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GALOIS ACTION ON SOME IDEAL SECTION POINTS OF THE

ABELIAN VARIETY ASSOCIATED WITH A MODULAR

FORM AND ITS APPLICATION

FUMIYUKI MOMOSE

Introduction

For an integer N, let X^N) be the modular curve defined over Q
which corresponds to the modular group Γ^N). To each primitive cusp
form / = 2] amqm> a\ = 1> (= normalized new form in the sense of [1]) on
Γι(N) of weight 2, there corresponds a factor Jf of the jacobian variety
of X1(N) (cf. Shimura [19]). Shimura [20] and Ohta [11] etc. investigated
the Galois action on some ideal section points of Jf. They treated the
case when / is a primitive cusp form on Γx(ΐ) with the neben typus

character ί —) for a prime number /, I = 1 mod 4. We here treat the

forms on Γ0(ln) (i.e., the Haupt form) for a prime number I Φ 2. Put
Kf = Q(am 11 <£ m e Z) and δf be the ideal of the ring of integers Θ of

Kf generated by aq for all primes q such that / ——J = — 1. Here, the

sign ± is chosen so that ±1 = 1 mod 4. When a form / is associated
with a Grossen-character of an imaginary quadratic field (cfe [18]), we
say that / has CM. or / is a form with CM. One of the results is the
following, which was conjectured in Saito [17]:

PROPOSITION (cf. (1.10), (1.16)). Let f be a primitive cusp form on Γ0(ln)

of weight 2 for a prime number I, I Ξ — 1 mod 4. Assume tket there exists

a prime ψ of Kf which divides δf but not divide 21. Then, there exists

a primitive cusp form Θ with CM. on Γ0(ln) of weight 2 such that

f=Θ mod ^ ,

where $> is an extension of $β to Q. Further, if ψj((l — ΐ) l, f and Θ belong

to the same direct factor in Saίto's decomposition of the space S0

2(Γ0(ln))

Received August 26, 1981.

19



20 FUMIYUKI MOMOSE

in [17] (cf. (1.14), (1.15)).

The other topic considered in this paper concerns the endomorphism

algebra of Jf. If / does not have CM., δf φ (0) (cf. [14]). There are

many examples of the forms / without CM. such that δf Φ (1), which

have non-trivial twists (cf. [4], [8], [17] etc.). Let / be a primitive cusp

form on Γ0(ln) without CM. and put Ff = Q{a\\q: primes). Then, the

endomorphism algebra End Jf®Q is isomorphic to Kf or a quaternion

algebra over Ff which contains Kf as a maximal commutative subfield

(cf. [10], [15]). In the latter case, n ^ 2 (cf. [13]) and the algebra is

generated by Kf and the twisting operator (cf. [10], [15]). If I = 1 mod 4,

the algebra is isomorphic to a matrix algebra (cf. [16]). Except for the

one example of Koike [8], we have not known the example such that the

corresponding algebra is a division algebra. We give here other two

examples (which were calculated by Saito [17]) and their discriminants.

Notation. For an algebraic number field L of finite degree or a finite

extension L of Qp, (9L, GL denote the ring of integers of L and the Galois

group Gal (L/L), respectively. For a prime p of ΘL, Lp, ΘLp, tc(p) and σp

respectively denote the p-adic completion of L, the maximal order of Lp,

the residue field ΘL\p and a Frobenius element of the prime p, and often

denote by Op instead of ΘLp and by G instead of GQ. For an abelian va-

riety A defined over a finite extension L of Q or Qp9 A,ΦL denotes the

Neron model of A over ΘL. Further, if the ring of the endomorphisms

End A oΐ A contains an order Θ of an algebraic number field, for an

ideal $β of Θ, %A denotes the ^5-ideal section points Pi^^kerO*;: A->A)

of A, and %A,GL denotes the schematic closure of %A in the Neron model

AfΘV For a prime number py μv denotes the group consisting of the

p-th roots of 1, and Xp denotes the character of G induced from the

Galois action on μp.

§ 1. Galois action on division points

Let / ^ 3 be a prime number, n ^ 1 be an integer and / = Σ amQm>

aγ = 1, be a primitive cusp form on Γ0(ln) of weight 2. Let J = Jf be

the abelian variety (defined over Q) associated with / (cf. Shimura [19])

and put K = Kf = Q(am\l<LmeZ), F = Ff = Q(a\\q: primes). Denote

by Vp = VftP the Tate module TP(J)(Q) <g) Qp for each prime p, and put

V% = Vp® K% for each prime 5β of 0 = Θκ lying over p. The Neron model
s a n abelian scheme (cf. [3]). We can choose an abelian variety
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J'( IQ) o n which Θ operates and which is isogenous to J over Q (cf. [21]

§ 7). Put k = QW±ΐ) and G = Gal(Q/Q), Gfc - Gal(Q/&), where the sign

± is chosen such that ±1 = 1 mod 4.

LEMMA (1.1). Under the notation as above, let p be a prime of k lying

over p and put M = %Jf(Q). Assume that pj(2 I and M decomposes into

a direct sum of κ(ψ)[Gkp]-modules M1 and M2:

M = M1®M2,

where κ(?β) = Θ/ψ. Then, %J'/Θp decomposes into a product of finite flat

group schemes "en κ(ψ)-vectorίels" Xλ and X2:

Proof. By our assumption, %Jf (x) kp decomposes into a product of two

finite group schemes X[ and X'2:

Let Xt (ί = 1, 2) be the schematic closure of X\ in the Neron model J'/Op

(, then Xt are finite flat group schemes, because J'/Θp is proper (cf. [3],

[12])). Consider the following morphism g induced from the canonical

morphism of Jr onto J" = Jf\X2 by the universal property of the Neron

models:

The morphism g\Xι'. Xx-^g{X^) ( c J " / ^ ) is isomorphic over the generic

point of Spec Θr As ordpp = 1 < p — 1, by the fundamental property of

the finite flat group schemes (cf. [12]), g\X1 is an isomorphism. Then,

we have the following exact sequence:

u

Therefore, ^Jf

/βp = X, XΰpX2. Q.E.D.

Let δ = δf be the ideal of 0 = Θκ generated by aq for all primes q

which remain primes in k = Q(V±l). For a prime ψ\p of Θ = Θκ, choose

a lattice M of V, = Vp® K% on which 0 and G = Gal(Q/Q) operate. Let

~p be the representation of G on M = M/^βM:



22 FUMIYUKI MOMOSE

p: G > Autβ ( WM <=—> AutFp(M ® Fp) ~ GL(2, Fp).

We set the following condition (C) of the prime ψ of Θ = Θκ:

ί(l) $|δ
(C) m24 if Z = - 1 mod 4,

1(2) U , Λ i f / Ξ I m o d 4 .

LEMMA (1.2). Let ^ be a prime of Θ satisfying the condition (C) above

and p be as above. Then, ~p{Gk) is contained in a Cartan subgroup and

~p(G) is not contained in any Borel subgroup.

Proof. Put R = Fp[p(Gk)], then for all xe R and ge G - Gk, tτp(g)x

= 0 so that R Φ M2(FP) and p(Gk) is contained in a Borel subgroup of

GL(2, Fp). Let V be a 1-dimensional subspace of M® Fv which is a R-

m o d u l e . If V = p(g)V ΐoτ geG - Gk, V i s a n Fp[p(G)]-module a n d p(G)

is contained in a Borel subgroup. If Vφp(g)V for geG — Gk, then

M® Fv decomposes into a direct sum of i?-modules

M®FV= V@p(g)V.

Then, ρ(Gk) is contained in the Cartan subgroup Aut V X Aut p(g) V and

ρ(G) is contained in the normalizer of this Cartan subgroup. If ρ(G) is

contained in a Borel subgroup of GL(2, Fp), the semi-simplification of p

is equivalent to μ®μ®Xf(l~1)/2 for a character μ of G. Denote also by

μ the corresponding Dirichlet character and put μp = μιz*. If p Φ Z, by

the fact that μ®2 ® χfv-1"2 = det p = Xp, we should have μf = Xp, but such

a character μ does not exist. If p = / and / = 1 mod 4, then μf2 = Xf(p+1)/2

9

but such a character μ does not exist. Q.E.D.

By this lemma (1.2), as a representation on M® Fp,p\Gh is equi-

valent to V!®v2 for some characters vt of Gk and ^ ® P 2 = XplGk- Let ^

be the character of k% ( = the idele group of &) corresponding to vt. For

an integer m Φ 0, denote by e(m) the idele of & whose components divid-

ing m are 1 and the other components are all m.

LEMMA (1.3) (cf. [21]). Let ψ\p be a prime of Θ = Θκ satisfying the

condition (C). Then,

= ( = — )
\ m /

)m mod

for all integers m > 0, {m,pΊ) = 1,



ABELIAN VARIETY 23

φx(a*) - <p2(a)

for all a = (aυ)v e k^ such that <*«,, > 0 (ί = 1, 2) if I = 1 mod 4. ί/ere,

± Z = 1 mod 4 and 1 =£ ε e Gal(£/Q).

Proof. For a prime q of A dividing a prime q e Z, denote by e(q)

the idele whose q-component is 1 and the other components are all q. It

is enough to treat the primes q\q prime to I-p. If (~—) = —1, by our
V q I

assumption, aq Ξ 0 mod ψ and J>(σ2

q) = — q, where σq is a Frobenius ele-

ment of the prime q. If (——) = 1, put qΘk = q q% then

V q )

0

for ge G — Gk, where σq, σqS are the Frobenius elements of q and q% re-

spectively. Therefore,

ψMqε)) = so2(e(q)) and ^Xefo)) = 91(e(q)β(qs)) = ^i(e(q))92(e(q)) = q mod Sβ.

Q.E.D.

COROLLARY (1.4) (cf. [11]). Under the assumption (C) and the nota-

tion as above, if I = 1 mod 4, p Φ Z.

Proo/. Let oo1? co2 be the infinite places of k = Q(V Z ) and put ^^^

= Pufcx.. Here, we also denote by <pt the corresponding Grδssen-characters

of k. Then, 1 = ^((-1)) - 9ooi(-i)9ou2(-l)'(-l) (cf. (1.3)). We may as-

s u m e t h a t φ^X—ΐ) = — 1 a n d φ^2{ — l ) = + 1 . L e t u = (a + bV l)/2 b e

the fundamental unit of £ such that φ^iu) = — 1 for some integers α

and 6. If p = Z, the values of ^ on the principal ideal group of k are

determined by φool and a character mod (V Z ). Then,

ψMμ)) = ^(tfV m mod ^, for α e Λx, (a, Z) = 1,

and a fixed integer m. But then, we have 1 = φ^iήu™ = —um and 1 =

φooi(uε)(uε)m = (u*)m mod % so that Z ̂  p, where 1 ^ e e Gal(Jfe/Q). Q.E.D.

Let ψ\p be a prime of 0 = Θκ satisfying the condition (C) and jo,

M — M/VβM and ^̂  be as before. We also denote by φt the Grδssen-

character of k corresponding to φt and let m^n^ (mi5 p) = 1 and ftjp,

be the conductor of ψt. The values of ψi on the principal ideal group is

determined by a character ^i of ((^fc/mί)
x, a character ^ of (^fc/nί)

x (and
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a character of kZ. (i = 1, 2) if / = 1 mod 4). If (^-) = - 1 , put
\ p /

for some integers as and bJt 0 <Ξ α.,, 6̂  <Ξ p. — 1. Here,

is the fundamental character (of degree pτ — 1 for r ί> 1) (cf. [12]). If

^-) = 1, put ;*?» = p-p and
p /

for some integers c ; and d̂ , 0 ̂  cJ5 dj <±p — 1, where ίPp = (0fc)p and d?pε

LEMMA (1.5) (cf. [11]). Under the notation as above, we have

(au a2, bl9 b2) = (1, 0, 0, 1) or (0, 1, 1, 0) if (±±) = - 1 ,
V p I

(cl9 ct9 dl9 d2) = (1, 0, 0, 1) or (0, 1, 1, 0) if (±1) = 1.

Proof. We can choose an abelian variety J'{ jQ) on which Θ = Θκ

operates and which is isogenous to J over Q. As p Φ I (cf. (1.4)), the

Neron model J'/Ok®zp is an abelian scheme (cf. [3]) and %Jf/Θk®Zl> is a finite

flat group scheme. Let p' be a prime of k lying over p and r be the degree

of A$J)/FP, where *($) = 0/Sβ. If M = ,J'(Q) is a simple ic(iβ)[jδ(G4)]-modiile,

Jt€I<pj, is a character induced from the Galois action on (%Jf
/0)(Qj) and %J'/ΰp,

is a finite flat group scheme "en Fp2r-vectoriels" (cf. (1.2)). Then,

5 v yαi,i + αiJ2 p+ +αi,27 ί> 2 r~ 1

λί\0p> — AP2r

for aitj = 0 or 1 ( = ord^ p) (1 ̂  ^ 2r) (cf. [12]). If M decomposes into

a direct sum of two ̂ (^[^(Gfc^-modules

M = Mi Θ M 2 ,

then ^t is the representation into Aut Mλ or into Aut Λf2. We may as-

sume that λt (i = 1, 2) corresponds to M<. Then, ^c/7/^, decomposes into

a product of two finite flat group schemes "en Fpr-vectoriels", say Xx

and X2,
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where Xi(Qp) = M, (cf. Lemma (1.1)), and

1 x γbi,i + bi,2 p+'" + bί,r'Pr~1

for bίfj = 0 or 1 (1 <J j <̂  r). We must treat the following four cases.

In the following discussion, note that ordp, p = 1 < p — 1.

(1.5.1). The case when (^-) = - 1 .

(1.5.1.1). If M is irreducible,

so that aiΛ = aί>3 = = α ί t2r-i and aί>2 = αί>4 = = α ί | 2 r. Then, we

may assume that aί9 bt = 0 or 1.

(1.5.1.2). If M is decomposable,

so that bίΛ = bί>2 = = 6ί>r if r is odd and bίΛ = 61;3 = = bitr-l9

bί2 = biΛ = = bir if r is even. Then, we may assume that au bt = 0

or 1.

(1.5.2). The case when (^-) = 1.

_ P

(1.5.2.1). If M is irreducible,

so that aiΛ— = aίt2r and ct = 0 or 1. By the same way, we get c^ = 0

or 1.

(1.5.2.2). If M is decomposable,

so that feM = = bir and ĉ  = 0 or 1. By the same way, we get dt = 0

or 1.

Therefore, we have ai9 bi9 ct and dt = 0 or 1 (/ = 1, 2). Using the

relation that λx ® λ2 = Zp and (1.3), we get the followings: If (=—^j = — 1,
\ p I

χαi + α2hp(δi + δ2) = χ^ a n ( J m « ί + δ ΐ Ξ m m Q ( J p fQr ^ m e ^ ? (ttl, />) = 1. T h e n ,

(α1? α2, 6lf 62) - (1, 0, 0, 1) or (0, 1, 1, 0). If

and mCi+cZί Ξ m mod p for all meZ, (m, p) = 1. Then, (cl9 c2, d^ d2) =

(1, 0, 0, 1) or (0, 1, 1, 0). Q.E.D.
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Under the notation as in Lemma (1.5), changing φx by φ,, if necessary,

we may assume that

(L6) a

Then, for all ae kx such that (a, n^Ί) = 1 lnt = p if ί = — J = —1, n, = p

if ί-=—j = 1 j and α: > 0 (totally positive, if Z = 1 mod 4),

(1.7) ψι((a)) = ψ(ot)<x mod 3̂ ,

where ψ is a character of (^fc/m1)
x and ty Γ\ &k = pΘk if ( ——) = — 1 and

\ p /

= pΘk if (-=—) = 1. Let ψ be the lifting of ψ to be a Cx-valued character

COROLLARY (1.9) (cf. [11]). Assume that there is a prime ^ of Θ = Θκ

satisfying the condition (C). Then, n >̂ 2 (£/ιe ZeueZ o/ ίΛβ /orm / is Zn),

and i/ Z = 1 mod 4, (—) = 1.
\pJ

Proof, Let ρp be the representation of the inertia group It of the

prime Z on the Tate module Tv = Tv{J')(Qi), then p = pp mod 5β. If the

level of the form / is the prime Z, the Neron model J ^ is semi-stable

(cf. [3]) and the characteristic roots of pp(x) are all 1 for all x e Iι (cf.

e.g. [14], note, p Φ I (1.4)). But in our case, the characteristic roots of

p(x) are not 1 for some xelt (cf. (1.7)). When Z = 1 mod 4, let ooj, oo2

be the infinite places of k = Q(V / ) and put φ^. — φ1]Ίc* . Then,

?..1(-l) 9 ) . , ( - l ) = - 1 (cf. (1.7)).

We may assume that ^(-—l) = — 1 and ^OO2( —1) — 1. Let u = (a + b\/ I )/2

be the fundamental unit of k such that φmχ{u) = — 1 for integers α, 6.

Then,

for all aekx, (a,p-l) — l (cf. (1.7)). Here, ψ is a character mod (VT) r

for an integer r > 0, satisfying the following condition: ψ(m) = ( ) mod 35
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for all meZ (m, I) = 1 (cf. (1.3)). As ψ(u) = ψ(α/2)ψ(l + (6/α)VT), the

order of ψ(w)2 is Zs for an integer s, and 1 = ψ(u)2u2 mod Sβ. If s = 0,

w2 = 1 mod φ. If s > 0, Z divides p2 - 1. Therefore, (—) = 1. Q.E.D.
\p/

PROPOSITION (1.10). Let I be a prime congruent to —1 mod 4. As-

sume that there exists a prime ?β of Θ = Θκ satisfying the condition (C).

Then, there exists a primitive cusp form Θ with CM. (i.e., Θ is associated

with a primitive Grδssen-characrer of k = Q(Λ/— I ) (cf [18])) on Γ0(ln) of

weight 2 such that

f ΞΞ Θ mod 5β .

Proof. Under the notation in (1.7) and (1.8), the character φx can

be lifted to be a primitive Grδssen-character φ of k: Define φ by

<£((<*)) = Ψ(a)a

for all aekx, (a, I) = 1, which is well defined (, because pJ(2Ί). Then,

φ is lifted to be a primitive Grδssen-character such that φ(a) = φ^d) mod $

for all ideal a of A, (a, nx>ΐ) = 1 (cf. (1.7)). Let

be the form associated with the primitive Grδssen-character φ, where

N — Nk/Q and q — exp (2τrV — 1 2). The form Θ is a new-form on Γ0(ln')

for 71' = 1 + ord^-ήTttj and m1 = the conductor of ψ (cf. [20]). By the

definition of Θ, we have the congruences: aq = 6? for all primes q\l-p.

As n^2 (cf. (1.4)) and n ; > 2, αz = 6, = 0 (cf. [1]). If ί11^) - - 1 , by

— ^ ί — I \our assumption, ap = 0 mod 5̂, so that ap = bp ( = 0) mod % If ( ) = 1,
__ p

put p( f̂c = p-p'. By (1.6) above, M decomposes into a direct sum of two

^)[^(Gal(^p/^))]-modules: M = M,®M2 (, because, if not, λ2 = λf,

which contradicts to (1.6), where r is the degree of κ(Jβ)/Fp). Therefore,

J'/Θ decomposes into a product of two finite flat group schemes "en

/V-vectoriels" (cf. (1.1))

one of them is etale and the other is multiplicative (cf. (1.6), [12]). By

the congruence relation: τrp + π* = ap (cf. [2], [21] chapter 7), ap acts on

%{JΊΘ)(K(P)) = -XiWtO) a s <Pi(e(p)\ where β(p) is the idele of k whose p-com-

ponent is 1 and the other components are all p. Then,

(1.11) ap ΞΞ φMP')) mod $
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(cf. [11], (1.3)). On the other hand, by the definition of φ, we know that

bp = ψ(p) + φ(p') = φ(ft') = 9?i(e(pO) mod % Therefore, we get the congru-

ence : f = Θ mod % The rest of this proposition owes to the following

sublemma.

For each g = (a b

Ί) e GL(2, Q), det g > 0, put
\c d)

f\ ω, = («* - 6c; (cz + d)-γ(^J- A).
V cz + d /

SUBLEMMA (1.12). Let f and g be primitive cusp forms on Γ0(ln) and

on Γ0(ln') of weight 2, respectively. Let p be a prime number which does

not divide 2 I, and R be the ring of integers of Qp with the maximal ideal

^. Regard Kf and Kg as subfields of Qp. Assume that f = g mod $, then

n = n'. Further, f\[w]2=f (resp. = —/), then g\[w]2 = g (resp. =—g)r

where w = (° " J ) .

Proof of Sublemma (1.12). We may assume that n I> n'. Put h = f

—g, then h = a-hλ for αeS(! and a cusp form /^ on ΓQ(ln) whose Fourier

coefficients are integers of R. By the general theory (cf. [7] Corollary

(1.6.2)), hx I [w]2 has the integral coefficients. As h \ [w]2 =±f± ln-n' g(qιn~n),

/ Ξ ±ln~n''g(qιn~n) mod 5(?. Comparing the first coefficients, we have

n = n\ If / and g have the different eigen values of [w]2, then f — g =

f + g = 0 mod $, so that / ΞΞ g = 0 mod $, which is a contradiction.

Q.E.D.

COROLLARY (1.13). Assume that there exists a prime ψ satisfying the

condition (C). Then, n = 2 or 7Z Ξ> 3 odd.

Proof. Under the notation in (1.8), ψ is a character of conductor

(V± I )r which satisfies the condition

f(m) = (±1)
\ m I

for me Z, (m, I) = 1. Then, r = 1 or r ^ 2 even. If I = — 1 mod 4, by

(1.11) above, n = nf = 1 + r. If Z = 1 mod 4, put p^ fc = p j / and let ^ t

be the lifting of the character ψx:
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Then, g(z) = Σ(α,p.o=i^i(α) e x P (2π</^Λ -N(a)z) (cf. (1.6)) is a new form on

Γχ(ln' -p) of weight 1 with the neben typus character X such that X(ά) ΞΈ a

mod 5β for all a e z<> (β> P) = 1? where nf = 1 + r. By the method of

Koike [9] Ishii [5], we get a primitive cusp form f on Γ0(ln') of weight 2

such that

f~g = f mod $ .

(cf. (1.9), (1.11)). Then, by Sublemma (1.12), n = τι'. Q.E.D.

Now consider the case when n 2> 3. Following Ishikawa [6] and Saito

[17], we can decompose the space S%ln) ( = the C-vector space spanned by

the new-forms on Γ0(ln) of weight 2). Denote by W the automorphism

o f Sa(in). For a primitive character X mod Zv, 0 ^ ι̂  ̂  n/3,

let i?χ be the twisting operator (cf. [17], [21] Chapter 3)

[(I* ~θ)l

il f)].
where g(χ) is the Gauss sum associated with χ = X'1. Define the op-

erator Uχ by

UZ = RX W RZ W.

Then, any primitive cusp form belonging to S°2(ln) is an eigen form of

Ux (cf. [17] § 1). Let ε be the character (^-\ ±1 = 1 mod'4, and define

the subspaces Si, Su, Su, and Snι of Sl(ln) by

Si = {/6Sϊ(/ )| / | W = /, f\ U.=f}

Su = {fe Sm \f\W = f,f\U.= -/}

Su, = {/€ S2°(Z») I / I W = - / , / | 17. = - / }

Sm = {fe Sm \ f\W= -f, f\ U. = f].

Then S°2(l
n) decomposes into a direct sum

= s1®sII®sIIε®sIU,

which is compatible with the action of the Hecke algebra T = Z[Tq]qΦl,

where Tq is the Hecke operator for each prime q (cf. [17] § 1). Further,

these spaces Sτ and Sm have the finer decompositions. Put μ = [n/S]

(^1) and X(ln) be the group of the characters whose conductors divide

pμ. Define the subspaces S2(ln, α, ±1) of S%ln) by
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S2(l», a, 1) = {fe Sl(l») \ f\W = f,f\Ut = X(a)f for all X e X(ln)}

W, a,-l) = {fe Sl(l«) I f\ W = -f, f\ Ut = X(a)f for all X e X(l")},

which are the Γ-modules (cf. [17] § 3). Then,

S i = Θ S2(l»,a, 1)
/+ i ι-\ a m o d P

(1.15) «(α)-l

Sm= Θ S2(/%α, - 1 ) .
α mod p
• (α)=l

LEMMA (1.16). Under the notation and the assumption as above. Let

f and g be primitive cusp forms belonging to S°2(ln), R be the ring of inte-

gers of Qp with the maximal ideal % Suppose that f = g mod *p and p

does not divide I-(I — 1). Then, f and g belong to the same subspace in

the decomposition of (1.14). If f and g belong to Sτ or SIΠ, f and g belong

to the same subspace in the decomposition of (1.15).

Proof Let Abe a cusp form on Γx{ln) of weight 2. If the Fourier

coefficients are integers of i?, then h\ W and h ίQ i ) " i a v e a ^ s o ^ e

integral coefficients for integers μ and v, 0 ^ v <̂  μ (cf. [7] Corollary (1.6.2)).

Therefore, we have

f\Ut=g\Ut mod^,

for all 1 e X(ln), so that / and g belong to the same direct factor in (1.14)

(cf. (1.13)). If f\ Uχ = X(a)f and g\Uχ = X(b)g for some a, b e (Z/l'Z)* and

for all XeX(ln), then Xia b-1) = 1 mod ξβ for all ZeZ(/n). By our as-

sumption p)((l — Ϊ)Ί, the congruences above lead the rest of this Lemma

(1.16). Q.E.D.

In the rest of this section, we consider the Galois action on yJ'iQ),

for the prime $β dividing (Z, δ). Let I = p be a prime number congruent

to — 1 mod 4 and / = Σ αTO#m be a primitive cusp form on ΓΌ(Zn) of weight

2 (n ;Ξ> 2). We assume that / does not have CM. and has a twist

(σ, (~ P)) (cf. [10], [15]). Then, the endomorphism algebra End Jf (x) Q

is isomorphic to K Θ Kη, where η is the twisting operator defined over

k = QW^lp) and ηε = -η for 1 =£ εeGal(£/Q) (cf. [19]). The algebraic

structure of D = K φ ifj? is defined by
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for all primes q Φ p. Let d = df be the discriminant of D, and δ = δf

be the ideal of 0 = ΘKf defined before (cf. (C)). Let pt be the Z-adic re-

presentation on the Tate module Tt(Jf)(Q) and put a(q, r) — pι(σr

q) +

qrPι(σ~r), for each prime q Φ I = p, where σq is a Frobenius element of q.

Then, α(g, 1) = aq and α(g, r) e K

LEMMA (1.17). Let p be a prime of F = Ff dividing (p, d) and Sβ 6β

£/ιe prime of K = Kf lying over p. Then we have the following congruences

a(q, h) = g(*-1+2Λ>/* + go-p+^)/* mod Sβ

/or all primes q φ p, where h = h(—p) is the class number of k — Q(V—p ).

Further p divides δ.

Proof. Let ^ be the representation of G = Gal(Q/Q) on V% = Vp ® if̂

p: G > A u t ^ V, = GL(2, J5Γ,).

By our assumption, the prime ideal p remains a prime or is ramified in

K. There is an element αe Fp-r] such that α2 e Θv, ordp a2 = 0 or 1 and

αε = — a for 1 Φ ε e Gal(έ/Q). There is an element b e K% such that

b2 e Θp, ordpb
2 — 0 or 1 and a b = — 6 α. First assume that ord^ 5 is even,

then ordp 6
2 = 0, so that ordp a

2 = 1 and Sβ = pd?x. As (Pŝ  + ŝ̂ α is a ring,

we can choose a lattice M of V$ on which Θ%[a] and G operate. Put

M = M/^βM, and let p be the representation of G induced from p by the

reduction mod $β

jo: G • A u t e ( W M - ^ - GL(2, /c(φ)).

where κ(9β) — Θ\^. Then, α M is a 1-dimensional vector subspace of M

(as Λ:($β)-vector spaces), and is G-invariant, because ordp a
2 = 1 and ^(g) α

-1)/2(g)a p(g) for all ^ e G . Choose an element m,eM such thatXf
am! Φ 0, and put m2 = α mj. Then {mu m2} is a basis of M as a

vector space and a operates on M as follows: xmλ + ym2 •-• xσm2 for x,

y e A:(5β). Let Λ be the representation of G on M/α M

λ: G

then G operates on α M by the character Xf(p~])/2 0 λ% where λσ is a

character defined by λσ(g) = Λ(g)σ for all g e G. But Λ is unramified outside

of p, so that Λ is a character mod V— p valued in Fp(^—> tc(ψ)x), hence

λσ - λ. Further, by the relation Xp = det-p = λ^2®Xfp~')f\ we have
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λ®2 = χf>^ + 1>/2 and

a(q, 1) = g ( p + 1 ) / 4 + qr(>-p)/* mod 3β

for all primes q φ p. Since h is odd, we get congruences to be proved.

Now consider the case when ordφ δ is odd, so ordp b2 = 1. Put 0* = Φp[a]

if ordp α2 = 0 and 0* = ^ [ α δ/α2] if ord, α2 = 1, and put ψ = £0*. Then

(p* >|_ ^*5 ί s a r i n g a n ( j ^5* i s a p r i m e ideal, because p\d and $)/f2.

Choose a lattice M of Vφ on which Φ*[b] and G operate, then b M is a

^*[6]-submodule of M and which is G-invariant. Put M = M/b-M, which

is a 1-dimensional vector space over Λ:(^5*) = ^*/5p*. Consider the repre-

sentation jo of G on M induced from p

p: G > Autκ(p)M - ^ - GL(2,

Then ^(Gfc) is contained in the non-split Cartan subgroup ~ A:(^*)X, SO that

p(G) is contained in the normalizer of the non-split Cartan subgroup.

The automorphism of κ(Vβ*): x »-> ρ(g)xp(g)~1 is non-trivial for ge G — Gfc,

because ρ{g)ap{g)~1 = %®(p-1)/2(g)α for all g e G . Therefore, p(G) is not

contained in this Cartan subgroup. Let λ be the character of Gfc corre-

sponding to jo I Gfc

λ: Gfc > Autκ{W)M-^-tc(ψ)x -=--> F
V

C C

then p ~ Ind ^ ,̂ where Ind n is the induced representation. As λ is

unramiίied outside of p, so that ?®h is a character of the conductor

(V—p) valued in F^. Then, Ind Γ λ®h is an abelian representation,

which is equivalent to μ ®μ ® Xfip'1)/2 for a character μ of G. For a

prime q splitting in k, put qΘk — q q% then λ(σq)λ(σqε) = g and ^0ft(σq) =

^®Λ(<τq.) = ^((7,), so that μ(σq) = g((1)-1)m+2Λ)/4 for an odd integer m. There-

fore,

a(q, h) = qu-^w* + gd-p+»*)/* mod Sβ

for all primes q φ p. Q.E.D.

§ 2. Discriminant of End Jf®Q

Let Z be a prime number congruent to —1 mod 4, n ;> 2 be an in-

teger, and /, J — Jf9 K = Xp F = Ff and δ = δf be as in Section 1.

Assume that / has a twist ί *, (^—^-)) (cf. [10], [15]) but does not have
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CM. Let d be the discriminant of D = K + Kη ~ End J (x) Q, d0 be the

product of primes p of F s u c h that ord^ δ is odd, p\l and ί — — ) = — 1,

where N = NFp/Qp for p\p. Further, let dx be the product of the primes

of F dividing (/, δ).

LEMMA (2.1). Under the notation and assumption as above, we have

(i) do\d and (ii) d\dQdι.

Proof. T h e r e i s aeKx s u c h t h a t a2eΘF a n d a - η = — η-a ( t h e n ,

D = F + Fa + Fη + Fa-η). If p\(I, d), by Lemma (1.17), p|δ. When p\I,

the prime p is unramiίied in F[^], so that (a2, —l)p= —1 if and only if

ordp a2 is odd and (-=-L) = - l . Q.E.D.
ViV(p)/

Using the results in Section 1 and Lemma (2.1) above, we can de-

termine the discriminants of the algebras of the examples in [17]. Let

/ = Σ amQm be a primitive cusp form on Γ0(ln), n Ξ> 3, then i ^ contains

aι = exp (2τr/^ΐ/Z) + exp (-2ττVr : rϊ/0 (cf. [17] Corollary (3.4)). First dis-

cuss the case for I = 11. From the table in [17],

S2(ll3, 4, +1) = CΘτΘSl

S2(ll3, 4, -1) = CΘIIIΘSI°II

where Θτ and ΘIU are the forms associated with some primitive Grossen-

characters of Q(V—11) with conductor (11), and S? and SJΠ are the

orthogonal complements of CΘι and CΘΠI, respectively. The space SJ,

whose dimension is 2, is spanned by a primitive cusp form f = J] amqm

and its conjugate σf = 2 αm#m> f° r a n isomorphism σ of if7 into C, and

NKf/Q(a2) = —199. By Lemma (2.1), End Jf®Q is a matrix algebra.

Denote by £Γ g the characteristic polynomial of the Hecke operator Tq on

S°ni9 then

= - 2 5 99527,

and dim SJΠ = 2-3. As ( ~ ' ^ ) = (-x^^r) = - 1 and the degree of the

\ 2 / \ 99527 /

ideal (2) in Q(an) is 5, so that by Lemma (2.1), there is a primitive cusp

form g = Σi bmQm e S°m such that NFg/Q(dg) = 25 99527 (unique up to con-

jugation). Therefore, we get the following.

PROPOSITION (2.2). Under the notation as above,

df = (1), dg = ft j w ,
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where pq = (q, b2) for the primes q.

Next consider the case for I — 19.

S2(193, 4,

S2(193, 4, -1) = Cθm θ Sin ,

where θτ and β I Π are the forms associated with some primitive Grδssen-

characters of Q(V —19) with conductor (19), and SJ and SUI are the or-

thogonal complements of CΘΣ and CΘIΠ> respectively. Denote by fTq (resp.

gτ) the characteristic polynomial of the Hecke operator Tq on S? (resp.

S°m)' From the table in [17], we know that

N
Qiai9)/Q

(f
T2
(0)) = -37

2
-56536856647

N
Q ( a i 9 ) / Q

(g
τ
M) = -2

9
-19

2
- 5736557- 6463381,

and dim SJ = 2-6, dim SU1 = 2-8. Let / = Σ αm<7m be a primitive cusp

form belonging to S?. If df Φ (1), by Lemma (2.1), *IWW7S - ^ t Sβ2, φ t =̂ $β2,

where V i s the radical of the ideal

( , because, ( — ) = + 1 ) .
V V 56536856647/ /

Then, by virtue of Proposition (1.2) and Lemma (1.15), we should have

the following congruences

θτ=f mod %,

where *& (ί = 1, 2) are the primes of ΦKf lying over 9βt. Let λ be the

Grδssen-character corresponding to θτ, then

for ί = 1, 2, so that 372 must divides

But we know that

- 37-227-150707-56536856647

(cf. [17] § 4). Hence, df = (1). Next consider the forms belonging to S°ni.
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The degree of the ideal (2) in Q(ocκ) is 9, and

f -19\ _ / -19 \ _ Λ , / -19 \ _ , ,
\~2~) " U46338lJ ~ ~ 15736557/ ~ +

?π
Therefore, by Lemma (2.1), there is a primitive cusp form g = X) ^m^w β S?

such that cί̂ . Φ (1). To determine the discriminant dg, we must consider

the primes p | 19. If a prime p of Fg divides (dg, 19), we should have the

following congruence

6 5 Ξ 5 5 + 514 mod p

(cf. Lemma (1.17)). But, we know by a calculation that

hence NFg/Q(dg) = 29 6463381 (and g is unique up to conjugation). There-

fore, we get the following.

PROPOSITION (2.3). Under the notation as above,

df = ( 1 ) , dg = p2 p 6 4 6 3 3 8 1 ,

where pq = (q, b2) for the primes q.
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