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ON POSITIVE VECTOR SUPERFUNCTIONS

OF ELLIPTIC SYSTEMS

KAZUYA HAYASIDA AND YOSHIAKI IKEDA

1. Let Ω be a bounded domain in Rn with coordinates x = (xu , xn)

such that Ω contains the origin. We consider the elliptic operators

(1.1) Lk = ί g i « * & & , > Λ = 1, 2, , m ,

where α̂ > are real valued and in C\Ω). And we assume that there are

positive constants c0, q with ra^ — 2c0 < (rc — 1) c0 such that for any x e

Ω and any ξ eRn

(1.2) ± a{«(x)f^ ^ c0 |f |2 , 0 < α£>(*) ^ C l .

Obviously c0 ^ clβ

In this article we consider the solutions {uk} of the elliptic differential

inequalities in Ω

(1.3) Ltut £ΣΣ b$Kx)daiu< + Σ c?>(x)«,, k = l,2,...,m.

Here all coefficients are real valued and

btfeC`ψ), φeLzXΩ).

The assumption on cψ) will be weakened later (see Remark 1 in the final

section).

Let F be a compact subset of Ω such that the ^-dimensional measure

of F is not zero and

(1.4) f [dis (x, F)]n-2-*'dx < ooJ>
J Ω-F

for some σ! satisfying

Received February 12, 1982.
1) We denote by dis(#, F) the distance between x and F.
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(1.5) ncx — 2c0 < a'c0 < (n — ΐ)c0 .

From now on we write χt = (xu , xt_u xi+1, ? xn) and x = (#2, £2 ).

If we put

it can be written by

(1.6) Gώi = ( - oo, do) U (60, oo) U ( ϋ fa, *ϋ)

for some av, bv (v = 0,1, 2, •), since G£t is an open set in RK We assume

that there are positive constants C and σ with σ < 1 independent of z and

jc< such that

(1.7) Σ(&.-«O'^c .

We define

Iκ|,ιi4 - sup \d% -. a ^ ^ ) i (̂  = A + + in)

for non-negative integers s and subsets A of Ω. As well-known, this

norm is extended also for real positive s.

Our objective is to prove

THEOREM. Let {uk} be solutions of (1.3) in Ω and be in C\Ω). Let

uk^>0 in Ω. Assume that F satisfies the above conditions. Then for any

p with 1 <^p < oo there are positive constants Γ(<1), C, d and an open

subset G of Ω such that the following holds:

If \uk\z,Ω ^ K and \uk\hF <> ε for e, K with 0 ^ ε rg dK, we have

\J- O/ II Uk ||LP(G) == `̀ -'S l i . ,

where ΐ, C, d and G depend only on F,p and the coefficients of (1.3).

The proof is given in the final section. In the next section we give

an example of compact subsets which satisfies (1.4) and (1.7), but contains

neither interior points nor continuous arcs. And for this example we

see that the assumption of \uk\ίtF ^ ε can be replaced by the weaker one

of \uk\OfF ^ ε in our Theorem (see Proposition 2).

The system (1.3) was considered first by K. Akό fl] for more extensive

non-linear elliptic operators. He derived the minimum principle for non-
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negative solutions of (1.3) which are named "vector superfunctions" in

[1]. When particularly ε = 0 in our Theorem, it means that uk vanish

identically. A. Ancona [2] has discussed the distribution of zero points

for non-negative solutions u of the inequality Δu <L a-u in the weak

sense, where the assumption on a is weaker than ours, that is, a is locally

integrable in Ω.

By V. A. Kondrat'ev and S. D. EideΓman [6], the Harnack's inequality

holds in the wide sense for positive solutions of (1.3). This implies that

i*

ukdx£
= lJ Ω'

for any two fixed subdomains Ω' and Ω" with Ω" c Ωf c Ω. Hence our
Theorem is effective, when F has no interior point. In [6] more general
non-stationary systems were treated. For elliptic systems (1.3) F. Mandras
[7] also has shown an inequality of Harnack's type in the ordinary sense,
where it needs some hypothesis on the sign of cf\x).

Recently, the problem of elliptic variational inequalities with obstacles
has been studied in great detail for vector-valued functions by several
authors (cf. e.g. [4]), which is closely related to inequalities (1.3). In this
connection, we give a remark in the final section (see Remark 4).

In category of complex valued functions, a theorem analogous to
ours is obtained for elliptic operators with simple characteristics and
two variables (see [3]), where the method is restricted to the case of n = 2
and the motivation is derived from the ill-posed problems.

We have also

COROLLARY. Let {uk} and F be such as in our Theorem. Then for

any p with 1 <̂  p < oo and for any subdomain Ωf with Ωf c Ω, there are

positive constants C, d and T (<1) depending only on F,p, Ωr and the coe-

fficients of (1.3) such that the following is valid:

If \uk\2tQ < K and \uk\UF ^ ε for ε, K with 0 <L ε <L dK, the inequality

\\uk\\LHΩ0 £ CεrK`-r

holds.

In fact, combining (1.8) and the inequality of [6], we have

I ukax\

m ίC \χ

w J] ί I Ujdxj
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Replacing ϊjp newly with Y, we obtain our Corollary.

2. In this section we denote the one-dimensional variable by x or y.
Let 0 < d < 1 and let Q = {(x,y); \x\ < a, \y\< &}, where b < a < 1. We
calculate first the integral

j j jdis ((x,y),Qc)]-sdxdy.

If we put Q' = {(x, y); 0 < bx/a <y < b}, we then have

jjjdis((x,y),Q°)]-sdxdy

If we put

= (1 - <5)-'(2 -

Q" = {(χ,y); o<y<bχ/a<b},
Q[' = Q" n {0 < x < a - 6} ,

Q>2' = Q" n {y > x + b - α} Π {x > a - 6} ,
and

ί' = β " Π

it follows that

(see Figure 1).

- {
b — y in Q" U Q"

a — x i n Q'o

(Figure 1)
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Hence we get

\l ldis((x,y),Q<)l-'dxdy

= (1 - δ)-%a - b)b`-s + (2 - δ)-W`s - α2

f f [dis ((x,y), Qc)]-5dxdy = (1 - 3)-'(2 - δ)-`(a`-s - bι~s)as

J J Q'd

and

f f [dis ((x, y), QOl^dΛdy = (1 - <5)"1(2 - ^)-162"3.

Combining these equalities we obtain

(2.1) (T [dis ((x,y), Qc)Yδdxdy ^ C(ao)1-5 .

Secondly we put

A = {|x| < a/2, |y| < a/2} Π l{\x\ < 6/2} U {\y\ < 6/2}]

and

A2 = {\x\ < 6/2, 6 / 2 < y < α / 2 } >

A3 = {|x| < 6/2, -α/2 < y < -6/2} ,

A4 = {-α/2 < x < -6/2, (y[ < 6/2},

A5 = {6/2 < x < α/2, |y[ < 6/2}

(see Figure 2).

(Figure 2)
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Then A = \JU Ai and dis ((*, y), Ac) ^ dis ((x, y), Af). Thus it follows that

[dis((x,y),A°)]-°dxdy

^ Σ f ί [dis {(x,y),m-sdxdy.
ί=l JJAi

By (2.1) this implies that

if [dis ((x,y),A<)]-*dxdy
(2.2)

4(b(a - b))ι-δ] .

Now we give an example of compact subsets F with the assumptions

in the previous section.

We consider in a closed interval [0, c] (0 < c < 1). For the time being

we take a sequence in such a way that

(2.3) 0 < an < 2`-*(c`-*(c * = 1, 2, .

We eliminate from [0, c] an open interval Of} with its length ax and

with its center c/2. The remained closed intervals are denoted respectively

by I£1} and I^2) in turn from the left. Next we eliminate from each J j υ

an open interval Oj2) with its length a2 whose center is identical with

that of /j 1 }. Then there are remained four closed intervals which are

denoted by I<2), I f >,/<2) and I™ in turn from the left, respectively (see

Figure 3). We repeat inductively this process, that is, O^n+1) is eliminated

from the center of If) (j = 1, 2, , 2n). The lastly remained closed set

is written by E.

Λ
7(2) 7(2) 7(2)

(Figure 3)

Obviously, \E\ = c - 2 ; = 1 2j-la3 > 02). Since

= an

we see by (2.3)

2) The notation | | means the one-dimensional measure.
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(2.4) \If U Of\l\If\^M,

where M is independent of n,j and j ' .

For the above set E we have

PROPOSITION 1. Suppose that ue C2([0, c]) and \u"\<,K in [0, c]. 7/

\u\ ̂  ε (^^0 on £J, iί follows that

(2.5) Iw

OTi i?, where Co is independent of ε and K.

Proof. First we note that this proposition is correct, if \u\ <L ε and

υ! ^ 0 in [0, c]. In fact, we have for some ξ

\u'(ξ)\ = \(u(c) - u(0))/(c - 0)| ̂  2ε/c

and in virtue of Cauchy's mean value theorem we get

\(u'{xf - u'(ξγ)l(φ) - u(ξ))\ =

for any x e (0, c). Thus (2.5) is obtained.

Now, by the uniform continuity of u there is a number n such that

I u\ ̂  2ε on |Jfml I f , since (J?=i If\Esisn-^oo. It is sufficient to prove

(2.5) on each I£n) for such n and for any fixed k.

Naturally it may be assumed that l(

k

n) Π {u'(x) ^ 0} ̂  φ, where ϊin)

is the interior of I{

k

n\ This set can be written as a union of open con-

nected components, that is, ϊ(

k

n) Π {u\x) ^ 0} = Uj=i (̂ > ̂ ) ^ suffices to

show (2.5) for each (rj9 δj). If u\ϊ5) = 0, it follows from the Cauchy's

mean value theorem that

(u'(xY - uXr^Mx) - u(ϊ3)) = 2κ"(£)

for any x e (ϊjy δs) and for some ξ e (TJ9 x). Thus (2.5) holds in (rs, δ,). It

is similar, if uf(δό) = 0.

When u'tfj) ^ 0 and u'(δs) ^ 0, it is clear that ϊ(

k

n) = (r j? δ̂ ) and v! ̂  0

on 7J.W). Hence w7 > 0 or v! < 0 there. We may assume that υ! > 0 on

Ijj.70 without loss of generality. It is immediately seen that some O{

k? is

adjacent either on the left or right side of I{

k

n). For example, let O^ be

on the right side of If. Let I™ = [ϊ, δ], and let us put

Vo = sup {η\ ur > 0 on [r, yl T <η<c} .

Then 5 < ^0 ̂  c. It suffices to assume that uf{η^ = 0. In fact, unless it

is so, we may treat η'o in place of η0 such as
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ih = inf {η\ v! > 0 on [η, δ], 0 ^ η < δ)

When % e Ό(j?\ we see that

(^ry)(u{δ) - u(r))

for some x0 e (T, δ), and

M(3) - u(r) = (β - γ)u\r) + i(δ

for some x1 e (7, δ). Since ΐ,δ e E, this implies

On the other hand it follows from (2.4) that

\w(r)\l(δ - r) ̂  M\u'(ηQ) - u'(r)\l(η0 - r)

Hence we obtain uf(x^f ^ 2(2M + ϊ)εK. Applying again Cauchy's mean

value theorem, we have

\{uf(xf - u'(x0Y)l(Φ) ~ u{xQ))\ ^ 2K,

for any xe[T,δ], that is, u\x)2 ^ u\xof + 2K(\u(x)\ + \u(xo)\). Therefore

we conclude that on J£n)

(2.6) u\x)2 ^ 2(2M + 5)εK .

This means that (2.5) holds in I(

k

n\

Next let ηQ ̂  O$\ Then we write by μ the right terminus of O£?}.

Naturally μ e E and uf > 0 in [T, μ]. Hence we see

- ε ^ u(T) ^ w(x) £ u(μ) £ ε

for xe[r9μ], that is, |w(x)| ^ ε in / ^ U O^}. By the way of making E

there are I^rλ) such that I%rι) ZD I™ and I ^ = 1 ^ U O^} U IftV Since

|w] ^ 2ε on I%219 the same inequality holds also on Jj^r1*.

If 57O e J ^ u the Cauchy's mean value theorem implies immediately

that u'(xf £ 8εK on Iψ>, that is, (2.5) holds in I™.

If 370 e /ffi, W > 0 on /^-2 ). Hence replacing If } by /^r", we can

repeat the above argument. Doing inductively over and over again, we

finally arrive at the case that v! > 0 in [0, c]. This is nothing but the

beginning of the proof. Thus we complete the proof.
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We set F= E X E(dΩ) for the above set E. From Proposition 1

we have immediately

P R O P O S I T I O N 2. Let ueC\Ω)9 and let \u\2fΩ £ K. If \u\0>F ^ ε (£K)
on F, then \u\ί>F <: C0\/eK.

Let a! be the constant in (1.5) for n = 2 and a be any fixed positive

number less than 1. In addition to (2.3) we impose on E the following

conditions:

(2.7) f ] 2 ^ 1 o ; < o o
.7 = 1

and

(2.8) Σ 4>αf-'> , Σ ^ - ' α , ) 1 " ' < oo .
i=i j=ι

Then we see that F satisfies (1.4) and (1.7).

In fact, (1.7) is trivial from (2.7). We write J = [0, c] x [0, c]. By

virtue of (2.2) we easily see

ff [dis {(x,y\F)Y«'dxdy

^ C [̀Σ V-`af-'` + Σ Vfe-'ίc - Σ 2fc-1αΛαΎ"Ί .

The sums on the right-hand side is finite from (2.8), which implies im-

mediately (1.4). It is clear that there is actually a sequence which satisfies

(2.3), (2.7) and (2.8) simultaneously.

If F is particularly the above set in our Theorem, the assumption

\uk\i,F ^ ε is weakened by \uk\OtF <Ξ ε. And (1.8) becomes

\\uk\\LHG) £

if 0 ^ ε £ d2K/Cl

3. From now on let a be a fixed number such that

(3.1) ncx — 2c0 < acQ , or < α 7 .

We rewrite (1.1) simply by

L = Σ aiβxβx,

where α^ satisfy the assumptions in (1.2).
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Let r be the Euclidean metric of x. By (1.2) we have

:> a(acQ — (nct — 2co))r-2-a .

Hence it follows from (3.1) that

(3.2) Lr~a ^ c2r-*~a

in Ω for some positive constant c2.

We construct the function

= ί \x-y\-«dy
J F

for the set F in the first section.

First we see that ψ> is in C 1 ^ ) . In fact, let fδ(r) (δ > 0) be a C1-

function such that

and

If we set

we obtain

Λ(r) = r for r ^ ί ,

5/2 ^ /,(r) ^ 5 for r^δ .

^ ( « ) = f (fs(\χ - y\))-ady ,
JF

xtψ$>(χ)- ί 3Λ i(|Λ-y|-β)dy

where D, = {y; |x - j>| ^ 5}. By (1.5) and (3.1) the right-hand side tends

to zero uniformly as δ —> 0. Hence ψ> e C\Rn).

Next we have

(3.3) \d*ψF(x)\£C[dis(x,F)r->-«'.

Indeed, since dis (x, F) ^ |x — y\ for y e F, it follows that in Fc

\x-y\-*-dy

C [dis (x, F)]n-2-"' ί \x - y|β'-«-»(ίy .<r



ELLIPTIC SYSTEMS 6 1

The last integral is uniformly bounded by virtue of a' > a. Hence (3.3)
is valid.

LEMMA 13). For any given p > 0, there are positive numbers c3, c4

(c3 < c4), a closed subset Fr of F, and subdomains, Ωu Ω2, Ω
f of Ω with F'

c Ωx <ε Ω2 c Ω* <c Ω such that

( i ) Ff has the same assumptions as F.

(ii) ψ>(*)> |3ψ>(*)| ^ pLψF,(x) in Ω' - F'.

(in) ψF>(x) ̂  c4 m £?! and ψF>(x) ̂  c3 in β r — Ω2.

Proof. We may assume that the origin is the Lebesgue density point
of F without loss of generality.

By (3.2) there are a positive number δ and a compact subdomain Ωf

of Ω containing the origin such that if |y| <; δ and xeΩ', then

(3.4) \x - y | - , |3XQ* - y |-) | ^ pl,(|x - y|-) .

Secondly we choose subdomains, Ωί9 Ω2 of Ω and α^ α2 so that 0 e Ω1 c β2

c i3r, 0 < ax < α2 and

(xefl, |y|^ί),

where δ is retaken, if necessary.
Since the origin is the density point of F, there is a closed cube J

such that J c {x \ r < δ] Π Ωx and the n-dimensional measure of F Π J is
not zero. If we put F/ = F Π J, naturally F' is closed and satisfies (1.7).
In addition, we see

ί [άis(x,Ff)]n-2-a'dx
J Ω-F'

= ί [dis (x, F')]n-2-a'dx + ί [dis (x, F')]n-2-a'dx .
J Ω-F JF-F'

The first integral of the right-hand side is estimated from the above by

ί [dis(x, F)]n-2~a'dx
J Ω-F

and the second integral is estimated by

[dis (x, J)]n~2~a'dx .

J F-J

Hence Ff also satisfies (1.4).

3) This appears also in [3] for n — 2. We repeat its proof in order to make sure.
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The statement (i) has just been shown. In view of (3.4), (ii) is valid.

Putting c3 = aς* mes F' and c4 = αf * mes F', we have (iii). The proof is

complete.

4. Let σ be as in (1.7) and c5 be a fixed positive number such that

<ψ> < c5 in Ω\ Then we have

LEMMA 2. Let v e C2(fl') wi£/& compact support in Ωf and v^>0 in Ω'.

If \v\2,Ω> £ K and \υ\1§F, ^ ε (^K)9 it follows that for any λ`^λ0 (>0)

f vL* (exp (λfF,))dx
JF'C

^ C U-σKσe2Xc* + f Lu exp

C, ô are independent of ε and K.

Proof. For brevity we denote by ψ and φ the functions -ψ> and

exp (^ψ^) respectively.

We replace F by Ff in the definition of G£i. Let the new G£ί be

rewritten in the same form as (1.6). We note that the points (av, xt) and

(&„ ott) are all in F\ For ^ e C2(Ω') we see that

ί " vgdxβ^φdxi = [(vgd,/pXy, xt)]v

y

and

+ φ, , , id(β,/pKb» Xi)(g(K, id ~ 8<fl» id)

+ (gϋXα,, id((d,/p)(b., id - (3,/ίXo., Aι))

We use the trivial inequality

\x- γ\£ c(x`-° + r-)\x- Y\" (x, Y^O).

It follows from the mean value theorem that

\υ(b,,id- i*μ.,id\

£ C(v(ay, X{y-° + υ(b,, Xiy-')\ itb,, id - υ(av, xt)\°

^ Cέ-K'{b. - ad' •

Hence, noting that 13*̂ 1 ^ Cλe*0*, we obtain

4) L* is the formal adjoint operator of L.
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- au)

Since \d2φ\ <, λ(\d2ψ\ + λ\Fψf)φ, this implies that

\[(vgdx/pKy, £t)]iz%\

We integrate the both sides of (4.1) with x} and repeat the same

calculus as there. Then by virtue of (1.4), (1.7) and (3.3) it follows im-

mediately that

jFeVg3Xidx.φdx - ^j>dXjdXi(gv)dx ^ Cε`-'K'e2^ .

We verify more easily

(4.2) 11 υgdXiφdx - f <pdXi(vg)dx <: Cε1-<JKae2λc" .
\JF'C jF'c

Therefore we obtain

υL*φdx — φLυdx <L Cει~σKae2λc* .
i J F'c J F'c

This completes the proof.

5. We prove our Theorem.

Let θ(x) be a function in C\Ωf) with compact support in Ω' such

that θ :> 0 in Ωf and θ = 1 in Ω2. We set vk = θuk. Then (1.3) is rewritten

by

(5.1) Lkvk £ Σ

where

Rk = ukLkθ + 2

By virtue of Lemma 2 it follows that for λ I> λQ

Σ f ivLf̂ dx ̂  cU-'K'<?"` + Σ f pi t^dx) .
k = ljF'c \ k^ljF'o I
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Naturally LJ is written:

Thus we see

Liφ = [λ* g ^ ^ Σ

By (3.2) and ellipticity of Lk there are a positive constant cβ and λx

such that for λ ̂  λt

in i37 - ί1'.

On the other hand it follows from (4.2) that

If φbPd &dx ^ C f e 1 - ^ ' ^ ' + f (1 +

Combining the above inequalities, we obtain for λ ̂  λx

J F'c k \ J F'c k

where it is seen that the integral on the left-hand side can be replaced by

\φ(Σt υk)dx since | ψ ( 2 vk)dx ^ Cεeλc*.
J k J F* k

We note that Rk = 0 in Ω2. Reducing the integral domain of the left-

hand side, we have by Lemma 1

/K o\ pλct Γ /v-» 7/ w v <- Π(pχ-aKap2λcs J_ Kpλc*\ (7 `> 7 \

J Ωx k

That is,

J Ωi k

Now we use the idea of F. John [5] (see p. 559) with respect to the

ill-posed Cauchy problem. Setting h = (1 — σ)(2c5 — c,)-1 and λ = log CK/e)\

we see

Jfli fc

where β = Λ(c4 — c3). Hence we obtain
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\Ji2i / ~~~ \ J Ωi /

< Cεβ/pK1'iβ/p) .

If we choose G = Ω19 ϊ = β/p and d = exp(—λjh)9 the proof of our The-

orem is complete.

Remark 1. From the above proof we immediately see that the as-

sumption on cf`> is weakened as follows:

(dis (*, F) -> 0) .

Remark 2. Let δ be any fixed positive number less than 1. In our

Theorem we easily verify that the assumption \u\2tΩ ^ K is weakened to

\u\ι+δ,Ω ^ K, if the real number δ in (1.7) is restricted to 0 < σ < δ.

Remark 3. Instead of (1.3) we consider the solutions {uk} of the in-

homogeneous inequalities

lf(x)dXiue + Σ cf\x)ue + U , k = l,2, ,m,
e=ι i=i t=i

where /, e C°(β). Then (5.2) is replaced with

eλc> ί ( Σ ̂ ) d Λ : ^ C U-σKσeUc* + iίe^3 + eλc* ί ( 2 |/t|)Λc) ,
J Ωi k \ J Ωf k )

which implies that for λ`^λί we have

f ( Σ uH)dx ̂  C L*K`-t + (KleY**-'* f ( Σ \f*\)dx) .
J Ω! k \ J Ω' k /

Remark 4. Let {MΛ} be in C1+δ(Ω) (0<δ <ΐ) and solutions of (1.3)

in the weak sense, that is,

(5.3) f uJ4φdx ^ Σ b™dXίue φdx + Σ ί c^α^dx

for any 0 6 C\(β) with ^ 0 in β. We assume (1.7) for a with 0 < a < δ

and that Lk has constant coefficients independent of k, which means

naturally that L* = L (=L fc). Moreover let cψ`> be in C(Ω).

We construct the well-known regular approximation of uk such that

uk

p)(x) = J uk(y)jp(x - y)dy

for sufficiently small p > 0. By (5.3) we have
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#'(*) = f uk(y)L*j,,(x - y)dy

^ Σ f bW(y)dViut{y)-h(x - y)dy + Σ \c^(y)ue(y)jp(x - y)dy

= Σ b$dXiui» + Σ c?w> + W •
i,e i

Here fk

p) is of the form:

fίp)(χ) = Σ f (62}(y) - btf(χ))dvMy)'ip(χ

+ Σ J (c?}(y) - cfKx))uly)jp{x -

Let Ω" be a subdomain such that Ωf c β^ c i3. Since the support of jp(x)

is in {|x]</>}, it follows that \fίp)\Oιΰ, £ C(p)(Σ I^U"), where C(^>)-^0
t

as |0 -> 0.
Let ε and ϋΓ be positive numbers in our Theorem. Suppose that

\uk\llF^ε and \uk\1+δι0 <; K. Noting t h a t \u(

k

p) — uk\lfΩ,,-+0 (p->0), we

have in view of Remarks 2 and 3

ί (Σ uk)dx ^ Cεt'K1-?' (0 < p < 1) .

Hence the conclusion in our Theorem holds also for this case.
It is known that vector-valued solutions of variational inequalities

satisfy (5.3) for some closed convex sets of vector functions. Recently,
S. Hildebrandt and K. O. Widman [4] have studied the Holder continuity
for first derivatives of these solutions, where quasi-linear elliptic systems
have been treated.
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