ds —• uq(t, du, ω)( = uq(ds, du, ω)\ .

as k-+ oo. Taking the convex combination of Unp9 we can conclude that

U satisfies (3.14) by bounded convergence theorem.

Now we return to the proof of Theorem 3. Since ξ, B and U are

independent, (3.13) has a unique solution. So it is enough to show that

X = X^ satisfies (3.13). By the Lemma we can see

(3.17) Γ b2(X(s)) f uq(ds, du) = Γ b2(X(s))U(s)ds .
Jo JΓ JO

Using " b^Xis^qids, du) = b^Xis^ds", we have
Jo Jo

(3.18) Γ f ΐ(X(s), u)q(ds, du) = f r(X(s), U(s))ds .
Jo J Γ Jo

This completes the proof of Theorem 3.

DEFINITION 3. A Γ'-valued process U is called an admissible control

under partial observation, if ξ, B and (Y, U) are independent and Y(t) —

Y(s) is independent of σs(Y, U). Precisely speaking s/υ = (Ω, F, P, ξ, B,

Y, U) is called an admissible usual system.

An admissible control U can be regarded as the following relaxed

control q,

(3.19) q(t, A, ω) = Γ δuiSί(ί>)(A)ds = \s < t; U(s, ω) e A\
Jo

where δa is the ^-measure at α. Appealing to Theorems 2 and 3, we can

derived,

COROLLARY. // r(x, u) = bx(x) + b2(x)u, then there exists an optimal

admissible usual system J^V. That is,

(3.20) J(j2π) = sup J(s/Ό) = sup J(st) .
siχj\ ad.usual sys
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This fact was directly proved by Haussmann [9] and in a slightly

different form by Fleming-Pardoux [8].

§4. Approximation by usual controls

For j / = (Ω, F, P, ξ, B, Y, q) we define Pn by

UΛ\ τ>u A ^ W^A.ω) 0 < t < 2 -
(4.1) Pn(t, A, ω) = It

{(q(t, A, ω) - q(t - 2"\ A, ω))2\ 2~n < t,

namely Pn is an approximate time derivative of q. Pn( , A, •) is σXg)-

progressively measurable and Pn(t, -,ω) is a probability on Γ. Define qn

by

(4.2) qn(t, A, ω) = P Pn(β, A, ω)ds .
Jo

Then qn satisfies the conditions (v) and (vi) and stn = (Ω, F, P, ξ, B, Y, qπ)

e 8ί. Since we have

(4.3) |qjf, A, ω) - q(t, A, ω)\ < 2"" + 2" f |g(β, A, ω ) - q(t, A, ω)\ds,
Jί-2-»

for a. a.

the condition (iv) implies, as n,->oo,

(4.4) sup \qn(t9 A, ω) - q(t, A, ω)\ -> 0, uniformly on [0, T] .
A

and

(4.5) te.( ,ω),q(.,ω)) >0.

Fix uoeΓ arbitrarily and define Pnyk by

Λ ω), for ί > 2-*
(4.6) Pntfc(ί, A, ω) -

[ for t<2~\

Then Pntfc is a step function in the time variable t Put gn,fc as follows.

(4.7) qntt(t, A, ω) = f Pnιi(β, A, ω)ds.
Jo

We call qnjt a switching relaxed control with interval 2~k. It is clear that

φ, F, P, ξ, B, Y, qn,k) e SI and

(4.8) \qn%k(t, A, ω) - qn{t, A, ω)\ < 2«-*-it + 2"*.
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Therefore we get

(4.9) lim sup \qn,k(t, A, ω) - qn(t9 A, ω)\ == 0.

Now we conclude the following proposition,

PROPOSITION 4.1. For s/ = (Ω, F, P, ξ, B, Y, q) e Si, there exists an

approximate sequence of switching relaxed control qk with interval 2~k, such

that qk(-,A, •) is σt(q)-progressively measurable and moreover

(4.10) lim sup \qk(t, A) — q(t, A)\ = 0, P-almost surely

and

(4.11) limdτ(qk, q) = 0, P-almost surely.
k-*oo

Putting j / f c = (β, F, P, f, JB, F, gA), we can see the following corollary,

t>y virtue of the Remark of Theorem 2.

COROLLARY. There exists an approximate admissible switching system

<$/k, such that

(4.12) stfk > <sf, a s k -> co .

Hence J(<stfk) converges to

THEOREM 4. There exists a Γ-valued σt(q)-progressively measurable

process Uky such that

(4.13) qk(t, A, ω) = P δϋkM(A)ds
Jo

approximates q in the following sence; s#k — (Ω, F, P,ξ, B, Y,qk) satisfies

(4.12).

Proof. By the Corollary of Proposition 4.1, we may assume that <stf

is an admissible switching system with interval 2~N. Appealing to a Chat-

tering Lemma [5], we will construct our desired Ukί in the following way.

Let {ulf , um} be an ε-net of Γ, and V19 , Vm e B(Γ) a partition

of Γ such that

(4.14) | ut - u\ < ε for vw e Vt.

Since a given q is a switching relaxed control, it can be written by

q(t, A, ω) = I p(s, A, ω)ds
Jo
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with p of step function in s. Define p = p& and q = qe as follows,

(4.15) p(s,{ui},ω)=p(s,Vί,ω)

and

(4.16) q(t, {ut}, ω) = f p(s, {u,}, ω)ds .
Jo

Then p(t, , ώ) is a discrete probability on Γ and for Vg e C(Γ)

(4.17) J^ £(^)A(*, dw, ω) > J^ #(φ(£, Λ*, ω), as e | 0 .

Define ^, i = 0, , m as follows: Let j 2 ' N < sx < s2 < (j + Ϊ)2~N,

θo(ω) = s,
(4.18) 4 fS2

*i(ω) = Σ P(^ {"/}» ω ) d ^ + sl9 ι = 1, , m .
4 J

Then βj = θo(ω) < θ^ω) < < ^m(ω) = s2 and

f2 f g(u)q(dt, du, ω) = Γ ί g(u)p(t, du, ω)dt
J SiJ Γ JsiJΓ

(4.19) = Σ g(ud P(t, K h <»)dt = Σ g(Ui)(θt(ω) - ΘU<»))
i=l J si ί=l

= {S'g(U(t,ω))dt= Γ f g(u)δmt^(du)dt

where

(4.20) E7(f, ω) = Uttiltn(t, ω) = ut on [(θ^ω), θ^ω)) .

Therefore U,t81tSa(t) is ^-^(c^-measurable. Putting ε = 2~k, s1 = £2-k(k>N),

we define Uk by

( ' for ^2"fc < t < (£ + l)2" fc, t = 0, 1, 2 .

Consider the SDE

iA 0 0 , ί«*(0 = a(ξk(t))dB(t)
yk.ΔΔ)

If we regard [/*(£) as ^ Λ ( ί ) , then ξk turns out a solution of (2.1) for s/k =

(Ω,F,P, ξ, B, Y, qk) where qk(t, A9 ω) = f ^ f c ( s,ω )(A)ds. Moreover (4.19)
Jo

means
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(4.23) qk(£2'\ ., ω) = qt-,{ί2~\ , ω), I = 0, 1, •, [ 2 T ] .

Hence, combining with (4.17), we can see that, as £->oo,

(4.24) dτ(qk, q) > 0, P-almost surely.

Evidently this completes the proof.

§ 5. Continuity of conditional expectation

According to [8] we define L pathwise. Hereafter we assume the

following smoothness on h.

(A3) h, , i, j = 1, , n are bounded and uniformly continuous.
dX dxβX

Putting X = X^, Ito's formula tells us that

Π' h(X(t))dY{t) = h(X{T))Y(T) - Γ Y(t)dh(X(t))
Jo Jo

(5.1) = h(X(T))Y(T) -
i

Γ Y(t)A{t, q)h{X{t))dt
Jo

where

(5.2) A(U q)h = ±Σ ai3(x)^-~ + Σ «Λ *, ω; g) |*

with

(5.3) R(t, x,ω;q) = ϊϊm2n[ T(x, u)(q(t, du, ω) - q(t - 2~n, du, ω)) .
n-*oo J Γ

So, R is σX^-progressively measurable for any x, and Lipschitz continuous

with respect to x. Moreover for any (x9 ω),

(5.4) R(t, x, ω; q) = — ί T(x, u)q(t, du, ω) for a.a. t.
dt JΓ

For y e C([0 Γ] -> Rn) and ̂  e M([0 T] X Γ) we define 2 by

(5.5) = exp \y(θ)h(η{θ)) - Γ y(β)A(s, λ)h(v(s))ds - 1 Γ
L Jo 2 J

- Σ
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where η is a solution of S.D.E.

( 5 6 ) Uη(t) = a{η{t))dB(t) + J^ ϊ(y(t), u)λ(dt, du)

Applying a successive approximation, we can see that η is a Borel func-

tion of ζ, B and λ. Hence Jδf is Borel measurable with respect to θ, ξ, B,

y, λ. From (Al) and (A3) we have the following evaluation,

e-F(y,θ) e χ p . . J ] y(t)

L ιj Jύ dXi

(5.7) - | P

Γ ^-, C9 1 Cc 1

<^{θ, ξ, B, y, λ) < eFiv>θ) exp — Σ ' dBXt) — — ώ
L y Jo 2 Jo J

where F(y, θ) = ^(sup|y(OI 4- l)2(/9 + 1).t<θ

Since (C[0 Γ] -> βw), || ||) and (M[0 T) X Γ, dτ) are complete separable

metric spaces, the regular conditional probablity P((X, ξ, B, Y, q) e -/Y = y,

q = λ) exists. This regular conditional probability is nothing but the

probability distribution of {η, ξ, B,y, X), because (ξ, B) and (7, q) are inde-

pendent. Putting μ = Pξ(= probability distribution of ξ), we have a

version of conditional expectation as follows.

E(f(X(0))L(θ, j/)/Y = y,q = X) = 6f(r0))X(θ9 ξ, B, y, λ)
(5.8) f β

= J Ef(η(θ, x))&(θ, x, B, y, λ)dμ(x), for bounded Borel /,

where η(θ, x) is a solution of (5.6) with η(0, x) = x. The right side of (5.8)

is Borel measurable with respect to θ, y, λ, which depends on / and μ.

So we denote the right side of (5.8) by C(θ, y, λ, μ, /). Moreover C(θ, y,

λ, μ, f) depends on the value of y and λ up to time θ. Stressing μ we

denote E by Eμ. That is,

( 5 9 ) C(0, 7, q, μ, f) = Eμ{f(X(θ))L(θ, s/)lστ(Y, q))

= Eμ(f(X(θ))L(θ, ̂ )lσβ(Y, q)\ P-almost surely.

Using (5.7) we have

(5.10) e-*<r.'> < C(θ, 7, q, μ, 1) < e*™ .

Now we define C(θ, Y9 q, v, f) for a positive measure v as follows
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(5.11) C(θ, Y, q, v, f) = ||HI C(θ, Y, q, * /)

where \\v\\ = v(Rn) and we apply the same notations Ev for a general
positive measure v, that is

(5.12) EXf(X(θ))L(θ, sOMY, Q)) = (Xfl, Y, q, v, f)

with j * = (Ω, F9 P, ξ9 B, Y, q) for Pξ = v/\\u\\. The left side of (5.12) stands
for

(5.13) Ev(f(X{θ))Lψ, ^)lσd{Y, q)) = \\ι>\\&,m(f{X{θ))Uβ, ^)\aθ{Y, q)) .

Since ξ is independent of (JB, Y, g), the right side of (5.13) does not depend
on a special choice of ξ.

Define Λ(θ,y,λ,v){A) by

(5.14) ^(ί, y9 λ, v)(A) = C(«, y, ,̂ v, Xj, A e Bn.

Then ^ί(^, y, λ, v) is a positive measure on Rn and for any bounded Borel
function /.

(5.15) </, Λ(θ, y, λ, v)> = C(θ, y, λ, v, f)

where </, Λ) = f f(x)Λ(dx). From (5.10) we see

(5.16) |M|e-™ '>

On the other hand J?(θ, ξ, B, y, X) is continuous in θ, P-almost surely, and
(5.7) implies the uniformly integrability of {&(θ, ξ9 B, y9 X), θ e [0, T]}.
Hence \\Λ(Θ, y, λ, ι>)\\ = \\v\\ E&(θ, ξ, B, y, X) is continuous in θ.

Define a metric Δ on M(Rn) (= totality of positive measure on Rn)
as follows

(5.17) J(μ,v) = Li-/*-,
IMI

Then (M(Rn), Δ) is a complete separable metric space and vk, k = 1, 2,
is a Cauchy sequence, iff </, vfe> converges for any fe Cb(Rn), as k-> OQ.
and lim^oo <1, ^>(=!|^ f c | |) > 0. Recalling Prohorov's theorem we have

PROPOSITION 5.1. NZD M(Rn) ίs Δ-totally bounded, iff there exist pos-
itive constants c and d and for vε > 0 there is a compact subset Kε c Rn

such that
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(5.18) d < \\v\\ < c and v(Kc) <ε for veN.

Put m = totality of M(i?π)-valued random variables, which may be

defined on different probability spaces. We endow the Prohorov metric

on m, (called δ metric), namely

δ(ζu ζ2) = L(μu μ2)

where μt is the probability distribution of ζ*. Then {m, δ) is a complete

separable metric space, because (M(Rn)y Δ) is a complete separable metric

space.

Concerning the continuity of Λ, we can prove the following theorem.

THEOREM 5. If yk->y in C([0 T]->#*), vk->v in d, λk-+λ in dτ and

θk->θ, then

(5.19) Λ(θk, yk, 4, vk) > Λ(θ, y, λ, v) in Δ.

Proof. Firstly we remark that

(5.20) Γ R(t, x, λk)dt > Γ R(t, x, λ) dt.
Jo Jo

Recalling the definition of R for λ ε M([0 T] X Γ) (see (5.3)), we get, for

any x,

(5.21) R(t, x, λk) = lim ί ϊ(x9 u)(λk(t, du) - λk(t - 2~\ du))2n

X^oo J Γ

for a.a. t.

Hence the bounded convergence theorem implies

Γ R(t, x, λk)dt = lim ΓΓ f 2Ύ(x, u)λk(t, du)dt
Jθ w-oo LJo J Γ

(5.22) - Γ f 27(x, u)λk(t - 2~n, du)dt\

- f r(x, u)λk(s, du).
J Γ

Since λk —> λ in dτ, (5.22) means (5.20).

Consequently we can easily see

LEMMA. If φk->φ and ψk-+ψ in C([0 T] -> Rn) and C([0 T] -* R1)

respectively, then

(5.23) Γ R(t, φk(t), λk)ψk(t)dt > Γ R(t, φ(t\ X)ψ(t)dt.
Jo Jo
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Putting Ak = A(θk, y> λk9 vk) and A = Λ(β, y, λ, v)9 we will show

(5.24) </, Ak) — > </, A} for fe Cb(Rn).

Consider the SDE on (Ωk9 Fk9 Pk]

( 5 25) {%(*) = oc{ηk{t))dBk(t) + J^ ?%(*), M)i*(ώ, du)

U(0) - £»
and on (β, F, P)

(5 26)

where ξk and f have probability distributions i>fc/||i>fc|| and vl\\v\\ respectively.

Since {{ηk, ξk9 Bk), k = 1,2, •} is totally bounded in Prohorov topology and

any convergent subsequence tends to (η, ξ, B) in Prohorov topology, (ηk,

ξk, Bk), k — 1, 2, itself converges to (η, ξ9 B) in Prohorov topology.

Appealing to Skorobod's theorem, we will assume that Ωk = Ω, Fk = F,

Pk-=P and P-almost surely ηk-+ηϊn C([0 T]->Rn), Bk->B in C([0 T]->Rn)

and ξk -> ξ in i?71. Therefore the lemma guarantees

(5.27) P y*(s)A(8, λk)h{ηk(s))ds > [ y(s)A(s, λ)h(v(s))ds ,
Jo Jo

P-almost surely.

Furthermore, using a routine method we have

(5.28) P yk(s) ξ±- {η&))aM8))dBk. is)
J o dxt

y(s) ψ- M8))aM*))dBt<β) in proba P.

Hence we have

(5.29) &(βk, ξk9 Bk, yk, λk) • &ψ, ξ, B, y, λ) in proba P .

Since (5.7) means the uniformly integrability of {f{ηk{θk)£?(θk. ξk9 Bk, yk9 λk).

k = 1, 2, •}, (5.29) implies (5.24).

By virtue of Proposition 5.1, (5.16) and (5.20) guarantee the totally

boundedness of {Ak, h = 1, 2, •}. Consequently, again (5.24) tells us that

Ak converges to A in metric J. This completes the proof of Theorem 5.

Now we apply this theorem to admissible systems.
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THEOREM 6. Let stfk = (Ωk, Fk, Pk, ξk, Bk, Yk, qk) and s/ = (Ω, F, P, ξ,

B9Y,q) where ζk and ξ have probability distributions vkl\\vk\\ and »/IMI

respectively. If (Yk, qk) —> (Y, q) in Prohorov topology, vk->v in Δ and θk

—> θ, then

(5.30) A(θk9 Yk9 qk9 vk) • A(β9 Y, q9 v) in metric δ.

Proof. By the assumption sik —» s/ in Prohorov topology. Hence

(Xk, <srfk) —> (X, <$/) in Prohorov metric Dτ, by virtue of Corollary of Pro-

position 3.1. By Skorobod's theorem we can construct copies (Xf, stff)

and (X*, si*) of (Xk, stfk) and (X, si) respectively, so that flf = β*, Ft = F*,

Pi = P* and P*-almost surely (X*, f *, B*, Y*, q*) -> (X*, f *, B*, Y*, g*)

in dΓ. For non-exceptional ωefl*, we put ̂ fc = qf(>, ω), yk = Y*( , ω),

^ = ̂ *( y ω) and y = Y*( , ω). Then j f c , ^Λ, y and >ί satisfy the condition

of Theorem 5, Theorefore we have

(5.31) A(βk9 Yί, qi9 vk) > A(β9 Y*3 q*9 v\ P*-almost surely.

On the other hand Theorem 5 tells us that the mapping A(θ, , , v)

C([0 T] -> i?1) X (M([0 T] X Γ)) -> M(EW) is continuous. So Λ(0, Y, q9 v) is

a random variable, i.e. Λ(θ, Y, g, v) e m. Consequently (5.31) implies (5.30).

Recalling Corollary of Theorem 4, we get

COROLLARY. For any srf e 2ί(μ), there exists an approximate admissible

switching system stfk e 2ί(μ)> such that

(5.32) Λ(θk, Yk, qk, v) > Λ(ϋ, Y, q, p) m meίric δ

where μ = v/\\v\\.

§ 6. Semigroup

Let C be the Banach lattice of the totality of bounded continuous

mappings from (M(Rn), Δ) into R\ with supremum norm and the order < ,

i.e.

(6.1) φ < ψ φ=φ φ(v) < ψ(v) for vv 6 M(Rn).

For i; € M(Rn), srf e SI(y/||v||) and 0 e C we define J by

(6.2) J(t9J*9v,φ)

E[E(Φ(Λ(t,Y,q,v)lσ(Y,q)]
(6'3) = f

J C([0 7']->.Ri)xJf([0 Γ]XΓ)
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where π is the probability distribution of (Y, q). Since E(φ(Λ(t, y, λ, v))

depends only on φ, v, t, y and λ9 J(t, si, v, φ) can be denoted by J(t, π, v, φ).

Define S(t)φ by

(6.4) S(t)φ(v) = sup J(t, si, v, φ).

Then by Proposition 2.3 (ii) and (6.3) we have

(6.5) S(t)φ(v) = sup J(t, π, v, φ).

PROPOSITION 6.1. J(t, π, v, φ) is continuous in (t, π, v) e [0 T\ x 9 x

M(Rn).

Proof. Let tk->t, πk->π and vk -> v in their topologies. Take s/te e

2ί(^/ll^ll) (and s/ e 2ί(^/||v||)) such that the probability distribution of (yk, qk)

(and (Y,q)) is πk (and π respectively). Then s/k -> si by Proposition 2.2.

Therefore Theorem 6 guarantees that A(tk, πk> vk, φ) —> Λ(t, π, v, φ) in metric

δ that is in the Prohorov topology. By Skorobod's theorem we can take

a copy Aί of Λ(tkf πk, vk, φ) and Λ* of Λ(t, π, v, φ) so that At converges to

At almost surely on (β*, F*, P*). Since φ is bounded continuous, we see

that

(J(tk, πk) vk9 φ) = Ekφ(A(tk, Yk, qk, vk) = E*φ{A*)

(6.6) \j(t, π, v, φ) = Eφ(A(t, Y, q, ι>) = E*φ(Λ*)

[E*φ(A*)-*E*φ(A*).

This completes the proof of Proposition 6.1.

Since SP is a compact metric space by Proposition 2.3 (i), we can

conclude the following proposition.

PROPOSITION 6.2. S(t)φ e C whenever φeC. That is, S(t) is a mapping

from C into C. Recalling Corollary of Theorem 6, we see

(6.7) S(t)φ(v) = sup J(t, si, v, φ).
•rfSHd'/IMI)

.srf' swisching syst.

THEOREM 7. S(t + θ) = S(i)S(θ), S(0) = identity.

Proof. Consider the SDE on (Ω, F, P), for λ e M([0 T] x Γ)

φ 8) [dη(t) = cc(η{t))dB(t) + j ^ r(v(t), u)λ{dt, du)

U()



STOCHASTIC RELAXED CONTROL 93

Since a solution η( •, ξ, B, λ) is unique, η satisfies the following relation

(6.9) η{t + θ, ξ, B, X) = η(θ, v(t, ξ, B, λ), Bt, λΐ)

where Bΐ(s) = B(t + s) - B(t), λΐ(s, A) = λ(t + s, A) - λ(t, A).

Using Ito's formula we get

(6.10) jS?(ί + s, ξ, B, y, λ) = se{t, ξ, B, y, λ)g{s, η{t, ξ, B, λ), Bt, yΐ, λt).

Define v: [0 T] x Rn X C([0 T] -> R1) x M([0 ϊ ] χ Γ ) χ Cb(Rn) -• S1 by

(6.11) ι<ί, x, y, A, /) = έf(φ, x, B, λ))&(t, x, B, y, λ)

where έ of the right side stands for the expectation with respect to B,

since the starting point x is not random. From (6.10) and (6.11) we have

v(t + s, x, y, λ, f) = Ef(v(t + β, x, B, λ))&(t + s, x, B, y, X)

(6.12) = Mm, x, B, y, X)E(f(φ, v(t, x, B, λ), Bt, λt)

X Se(β, η(t, x, B, λ), Bt, y*, λΐ/σt(B))] •

Since η(t, x, B, λ) is σ((β)-measurable, we see

' *&> x> B>;i). Bΐ> λt)^, η{t, x, B, X), Bt, yΐ, λt)lσt(B)))
(6 13)

= v(s,v(t,x,B,X),yt,λt,f)

and, combining with (6.12) we get

V(t + S> X ' y ' l f) =(6 14) V(

= v(t, x, y, λ, v(s, •, yΐ, λΐ, /)) .

Recalling (5.8) and (5.15) we get

(6.15) {f, Λ(t, y, λ, v)} = (v(t, ,y,λ),v>, fe Cb(R").

Hence, by (6.14), we have

</, Λ{t + s,y, λ, v)> = {v(t + s,-,y, X), v>

/CΊC, = <v(t, ,y,λ, v(s, ,yΐ, λΐ,/)), v>
(6.16)

= (v(s,-,yΐ,λΐ,f),Λ(t,y,λ,v)y

= </, Λ(s, yΐ, λΐ, Λ(t, y, λ, v))} , /e Cb{R«).

Consequently

(6.17) Λ(t + β, y, λ, v) = A(s, yΐ, λΐ, A(t, y, λ, v)).

Since (6.17) holds for any y e C([0 T] -> R1) and λ e M(0 T] X Γ), we have,

for any s/ = (Ω, F, P, ξ, B, Y, q) e 8T(»;/||v||),
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(6.18) Λ(t + s, Y, q, v) = Λ(s, Yΐ, qU Λ(t, Y, q, *)), P-almost surely.

This implies

J(t + s, st, v, φ) = Eφ(A(t + s, Y, q, v))

= έ[E(φ(A(t + 8, Y, q, v)lστ(Y q)))}

* = Eφ(A(s,Yΐ,qΐ9A(t,Y,q,ι>)))

= EE(φ(A(s, YU qΐ, Λ(t, Y, q, v))lσt(Y, q))) .

Under the regular conditional probability P( /σ£Y9 q)), (βt, Yt

+) is a (n + 1)-

dimensional Brownian motion, (Y^, qΐ) independent of {B, ξ) and Y,+ is

os(Yΐ> 9?")-Brownian motion, i.e. independent increments. Hence η(t, ξ,

By q), Bt and (Y^, qΐ) are independent under conditional probability

P(lσt(Y, q)), P-almost surely, although the probability distribution of qΐ

might depend on the past value of (Y(θ), q(θ, A),θ<t,Ae B(Γ)). Hence

there exists a null set Ne σt(Y, q), such that for ω & N, (Ω, F, P(/σt(Y, q))

(ω), η(t, ξ9 B, q), Bΐ, Y,+, qΐ) e ST. Therefore

(6.20) E(φ(Λ(s, Yΐ, qΐ, Λ(t, Y, q9 v))/σt(Y, q))) < (S(s)φ)(Λ(t, Y, qy v)),

P-almost surely.

Combining (6.20) with (6.19), we have

(6.21) J(t + s, s/, vy φ) < S(t)(S(s)φ)(v).

Taking the supremum with respect to s/ e 2ί(v/||v||), we have

(6.22) S(t + s)φ(v) < S(t)(S(s)φ)(v).

For the converse inequality we will show some lemmas

LEMMA 1. Let Na (M(Rn), Δ) be totally bounded. Then {A(t, Y*, q^ v);

j ^ e 8l(y/||̂ ||), veN} is totally bounded in (m,δ).

( 6 2 3 )

Proof. Consider the SDE, for s/ - (Ω, F, P, ξ, B, Y, q) e «(iV|M

\dη(t) - a(V(t))dB(t) + J^ ϊ(V(t), u)λ(dt, du)

Then, using this unique solution η{t) — η{ty ξ, B, X) we have

(6.24) Λ(t, y, λ, v)(A) = || v || ElA{φ))^(t, ξ, B, y, X).

Hence, by (5.7)
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Λ\t, y, λ, v)(A) < \\v\\Ψ(v(t) e A)ESe\t9 ξ, B, y, λ)

^ \W\\2P(v(t) e A) exp [2K2(t + iχ| |y ||, + I)2]

where \\y\\t = sups^t\y(s)\. This means

(6.26) A(t, y9 λ9 v)(A) < \\p\\ ^JirjiίyeA) exp [K2(t + 1)(1 + α) 2 ],

whenever \\y\\t < a.

On the other hand the condition (Al) implies that, for ε' > 0, there
exists b = b(ε\ t, N) such that

(6 27) P(\v(t, ξ, B, X)\ >b)<εf for ^λ e M([0 T] x Γ), rf e %(-?—), v e N.

Since Y is a Brownian motion, for ε > 0 there exists a = a(ε) such that

(6.28) P(sup \Y(s)\<a)>l-ε for v ^ € ST.

Putt ing ε' = e*e-*χ*v+')v+*w)*9 (g.26) gives

(6.29) Λ(t, y, λ, v)(Kc) < ε\\v\\ for λ e M([0 T] x Γ)

whenever \\y\\t < α, where the compact set K is given by

(6.30) K = {xeRn:\x\< 6(ε', ί, ΛΓ)}.

Therefore combining (6.28) and (6.29), we see, for j / e 2l(v/\\v\\),

(6.31) 1 - ε < P(sup| Y(5)| < α(e)) < P(^ft Y, g,

Recalling the condition "0 < c' < ||p|| < c for ^ e ΛΓ", (6.31) implies Lemma
1 by virtue of Proposition 5.1.

Applying Prohorov's theorem, Lemma 1 gives

LEMMA 2. For ε > 0 and a totally bounded set N c (M(Rn), Δ) there
exists a compact set N = N(ε, t, N) c (M(Rn), Δ) such that

(6.32) P(Λ(t, Y,q,v)eN)>l-ε for s^ e Sίf-^-Λ, v e N.
\ ll̂ll ^

LEMMA 3. Suppose that M(Rn) = MQU - - UMs is a Borel partition of
M(Rn). Let v, e Mt and s/ = (Ωi9 Fίy Pi9 ξi9 Bί} Yίy qz) e aW| |^ | | ) . For any
fixed j * = (Ω9F9P9ξ9B9Y,q)e%(vl\\v\\) we define Ω, F9 P9 I, B9 Ϋ9 q as
follows.
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Ω = Ω x Ωo x Ω1 x x Ωt, F = FχFoχ ••• χFe

P = P x A x xP(, I = ξ
(B(θ), θ<t

B(θ) =
\B{t) + Σ BIΘ - t)ιMi(Λ{t, Y,q,»)), θ>t.

Y is defined in the same way.

(q{θ,A), θ<t
q(θ, A) = \

{q(t, A) + Σ> qtft - t, A)XMi(A(t, Y,q,v)), θ>t.
ί = 0

Then J = φ, F, P, | , B, Ϋ, q) e St(v/||v||).

Proof, ξ is independent of {(B, Y, q), (ξt, B(, Y{, qt), ί = 0, , i). So ξ

is independent of (B, Y, q).

B is a Brownian motion, because for g e Cb((R")k) and θs > t, j =

1,- k,

& ( g φ t f , ) - B(t), j = 1, • , A ) / α t ( B , Y, q) V σ ( F i ; g j , i = 0, ••-,£)

= £(£(£<<& - 4 j = 1, ,k) if ^(ί, Y, q, v)eMt.

Hence (B(s) — B(t), s > ί) is a Brownian motion which is independent of

σ̂ Z?, y, g) V σ(y0, g0) V V σ(Ŷ , ĝ ), since Bt is a Brownian motion.

This implies that (B(s) - B(t), s > t, B(θ), θ < t) is independent of ((Y, q),

(Yί9 qύ, ί = 0, , £), since B is independent of ((Y, g), (Ŷ , gέ), i = 0, , £).

Therefore B is independent of (Y, g), because (Y, g) is measurable with

respect to σ(Y, q, Yo, g0, , Ŷ , ĝ ).

Using a similar calculation as (6.33), we see that for ge Cb (Rk) and

έ(g(Ϋ(θj) - Ϋ(β), j = 1, . ., */*.(Y, g) V σ#.t(y0, g0, , Ye,
( ; &(g(Y«t) 5 m j = i, . . . , ft)), if ^ Y, g, ,)

Therefore (Y(s) — Y(#), s > )̂ is a Brownian motion which is independent

of σ,(Ϋ, q).

It is clear that g satisfies the conditions (v) and (vi), from the defini-

tion of g. This completes the proof of Lemma 3.

Now we prove the inequality (6.35) for Theorem.

(6.35) S(t + s)φ(v) > S(t)(S(s)φ)(v).
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Since J(s, π, v, φ) is continuous in π, v and &* is compact, J{s, π, v, φ) is

continuous in v uniformly in π e &*, namely for ε > 0 there exists δ(ε, v) —

δ(ε, vy s, φ) such that, if J(i/, v) > δ(ε, v) then

(6.36) | J(s, π, i/9 φ) - J(s9 π,v,φ)\<e.

Hence

(6.37) | S(s)φ(S) - S{s)φ(v) | < ε , if Δ(y\ v) < δ{ε, v) .

Applying Lemma 2 for N = {v}, given ε > 0 we can take a compact

set N as in (6.32). From (6.36) and (6.37) we can take a Borel partition

of N, say N = Mλ U U M49 such that, if v', v" e Mu then

(6.38) | J(s, π, i/, φ) - J(s, π, υ», φ)\ < ε

and

(6.39) \S(s)φ(v>)~S(s)φ(v")\<ε.

Fix Vι e Mi, ί = 1, , £, arbitrarily and take stf\ e 21(̂ /11̂ 11) such that

(6.40) J(s, πiy vu φ) > S(s)φ(pd - ε

where πt = probability distribution of (Y .̂, g^.). Then, by (6.38) - (6.40),

we see

(6.41) J(s, πu v', φ) > J(s, πt, ι>i9 φ) - ε > S(s)φ(vί) - 2ε > S(s)φ(v') - 3ε

for v'eMt.

Let jtfe8ϊ(iVH|) and Mo = iVc and take vQeMQ(Rn) and J / 0 e 2ί(vo/||v0||)

arbitrarily. Then Mi9 ί = 0, , ^ is a Borel partition of M(Rn). According

to Lemma 3 we have (Ω, F, P, ξ, B, Ϋ, q) e %(v/\\v\\). Then

J(t + s, £9 v, φ) = έφ(Λ(t + s, 7, q, v))

(6.42) = £φ(Λ(s, Ϋt9 qU Λ(t9 Y9 q91>))

= £[kφ(Λ(s, Ϋ+, q+, Λ(t, Y, q, v))lσt(Y, q))].

On the other hand, by (6.41) we have

έ(φ(A(s, Ϋt, gΐ, Λ(t, Y, q, v))lσt{Y, q)))

s, Yit qt, Λ(t, Y, q, v))]XM({Λ(t, Y, q, v))
i=0

e

„ A(t, Y,q, v))lMi(Λ{t, Y, q,:
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:> Σ S(s)φ(Λ(t, Y, q, V))τMi(Λ{t, Y, q, v)) - 3β - \\φ\\tM.{A(t, Y, Q> »))

= S(s)φ(Λ(t, Y, q, »)) - 3ε - \\φ\\ XMχΛ(t, Y, q, v)) .

Combining with (6.42) we see

Jit + β, J, v, φ) > E(S(s)φXΛ(t, Y, q, «)) - 3ε - \\φ\\P(Λ(t, Y, q, v) e N)
( > έ(S(s)φ)(Λ(t, Y, q, V)) - 3ε - ||ίί|| ε.

Since s3 e2ί(p/||y||) we see

(6.44) S(t + s)φ(v) > E(S(s)φ)(Λ(t, Y, q, v)) - ε(3 +

Taking the supremum with respect to J / e Sί(iV|M|), we conclude

(6.45) S(t + s)φ(v) > S(t)(S(s)φ)(v) - ε(3 + | | ^ | | ) .

Tending ε j 0, we get our desired inequality (6.35). This completes the

proof of Theorem 7.

§ 7. Generator and properties of S(t).

We can easily see:

PROPOSITION 7.1. The following properties hold,

( i ) monotone, S(t)φ < S(t)ψ whenever φ < ψ

(ii) contraction, \\S(t)φ - S(t)ψ\\ < \\φ - ψ\\

(iii) continuity, S(θ)φ(v) -+ S(t)φ(ι>) as θ->t,

uniformly on any compact set of M{Rn).

That is, S(t) is a monotone contraction weakly continuous semigroup on C.

Proof. ( i ) From the definition of J, (7.1) is clear

(7.1) J(t, π, v, φ) < J(t, π,v,ψ), if φ < ψ.

Hence taking the supremum with respect to π e 0>, we have (i).

(ii) \S(t)φ(v) - S(t)ψ(v)\

sup \Eφ(Λ(t, Y^ q^ v)) - Eψ(Λ(t, Ύ,, q,, v))\
6«(/I1I1)

Hence taking the supremum with respect to v e M(Rn), we have (ii).

(iii) By Proposition 6.1. J(t, π, v, φ) is continuous in (t, π, v) e [0 T]

X 0> X M(Rn). Since 9 is compact, Sifyφiy) is continuous in (t, v). Hence

it is uniformly continuous on [0 T] X F where F is compact in M(i?n).

This implies (iii).
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Now we calculate the generator of S(t), according to [6]. We intro-

duce the following set Θ of functions φ which depend on finitely many

scalar products. Fix HN e C°°([0 oo) -> [0, 1]) such that jf̂ v(;c) = 1 on [0 N],

= 0 on [N + 1, oo) and decreasing in x.

9 = {φ; M(R") —> 2P φ(v) = F((fu „>, • , </„ i;»fl,«l,

= 1,2, . . .

where C^ denotes the space of C°° functions with compact supports and

C^ the space of C°° functions with any bounded derivative. Clearly ^ c C .

Moreover we have

PROPOSITION 7.2. F o r φeC there exists Φke@ such that Φk(v) -> φ(v)

for any v e M(Rn).

Proof. We can apply the same method as [6]. Let υ(xu 2~N) (= open

ball with center xi9 radius 2~N) i — 1, 2, be a covering of Rn with

Uϊίi v(xif 2'N) D [-iV, iV]w (say /^). Let gf, t = 1, 2, •. be a C^-partition

of unity such that

(7.3)

(7.4)

suppgf c u ^ , 2"*) for some i

22ft = 1 on I*.

Take yf e supp^f Π/^ arbitrarily. Putting cf(v) = >, we define vN by

> v(IN) and for geCb(Rn)

<ft »*>-> <ft »> , as iV->cχD.

(7.5)

Then ||y I! > ||

(7.6)

Hence

(7.7)

Denote

(7.8)

Therefore, by (7.6), we have

(7.9) φ(vN) -> φ(v) as

From the definition of HN, l i m ^ J ϊ ^ l

Δ{vN, v) -> 0, as JV -> oo .

, s P j f : ^) = ^ Σ f ϊ x z<5y*). That is,

v\ , <££, ^>: Φ)

oo .

= 1 for any v e M(Rn). Hence
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(7.9) gives

(7.10) FN((g?,v}, ••.,gϊN,v):φ)HN«l,v»-+Φ(v), as iV-> oo

Take FN e C%(RPN) such that

Then we have

Combining with (7.10), we complete the proof.

We calculate the generator of S(f), recalling (6.7). For an admissible

switching system J / e §I(i>/IMI), we have the following Zakai equation for

Λ(t) = A(t, Y^ q^ v\ (see Theorem 5.2 in [8]),

!</, Λ(0)) = (f, v} for fe C\{R«),

where

^ Σ

and U(t) is a σX^-progressively measurable process for q (see Theorem 4).

Therefore using a routine method we have

(7.13) E\a Λ(t)> - </, v)f < Kit + 1) Γ J&<1, Λ{θ)Ydθ
Jo

(7.14) έ<l,^(ί)> = <l,v> = |H|

and

(7.15) E\\Λ(t)\f < \\v\feκ*

where K3 and K4 are independent of si. Combining these evaluations,

we have

(7.16) E\(f, Λ(t)\ - </, v)f < K2\\v\\\t

Let Φ e 99 say Φfy) = F((fu v>, . ., </„ ̂ ^ ^ ( ( l , v». For simplicity we

put /0 = 1, and F(z0, zl9 - , ze) = F(zu , ̂ )iϊ^(2:0). Appealing to Ito's

formula, we see
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dΦ(Λ{t)) = o, Λ(t)\

(7.17) ±
37?

+ Σ ψ-«/.,
t=o 3z 4

Using (7.16) we have, for s fg 1,

(7.18)

and

(7.19)

Γ
Jo

Jo

t,Λ(t)y

dz<

/„ Λ(t))Xhf{, A(t)χhfit

with if5 which is independent of

Define GΦ as follows

= sup
(7 20)

and υ.

, (fe,

Since F is smooth and {A{u)fu v) continuous in u and v, GΦ(v) is con-

tinuous in v. Moreover GΦ(v) = 0 whenever ||y|| > iV + 1. Therefore GΦ

is bounded. This implies that GΦ e C for Φ e ̂ .

We remark that

Σ Γ &^«fo, v\ • • •, if.,
i Jθ dZi

< Γ sup (Σ | ^ « / O ,

(7.21) = β, sup

= sup Σ |M</"o, v>,
weΓ i=o Jo 3 ^

< sup Σ Γ -
U; usual control for ί = 0 J 0

switch relaxed syst.

, <Λ, »>XA(u)fu

, </Λ v>KΛ(iί)Λ, v>dί

^«/o, v>, , a, v>XA{U{t))fi,
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Taking the supremum of left side of (7.21) with respect to U(t) for switch-

ing admissible systems, we have

(7.22) 1 sup Σ Γ £ ~ «/o, *>,-•-, <Λ, »>KA(U(t))ftt v)dt = GΦ(v).
S U; switch syst. i=0 JO 3-S^

On the other hand (7.17) - (7.19) tell us that

I EΦ(Λ(s, Y,, q<9 v)) -
I

(7.23) + Σ
i-0

Appealing to (7.22) we have

(7.24) — (S(s)Φ(v) - Φ(v)) - GΦfy) <2K£n
s

Recalling (5.16) we have

(7.25) \\A(s, Y^q^ήW > \\v\\e-*«a+Wi+ι> whenever sup| Y (̂<)| < α.

Since Y^ is a Brownian motion, a martingale inequality implies

(7.26) P ( s u p | y ^ ) | > α ) < - ^ .

Putting a = 1/Λ/T and N(ε) = (N + ΐ)e

κ^a+1^s+1\ we see, from (7.25) and

(7.26)

(7.27) P(\\Λ(s, Y,9 q,, v)\\<N+ϊ)< P(sup | Y,(t)\ >-)=) < es
\t<s v ε /

whenever ||i;|| > N(ε).

Therefore, if \\v\\ > iV(ε), then

(7.28) E\Φ(Λ(s9Y,,q,,v))\<\\Φ\\εs.

This implies, by virtue of "Φ(v) = GΦ(υ) = 0 for ||»|| > ΛΓ(ε)",

(7.29) — (S(s)Φ(v) - Φfy)) - GΦ(v) | < ||Φ || ε, whenever ||v\\ > N(ε).
s

Appealing to (7.24), we have
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(7.30) — (S(s)Φ(v) - Φ(v)) - GΦ(υ)
s

(l + ||Φ||)β,

whenever s < εl(2K5(n + iγN(ε)Y.

This implies that 1/s (S(s)Φ(y) — Φ(v)) converges to GΦ(v) uniformly on

M(Rn\ as s | 0.

THEOREM 8. ^(©) z> 2 and

(7.31) ©Φ = GΦ on 9

that is, the generator is an extension of G.

% 8. Time discrete approximation

First we recall an approximation theorem of Proposition 4.1 and

Theorem 4, namely, for s/ = (Ω, F, P, ξ, B, T, q) there exists an approximate

usual control Un, such that

(8.1) Un is an σX^-progressively measurable Γ-valued process

(8.2) qn(t, A) = δUnω(A)ds is a switching relaxed control of ^ n = (Ω,

F9P,ξ,B,Y,qJ

and

(8.3) J(t, s/, v, φ) = l im^^ J(t, s/n, v, φ) for *φ e C

Now we define a usual admissible system J / = (Ω, F, P, ζ, Bf Y, U) as

follows: (Ω, F, P, ξ, B, Y) satisfies the same conditions as an admissible

(relaxed) system, U is a Γ-valued process, ξ, B and (Y, U) are independent

and Y is a σt(Y, C/)-Brownian motion.

% denotes the totality of usual admissible systems, and we apply
rt

similar notations as for the relaxed case. Putting qv(t9 A) = δσ,8 ω)(A)ds,
Jo

we see <srfυ = (fl, F, P, ξ, B, Y, qυ) e Sί. Thus a usual admissible system

can be regarded as an admissible (relaxed) system. Moreover a unique
solution X of the SDE,

(dX(t) = a(X(t))dB(t) + r((ί), U(t))dt

gives a unique solution X^u(= X)>

Since (ξ, B) and (Y, U) are independent, we can calculate
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E(f(X(θ))Uβ, J)/σt(Y, U))

in the same way as (5.8), and get

E(f(X(θ))L(θ, J2)IY = y, U(t) = v{t) a.a. t)

(8.5)

= E{f(X,β))L(θ, stπ)IY = y,qu = λ.)

rt

where λυ(t, A) = δυω(A)ds. We remark that, if v(t) = v*(t), a.a. t, then
Jo

λv = λv*. The unnormalized conditional distribution Λ(t, jtf, v) is defined by

(8.6) </, Λ(θ, J, v)} = Ev(f(X{θ))L{θ, J)lσt(Y, U)) for fe Cb(R«).

Hence (8.5) implies

(8.7) Λ(β, J/ , v) = Λ(θ, 7, qUt v\ Aalmost surely. We sometimes put Λ(θ,

J, v) = Λ(θ, Y, U, ι>) and J(θ, J?, V, φ) = Eφ(Λ(θ, £9 v)) = J(θ, Y, U, v, φ).

We approximate Un of (8.1) (say W for simplicity) by a switching

usual control, by a routine method, i.e. Uk and UkiP are defined as follows

(8.7) Ok(t) = 2* Γ W(s)ds and UkJt) =
Jί-2-fc

Then lim^oo lim^TO ϋ, tP(ί) = W in L2([0 Γ] X β). This fact implies that

there exists an approximate switching usual control Wk, which is σt(U)-

progressively measurable and satisfies

(8.8) E Γ | Wk(s) - W(s) \2ds->0, as h -> oo

and

(8.9) J(t, Y, W, v, φ) = lim J(t, Y, Wk, i>, φ) .
k-*co

By (8.8) some subsequence of Wk converges to W a.e. in [0 T] X Ω, we

assume "Wk—> W a.e." for simplicity. Therefore, for a.a. ω(P),

ί g(u)qWk(t, du) = I I g(ύ)δWk(du)ds
J Γ J 0 J Γ

(8.10) = Γί(W,(β))dr • Γg(W(s))dβ = f g(u)^(ί, d«)
J Λ-CO Jo JΓ

for any ί and g e Cb(Γ).

This implies, as &->oo.
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(8.11) dτ(qWk, qw) -> 0, P-almost surely.

Hence by Propositions 2.2 and the Corollary of Proposition 3.1 we see

(8.12) s/Wk -> sίw and (XWk, jtfWk) -* (Xw, stfw) in Dτ .

Therefore Theorem 6 implies that, for V0,

(8.13) Λ(θ, Y, Wt, υ) -> Λ(θ, Y, W, v) in metric δ.

So we have

PROPOSITION 8.1. For s/.= (Ω, F, P, ξ, B, Y, q) there exists a switching

usual control Wk, k = 1, 2, , which is σt(q)-progressίvely measurable and

for any θ

Λ(θ, Y, Wk, v) -> Λ(θ, Y, q, v) in metric δ, as k —> cx̂ .

This means that switching usual controls are rich enough in the class of

relaxed controls.

Put %N = totality of usual admissible systems whose usual controls

are switching with time interval 2~N, i.e. s3 = (Ω, F, P, ξ, B, Y, U) e §ίN9

iff U(t) = U([2Nt]l2N). We denote £ e So, if U is constant control. So

So c StΛ. When Pξ = vl\\v\\, we say J e %M\v\\). Put t - U^=o 8^.

From Proposition 8.1 we see

S(t)φ(v) = sup J(ί, J^, v, φ)
(8.14) ^eS(v/||,H)

= lim sup J(t, jtf, v, φ).

Define Q = QN by

(8.15) Qφ(v) = sup J(2-^, ̂ , v, 0) .

^eSiv(v/ι|v||)

We remark that
^ i , Y, 17(0), v))

(8-16) . .
j E ( ( ( - Λ ' , Y, t/(0), y))/C7(0) = u)PUa(du) .

Since (Y(^), θ > 0) is independent of Ϊ7(O),

(8.17) έ(ίί(i(2-w, Y, U(0), vlU(0) = «))) = J(2-», Y, u, v, φ) .

Moreover the value of the left side depends only on N, u, v, φ, since Y is

a Brownian motion with respect to P(-117(0) = u). We put
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(8.18) J{2~\ Y, u9 v, φ) = ΦN(u, v; φ)

and

(8.19) Qφ(v) = sup ΦN(u, v, φ).

Then ΦN(u9 v, φ) is continuous in (u, v) e Γ X {M(Rn\ Δ) and J(2~N

y Yy u, v,

< Qφ{v). Combining with (8.12), we see

Qφ(v)<Qφ(v)= sup
J'e*o(«'/ll»

( 8 2 0 ) < sup J ( 2 Λ

Hence we have

(8.21) Q* = Q.

Since T1 is compact, using a measurable selection theorem, we can

take a Borel measurable mapping, υ = vφ: M(Rn) -> Γ such that

(8.22) ΦAυφV), v, Φ)) = sup ΦN(u, v, φ) .
ueΓ

This gives

(8.23) Qφ(v) = J(2-»,Y,vφ(v),v,φ)

We have, for ^ e%{vj\\v\\)

J(2~»+\ J, v, φ) = ^ ( i ( 2 " ^ + 1 , y, 17, i;))

- Eφ(A(2~N, Yϊ-», Uϊ-N, Λ(2~N, Y, U, p)))
(O.^J4) Λ.

-*, Y, U, vj) £ Q(Qφ){v)

Define U2 = U2tφ<a by

(8.25) £7,(0 = \ λ * ~ γ ~ ,v) v))

Then sέ* = (Ω, F, P, ξ, B, Y, U2) e 8^/||ι»||) and

- v + 1 , ^ * , v, φ) = ^ ( i ( 2 - ' v + I , Y, C72) v))

= £JE(55(i(2--v, Y2

+- κ, vφ(Λ(2-\ Y, υφ), v)),

(8.26) A(2-", Y, vQΦ(v), v)

= E(Qφ)(Λ(2-»,Y,vQΦ(v),v))

= Q{Qφ)(v)



STOCHASTIC RELAXED CONTROL 107

Combining with (8.24), we have

Q2φ(v) = sup
(8.27) Je&χ(W\

Repeating a similar calculation we see

(8.28) Qk+1φ(v) = sup J((k + 1)2"", J, V, φ)

and an optimal one Uk+1 = Uktu,^ is given successively by

Recalling (8.14) we see, for binary t (say j2~")

lim sup «f(ί, £, v, φ) = S(ί)ί4(v) = Km QΓ'VW

and an approximate optimal usual switching control is given by UkyV%φ.
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