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A NORM RESIDUE MAP FOR CENTRAL EXTENSIONS

OF AN ALGEBRAIC NUMBER FIELD

YOSHIOMI FURUTA

Let K be a finite Galois extension of an algebraic number field k

with G = Gal (K/k), and M be a Galois extension of k containing K. We

denote by K£/k resp. KM/k the genus field resp. the central class field of

K with respect to Mjk. By definition, the field K$/k is the composite of

K and the maximal abelian extension over k contained in M. The field

KM/lc is the maximal Galois extension of k contained in M satisfying the

condition that the Galois group over K is contained in the center of that

over k. Then it is well known that Gai(KM/kIK$/k) is isomorphic to a

factor group of the Schur multiplicator H~\G, Z), and is isomorphic to

H~3(G, Z) when M is sufficiently large. In this case we call M abundant

for Kjk (See Heider [3, § 4] and Miyake [6, Theorem 5]).

Let G be abelian with a decomposition G = Gγ X x Gr to cyclic

factors such that the order of Gt is divisible by that of G} for / < j

Then the Schur multiplicator H~*(G, Z) is isomorphic to the second ex-

terior power of G, and hence isomorphic to 0 Σί<j G>

Corresponded with the above decomposition of H~%G, Z), we show in

Section 3 that the central class field ίtM/k is the composite of central class

fields over bicyclic subextensions of K/k when K is abelian over k and

M is abundant for K/k (Proposition 5). Then in Section 4 we define a

mapping ΨM/κ/k via Artin's reciprocity map, which is a surjective homo-

morphism from a group of certain ideals of k to Θ Y^t<3 G3 ~ Λ(G) (Theorem).

The mapping ΨM/κ/k describes the prime decomposition in KM/kIK$/k. On

the other hand, in Section 2 we define a surjective homomorphism φM/κ/k

from Λ(G) to Gal {KM/kIK%/k) by means of canonical cocycles of class field

theory. The mapping ΨM/κ/k is regarded as the inverse of φM/κ/k.

When K is bicyclic biquadratic over the rational number field, the
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mapping Ψ is given explicitly in [2] by using solutions of certain quadratic

diophantine equations.

§ 1. Commutator factors of group extensions

Let G be a finite abelian group, and © be a group extension of an

abelian group A by G:®/A ^ G. Let {Ua} be a system of representatives

of G in ©, and {Cff,τ} be the factor system: UβUτ= UatCσfτ for σ,τeG.

Denote by IG the augmentation ideal of the group ring Z[G]. Denote

further by Λ(G) the second exteror power of G. Then it is well known

that H\G, Z) ^ Λ(G) (See, for instance, Razar [7, Lemma 5]). The fol-

lowing fact is also probably well known, but we prove it here because

it is fundamental in this paper.

PROPOSITION 1. Let A, G and © be as above, and for σ A τ e A(G) let

φ(σ Λτ) = C^C'] mod IGA .

Then φ induces a surjectiυe homomorphism of Λ(G) to [®, ©]/IσA, where

[©, ©] is the commutator subgroup of ©.

Proof Let α, b e A and σ, τ e G. Then since A and G are abelian,

we have (Uσa)-χUtbYXUaa)(Uvb) = C.%τC-la*-Kb-ιYι = C^C'l mod IGA.

Hence if we put φ^σ, τ) = Ca^τC~) mod IGA, ψx defines a mapping of G X G

onto [©, %\\IGA. ψγ is alternative and bilinear. In fact since CστiPC^τ =

C^τpC^p for any σ, τ, pe G, we have

= ^_^_ mod IGA .

The first form is symmetric for σ and τ, and the last form is so for τ

and p, because G is abelian. Hence we have

σp,τ -— ^τ,σp

This implies that ψx is alternative bilinear map, and the proposition is

implied.

Remark. It is easy to see that ψ does not depend on the choice of the

factor system {CσjT}.
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§ 2. Mapping φM/κ/k

We apply Proposition 1 to an abelian Galois tower M/K/k, which

means that both MjK and Kjk are abelian extensions and Mjk is a Galois

extension of algebraic number fields. Put © = Gal(M/&), A = Gal(MIK)

and G = Gal {Kjk). Then the canonical cocycle ξκ/k of class field theory

gives a factor system for ®jA s G. For any algebraic number field L,

we denote by JL the idele group of L, and by L x the group of principal

ideles of L. Denote further by H(UjL) the subgroup of JL corresponding

to U by class field theory when L' is a Galois extension of L: H(L'jL) =

L«.NL,ILJL,.

Now we define a mapping φM/K/k of the second exterior power Λ(G) of

G to JJH(KM/JK) by

(1) P*/*/*(* Λ τ) = f*/fe0, τ)ξκ/k(τ9 σ)~ι mod H(KM/JK)

for any σ, τ e G. Then it follows from Proposition 1 that φM/κ/k induces

a surjective homomorphism of Λ{G) to G(KM/k/K$/k) via Artin's resiprocity

map for H(K*/kjK)HI(KM/JK) s G(KM/k/K*/k).

W h e n σ = ((K/k)lα) a n d τ - ((K/k)[b) for α , b e J f c, w e se t

(2) £W*/fc(α Λ b) = ψMιKιk{σ A τ) .

Then ^/χ/fc induces a homomorphism of Λ(Jk) to H{KfI/kjK)lH(KM/kIK).

For the sake of simplicity, we shall use the following notation in

general: Suppose that H, Hx and H2 are subgroups of an abelian group

G, and H contains both Hx and H2. Then by the congruence α = β mod H

for α e G/Jϊj and β e G/H2, we mean α = b mod if, where α and b are

representatives of α and β in G respectively.

PROPOSITION 2.

( i ) Lei Λfi Z) Λf2 D -K" D & 6e α Galois tower, and Kjk be abelian.

Then for any a,heJk we have

ΨM^IKIM Λ 6 ) Ξ φMl/κ/k(a A b) mod H(KM2,JK).

(ii) Lei MID KίZ) K2H k be a Galois tower, and suppose that both

Kjk and K2jk are abelian. Then for any a,heJk we have

ΨM,KΛ^ AΪ))ΞΞ NKl/K2<pM/Kl/k(a A b) mod H(KJK2).

(iii) Let M Z) K ID kx 3 k2 be a Galois tower, and suppose that Kjk2

is abelian. Then for any a,~be Jkι, we have
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Xa Λ 6 ) Ξ ψM/κίulNkχ/kfi A Nkί/kfi) mod H(KM/JK).

Proof, ( i ) The assertion is implied immediately from (1), (2) and

H(KMl/JK) c H(KM2/JK).

(ii) For i = 1, 2, denote by Kt the central class field of Kt with respect

to M/k. Put Gt = GaliKJk), A, = Gal(i^/iQ, ©, = Gal (£/*), and let C,

be a factor set for ©JA* = G*. Let further C7tfl resp. Vσ2 be representatives

of (71eG1 resp. σ 2 eG 2 in ®x resp. ©2. Put £ = Gal (iξ/iQ and JD =

Gal (KJKZ), and let W 2̂ be a representative of σ2 e G2 in Gt. Then by

Remark after Proposition 1 we may suppose that Vσ2 = (UWσ2 mod B).

We estimate the norm residue symbol as follows:

(σ2 Λ r2),

Hence ψM/Ki/ic(σ2 Λ τ2) = NXι/KtφM,Kι,k(Wσ, A WT2) mod H(K2IK2). This implies

(ii) by setting σ, = ((X,/A)/α) and r2 = (HKJk)β).

(iii) For ί = 1, 2, put &t = £MIU, Gt = G*HKIkύ, A{ = Gal (Kt/K),

©4 = Gal (£/&*) and J3 = Gal (i^/iQ. Let C7β,1 resp. V,, be representatives

of ffj 6 Gj resp. σ2 e G2 in ©j resp. ©2. Then we have

{ψM^Sfli Λ rλ ίtjK) = U;ϊU-*UαiUn

= V-1 V-1 V., Vn = ^ J ί , Λ Γ,), KJK) mod JB.

This implies the assertion, since

a n d r ι =

kl/k2α/ \ B / \Nkι/t

§ 3. Decomposition of Λ(G) and central extensions

Let M/X/fe be a Galois tower, and put G = GβX(Klk) and © = Gal(M/&).

Then we have

(3) Gal (KM/JK*/k) s HXG, Z)IΌeί^GH~X&, Z).

For this isomorphism, see for instance Kuz'min [4, § 4] or Razar [7, Proof

of Lemma 3, (b)]. We call M to be abundant for X/AJ when Ggl(KM/kIK$/k)

^ H~*(G9 Z). Then it is known that for any Galois extension Kjk there

always exists an abelian extension MjK which is abundant for Kjk.

PROPOSITION 3. Let MjLjKjk be a Galois tower. If M is abundant

for L/k, then M is also abundant for Kjk.



CENTRAL EXTENSIONS 65

Proof. Put G = Gal(L/ft), Gx = Gal(lΓ/Jfe) and © = Gal(M/Jfe). If M

is abundant for Lfk, then Defβ^ff-8(@, Z) = 1 by (3). Since Def*^ =

DefG^Gl o Def®^σ, the proposition is proved.

The following Proposition is easily obtained.

PROPOSITION 4. Let Lt be a central extension of a Galois extension

KJk for i = 1, 2. Then

( i ) Lt (Ί I 2 is α central extension of Kx Π KJk,

(ii) LXL2 is a central extension of KxKJk.

We call extensions K19 , Kr over k disjoint when Kt Π Kjx KJt

— k for any i and any j , (s — 1, , ί) such that i ^ ^ ULi#.

Now let M\K\k be as before a Galois tower, and assume that Klk is

abelian. Put G = Gal (£/£), and let

(4) G = Gtχ . . x Gr

be a decomposition to the direct product by cyclic factors Gt of G such

that the order of Gt is divisible by the order of Gj when i < j. Denote

by Gt A Gj the subgroup of Λ(G) generated by all elements σ A τ such

that σeGί and τ e Gj. Then

(5) GtAGj^ Gj for

and

(6)

where the sum is taken over all pairs (ί, j) satisfying i <j for i, j = 1, , r.

This corresponds to Lyndon [5, Theorem 6],

Let i^ be the subίield of K corresponding to G/Ĝ  over k, and put

Ktj = i f^. Hence Gal(iίJ^) s G, and Gsl(KtJlk) = G, X Gj.

PROPOSITION 5. Notation being as above, assume that M is abundant

for Kjk. Let Kυ be the central class field of Ktj with respect to M\k.

Then we have

Km* = Π KtJ (disjoint over K$/k),

Gal(K t JIK$/k) s G, Λ Gj = G3^ Gal(Kj/k) for i<j.

Proof Put A = Gal (M/ϋQ, © = Gal(M/A) and ©, =

for i = 1, , r. Since M is abundant for K/k, the mapping p defined in
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Proposition 1 gives an isomorphism Λ(G) ~ [@, ®]/IGA. For / < j , put

= Θ Σ GsΛGt.
s<t

(s,t)Φ(ί,j)

Then by taking account of ®S IGA/IGΆ to be abelian, we have

= [©, Π ©J/Λ»A = [©, ®tJ\IIoA ,
SΨΪ
SΦJ

where ©^ = Gal (MjKί3). Hence the intermediate field of KM/k/K$/k cor-
responding to φ(Λij(Gy) is Kij9 and [Ki3: K$/k] = |G, Λ Ĝ l Since the inter-
section of all Λi^G) is {1} and φ is an isomorphism, the intersection of all

is also {1}. Hence KM/k = Π ί < y ^ Disjointness follows from

§ 4. Norm residue map ΨM/κjk

Throughout this section, we assume that K/k is abelian, M/K/k is a
Galois tower and M is abundant for K\k. Put G = Gal (K/k), K = KM/1c

and Z * = jBΓί/fc. Then

(7) Gal (KIK*) = H~\G9 Cκ) s JΪ"3(G, Z) s

where C^ is the idele class group of K. In Section 2 we defined the
mapping φM/κ/k of Λ(G) to JκjH{KjK). In the present section we shall
study the inverse mapping of φM/κ/k*

Let notation be as in Section 3. It follows from Proposition 5 and
(7) that

(8) Gal (KIK*) ^ Θ Σ Gal (KJK*)

We denote by I(K*/h) the group of norms of ideals of K* to k which are
relatively prime to the discriminants of M/k. Let α e I(K*jk), and Si be
an ideal of If* such that a = NKVk%. We define a mapping ψ of I(K*/k)
to ΘΣ*o Gal (£,/#*) by

(9)
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Since Gsl(KIK*) is contained in the center of Gal(K/k)9 the value of

ψ(ά) does not depend on the choice of 2ί. It follows from (8) and (9) that

ψ is a surjective homomorphism.

In order to get the image of ((Ktj/K*)/®) by the isomorphism

we use the following proposition which is a special case of [1, Proposi-

tion 5.1].

PROPOSITION 6. Let F/k be α cyclic extension with g = Gal (F/k) gen-

erated by σ, I D LID F D k be a Galois tower, and L/k and MIF be abe-

lian. Then

(10) Gal (LM/klL*M/k) ^ 2)/C(£(L/F))<Eΐ ^ Gal ( F ' / F ) ,

where 3) is the ideal class group of F corresponding to M, $Q{LJF) is the

congruent ideal group of F corresponding to L, C(ξ>(L/F)) is the subgroup

of S) represented by ^(L/F), Si is the group of elements c o / S such that

cσ = c, and F ' is the subfield of L over F corresponding to C(^(L/F))^.

The above isomorphism Gal (LM/kjL%/k) ^ Gal (F'/F) is given by

(LM/kίL%,k\ . /F7F\

where Si* is any ideal of L%/k prime to the conductor of MjF and 83 is an

ideal of F such that S8*-1 = N^^V* mod

We apply the above proposition taking Kij9 Kυ and Kt instead of M, L

and F respectively. Then L%/k in the proposition becomes K$ and Fr becomes

Kij9 because Gal (F'/F) ^ G, ̂  Gsί(KtJIKd and G*d(KtJIK$) = Gό owing

to abundantness of M for K/k. For α e I(K*jk), let % and S3* be ideals of

Kt such that NKί/k% = a and S^"1 = % mod ${MjKl), where σt is a gen-

erator of the cyclic group Gal (KJh) and S^M/Ki) is the ideal group of

Kt corresponding to M. Let further Bt = NKi/kS6it We define a mapping

ΨtJ of I(K*/k) to Gj for i < j by

(11) M α )

Now Proposition 6 implies immediately the following

THEOREM. Let K/k be an abelian extension with G = Gal (K/k), and

M be a Galois extension over k such that M contains K and abundant for

K/k. Let G = Gj X X Gr, Kif Kυ and Kυ be as in Section 3 (4) and
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after that. Let the notation K,, K*, I(K*/k) and Λ(G) be as above. We

define a mapping ΨM/κ/k of I(K*/k) to φ Σi<j G, = A(G) by

ΨM,KM = Θ Σ ?P"«(α) for α e I(Kηk),

where Ψi5 is the mapping defined by (11). Then WM/K/k is a surjective

homomorphism of I(K*/k) to ® Σlί<j Gi which is isomorphic to Λ(G) and

so to

The mapping ΨM/κ/k is regarded as the inverse of the mapping φM/κ/k

defined in Section 2. In fact we have the following proposition.

PROPOSITION 7. For aeJκ denote by [a] an ideal of K such that

(α, KjK) = ((K/K)/[ά\). Then other notation being as above, we have

Proof To simplify the notation, we put K — KM/k and φ = <pM/κ/k-

Put further G = Gal(if/fe) and A = Gal (K/K). Let Uσi resp. Uσj be re-

presentatives of βi resp. σό in Gal(K/k). Then by (1) in Section 2, we

have

/ κικ \ = ί K/K \/ ίtiK
\ [φ(σt A σj)] ) \ [ξκ/k(σi9 σ3)} Λ [ξκ/k(σj9 σj\

= U:iU:]UσiUσj = u y1 mod IGA .

Let S be an ideal of K such that U0J = [(Kjk)/^], the product of the

Frobenius automorphisms for the prime factors of $. Then

where S3 = N£/κ$}. Let ^ = iV^^^. Then

= S3Γ"1 mod

where ^M/K^ is, as in Proposition 6, the congruent ideal group of Kt

corresponding to M. Now let α = Nκ/k[φ(σi Λ σj)] and b = iVfiΓ./&93ί = N&/k$.

Then we have ^ ( α ) = ((^/A)/b) = σ, by (11). Thus the proposition is

proved.
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