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THE EXTENDED PLUS-ONE HYPOTHESIS—A RELATIVE
CONSISTENCY RESULT

THEODORE A. SLAMAN*

§1. Introduction

This paper includes a proof, relative to the consistency of ZFC, of
the consistency of ZFC, the continuum has singular cardinality and the
extended plus-one hypothesis.

The extended plus-one hypothesis. Suppose n >k >1 and & is a
normal type n object. Then there exists a normal type % 4+ 1 object 2
whose (k — 1, k)-section is equal to that of %.

Here Tp(0) is @ and Tp(n 4 1) is the power set of Tp(n). F is a
normal element of Tp(n) if &# can compute the equality relation between
sets in Tp(n — 1). The (k — 1, k)-section of a normal element of Tp(n)
consists of those elements of Tp(k) which are computable from & using
a parameter from Tp(k — 1). The (k — 1, k)-section of & is denoted by
kF-lsc F.

The notions of recursion in higher types are due to Kleene [8]; the
extended plus-one hypothesis goes back to Sacks (see [11]), who proved
the plus-one theorem:

PLus-ONE THEOREM. Supposz n >k > 1 and & is a normal type n
object. Then there exists a normal type k + 1 object 2 whose k-section is
equal to that of F.

The k-section of &, the set of elements of Tp(k) which are recursive
in &, is the parameter free (lightface) version of the extended k-section
of #. Both of these plus-one principles imply that a restricted section
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of a normal object contains little information about the type of that
object.

Sacks noted that the extended plus-one hypothesis follows from the
generalized continuum hypothesis. Recently, Griffor and Normann [2]
have shown that it also follows, for fixed %k, from the existence of a
regular well-ordering of Tp(k) which is recursive in ***E. On the other
hand, Harrington has shown it is false for £ = 2 if the axiom of deter-
minateness is true. The result of this paper implies that it cannot be
proven false, unless ZFC is inconsistent, by assuming only ZFC and the
continuum is singular.

Section 2 reformulates recursion in a normal object of finite type in
the more set theoretic context of E-recursion. In Section 3, the basic
facts about E-recursively closed structures and their generic extensions
are reviewed.

Section 4 is devoted to a proof of the main theorem. The model of
ZFC which is constructed satisfies that the continuum has a well-
ordering of height w,, which is recursive in Tp(l). Suppose & is a given
normal element of Tp(n) where n > 3. Then isc # naturally breaks into
», many pieces.

The type 3 object s## which is to have jsc # = lsc & is constructed
in @, many stages. At stage «, the &' piece of jsc # is coded into
so that it can be computed for some real a, and #. Thus lsc # C lsc #.
To show that lsc # < lsc &F it will be shown that the amount of s# con-
structed at stage « is recursive in & and some real and that it com-
pletely determines the values of all computations using the first w, many
reals and 2. This will be made possible by regarding the (« + 1)** stage
of the construction as a generic extension via the continuum of a suf-
ficiently well behaved (E-closed) initial segment of L. The result will be
that every # computation using a real will be able to be duplicated by
Z using some other real so isc # C lsc F.

§2. E-recursion

2.1. The basics. The notions of computability found in Kleene’s
recursion in a normal object of finite type were adapted to the universe
of sets by Normann [10] and later by Moschovakis. The reader may wish
to consult Slaman [17] as a general reference.

DerFiniTION 2.2. Let # be a predicate on sets. The partial recursive



EXTENDED PLUS-ONE HYPOTHESIS 109

function which is recursive in # with index e is denoted by {e}* and
defined by the following schemes.

(1) {e}g (xu""xn):xi e=<1’ n, l>
(1) {e}* (x;, -+, x,) = x,\x, e=4{2,n,i,j)
(1) {e}* (x;, - - -, x,) = {x;, x,} e={3,n,i,j)

(IV) {e}a (xb Tty xn) = Uyea:; {el}gE (y9 Koy =07y xn) € = <4’ n, e/>
( v ) {e}ﬂ (xls Tty xn) = {e/}g ({el}a (xl’ tt xn)’ ) {em}ﬂ (xly M) xn))

e = <57 n, m, e/’ €1 1ty em>
(vi) f{e}* (%, -, %) =2 NZ e =(6,n,i>
(vii) {e}a (€1, Xyy - oy Xy Yiy v v s V) = {31}9 (2, - -+, %)
e=<(T,n,m).

The E-recursive schemes are the rudimentary ones (i)-(v), intersec-
tion with a predicate (vi) and a universal machine scheme (vii). There

are several conventions in notation: {e}* (x,, ---, x,) | if there is a y so
that {e}ﬂ (xl, DR xn) = y; {e}m (xu ) xn) T OtherWise; y <E <x1’ ey Xy ‘%>
if there is an index e so that {e}* (x,, - - -, x,) = y.

DerFinITION 2.3. A predicate p is E-recursively enumerable in the
parameters a,, - - -, a, relative to # if there is an index e so that p is
the domain of the partial function 1y|{e}* (y, a,, - - -, @,).

DerFintTIONn 2.4. (i) A transitive set is E-closed relative to # if it
is closed under application of those functions which are E-recursive in #.

(ii) If x is a set then the E-closure of x relative to #, denoted
E(x; #), is the smallest transitive set A so that xe A and A is E-closed
relative to 4.

2.5. Connections with recursion in higher types.

THEOREM 2.6 (Normann [10]). (i) Let & be a normal element of
Tp(n + 2). Let %% be the predicate #7(x) iff x € #. There is a recursive
function t so that the e (Kleene) partial recursive function relative to &
with parameters a,, -- -, a, from Tp(n) is equal to ix|{t{(e)}*” (x,a,, - - -, a,)
on Tp(n).

(i1) Let & be a predicate on sets and n be an integer. Then there
is a normal type n + 2 object F* and a recursive function t so that if
a,, - -, a, are parameters from Tp(n) then the t(e)*™ (Kleene) partial recursive
function relative to F# is equal to Ax|{e}* (x, a,, - - -, a,) on Tp(n).

CorOLLARY 2.7. (i) Let % be a normal type n + 2 object. 7, scF
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is equal to E(Tp(n); 2%) N Tp(n + 1).
(ii) If Z is a predicate then there is a normal type n + 2 object F*
so that E(Tp(n); #) N Tp(n + 1) is equal to *,,sc F2.

Normann’s theorem and its corollary make precise the statement that
E-recursion generalizes the original notions of recursion in normal
objects. In what follows, the notions of E-recursion will be used ex-
clusively; it is a consequence of Theorem 2.6 that the arguments could
be reformulated strictly in terms of finite types.

As a notational point, let {~'sc Z be defined for predicates exactly
as it was for objects of finite type: zel-'sc(Tp(n); #) if ze Tp(k) and
there is an a in Tp(k — 1) so that z <;<{a, Tp(n); Z).

2.8. The Moschovakis phenomenon. The definition of E-recursive
function includes, implicitly, the notions of subcomputation, computation

tree and height of a computation, || |. {e}* (x,, ---,x,) ] iff the compu-
tation tree, T, ..., associated with the index e relative to # and
arguments x,, - - -, x, is well-founded. If {e}* (x,, - - -, x,) | then |<e, x,, - - -,

%,; Z)| is the same as the height of the tree T¢ ., ... .. as a well-founded
relation.

DerintTION 2.9. (i) If {€}* (%, ---,x,) 1 then an infinite descending
path in T¢, .. .. is called a Moschovakis witness to the divergence of
{e}* at (x, - -, x,).

(i1) A set A which is E-closed relative to Z satisfies the Moschovakis
phenomenon relative to # if whenever a,, ---, a, are elements of A and
{e}* (@), - - -, a,) 1 there is a Moschovakis witness to the divergence which
is an element of A.

These witnesses to divergence were introduced by Moschovakis [9]
to show that E(Tp(1)) is not the same as the least admissible set over
Tp(1) and that the set of indicies for divergent computations is X;-definable
over E(Tp(1)). When n > 1, E(Tp(n)) satisfies the Moschovakis phenom-
enon since any countable sequence in Tp(n) is coded by an element of
Tp(n). An arbitrary E-closed structure may not satisfy the Moschovakis
phenomenon.

2.10. L. The E-recursive functions are defined from below by recur-
sion, hence are absolute. Any set which is E-recursive in x relative to
Z belongs to L[x; %], the constructible universe built over TC (x) (the



EXTENDED PLUS-ONE HYPOTHESIS 111

transitive closure of {x}) using #. Moreover, scheme (vii), the universal
machine scheme in the definition of E-recursive, can be used to prove
the fixed point theorem for E-recursion and hence show that functions
defined by effective transfinite recursion in # are E-recursive relative
to Z. This implies that E(x; #) is an initial segment of L[x; Z].

DerINITION 2.11.
(1) 5% = sup {|<e, x; )| |e is an index & {e}*(x) | }.
(i) «% = sup {|<e, x, y; Z)|||e is an index & y ¢ TC (x) & {e}*(x, y) | }-

£3* 1s the supremum of the ordinals which are recursive in x relative
to Z; £©% is the ordinal height of E(x; #). There is a uniform cor-
respondence e & ¢, between indicies and a certain set of 3, formulas so
that

{e}ﬂ (xu Tty xn) i« lff L~§11,~“,1n>;%[<x1’ ) xn>; ‘%] l: (,zse(xl, Tty xn) .

The informal definitions of E-recursive functions which follow are
implicitly appealing to this characterization of E-recursion.

DerFiNITION 2.12. (i) An ordinal « < £%% is (x; Z)-reflecting if given
any Y, formula ¢ with only parameter x

Lx; Z] = ¢ iff L,cg;ﬁ[x; X = .
(ii) The greatest (x; #)-reflecting ordinal is denoted x}*.

Harrington [5] characterized the r, function in higher types by show-
ing that if # is a predicate, n is a positive integer and «¢ is an element
of Tp(n) then r»7r™:% is the least ordinal 7 so that a complete set of
Moschovakis witnesses for (a, Tp(n); Z) is recursive in every ordinal
greater than 7 relative to <(a, Tp(n); #). That is to say that if
fe)* (a, Tp(n)) | then

I<e, a, Tp(n); By < oo

and if {e}* (o, Tp(n)) 1 then the ordinal £»7?™i? is large enough to enu-
merate all of the points from some Moschovakis witness into 7, . 7o

Sacks [13] showed that if x is a set of ordinals then &? (x¥ = £%%) is
the least ordinal 7 so that a complete set of Moschovakis witnesses is
available in the same sense as above for all the x computations at 7 + 1.
If T¢ ., is not well-founded and x is a set of ordinals then T, to the
left of its leftmost path (in the natural well-ordering) has height less
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than or equal to £%%; its leftmost path is an element of L‘f;aﬂ[x; Z]. In
fact, for initial segments of L the global structure of reflection and so
of the Moschovakis phenomenon has been understood.

DerinitioN 2.13. Let L, be E-closed. Define p* to be the least ¥ <«
so that there is a parameter a¢ in L, and an index e so that ix|{e}(x, a)
maps a subset of 7 onto L..

o is the least ordinal so that there is a parameter a in L, so that
E(p* U {a}) = L,. Sacks showed in [14], for those L, satisfying the
Moschovakis phenomenon, that if ¥ < p* and @ is an element of L, then

sup {7 <11 <«k.

This implies that all the Moschovakis witnesses for a “small”’ set of
parameters in L, are simultaneously available at a bounded point in L,.

2.14. Selection.

DEriniTION 2.15. If @ and x are sets and # is a predicate then a
selects from x relative to # if any non-empty predicate on x which is
E-recursively enumerable in (q, x> relative to # has a non-empty subset
which is E-recursive in {a, x> relative to Z.

Selection and reflection are two facets of the same phenomenon: they
measure the degree to which the E-recursively enumerable predicates
are closed under existential quantification. a selects from x relative to
Z exactly when the predicates which are E-recursively enumerable in
{a, x) relative to # are closed under the quantifier 3z2ex. In terms of
reflection, this is exactly when for all b in x, £»%# > x»=%4  The relevant
selection theorems are

TueoreM 2.16. (i) (Gandy [1]) Every set selects uniformly from o
relative to every predicate. (The index for the E-recursive subset of o is
a recursive function of the index for the E-recursively enumerable predicate
on w.)

(ii) (Grilliot-Harrington-MacQueen [3,4]) If a € Tp(n) then {a, Tp(n))
selects from Tp(n — 1) relative to every predicate.

§3. Forcing extensions of E-closed sets

The basic facts concerning forcing and E-recursion can be found in
Sacks [15] or Sacks-Slaman [16]. In general, a set generic extension of
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an E-closed structure may not be E-closed. However, many interesting
partial orders do preserve E-closure. If P is a partial order satisfying
the countable chain condition (c.c.c.) the P-generically extending an E-
closed set preserves not only the E-closure of the ground model but also
the reflection structure:

TaHEOREM 3.1 (Sacks [15]). Suppose A is E-closed, if x ¢ A then there
is a well-ordering of x in A and P is a partial order with the countable
chain condition in A. (Assume that each of the parameters P,t and a
can E-recursively compute a well-ordering of its transitive closure which
has smallest possible height in A.)

(i) If peP,zis atermin A and p|-|{e, t)|| = 7 then I is E-recursive
in {z, P).

(ii) If G is P-generic over A and a is an element of A then £»¢ = %

Part (i1) is actually a consequence of part (i).

§4. The forcing construction

4.1, P. This section describes a forcing extension of L in which
the continuum has singular cardinality and the extended plus-one hy-
pothesis is true. In this model, if n > 2 then Tp(n) has a regular well-
ordering which is E-recursive in Tp(n) and a fixed real number. By
results of Griffor-Normann [2], only (1, 2)-sections need to be considered.

In short, begin with L and expand the cardinality of the continuum
to w, using a c.c.c. partial order so that the generic G is E-recursive
in Tp(1) N LIG] and some real in L[G]. If # is a predicate and n an
integer in L[G], build s so that isc{(Tp(n); Z) = Tp(2) N E(Tp(1), ).
o is constructed in o, many steps representing each step as adding G
to some E-closed structure.

The forcing notion, P, was developed by Harrington [6] and is also
described in Jech [7]. It has two steps: the first is to use Cohen forcing
to extend L to L[G] where the continuum is w,,, the second is to use a
version of almost disjoint forcing to add a real a so that the Cohen
generic is /7} in a in L[(G, a)]. The generic G is the pair (G, a). For
the present, the actual definition of P is not important. Only the fol-
lowing facts are needed about a generic object (G, a):

1 P E Wy

(2) P has the c.c.c.
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@) <G, a) <z<a, Tp(D) N LKG, a)]).

4.2. Canonical Terms. With any notion of forcing @ over L there
is a class of canonical terms for sets of ordinals in the generic extension.
If - is a term in the forcing language and |; “c & 2” then there is a
canonical term z* so that [z “c* = ¢”. ¥ is defined from z and @ as
follows. For a < 4, let A, be the L-least antichain in @ so thatifpec A,
then pll; “ae<” and also so that A, is maximal with respect to this
property. Define ¢* from the indexed set A = {A,|a < 4} by

aet* & Apec A)lp e Gl

G is the term for the @-generic object.

In the particular case of P, each A, will be countable since P has
the c.c.c. There is a set R in E(w,) of canonical terms for reals so
that every real in L[{G, a)] is the denotation of some term in R. This
follows from the proof of the G.C.H. in L.

Fix G = (G, a) to be P-generic over L. Since G is E-recursive in a
and Tp(1) N LG, a)] the ordinal w,, is also. Thus, there is a well-
ordering W of all the reals in L[{G, ¢)] which has height o, and is E-
recursive in @ and the set of reals in L[{G, a)]. Using W to code sets
of reals by sets of ordinals, there are canonical terms for sets of reals
in L[(G, a)] as well as for sets of ordinals.

In what follows, Tp(n) will mean the Tp(n) of LG, a)].

Lemma 4.3 (V= L[KG,ad]). If X is o set of reals then there is a
canonical term t, in L so that X is denoted by r, and

(i) X is E-recursive in 7, a and Tp(l);

(i1) 75 is E-recursive in X, a and Tp(2).

Proof. (1) Let z, be any canonical term for X. Both W and G are
E-recursive in @ and Tp(1). X is first order definable using the parameters
(G, a), W and 7, since the o™ real in W is in X exactly when the a™
antichain in 7z, meets the generic, (G, a).

(i1) First, note that ,,., is E-recursive in Tp(2):

W|1 W is a well-ordering of Tp(l)}
et = W1 0d | W) is its height ‘

Let X be a set of reals. By an effective transfinite recursion of length
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@,,+1, there is a well-ordering of all canonical terms in L for sets of
reals in L[{G, a)] which is E-recursive in Tp(2). This relies on the fact
that P has the countable chain condition. W and G are E-recursive in
o and 7p(2); whether or not a term ¢ denotes X in L[{G, a)] is the E-
recursive in 7, a, X and Tp(2). Then the least term z, which denotes X
is E-recursive in X, ¢ and Tp(2).

4.4. (1, 2)-sections of higher type objects in L[{G, a>]. There is one
additional structural fact necessary to the proof of the main theorem:
If # is a predicate and n is greater than 1 the jsc (Tp(n); #) has cofinality

;.

Lemma 4.5 (V = L[(G, a)]). Let Z be a predicate and n be an integer
greater than 1. There is a sequence of sets (X;|6 < w,) so that

(1) (v <)@be Tp)KX,|6 <7) <<b, Tp(n); %)].

(ii) If X is an element of isc{Tp(n); Z) then there is a real b and a
0 less than w, so that X <, <{b, X;).

Proof. By the preceding remarks W and «,, are both E-recursive in
(a, Tp(n); #). Moreover, the cofinal function f:w, — @,, defined by f:a
— w, is also E-recursive in {(a, Tp(n); Z). The set X; is defined by

Xeqp@)amibeqpa)mﬁ¢bm<<w?

X = {<X’ e’ b>‘and X = {e}* (b, a, Tp(n))

|b] is the ordinal height of b in the well-ordering W. Clearly, (ii) is
satisfied by this sequence.

In order to show that any initial segment of the sequence (X;|d < w,)»
is recursive in Tp(n) and some real relative to # it is sufficient to show
that if ¥ < w, then the ordinal «,(7), defined to be equal to the supremum
of {gp»T*™:%||b|, < w,}, is E-recursive in some real and Tp(n) relative to Z.

Define the partial E-recursive function g on w,, by effective trans-
finite recursion:

g0) =0
7 > g(a) and 3be Tp(1)
g(a + 1) = (the least 77) |bly < w, and
[(Ele e w)lli<e, b, a, Tp(n); Z>| = 7”]]
g() = sa\i? g(w) if 2 is a limit ordinal .
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The Gandy and Grilliot-Harrington-MacQueen Selection Theorems 2.16
together imply that the recursion step in defining g(a + 1) from g(a) is
E-recursive. Hence, g is also E-recursive.

If g happened to be total then it would induce a surjective function
h:o X o, — o,, defined by h(e, p) is equal to « when {€}* (b,, a, Tp(n)) =
g(a) (b, is the g™ real in W). This is impossible since w,, is a cardinal
and o, < o,. Let g* be the least ordinal so that g is undefined at g*.
Let b* be the real so that |b*|, = g*.

The supremum of {g(8)|8 < p*} is E-recursive in {(b*, a, Tp(n); %).
This supremum must be (7)) otherwise g would be defined at pg*. Its
value would be the next ordinal which is the height of a computation
using some parameter which is below o, in W together with a, Tp(n)
and Z.

THEOREM 4.6 (V = L[{G, a)]). Suppose Z is a predicate and n is a
positive integer greater than 1. There is a predicate # so that
i8¢ {Tp(l); ) = 1sc{Tp(n); Z#).

Proof. Let (X;|6 <> be the sequence exhausting isc{Tp(n); Z>
constructed in Lemma 4.5. It is necessary to construct s so that
38 {Tp(n); Z) consists of exactly those sets of reals in E(Tp(1); o).

S is constructed in o, many steps along with an auxillary function
7 which has domain o, At step §, both 7(d) and o# N L,,[Tp(1); o] will
be defined to satisfy the inductive hypotheses:

(1) 7() = sup {22779 |B],, < wy);
(2 L,»[Tp(1); #] is not E-closed relative to #;

3) X, e L,4.:[Tp(1); o] and is uniformly defined in terms of § and #;
(4) L, [Tp(1); #] is uniformly E-recursive in a, X; and Tp(n).

The construction of # is simply described. Suppose that the func-
tion 7 has been defined at all arguments less than 6 and that > has
been defined on all the sets in { ;s Ly [Tp(1); #]. If § is a limit ordinal
let 7(5) be the supremum of {7(¢5)|¢’ <é}. X, will automatically be an
element of L, ., [Tp(1); #]. Otherwise, § is equal to ¢ + 1. Let z, be
the L-least canonical term for X,. Let j, be the least ordinal so that
7, is an element of L, and let W, be the L-least well-ordering of o,
of height ;. W, is recursive in some real, Tp(n) and Z by Lemma 4.3.
Code W,, and ¢, into o at 7(s) + 1 by
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if X=<{ro)+ 1,0, ¢ <o, and &e W, .
1 if X={()+1,8,0), ¢ <w, and r, is the §’* element
HX) = of L, in the L-least well-ordering of L,. (This well-
ordering is an element of L,.,) .

0 if X is not covered by the above and
Xe Ly o[Tp(); #1 — L, [ Tp(1); #] .

This defines s, regarded as a function from sets to {0,1,2}, on
L,,,..[Tp(1); o#]. Set #(X) equal to 0 inductively for each X and g >
7(e) + 2 so that X is an element of L,[Tp(1); #] — L, ..[Tp(1); ] until
B is equal to 7(9):

7(3) = sup {2720 (b, < w;) .

First, if the induction hypotheses can be verified then the construc-
tion is successful in making isc (Tp(l); o#)> = isc{Tp(n); Z). Let 7 be the
supremum of 7(3) as d varies over o, L,[Tp(l);#] satisfies the Moscho-
vakis phenomenon by hypothesis (1) and the remarks in Section 2.10.
So L,[Tp(1); #] is E-closed relative to »#; hypothesis (2) implies that no
proper initial segment is E-closed. Thus, L([Tp(1); #] is equal to
E(Tp(1); o). By hypothesis (3), each X; is an element of E(Tp(1); o) so
1sc{Tp(n); Z> < tsc{Tp(1); o#>. Finally, hypothesis (4) implies that
c{Tp(1); #) < isc(ITp(n); Z) since every initial segment of L [Tp(1); #]
is E-recursive in Tp(n) and some real relative to Z.

It remains to verify the inductive hypotheses.

The limit case in the definition of ¥ and s is the easier one to
analyze. Suppose that 1 is a countable limit ordinal and the inductive
hypotheses are satisfied for each & below A. Hypothesis (1) is auto-
matically true. For each ¢ less than 1, let b, be a real so that
7(0) <z <{bs, a, Tp(l); 5. 2 is countable, so there is a real b, which com-
putes {<e, b,>|{e}* (b;, a, Tp(1)) = 7(4)}. By the union scheme of E-recursion,
7(2) <z<b;, a, Tp(1); ). This establishes hypothesis (2). Hypotheses (3)
and (4) follow from the uniformity of the construction, the continuity
of (X;|0 <w,> and the fact that s is defined to be 0 for all X in
L7(1)+1[Tp(1); H] — Lm[Tp(l); A

The case when § is a successor, say 6 = ¢ + 1, is more subtle.
Suppose the hypotheses are true at level o. Hypothesis (3) is true for
g+ 1 as X,,, is uniformly coded into ## and 7(c) via W,

.o and 7, (see
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Lemma 4.3). But 7(9) is easily defined from ¢ + 1 and # (not E-recursively
though!) using the characterization of x, of 2.10. Hypothesis (4) is seen
true since L, .,[Tp(1); #] can be built from X; and Tp(n) using an effec-
tive transfinite recursion of shorter length than w,. But o, <;Tp(n)
and being L., .,[Tp(1); #] is recursive in X; and Tp(1) as a predicate so
this recursion can be done recursively in X; and Tp(n).

The value of 7(¢ + 1) is designed specifically to insure that hypo-
theses (1) is true so it remains to verify hypothesis (2). Namely, it must
be shown that L,,.,[Tp(1); #] is not E-closed relative to #. Assuming
hypothesis (2) at level g, let b, be the W-least real so that there is an
integer e so that ||<e, b,, a, Tp(1); #)|| = 7(0).

The characterization of £»7P®:* 4. 1 as the least ordinal where all
the Moschovakis witnesses for x and 7p(1) relative to # can be E-
recursively recognized implies that if b, and b, are reals then giveTr®ir
LlwreaTr@ix - Define a by

o = sup (k0TI ||

w < wa'-H} .

By the increasing nature of the &, function « is greater than or equal
to 7(¢ 4+ 1). It is sufficient to show that there is a real which, together
with Tp(1), E-recursively computes « relative to .

Define the sequence S by

s={o.

The parameters S, a, W,,, X; and Tp(1) are E-recursive in 7(s), @ and Tp(1)
relative to s# (see Lemma 4.3). These parameters are all that is needed
to compute 7(0), @, Tp(1) and # N L, ., [Tp(1); #]. S is a countable subset
of w,, in L[{G, a)]. Since P has the countable chain condition there is
a term 7, in L,, which denotes S in LG, a)]. Consider the structure
E(W,, X;, S, Tp(1)) which is equal to L[W,, X,, S, Tp(1)] for some E-closed
ordinal k. This structure can be, alternatively, produced by starting
with the ground model L,, which includes W,,, P and the canonical terms
7; and 7, for X; and S, and then P-generically adding (G, a>. Since P
has the countable chain condition, Theorem 3.1 implies that the addition
of (G, a) to L, does not change the reflection structure of L,: If r is
an element of L, and ¢ is a set of ordinals then ?<%® = 2P,

L, must be E(W,,) since this structure remains E-closed when gener-

¢ < 6 and the 6% element in the L-least
well-ordering of L, of height o, is z,. ’
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ically extended by (G, a). Then p* = w,, and by the remarks after 2.13
if p is an element of L, then Ax|«t®? is uniformly bounded below r on
proper initial segments of w,,.

Let v, be the height of b, in W,,. (b, is the real which computes
7(o) relative to s#. Then define a* by

a* = sup {gros Vel |y g, ).

Since w,,; is less than w,, «* is less than ¢. But then forcing with
P preserves the values of £% so

a* = sup {grrors Vs POy g L

Also, k2P Werdalph) L grvorsWepmanPkGad if b jg the v real in W. Thus o*
is greater than or equal to «. «*.is E-recursive in some ordinal less
than o, and W, since it is less than «; thus « is E-recursive in some
real, b,, S, W,,, X; and Tp(1); or, in other words, « is E-recursive in some
real, b, and Tp(1) relative to s. This verifies hypothesis (2) in the
successor case and completes the proof of the theorem.

4.7. Remarks and open questions. The proof of the Theorem 4.6 can
be easily adapted to find a model where the continuum is w, and « is
any ordinal of uncountable cofinality. The arguments which were special
to w,, can be replaced by invoking condensation arguments in L. Sec-
ondly, each of the structures E(Tp(1); /) constructed during the course
of the proof had the feature that Ax|s>7?®* is bounded on initial seg-
ments of w,, (=p*). Implicitly, it was shown that this is also true for
E(Tp(1)) in L[{G, a)]. This feature of E(Tp(1)) is enough to guarantee
that various other constructions can be executed in E(Tp(1)) (i.e. for *E)
in L[{G, a)] which would usually require that the continuum be a regular
cardinal. (see Sacks [12]).

QuUEsTION 4.8. Does the consistency of ZFC imply the consistency
of ZFC together with the failure of the extended plus-one hypothesis?

The solution of this question would certainly involve the solution
of the following one.

QuEsTION 4.9. Is there a predicate # and an ordinal 7 so that
Ax| k277 is not bounded (in E(7; #)) on initial segments of p'i* (relativize
definition 2.13)?
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