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THE EXTENDED PLUS-ONE HYPOTHESIS—A RELATIVE

CONSISTENCY RESULT

THEODORE A. SLAMAN*

§ 1. Introduction

This paper includes a proof, relative to the consistency of ZFC, of
the consistency of ZFC, the continuum has singular cardinality and the
extended plus-one hypothesis.

The extended plus-one hypothesis. Suppose n > k > 1 and «f is a
normal type n object. Then there exists a normal type k + 1 object Q)
whose (k — 1, ^-section is equal to that of ϊF.

Here Tp(0) is ω and Tp(n + 1) is the power set of Tp(n). ϊF is a
normal element of Tp(n) if ^ can compute the equality relation between
sets in Tp(n — 1). The (k — 1, ̂ -section of a normal element of Tp(ή)
consists of those elements of Tp(k) which are computable from ίF using
a parameter from Tp(k — 1). The (k — 1, ̂ -section of J^ is denoted by

The notions of recursion in higher types are due to Kleene [8]; the
extended plus-one hypothesis goes back to Sacks (see [11]), who proved
the plus-one theorem:

PLUS-ONE THEOREM. Suppose n > k > 1 and ^ is a normal type n
object. Then there exists a normal type k + 1 object 2 whose k-section is
equal to that of <F.

The /̂ -section of ^", the set of elements of Tp(k) which are recursive
in J5', is the parameter free (lightface) version of the extended ^-section
of J*\ Both of these plus-one principles imply that a restricted section
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of a normal object contains little information about the type of that
object.

Sacks noted that the extended plus-one hypothesis follows from the
generalized continuum hypothesis. Recently, Griffor and Normann [2]
have shown that it also follows, for fixed k, from the existence of a
regular well-ordering of Tp(k) which is recursive in fc+lE. On the other
hand, Harrington has shown it is false for k = 2 if the axiom of deter-
minateness is true. The result of this paper implies that it cannot be
proven false, unless ZFC is inconsistent, by assuming only ZFC and the
continuum is singular.

Section 2 reformulates recursion in a normal object of finite type in
the more set theoretic context of i?-recursion. In Section 3, the basic
facts about ίJ-recursively closed structures and their generic extensions
are reviewed.

Section 4 is devoted to a proof of the main theorem. The model of
ZFC which is constructed satisfies that the continuum has a well-
ordering of height ωωi which is recursive in Tp(ϊ). Suppose !F is a given
normal element of Tp(ή) where n > 3. Then gsc IF naturally breaks into
ω1 many pieces.

The type 3 object 2tf which is to have gsc Jf = gsc 3F is constructed
in ωx many stages. At stage a, the atu piece of Isc & is coded into 3ϋf
so that it can be computed for some real α, and Jf7. Thus asc ̂  c: Jsc &.
To show that gsc J f c ^cJ^" it will be shown that the amount of 3f con-
structed at stage a is recursive in 8F and some real and that it com-
pletely determines the values of all computations using the first ωa many
reals and 3f. This will be made possible by regarding the (a + l) s t stage
of the construction as a generic extension via the continuum of a suf-
ficiently well behaved (ίJ-closed) initial segment of L. The result will be
that every JP computation using a real will be able to be duplicated by
#" using some other real so Jsc 2/F c gsc J*\

§ 2. Zs-recursion

2.1. The basics. The notions of computability found in Kleene's
recursion in a normal object of finite type were adapted to the universe
of sets by Normann [10] and later by Moschovakis. The reader may wish
to consult Slaman [17] as a general reference.

DEFINITION 2.2. Let 0t be a predicate on sets. The partial recursive
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function which is recursive in St with index β is denoted by {eγ and

defined by the following schemes.

( i ) {e}* (xl9 , xn) = xt e = <1, n, i)

( i i ) {eγ (xl9 , xn) = x\x3 e = <2, n, i9 j >

(iii) {e}Λ (x19 >. ,xn) = {xi9 x3) e = <3, n, ί,j)

( iv) {eγ (xί9 - , xn) ^ \Jyexi {e'γ (y, x2, , xn) e = <4, n, e')

( v ) {eγ (xl9 - ,xn) = {eγ ({e,γ (x19 . . ., xn), . . ., {emγ (χ19 , xn))

e = <5,7i, m, e r, β1? ,eT O>

( v i ) {e}* (Λj, ••,«„) = Λ€ ΓΊ 9t e = <6, n, i>

(vii) {ef (βj, x l 5 , * n , 3Ί, , ̂ m) = {^m (^i, , ^ J

e = <7, π,, m> .

The ίJ-recursive schemes are the rudimentary ones (i)-(v), intersec-

tion with a predicate (vi) and a universal machine scheme (vii). There

are several conventions in notation: {eγ (xί9 , xn) | if there is a y so

that {eγ (xl9 '"9xn)=y; {eγ (x» , xn) t otherwise; y <^ <x1? , xn; ^ >

if there is an index e so that {β}̂  (Xj, , xn) ~ y.

DEFINITION 2.3. A predicate p is ^-recursively enumerable in the

parameters al9 , an relative to & if there is an index e so that p is

the domain of the partial function λy \ {eγ (y, α1? , an).

DEFiNiTion 2.4. ( i ) A transitive set is ίJ-closed relative to 9t if it

is closed under application of those functions which are £J-recursive in 0t*

(ii) If x is a set then the ίJ-closure of x relative to 0t9 denoted

E(x;&), is the smallest transitive set A so that xe A and A is i?-closed

relative to 0ί.

2.5. Connections with recursion in higher types.

THEOREM 2.6 (Normann [10]). ( i ) Let <F be a normal element of

Tp(n + 2). Let ^ be the predicate ^(x) iff xetF. There is a recursive

function t so that the eth (Kleene) partial recursive function relative to J^

with parameters a19 , an from Tp(ή) is equal to λx\{t(e)γ^ (x9 au , an)

on Tp(ή).

(ii) Let 0ί be a predicate on sets and n be an integer. Then there

is a normal type n + 2 object IF® and a recursive function t so that if

al9 - , an are parameters from Tp(ή) then the t(e)th (Kleene) partial recursive

function relative to 2F® is equal to λx \ {eγ (x, alf , an) on Tp(n).

COROLLARY 2.7. ( i ) Let <F be a normal type n + 2 object £+1sc!F
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is equal to E(Tp(ή); &*) f] Tp(n + 1).
(ii) // 0t is a predicate then there is a normal type n + 2 object &*

so that E(Tp(ή); 0t) Π Tp(n + 1) is equal to £+1sc J*Λ

Normann's theorem and its corollary make precise the statement that
ϋJ-recursion generalizes the original notions of recursion in normal
objects. In what follows, the notions of ^-recursion will be used ex-
clusively; it is a consequence of Theorem 2.6 that the arguments could
be reformulated strictly in terms of finite types.

As a notational point, let \~lsc0t be defined for predicates exactly
as it was for objects of finite type: ze\~l&c(Tp(n)\ 0t) if ze Tp(k) and
there is an a in Tp(k — 1) so that z <#<α, Tp(ή); 0t`).

2.8. The Moschoυakis phenomenon. The definition of £J-recursive
function includes, implicitly, the notions of subcomputation, computation
tree and height of a computation, || ||. {e\m (xu , xn) j iff the compu-
tation tree, T*e,Xu...iXn>9 associated with the index e relative to 0t and
arguments xu , xn is well-founded. If {e}m (xu , xn) [ then ||<(β, x19 ,
xn; 0t)\ is the same as the height of the tree T*eiXlt...iXn> as a well-founded
relation.

DEFINITION 2.9. ( i ) If {e}® (xl9 , xn) | then an infinite descending
path in T*etXli...iXn> is called a Moschovakis witness to the divergence of
{e}* a t < x l f . . - , x n y .

(ii) A set A which is ΐJ-closed relative to 01 satisfies the Moschovakis
phenomenon relative to 0t if whenever a19 , an are elements of A and
{e}3* (aίf - - -, an) | there is a Moschovakis witness to the divergence which
is an element of A.

These witnesses to divergence were introduced by Moschovakis [9]
to show that E(Tp(ΐ)) is not the same as the least admissible set over
Tp(ΐ) and that the set of indicies for divergent computations is ^-definable
over E(Tp(ΐ)). When n > 1, E(Tp(n)) satisfies the Moschovakis phenom-
enon since any countable sequence in Tp(ή) is coded by an element of
Tp{ή). An arbitrary .E-closed structure may not satisfy the Moschovakis
phenomenon.

2.10. L. The JS-recursive functions are defined from below by recur-
sion, hence are absolute. Any set which is £J-recursive in x relative to
01 belongs to L[x; 0l\, the constructible universe built over TC(x) (the
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transitive closure of {x}) using 0ί. Moreover, scheme (vii), the universal

machine scheme in the definition of E-recursive, can be used to prove

the fixed point theorem for i£-recursion and hence show that functions

defined by effective transfinite recursion in St are i?-recursive relative

to 9t. This implies that E(x; 0t) is an initial segment of L[x; &].

DEFINITION 2.11.

( i ) K*'** = sup {||<e, x; 0t)\\e is an index & {e}*(x) j }.

(ii) κ* '* = sup {||<e, x, y; St)\\\e is an index & y e TC(x) & {e}*(x, y) j } .

KQ;Λ is the supremum of the ordinals which are recursive in x relative

to 01 \ κx``Λ is the ordinal height of E(x; <%). There is a uniform cor-

respondence e (=ή> φe between indicies and a certain set of Σλ formulas so

that

{ e γ (xί9 - - , x n ) I i f f Lκ<χu ~>χn>;*[(x19 >•-, x n ) ; 0t\ | = φe(x19 , x n ) .

The informal definitions of I?-recursive functions which follow are

implicitly appealing to this characterization of ίJ-recursion.

DEFINITION 2.12. ( i ) An ordinal a < κx``M is (x; ^-reflecting if given

any Σλ formula φ with only parameter x

La[x; 0ί[ \= φ iff Lκχ',*[x; 0ί[ \= φ .

(ii) The greatest (x; ^-reflecting ordinal is denoted tcfM.

Harrington [5] characterized the κr function in higher types by show-

ing that if 0t is a predicate, n is a positive integer and a is an element

of Tp(n) then κ*`τp(ny>* i s the least ordinal ϊ so that a complete set of

Moschovakis witnesses for <α, Tp(n); 0t) is recursive in every ordinal

greater than ϊ relative to <α, Tp(n); <3£). That is to say that if

{eγ (a, Tp(n)) | then

and if {e}® (a, Tp(n)) f then the ordinal κ^Tp{n)]m is large enough to enu-

merate all of the points from some Moschovakis witness into T<eya,Tpin)>.

Sacks [13] showed that if x is a set of ordinals then κx

r (< = ιή>*) is

the least ordinal ϊ so that a complete set of Moschovakis witnesses is

available in the same sense as above for all the x computations at ϊ + 1.

If T%iX> is not well-founded and x is a set of ordinals then T&x> to the

left of its leftmost path (in the natural well-ordering) has height less
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than or equal to tcfm\ its leftmost path is an element of Lκχ\»^x\0ί\. In

fact, for initial segments of L the global structure of reflection and so

of the Moschovakis phenomenon has been understood.

DEFINITION 2.13. Let Lκ be 2?-closed. Define p* to be the least T < K

so that there is a parameter a in Lκ and an index e so that λx \ {e}(x, a)

maps a subset of ΐ onto Lκ.

ρκ is the least ordinal so that there is a parameter a in Lκ so that

E(ρκ U {a}) = Lκ. Sacks showed in [14], for those Lκ satisfying the

Moschovakis phenomenon, that if ϊ < ρκ and a is an element of Lκ then

sup {ΰ`* IV <ϊ} <κ .

This implies that all the Moschovakis witnesses for a "small" set of

parameters in Lκ are simultaneously available at a bounded point in Lκ.

2.14. Selection.

DEFINITION 2.15. If a and x are sets and & is a predicate then a

selects from x relative to 9t if any non-empty predicate on x which is

^-recursively enumerable in <α, x`) relative to St has a non-empty subset

which is jE-recursive in <α, x) relative to ffl%

Selection and reflection are two facets of the same phenomenon: they

measure the degree to which the ^-recursively enumerable predicates

are closed under existential quantification, a selects from x relative to

0t exactly when the predicates which are £J-recursively enumerable in

<α, Xs) relative to 0t are closed under the quantifier 32 e x. In terms of

reflection, this is exactly when for all b in x, κ%`x'`* > κ%`x`h`*. The relevant

selection theorems are

THEOREM 2.16. ( i ) (Gandy [1]) Every set selects uniformly from ω

relative to every predicate. (The index for the E-recursive subset of ω is

a recursive function of the index for the E-recursίvely enumerable predicate

on ω.)

(ii) (Grilliot-Harrington-MacQueen [3,4]) Ifae Tp(ή) then (a, Tp(ή)}

selects from Tp(n — 1) relative to every predicate.

§ 3. Forcing extensions of Zs-closed sets

The basic facts concerning forcing and -E-recursion can be found in

Sacks [15] or Sacks-Slaman [16]. In general, a set generic extension of
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an E-closed structure may not be E-closed. However, many interesting

partial orders do preserve i?-closure. If P is a partial order satisfying

the countable chain condition (c.c.c.) the jP-generically extending an in-

closed set preserves not only the .E-closure of the ground model but also

the reflection structure:

THEOREM 3.1 (Sacks [15]). Suppose A is E-closed, if xeA then there

is a well-ordering of x in A and P is a partial order with the countable

chain condition in A. (Assume that each of the parameters P, τ and a

can E-recursίvely compute a well-ordering of its transitive closure which

has smallest possible height in A.)

( i ) If p e P9τ is a term in A andp\\-\\ζe, τ) | | = ϊ then ΐ is E-recursiυe

in <r, P).

(ii) If G is P-generίc over A and a is an element of A then tca

r'
G = tc%

Part (ii) is actually a consequence of part (i).

§4. The forcing construction

4.1. P. This section describes a forcing extension of L in which

the continuum has singular cardinality and the extended plus-one hy-

pothesis is true. In this model, if n > 2 then Tp(ή) has a regular well-

ordering which is JS-recursive in Tp(ή) and a fixed real number. By

results of Griflbr-Normann [2], only (1, 2)-sections need to be considered.

In short, begin with L and expand the cardinality of the continuum

to ω using a c.c.c. partial order so that the generic G is ίJ-recursive

in Tp(ΐ) Π L[G] and some real in L[G]. If 0t is a predicate and n an

integer in L[G], build tf so that lsc(Tp(ή); &) = Tp(2) Π E(Tp(l), άf).

#£ is constructed in ωx many steps representing each step as adding G

to some JE-closed structure.

The forcing notion, P, was developed by Harrington [β] and is also

described in Jech [7]. It has two steps: the first is to use Cohen forcing

to extend L to L[G] where the continuum is ωωi, the second is to use a

version of almost disjoint forcing to add a real a so that the Cohen

generic is Π\ in a in L[(G, a}]. The generic G is the pair <G, a). For

the present, the actual definition of P is not important. Only the fol-

lowing facts are needed about a generic object (G, a}:

(1) P<EωΛί.

(2) P has the c.c.c.
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(3) <G, α> < £ <α, Tp(l) Π L[<G, α>]>.

4.2. Canonical Terms, With any notion of forcing Q over L there

is a class of canonical terms for sets of ordinals in the generic extension.

K r i s a term in the forcing language and ||§ "τ c= Λ" then there is a

canonical term r* so that ||5 "r* = τ". τ* is defined from τ and Q as

follows. For a < Λ, let Aα be the L-least antichain in Q so that if p e Aa

then p ||g "<x e τ" and also so that Aα is maximal with respect to this

property. Define r* from the indexed set A = {Aa | a < λ} by

a 6 τ* φ=> (3p 6 Aβ)[p € G]

G is the term for the Q-generic object.
In the particular case of P, each Aa will be countable since P has

the c.c.c. There is a set R in E(ωωi) of canonical terms for reals so

that every real in L[(G, a)] is the denotation of some term in R. This

follows from the proof of the G.C.H. in L.

Fix G = (G, α) to be P-generic over L. Since G is -B-recursive in a

and ϊjp(l) Π L[(G, a)] the ordinal ωωi is also. Thus, there is a well-

ordering W of all the reals in L[(G, a}] which has height ωωχ and is E-

recursive in a and the set of reals in L[(G, a}]. Using W to code sets

of reals by sets of ordinals, there are canonical terms for sets of reals

in L[<G, α>] as well as for sets of ordinals.

In what follows, Tp(ή) will mean the Tp(ri) of L[(G, a}].

LEMMA 4.3 (V = L[(G, a}]). If X is a set of reals then there is a

canonical term τx in L so that X is denoted by τx and

( i ) X is E-recursive in τx, a and Tp(ΐ);

(ii) τx is E-recursίve in X, a and Tp(2).

Proof. ( i ) Let τx be any canonical term for X. Both W and G are

2?-recursive in a and Tp(ΐ). X is first order definable using the parameters

<G, α>, W and τx since the ath veal in W is in X exactly when the αth

antichain in τx meets the generic, <G, α).

(ii) First, note that ωωi+1 is ίJ-recursive in Tp(2):

( W is a well-ordering of 7jθ(l)|
ω ω i + 1 = V ' and I W\ is its height J '

Let X be a set of reals. By an effective transfinite recursion of length
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ωωi+i, there is a well-ordering of all canonical terms in L for sets of

reals in L[(G, a}] which is ίJ-recursive in Tp(2). This relies on the fact

that P has the countable chain condition. W and G are £J-recursive in

a and Tp(2); whether or not a term τ denotes X in L[(G, a)] is the E-

recursive in τ, α, X and Tp(2). Then the least term τx which denotes X

is £J-recursive in X, a and Tp(2).

4.4. (1, 2)-sectίons of higher type objects in L[(G, α>]. There is one

additional structural fact necessary to the proof of the main theorem:

If 9t is a predicate and n is greater than 1 the 2SC (Tp(rί)\ <%} has cofinality

LEMMA 4.5 (V = L[<G, α>]). Lei & be a predicate and n be an integer

greater than 1. There is a sequence of sets (Xδ | δ < ωj> so that

( i ) (VΓ < ωjXSδ e Tp(ί))[(Xδ\δ<r)<E(b, Tp(n); 9t%

(ii) If X is an element of \sc(Tp(ri); &} then there is a real b and a

δ less than ωx so that X^E(b, Xδ).

Proof. By the preceding remarks W and ωωi are both JS-recursive in

<α, Tp(ή); 9£)* Moreover, the cofinal function f:ωί->ωωi defined by f: a

->ωa is also 2?-recursive in <α, Tp(ή);&). The set Xδ is defined by

Xe Tp{2) and b e Tp(ϊ) and \b\w < ωδ

and X = {eγ (b, a, Tp(n))

\b\w is the ordinal height of b in the well-ordering W. Clearly, (ii) is

satisfied by this sequence.

In order to show that any initial segment of the sequence (Xδ \ δ < ωxy

is recursive in Tp(n) and some real relative to 91 it is sufficient to show

that if ϊ < coj then the ordinal κo(ϊ), defined to be equal to the supremum

of {κl`a`TpW'`*\\b\w < ωr}, is E-recursive in some real and Tp(ή) relative to Bl.

Define the partial ίJ-recursive function g on ωωί by effective trans-

finite recursion:

g(0) = 0

T > g(oc) and 3& e Tp(ΐ)

g(a + 1) = (the least V) \\b\w <ωγ and 1

[(3e e ω)[||<e, δ, α, Tp(ή); 9t)\ = ϊ']\

g(X) = sup g(a) if λ is a limit ordinal .
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The Gandy and Grilliot-Harrington-MacQueen Selection Theorems 2.16
together imply that the recursion step in defining g(a + 1) from g(a) is
^-recursive. Hence, g is also £J-recursive.

If g happened to be total then it would induce a surjective function
h: ω X ωr -> ωωi defined by h(e, β) is equal to a when {e}9* (bβ, α, Tp(n)) =

g(a) (bβ is the βth real in W). This is impossible since ωωχ is a cardinal

and ωr < ωωi. Let β* be the least ordinal so that g is undefined at β*.

Let 6* be the real so that \b*\w = β*.

The supremum of {g(β) | β < β*} is jE-recursive in (b*, a, Tp(ή); &}.

This supremum must be κo(7) otherwise g would be defined at β*. Its

value would be the next ordinal which is the height of a computation

using some parameter which is below ωr in W together with a, Tp(ή)

and 0t.

THEOREM 4.6 (V = L[(G,a}]). Suppose 0t is a predicate and n is a

positive integer greater than 1. There is a predicate Jf so that

- ŝc (Tp(ή); <%).

Proof. Let <Xδ |^<ω 1> be the sequence exhausting Isc(Tp(ή); 01s)

constructed in Lemma 4.5. It is necessary to construct Jtf so that

lsc(Tp(ή); St) consists of exactly those sets of reals in E(Tp(l); £?).

2/f is constructed in ωγ many steps along with an auxiliary function

T which has domain ωλ. At step δ, both ϊ(δ) and tf Π Lγ{δ)[Tp(ϊ); 3f\ will

be defined to satisfy the inductive hypotheses:

(1) ϊ{β) = sup {κ>>*w \\b\w<ωδ};

(2) Lΐ(δ)[Tp(ΐ);je] is not .E-closed relative to Jf;

(3) Xδ e Lγ{δ)+1[Tp(ϊ); Jf] and is uniformly defined in terms of δ and

(4) Lγ{δ) + ί[Tp(ί);^] is uniformly E-recursive in a, Xδ and Tp(n).

The construction of tf is simply described. Suppose that the func-

tion ϊ has been defined at all arguments less than δ and that J? has

been defined on all the sets in `\Jδ,<δ Lΐ(δf)[Tp(ϊ); tff\. If δ is a limit ordinal

let ϊ(δ) be the supremum of {r(δ') \ δ' < δ}. Xδ will automatically be an

element of Lr(δ)+ί[Tp(ϊ);Jί?]. Otherwise, δ is equal to σ + 1. Let τδ be

the L-least canonical term for Xδ. Let βδ be the least ordinal so that

τδ is an element of Lβd and let Wβδ be the L-least well-ordering of ωωi

of height βδ. Wβ§ is recursive in some real, Tp(ri) and M by Lemma 4.3.

Code Wβδ and τδ into `tf at ϊ(σ) + 1 by
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2 if X = <r(σ) + 1, δ'}, δ' < ωωi and δ' e Wβδ .

1 if X - (ϊ(σ) + 1, δ\ 0>, δ' < ωωi and τδ is the 3/th element

of Lβδ in the L-least well-ordering of Lβδ. (This well-

ordering is an element of Lβδ+1) .

0 if X is not covered by the above and

, XeLΐiσ)+2[TP(l);jf]-Lγ

This defines jf, regarded as a function from sets to {0, 1,2}, on

ΐ(σ)+2[Tp(ΐ);^]. Set JT(X) equal to 0 inductively for each X and β >

(σ) + 2 so that X is an element of Lβ[Tp(ϊ);#P] - Lr(<τ)+2[Γp(l); ̂ ] until

is equal to 7(δ):

ΐ(δ) = sup{κb

r>
a'τ^\\b\w <ωδ} .

First, if the induction hypotheses can be verified then the construc-

tion is successful in making ^sc<Γp(l); Jf) = ]sc (Tp(ή); &). Let ϊ be the

supremum of ϊ(δ) as δ varies over ω{. Lr[Tp(ΐ);^f] satisfies the Moscho-

vakis phenomenon by hypothesis (1) and the remarks in Section 2.10.

So Lr[Tp(l);^f] is £J-closed relative to Jf; hypothesis (2) implies that no

proper initial segment is £J-closed. Thus, Lr[Tp(ΐ); <#?] is equal to

E(Tp(l);je). By hypothesis (3), each Xδ is an element of E(Tp(l);je) so

ŝc < Tp(ή) &) c Jsc < Tp(ΐ) ^>. Finally, hypothesis (4) implies that

^sc<Γp(l); JT> C isc (Tp(ή); &} since every initial segment of Lr[Tp(ΐ); ^]

is ^-recursive in Tp(n) and some real relative to 0t.

It remains to verify the inductive hypotheses.

The limit case in the definition of T and 2fl? is the easier one to

analyze. Suppose that λ is a countable limit ordinal and the inductive

hypotheses are satisfied for each δ below λ. Hypothesis (1) is auto-

matically true. For each δ less than λ, let bδ be a real so that

T(δ) <:E(bδ,a, Tp(ϊ);jf). λ is countable, so there is a real bλ which com-

putes {<e, bδ`) I {eY (bδ, a, Tp(ί)) = ΐ(δ)}. By the union scheme of jE-recursion,

T(λ) <^<6δ,α, Tp(l);jey. This establishes hypothesis (2). Hypotheses (3)

and (4) follow from the uniformity of the construction, the continuity

of <Z δ |β<ω 1 > and the fact that ^ is defined to be 0 for all X in

The case when δ is a successor, say δ = σ + 1, is more subtle.

Suppose the hypotheses are true at level σ. Hypothesis (3) is true for

<j + 1 as Xσ+1 is uniformly coded into Jf and 7{σ) via Wβσ+1 and τσ+1 (see
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Lemma 4.3). But T(δ) is easily defined from a + 1 and tf (not 2?-recursively

though!) using the characterization of κτ of 2.10. Hypothesis (4) is seen

true since Lΐ(σ)+ί[Tp(ΐ); J4f] can be built from Xδ and Tp(n) using an effec-

tive transfinite recursion of shorter length than ωωχ. But ωωi <^ Tp(n)

and being Lr(σ+ί)[Tp(ϊ);3f] is recursive in Xδ and Tp(ϊ) as a predicate so

this recursion can be done recursively in Xδ and Tp(ή).

The value of T(σ + 1) is designed specifically to insure that hypo-

theses (1) is true so it remains to verify hypothesis (2). Namely, it must

be shown that Lr(σ+1)[Tp(l); Jf] is not E-closed relative to f̂. Assuming

hypothesis (2) at level σ, let bσ be the W-least real so that there is an

integer e so that ||<e, bσ, a, Tp(ΐ); 34?)\\ = rip).

The characterization of κ

x

r`
τv<x>\* -|_ i a s the least ordinal where all

the Moschovakis witnesses for x and Tp(ϊ) relative to 2/F can be E-

recursively recognized implies that if bx and b2 are reals then ^ i

β Define a by

a = s u p {κ*r>*"*>w-*\\b\w < ωσ + 1} .

By the increasing nature of the κr function a is greater than or equal

to ϊ(σ + 1). It is sufficient to show that there is a real which, together

with Tp(ϊ), jB-recursively computes a relative to jf.

Define the sequence S by

S =
σf < δ and the 5% element in the L-least]

well-ordering of Lβσ of height ωωi is τa, J

The parameters S, a, Wβδ) Xδ and Tp(ί) are ίJ-recursive in T(σ), a and Tp(ϊ)

relative to tf (see Lemma 4.3). These parameters are all that is needed

to compute ϊ(σ),a, Tp(ΐ) and JP Π Lΐ(σ+1)[Tp(ΐ); JP]. S is a countable subset

of ωωχ in L[(G, a)]. Since P has the countable chain condition there is

a term τs in Lωωi which denotes S in L[(G, α>]. Consider the structure

E(Wβδ, Xδ, S, Tp(ΐ)) which is equal to LΛ[Wβi, Xδ, S, Tp(ΐ)] for some ίJ-closed

ordinal /c. This structure can be, alternatively, produced by starting

with the ground model Lκ, which includes Wβδ, P and the canonical terms

τδ and τs for Xδ and S, and then P-generically adding <G, α>. Since P

has the countable chain condition, Theorem 3.1 implies that the addition

of <G, α) to Lκ does not change the reflection structure of Lκ: If r is

an element of Lκ and τ is a set of ordinals then 4'P)<Gί`α> = Λ:;'P.

Lκ must be E(Wβδ) since this structure remains iί-closed when gener-
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ically extended by <(G, α). Then ρκ — ωωi and by the remarks after 2.13

if p is an element of Lκ then λx\κ*`p is uniformly bounded below K on

proper initial segments of ωωi.

Let vσ be the height of bσ in Wβδ. (bσ is the real which computes

T(σ) relative to J^. Then define a* by

Since ωσ + ί is less than ωwv a* is less than K. But then forcing with

P preserves the values of κx

r so

a* = 8Uv{κv

r`
v'`T8>Wβi>τδ>p'<G`a>\v<ωσ+1}

Also, κ

b

r`
b<`s'wP»Xδ`Tp™ < ^"^^TΓ^.ri.p^cα) if ^ i s t he ^ real in W. Thus α*

is greater than or equal to a. α* . is £J-recursive in some ordinal less

than ωωi and Wβδ since it is less than /c; thus a is .E-recursive in some

real, bσ, S, Wβσ, Xδ and Tp(ί); or, in other words, a is £J-recursive in some

real, ba and Tp(ΐ) relative to ffl. This verifies hypothesis (2) in the

successor case and completes the proof of the theorem.

4.7. Remarks and open questions. The proof of the Theorem 4.6 can

be easily adapted to find a model where the continuum is ωa and a is

any ordinal of uncountable cofinality. The arguments which were special

to ωωi can be replaced by invoking condensation arguments in L. Sec-

ondly, each of the structures E(Tp(ϊ); tff) constructed during the course

of the proof had the feature that Xx\tcfTp{l)^ is bounded on initial seg-

ments of ωωi (=p*) Implicitly, it was shown that this is also true for

E(Tp(ΐ)) in L[(G, α>]. This feature of E(Tp(ϊ)) is enough to guarantee

that various other constructions can be executed in E(Tp(ϊ)) (i.e. for 3E)

in L[(G, a}] which would usually require that the continuum be a regular

cardinal, (see Sacks [12]).

QUESTION 4.8. Does the consistency of ZFC imply the consistency

of ZFC together with the failure of the extended plus-one hypothesis?

The solution of this question would certainly involve the solution

of the following one.

QUESTION 4.9. Is there a predicate 01 and an ordinal ϊ so that

λx\fCr'r`® is not bounded (in E(ΐ;<%)) on initial segments of ρΓ`Λ (relativize

definition 2.13)?
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