ON THE DIOPHANTINE EQUATION $x^{2}-p y^{2}= \pm 4 q$ AND THE CLASS NUMBER OF REAL SUBFIELDS OF A CYCLOTOMIC FIELD*)

HIDEO YOKOI

Introduction

Let $H(m)$ denote the class number of the field $K=\boldsymbol{Q}\left(\zeta_{m}+\zeta_{m}^{-1}\right)$, where \boldsymbol{Q} is the rational number field and ζ_{m} is a primitive m-th root of unity for a positive rational integer m.

It has been proved by Ankeny, Chowla and Hasse in [2] that if $p=(2 n q)^{2}+1$ is a prime, with prime q and integer $n>1$, then $H(p)>1$. Later, S.-D. Lang proved in [5] that if $p=((2 n+1) q)^{2}+4$ is a prime, with odd prime q and integer $n \geq 1$, then $H(p)>1$.

Both results are based on the fact that the diophantine equation $x^{2}-p y^{2}= \pm 4 m$ has no solution (x, y) in integers unless $m \geq n q$ (resp. $m \geq(2 n+1) q)$.

In this paper, we shall first consider the diophantine equation $x^{2}-$ $p y^{2}= \pm 4 q$ for distinct odd primes p, q, and give a necessary and sufficient condition for its solvability (§1). Next, we shall show that for distinct odd primes p, q satisfying $p=((2 n+1) q)^{2} \pm 2$ with integer $n \geq 0$ the diophantine equation $x^{2}-p y^{2}= \pm q$ has no solution (x, y) in integers except for the case $p=7(n=0, q=3)$ (§2).

Moreover, in Section 3, for a prime p of such type, we shall give a sufficient condition for the class number $h(p)$ of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$ to be greater than 1 , and by applying this result to maximal real subfield of a cyclotomic field we shall also give a sufficient condition for $H(4 p)>1$.

Finally, we shall list up all primes $p<100,000$ satisfying $p=((2 n+1) q)^{2}$ -2 with prime $q \equiv 1$ or $3(\bmod 4),(n \geq 0)$, and $p=((2 n+1) q)^{2}+2$ with prime $q \equiv 1$ or $7(\bmod 4),(n \geq 0)$, for which both $h(p)$ and $H(4 p)$ are

[^0]greater than 1.

§ 1. Solvability of the equation $x^{2}-p y^{2}= \pm 4 q$

We consider, in this section, the diophantine equation $x^{2}-p y^{2}= \pm 4 q$ for distinct odd primes p, q. However, the following fact is noteworthy: When the equation $x^{2}-p y^{2}= \pm q$ has a solution (u, v) in integers, the double of the solution $(2 u, 2 v)$ is also a solution of the equation $x^{2}-p y^{2}$ $= \pm 4 q$. Conversely, in the case $p \not \equiv 1(\bmod 4)$ all the solutions of $x^{2}-$ $p y^{2}= \pm 4 q$ can be obtained from the solutions $x^{2}-p y^{2}= \pm q$ in such a way, while in the case $p \equiv 1(\bmod 4)$ not all the solutions can necessarily be found from the solutions of $x^{2}-p y^{2}= \pm q$.

The following fact, which gives a relation between the solvability of the equation $x^{2}-p y^{2}= \pm 4 q$ and the class number of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$, is already known ${ }^{1)}$, but is fundamental in our investigation. Therefore, we state it as a theorem and, for the sake of completeness, add a simple proof:

Theorem 1. Let p and q be two distinct odd primes. Then, the diophantine equation $x^{2}-p y^{2}= \pm 4 q$ has at least one solution (x, y) in integers if and only if the prime q splits completely in the real quadratic field $\boldsymbol{Q}(\sqrt{p})$ into the product of a principal prime ideal q with degree one and its conjugate $\mathfrak{q}^{\prime}: q=\mathfrak{q} \cdot \mathfrak{q}^{\prime},\left(\mathfrak{q} \neq \mathfrak{q}^{\prime}, N q=N \mathfrak{q}^{\prime}=q, \mathfrak{q}=(\omega), \mathfrak{q}^{\prime}=\left(\omega^{\prime}\right)\right.$ with ω, ω^{\prime} in $\boldsymbol{Q}(\sqrt{p})$).

Proof. If there exists one solution (u, v) in integers of $x^{2}-p y^{2}=$ $\pm 4 q$, then $u^{2}-p v^{2}= \pm 4 q$ implies $u^{2} \equiv p v^{2}(\bmod q)$. Hence $1=\left(p v^{2} / q\right)$ $=(p / q)$ holds, and so by the law of decomposition in quadratic fields q splits completely in $\boldsymbol{Q}(\sqrt{p})$. On the other hand, it follows from $\pm q=$ $(u+v \sqrt{p}) / 2 \cdot(u-v \sqrt{p}) / 2$ that both

$$
\mathfrak{q}=\left(\frac{u+v \sqrt{p}}{2}\right) \quad \text { and } \quad \mathfrak{q}^{\prime}=\left(\frac{u-v \sqrt{p}}{2}\right)
$$

are principal ideals in $\boldsymbol{Q}(\sqrt{p})$ and $N \mathfrak{q}=\mathfrak{q} \cdot \mathfrak{q}^{\prime}=q$ holds. Therefore \mathfrak{q} and \mathfrak{q}^{\prime} are principal prime ideals in $\boldsymbol{Q}(\sqrt{p})$ with degree one.

Conversely, if q splits completely in $\boldsymbol{Q}(\sqrt{p})$ into the product of two principal prime ideals $\mathfrak{q}, \mathfrak{q}^{\prime}$ with degree one, then there exist two rational

1) Cf. e. q. [2], [3] etc.
integers u, v such that both $\omega=(u+v \sqrt{p}) / 2$ and $\omega^{\prime}=(u-v \sqrt{p}) / 2$ are integers in $\boldsymbol{Q}(\sqrt{p})$ and $\mathfrak{q}=(\omega), \mathfrak{q}^{\prime}=\left(\omega^{\prime}\right)$. Hence

$$
q=\mathfrak{q} \cdot \mathfrak{q}^{\prime}=N \mathfrak{q}=|N(\omega)|=\left|\frac{u^{2}-p v^{2}}{4}\right|
$$

implies $u^{2}-p v^{2}= \pm 4 q$. Therefore $x^{2}-p y^{2}= \pm 4 q$ has the solution (u, v) in integers, which completes the proof of Theorem 1.

For example, let p and q be two odd primes satisfying $p=4 q^{2}+1$ or $p=q^{2}+4$. Then, the equation $x^{2}-p y^{2}= \pm 4 q$ has a solution $(2 q \pm$ 1,1) or ($q \pm 2,1$) in integers respectively. On the other hand, the prime q splits completely in $Q(\sqrt{p})$ such as

$$
q=q \cdot q^{\prime} ; \quad q=\left(\frac{2 q \pm 1+\sqrt{p}}{2}\right), \quad q^{\prime}=\left(\frac{2 q \pm 1-\sqrt{p}}{2}\right)
$$

or

$$
\mathfrak{q}=\left(\frac{q \pm 2+\sqrt{p}}{2}\right), \quad \mathfrak{q}^{\prime}=\left(\frac{q \pm 2-\sqrt{p}}{2}\right)
$$

respectively.
From Theorem 1 we deduce easily:
Corollary. Let p and q be two odd primes satisfying $p=(n q)^{2}+r^{2}$ for natural numbers n, r. Then, the class number $h(p)$ of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$ is not equal to one i.e. $h(p)>1$ if $x^{2}-p y^{2}= \pm 4 q$ has no solution (x, y) in integers.

Proof. Since the condition $p=(n q)^{2}+r^{2}$ implies immediately (p / q) $=1$, prime q splits completely in $\boldsymbol{Q}(\sqrt{p})$. Hence, if we suppose $h(p)=1$, then it follows from Theorem 1 that $x^{2}-p y^{2}= \pm 4 q$ has at least one solution (x, y) in integers. This is a contradiction. Therefore $h(p)=1$ is impossible, which proves the assertion of Corollary.
\S 2. Solvability of the equation $x^{2}-p y^{2}= \pm q$ for $p=((2 n+1) q)^{2} \pm 2$
After Ankeny-Chowla-Hasse and S.-D. Lang, H. Takeuchi proved in [6] that if both $12 m+7$ and $p=(3(8 m+5))^{2}-2$ are primes or both $12 m+11$ and $p=(3(8 m+7))^{2}-2$ are primes with an integer $m \geq 0$, then the equation $x^{2}-p y^{2}= \pm 3$ has no solution (x, y) in integers.

Here, we prove more generally:
Theorem 2. Let p and q be two odd primes satisfying $p=((2 n+1) q)^{2}$
± 2 with an integer $n \geq 0$, Then, the diophantine equation $x^{2}-p y^{2}= \pm q$ has at least one solution (x, y) in integers if and only if $p=7$ and $q=3$ ($n=0$) i.e. only the equation $x^{2}-7 y^{2}=-3$ has a solution in integers, for example $(x, y)=(2,1)$.

Proof. (1) Let p and q be two odd primes satisfying $p=((2 n+1) q)^{2}$ -2 with an integer $n \geq 0$, and put $l=(2 n+1) q$.

Assume first that $x^{2}-p y^{2}=q$ has at least one solution in integers, and let $(u, v)(u>0, v>0)$ be the least such positive integral solution: $u^{2}-p v^{2}=q$.

In the case $q>2 v^{2}$, where $q=u^{2}-p v^{2}=u^{2}-l^{2} v^{2}+2 v^{2}$ implies easily $(u-l v)(u+l v)=q-2 v^{2}>0$, both $a=u-l v>0$ and $b=u+l v>0$ are positive rational integers, and $l=(b-a) / 2 v, q=a b+2 v^{2}$ holds. On the other hand, since $a \geq 1, b \geq 1$ and $(a-1)(b+1)=a b+a-b-1$, we know $a b-1 \geq b-a$. Therefore

$$
\begin{aligned}
0 \leq & 2 n q=l-q=\frac{b-a}{2 v}-a b-2 v^{2}=\frac{1}{2 v}\left(b-a-2 v a b-4 v^{3}\right) \\
& \leq \frac{1}{2 v}\left(a b-1-2 v a b-4 v^{3}\right)=\frac{-1}{2 v}\left(\left(4 v^{3}+1\right)+(2 v-1) a b\right)<0 .
\end{aligned}
$$

It is clear that this is a contradiction.
In the case $q<2 v^{2}$, the norm form $1=N \varepsilon=N\left(\left(l^{2}-1\right)+l \sqrt{l^{2}-2}\right)$ of the fundamental unit $\left.{ }^{2}\right) \varepsilon=\left(l^{2}-1\right)+l \sqrt{l^{2}-2}$ of $\boldsymbol{Q}(\sqrt{p})$ multiplied by the norm form $q=N\left(u-v \sqrt{l^{2}-2}\right)$ of $u^{2}-p v^{2}=q$ yields

$$
\begin{aligned}
q & =N\left[\left\{\left(l^{2}-1\right) u-l v\left(l^{2}-2\right)\right\}+\left\{l u-\left(l^{2}-1\right) v\right\} \sqrt{l^{2}-2}\right] \\
& =\left\{\left(l^{2}-1\right) u-l v\left(l^{2}-2\right)\right\}^{2}-\left(l^{2}-2\right)\left\{l u-\left(l^{2}-1\right) v\right\}^{2} .
\end{aligned}
$$

Because of the minimal choice of v, we have $\left|l u-\left(l^{2}-1\right) v\right| \geq v$. Here, if $l u-\left(l^{2}-1\right) v \geq v$ i.e. $u \geq l v$, we have

$$
q=u^{2}-\left(l^{2}-2\right) v^{2} \geq l^{2} v^{2}-\left(l^{2}-2\right) v^{2}=2 v^{2}
$$

which contradicts $q<2 v^{2}$. If $\left(l^{2}-1\right) v-l u \geq v$ i.e. $\left(l^{2}-2\right) v \geq l u$, we have

$$
l^{2} q=l^{2} u^{2}-l^{2}\left(l^{2}-2\right) v^{2} \leq\left(l^{2}-2\right)^{2} v^{2}-l^{2}\left(l^{2}-2\right) v^{2}=-2\left(l^{2}-2\right) v^{2}<0,
$$

which is also a contradiction.
2) Cf. [1], [3].

Therefore, it is impossible that for the prime $p=((2 n+1) q)^{2}-2$ the equation $x^{2}-p y^{2}=q$ has a solution in integers.

Next, assume that $x^{2}-p y^{2}=-q$ has at least one solution in integers, and let $(u, v)(u>0, v>0)$ be the least such positive integral solution: $u^{2}-p v^{2}=-q$.

In the case $q=3, v=1$, where $-3=-q=u^{2}-p v^{2}=u^{2}-l^{2}+2$ implies $(l-u)(l+u)=5$, we have $l-u=1, l+u=5$, and so $l=3$, $u=2, p=7$ is only one possible case as asserted in the Theorem.

In the case $q=3, v \geq 2$ or $q>3, v \geq q$, the norm form of the fundamental unit ε of $Q(\sqrt{p})$ multiplied by the norm form $-q=N\left(u-v \sqrt{l^{2}-2}\right)$ of the equation $u^{2}-p v^{2}=-q$, together with the minimal choice of v, yields $\left|l u-\left(l^{2}-1\right) v\right| \geq v$. Here, if $l u-\left(l^{2}-1\right) v \geq v$, we have $-q=$ $u^{2}-\left(l^{2}-2\right) v^{2} \geq l^{2} v^{2}-\left(l^{2}-2\right) v^{2}=2 v^{2}>0$, which is a contradiction. If ($\left.l^{2}-1\right) v-l u \geq v$, we have

$$
-l^{2} q=l^{2} u^{2}-l^{2}\left(l^{2}-2\right) v^{2} \leq\left(l^{2}-2\right)^{2} v^{2}-l^{2}\left(l^{2}-2\right) v^{2}=-2\left(l^{2}-2\right) v^{2},
$$

and hence $l^{2} q \geq 2\left(l^{2}-2\right) v^{2}$. Therefore, in the case of $q=3$ and $v \geq 2$, $3 l^{2} \geq 2\left(l^{2}-2\right) v^{2} \geq 8\left(l^{2}-2\right)$ implies $16 \geq 5 l^{2} \geq 45$, which is a contradiction. In the case of $v \geq q>3, l^{2} v \geq l^{2} q \geq 2 l^{2} v^{2}-4 v^{2}$ implies $4 v^{2} \geq\left(2 v^{2}-v\right) l^{2}$ $\geq v(2 v-1) q^{2}$, and hence $q^{2} \leq 4 v /(2 v-1)=2+2 /(2 v-1)<2+2 / 5<3$ holds. This is also a contradiction.

In the case $q>3, v<q$, where $-q=u^{2}-p v^{2}=u^{2}-l^{2} v^{2}+2 v^{2}$ implies $(l v-u)(l v+u)=q+2 v^{2}>0$, both $a=l v-u>0$ and $b=l v+u$ >0 are positive rational integers, and $l=(a+b) / 2 v, q=a b-2 v^{2}$. On the other hand, since $a \geq 1, b \geq 1$ and $(a-1)(b-1)=a b-(a+b)+1$, we know $a b+1 \geq a+b$. Therefore

$$
\begin{aligned}
0 \leq 2 n q & =l-q=\frac{a+b}{2 v}-a b+2 v^{2}=\frac{1}{2 v}\left(a+b-2 v a b+4 v^{3}\right) \\
& \leq \frac{1}{2 v}\left(a b+1-2 v a b+4 v^{3}\right)=\frac{1}{2 v}\left(\left(4 v^{3}+1\right)-(2 v-1) a b\right)
\end{aligned}
$$

implies $4 v^{3}+1 \geq(2 v-1) a b$, and so $a b \leq\left(4 v^{3}+1\right) /(2 v-1)$. Hence

$$
q=a b-2 v^{2} \leq \frac{4 v^{3}+1}{2 v-1}-2 v^{2}=\frac{2 v^{2}+1}{2 v-1}=v+\frac{v+1}{2 v-1} .
$$

Here, if $v=1$ or 2 , then $q \leq v+(v+1) /(2 v-1)=3$, which is a contradiction. If $v \geq 3$, then $0<(v+1) /(2 v-1)<1$ implies $q \leq v+(v+1) /$ $(2 v-1)<v+1$, which contradicts $q>v$.

Therefore, it is impossible except for the case of $p=7, q=3(n=0)$ that for $p=((2 n+1) q)^{2}-2$ the equation $x^{2}-p y^{2}=-q$ has a solution in integers.
(2) Let p and q be two odd primes satisfying $p=((2 n+1) q)^{2}+2$ with an integer $n \geq 0$, and put $l=(2 n+1) q$.

Assume first that $x^{2}-p y^{2}=q$ has at least one solution in integers, and let $(u, v)(u>0, v>0)$ be the least such positive integral solution: $u^{2}-p v^{2}=q$.

In the case $q>v$, where $q=u^{2}-l^{2} v^{2}-2 v^{2}$ implies $(u-l v)(u+l v)$ $=q+2 v^{2}>0$, both $a=u-l v>0$ and $b=u+l v>0$ are positive rational integers, and $l=(b-a) / 2 v, q=a b-2 v^{2}$ holds. Hence, we get

$$
\begin{aligned}
0 \leq & 2 n q=l-q=\frac{b-a}{2 v}-\left(a b-2 v^{2}\right)=\frac{1}{2 v}\left(b-a-2 v a b+4 v^{3}\right) \\
& \leq \frac{1}{2 v}\left(a b-1-2 v a b+4 v^{3}\right)=\frac{1}{2 v}\left(\left(4 v^{3}-1\right)-(2 v-1) a b\right),
\end{aligned}
$$

and so $a b \leq\left(4 v^{3}-1\right) /(2 v-1)$. Therefore, we get

$$
q=a b-2 v^{2} \leq \frac{4 v^{3}-1}{2 v-1}-2 v^{2}=\frac{2 v^{2}-1}{2 v-1}=v+\frac{v-1}{2 v-1}<v+1
$$

This, however, contradicts $q>v$.
In the case $q \leq v$, the norm form $1=N \varepsilon=N\left(\left(l^{2}+1\right)+l \sqrt{l^{2}+2}\right)$ of the fundamental unit ${ }^{3} \varepsilon=\left(l^{2}+1\right)+l \sqrt{l^{2}+2}$ of $\boldsymbol{Q}(\sqrt{p})$ multiplied by the norm form $q=N\left(u-v \sqrt{l^{2}+2}\right)$ of the equation $u^{2}-p v^{2}=q$, yields

$$
q=\left\{u\left(l^{2}+1\right)-l v\left(l^{2}+2\right)\right\}^{2}-\left(l^{2}+2\right)\left\{l u-\left(l^{2}+1\right) v\right\}^{2} .
$$

Because of the minimum choice of v, we have $\left|l u-\left(l^{2}+1\right) v\right| \geq v$. Here, if $l u-\left(l^{2}+1\right) v \geq v$, we have

$$
l^{2} q=l^{2} u^{2}-l^{2}\left(l^{2}+2\right) v^{2} \geq\left(l^{2}+2\right)^{2} v^{2}-l^{2}\left(l^{2}+2\right) v^{2}=2\left(l^{2}+2\right) v^{2} \geq 2\left(l^{2}+2\right) q^{2},
$$

and hence $q \leq l^{2} / 2\left(l^{2}+2\right)<1 / 2$. This is a contradiction. If $\left(l^{2}+1\right) v-$ $l u \geq v$, we have $q=u^{2}-\left(l^{2}+2\right) v^{2} \leq l^{2} v^{2}-\left(l^{2}+2\right) v^{2}=-2 v^{2}<0$. This is also a contradiction.

Assume next that $x^{2}-p y^{2}=-q$ has at least one solution in integers, and let $(u, v)(u>0, v>0)$ be the least such positive integral solution: $u^{2}-p v^{2}=-q$.
3) Cf. [1], [3].

In the case $q>2 v^{2}$, where $-q=u^{2}-l^{2} v^{2}-2 v^{2}$ implies $(l v-u)(l v+u)$ $=q-2 v^{2}>0$, both $a=l v-u>0$ and $b=l v+u>0$ are positive rational integers, and $l=(a+b) / 2 v, q=a b+2 v^{2}$ holds. Hence, we get

$$
\begin{aligned}
0 \leq & l-q=\frac{a+b}{2 v}-\left(a b+2 v^{2}\right)=\frac{1}{2 v}\left(a+b-2 v a b-4 v^{3}\right) \\
& \leq \frac{1}{2 v}\left(a b+1-2 v a b-4 v^{3}\right)=\frac{-1}{2 v}\left((2 v-1) a b+\left(4 v^{3}-1\right)\right)<0 .
\end{aligned}
$$

This is a contradiction.
In the case $q<2 v^{2}$, the norm form of the fundamental unit ε of $\boldsymbol{Q}(\sqrt{p})$ multiplied by the norm form $-q=N\left(u-v \sqrt{l^{2}+2}\right)$ of the equation $u^{2}-p v^{2}=-q$, together with the minimal choice of v, yields $\mid l u-$ $\left(l^{2}+1\right) v \mid \geq v$. Here, if $l u-\left(l^{2}+1\right) v \geq v$, we have

$$
-l^{2} q=l^{2} u^{2}-l^{2}\left(l^{2}+2\right) v^{2} \geq\left(l^{2}+2\right)^{2} v^{2}-l^{2}\left(l^{2}+2\right) v^{2}=2\left(l^{2}+2\right) v^{2}=2 p v^{2}>0
$$

which is a contradiction. If $\left(l^{2}+1\right) v-l u \geq v$, we have

$$
-q=u^{2}-\left(l^{2}+2\right) v^{2} \leq l^{2} v^{2}-\left(l^{2}+2\right) v^{2}=-2 v^{2},
$$

which contradicts $q<2 v^{2}$.
Therefore, it is impossible that for $p=((2 n+1) q)^{2}+2$ the equation $x^{2}-p y^{2}= \pm q$ has a solution in integers.

§ 3. The class number of real subfields of a cyclotomic field

In this section, we shall consider the class number $h(p)$ of the real quadratic subfield $\boldsymbol{Q}(\sqrt{p})$ and the class number $H(4 p)$ of the maximal real subfield $\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right)$ of the cyclotomic field $\boldsymbol{Q}\left(\zeta_{4 p}\right)$:

$$
\boldsymbol{Q} \subset \boldsymbol{Q}(\sqrt{p}) \subset \boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{t p}^{-1}\right) \subset \boldsymbol{Q}\left(\zeta_{4 p}\right) .
$$

From Theorems 1 and 2, we obtain first:
Theorem 3. (1) If $p=((2 n+1) q)^{2}-2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or $3(\bmod 8)$ and $n \geq 0$ is an integer, then the class number $h(p)$ of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$ is not equal to one except for the case of $p=7(n=0, q=3)$.
(2) If $p=((2 n+1) q)^{2}+2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or $7(\bmod 8)$ and $n \geq 0$ is an integer, then the class number $h(p)$ of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$ is not equal to one i.e. $h(p)>1$.

Proof. (1) It is evident that a prime $p=((2 n+1) q)^{2}-2$ with an integer $n \geq 0$ and an odd prime q satisfies $(p / q)=(-2 / q)$, and so by the law of decomposition in quadratic fields, the prime q splits in $\boldsymbol{Q}(\sqrt{p})$ completely if and only if $(-2 / q)=1$ i.e. $q \equiv 1 \operatorname{or} 3(\bmod 8)$. Hence, moreover if $h(p)=1$ is true, then by the Theorem 1 the equation $x^{2}-$ $p y^{2}= \pm q$ has at least one solution in integers x, y. This, however, contradicts the Theorem 2 except for the case of $p=7(n=0, q=3)$. Therefore $h(p)=1$ is impossible except for the case of $p=7(n=0, q=3)$.
(2) Since a prime $p=((2 n+1) q)^{2}+2$ with an integer $n \geq 0$ and an odd prime q satisfies $(p / q)=(2 / q)$, by the law of decomposition in quadratic fields implies that the prime q splits in $\boldsymbol{Q}(\sqrt{p})$ completely if and only if $(2 / q)=1$ i.e. $q \equiv 1$ or $7(\bmod 8)$. Hence, moreover if $h(p)=1$ is true, then by the Theorem $1 x^{2}-p y^{2}= \pm q$ has at least one solution in integers x, y. However, this contracts the Theorem 2. Therefore $h(p)=1$ is impossible, which proves the assertion of Theorem 3.

In order to prove Theorem 5, we need the following theorem ${ }^{4}$:
Theorem 4. For a positive integer m, let ζ_{m} be a primitive m-th root of unity and denote by $H(m), h(m)$ the class number of the field $K=$ $\boldsymbol{Q}\left(\zeta_{m}+\zeta_{m}^{-1}\right), \boldsymbol{Q}(\sqrt{m})$ respectively. If a prime p satisfies $p \equiv 3(\bmod 4)$, then $h(p) \mid H(4 p)$ holds.

Proof. For a prime $p \equiv 3(\bmod 4)$, we first know that the real quadratic field $\boldsymbol{Q}(\sqrt{p})$ and the imaginary quadratic field $\boldsymbol{Q}(\sqrt{-p})$ are imbedded respectively in the real cyclotomic field $K=\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right)$ and the imaginary cyclotomic field $\boldsymbol{Q}\left(\zeta_{p}\right)$ by means of the Gauss sum

$$
\sqrt{d}=\sum_{a \bmod |d|}\left(\frac{d}{a}\right) \zeta_{|d|}^{a},
$$

where d is the discriminant of a quadratic field $\boldsymbol{Q}(\sqrt{ } \bar{d})$ and (d/a) means the Kronecker symbol.

Next, we shall show $\boldsymbol{Q}\left(\zeta_{p}\right) \cap \boldsymbol{Q}(\sqrt{p})=\boldsymbol{Q}$ and $\boldsymbol{Q}\left(\zeta_{4 p}\right)=\boldsymbol{Q}(\sqrt{p}) \cdot \boldsymbol{Q}\left(\zeta_{p}\right)$. If we suppose $\boldsymbol{Q}\left(\zeta_{p}\right) \cap \boldsymbol{Q}(\sqrt{p}) \neq \boldsymbol{Q}$, namely $\boldsymbol{Q}(\sqrt{p}) \subset \boldsymbol{Q}\left(\zeta_{p}\right)$, then $\boldsymbol{Q}(\sqrt{p})$ $\subset \boldsymbol{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ follows. This, however, contradicts $p \equiv 3(\bmod 4)$, which shows $\boldsymbol{Q}\left(\zeta_{p}\right) \cap \boldsymbol{Q}(\sqrt{p})=\boldsymbol{Q}$. Moreover, this assertion implies the following

[^1]
relation between degrees:
$$
\left[\boldsymbol{Q}(\sqrt{p}) \cdot \boldsymbol{Q}\left(\zeta_{p}\right): \boldsymbol{Q}\right]=[\boldsymbol{Q}(\sqrt{p}): \boldsymbol{Q}]\left[\boldsymbol{Q}\left(\zeta_{p}\right): \boldsymbol{Q}\right]=2(p-1)
$$

On the other hand, since $\left[\boldsymbol{Q}\left(\zeta_{4 p}\right): \boldsymbol{Q}\right]=2(p-1)$ and $\boldsymbol{Q}\left(\zeta_{4 p}\right) \supset \boldsymbol{Q}(\sqrt{p}) \cdot \boldsymbol{Q}\left(\zeta_{p}\right)$, the assertion $\boldsymbol{Q}\left(\zeta_{4 p}\right)=\boldsymbol{Q}(\sqrt{p}) \cdot \boldsymbol{Q}\left(\zeta_{p}\right)$ is also true.

Furthermore, we can prove that no abelian unramified extension of $\boldsymbol{Q}(\sqrt{p})$ is contained in $\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right)$. For, if we suppose that there exists an abelian unramified extension field L of $\boldsymbol{Q}(\sqrt{p})$ contained in $\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right)$, then we have $n=[L: \boldsymbol{Q}(\sqrt{p})]>2$ because $\left[\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right): \boldsymbol{Q}(\sqrt{p})\right]=(p-1) / 2$ is odd. Hence, the ramification index $e(p)$ of p in $\boldsymbol{Q}\left(\zeta_{4 p}\right) / \boldsymbol{Q}$, which is a divisor of $2(p-1) / n$, is less than $p-1$ i.e. $e(p)<p-1$. However, since p is completely ramified in $\boldsymbol{Q}\left(\zeta_{p}\right) / \boldsymbol{Q}, e(p)$ is not less than $p-1$ i.e. $e(p)$ $\geq p-1$. This is a contradiction, which proves our assertion.

Finally, from this assertion, it follows immediately by Hasse-Chevalley's theorem ${ }^{5)}$ that the assertion of Theorem $4 h(p) \mid H(4 p)$ is true.

Theorem 5. (1) If $p=((2 n+1) q)^{2}-2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or $3(\bmod 8)$ and $n \geq 0$ is an integer, then the class number $H(4 p)$ of $\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right)$ is greater than one except for the case of $p=7(n=0, q=3)$.
(2) If $p=((2 n+1) q)^{2}+2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or $7(\bmod 8)$ and $n \geq 0$ is an integer, then the class number $H(4 p)$ of $\boldsymbol{Q}\left(\zeta_{4 p}+\zeta_{4 p}^{-1}\right)$ is greater than one: $H(4 p)>1$.

Proof. Since $p=((2 n+1) q)^{2} \pm 2 \equiv 3(\bmod 4)$, the assertion of the Theorem $H(4 p)>1$ follows immediately from Theorem 3 and 4.

Finally, we give the values of all primes p less than 10^{5} satisfying
5) Cf. [2].
the conditions in Theorem 3 and the class number $h(p)$ of the corresponding real quadratic fields $\boldsymbol{Q}(\sqrt{p})^{6)}$.

p	n	q	$h(p)$	p	n	q	$h(p)$
7\#	0	3	1\#	357	0	19	3
79	1	3	3	1,087*	1	11	7
223	2	3	3	1,847	0	43	3
439	3	3	5	3,023	2	11	3
727	4	3	5	5,927	3	11	5
1,087	5	3	7	7,919	0	89	7
3,967	10	3	5	11,447	0	107	7
4,759	11	3	13	14,159	3	17	9
5,623	12	3	9	14,639	5	11	17
8,647	15	3	13	17,159	0	131	15
13,687	19	3	21	19,319	0	139	11
18,223	22	3	17	31,327*	1	59	27
31,327	29	3	27	42,023	2	41	15
33,487	30	3	19	44,519	0	211	11
53,359	38	3	37	53,359*	10	11	37
56,167	39	3	27	54.287	0	233	15
71,287	44	3	19	61,007	6	19	15
74,527	45	3	23	64,007	11	11	11
77,839	46	3	37	66,047	0	257	13
81,223	47	3	33	71,287*	1	89	19
91,807	50	3	45	81,223*	7	19	33
95,479	51	3	33	90,599	3	43	19
99,223	52	3	29	97,967	0	313	25

$p=((2 n+1) q)^{2}+2$									
p	n	q	$h(p)$						
443	1	7	3	n	$q 6,171$	1	79		
11									
11,027	7	7	9	65,027	7	17	21		
15,131	1	41	15	74,531	19	7	17		
21,611	10	7	15	95,483	1	103	11		
47,963	1	73	9						

\# indicates only one exceptional case with class number $h(p)=1$.

* indicates that the prime has appeared in the case of $q=3$

6) For this purpose we referred to Wada's table of class numbers of real quadratic fields in [7].

References

[1] G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.
[2] N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.
[3] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, Elemente der Mathematik, 20 (1965), 49-72.
[4] I. Yamaguchi, On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 272 (1975), 217-220.
[5] S.-D. Lang, Note on the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 290 (1977), 70-72.
[6] H. Takeuchi, On the class-number of the maximal real subfield of a cyclotomic field, Canadian J. Math., 33 (1981), 55-58.
[7] H. Wada, A table of ideal class numbers of real quadratic fields, Kōkyūroku in Math., No. 10 (1981), Sophia Univ., Tokyo.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: *) This research was partially supported by Grant-in-Aid for Scientific Research Project No. 56540017, Ministry of Education, Japan.

[^1]: 4) This theorem was already stated by Yamaguchi in [4], with an incomplete proof, for any positive integer p satisfying $\varphi(p)>4$. But, the theorem is not true in such a general form.
