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RYOICHI TAKAGI

A compact simply connected complex homogeneous manifold is said
briefly a C-space, which was completely classified by H. C. Wang [12]. A
C-space is called to be Kahlerian if it admits a Kahlerian metric such
that a group of isometries acts transitively on it. Hermitian symmetric
spaces of compact type are typical examples of a Kahlerian C-space. Let
M be an arbitrary Kahlerian C-space and R its curvature tensor. M.
Itoh [6] expressed R in the language of Lie algebra and investigated various
properties of R. In this paper, we study higher covariant derivatives of R.

First we shall show that for each M there exists a positive integer
m such that

V VR = 0 , V .. VR Φ 0 ,
m times (m-l)times

where V denotes the covariant derivative of (1, 0)-type. We call the integer
m the degree of a Kahlerian C-space M. Obviously, Hermitian symmetric
spaces of compact type can be characterized as C-spaces with degree one.

Next we shall determine all C-spaces with degree two, which are
stated as Theorems 4.1, 4.2 and 4.7. They will form a class of the
"simplest" spaces among Kahlerian C-spaces except for Hermitian sym-
metric spaces.

Our results have some applications to a theory of Kahlerian sub-
manifolds in a complex projective space. This will be discussed in a
forthcoming paper [10].

§ 1. Kahlerian C-spaces

In this section we recall the construction of irreducible Kahlerian
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C-spaces. For details, we refer to Borel and Hirzebruch [2], Itoh [6],

Nakagawa and Takagi [8], Takeuchi [11].

Let g be a complex simple Lie algebra and ϊj a Cartan subalgebra.

The dual space of a complex vector space ή is denoted by ζ*. An ele-

ment a of £)* is called a root of (g, ζ) if there exists a non-zero vector Ea

in g such that

[H,Ea] = a(H)Ea for He ί).

We denote by Δ the set of all non-zero roots of (g, ή) and put qa = CEa.

Then we have a direct sum decomposition:

Since the Killing form B of g is non-degenerate on ζ X 5, for each f 6 I)*

we can define Hξ e £j by

B(H,Hζ) = ξ(H) for H e § .

The following property of B is fundamental:

, Y], Z) + B(Y, [X, Z]) = 0 for X, 7, Z e β .

Put ζ0 = ΣaejRHa and define an inner products ( , ) on the dual space

§* of a real vector space ϊ)0 by (f, 57) = B(Hζ, Hη). We fix a lexicographic

order < on ζ*. Let Π = {α̂ , , «J be the fundamental root system of

Δ with respect to < (so t = dimc ή). Put J + = {α e Δ \ o < α}. For each

ae Δ we select a basis Ea of gα in such a way that {fl"βl, , Ha£, Ea (a e Δ)}

forms a WeyΓs canonical basis of g, that is, it satisfies

\[Ea, Eβ] = Na+βEa+β, Na+β - N_..f eR for a, β e Δ .

The first equation is equivalent to [Ea, E_a] = — Ha. Then the following

gM is a compact real form of g:

(1.2) g* = Σ RttH. + Σ (RA. + RB.) ,
QΔ QΔ

where we put Aa = Ea + E_α, Ba = </^-ϊ(Ea — E.a). The complex con-

jugation " o n g with respect to gω is given by

(1.3) Ea = £_α, E_α = £ e , F α - - # Λ for α 6 Δ+ .

Now we choose an arbitrary non-empty subset Φ = {aiχy , air} of 77.

Define a subset J f(Φ) of Δ" by
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Δ+(Φ) = Δ + ( a ί l f . . . , α i r )

= I E n^t e J+ (nil9 , nir) φ OJ .
(1.4)

It is clear that if a, βeΔ+(Φ), then a + β e Δ+(Φ), and that the highest

root in Δ always belongs to Δ+(Φ). Define a complex subalgebra 2Φ of g

associated with Φ by

Σ

If we put ίφ = gw ΓΊ 2Φ, then it is a subalgebra of gtt expressed as

(1.5) ϊ . = Σ ΛV^Ϊfl. + Σ (RAa + RBa) .
aeΔ aeΔ-Δ+{Φ)

Let G be the simply connected complex Lie group with Lie algebra

g. Let Lφ be the connected complex Lie subgroup of G with Lie algebra

2Φ, and Gu, Kφ the connected Lie subgroup of G with Lie algebras gtt, ϊφ,

respectively. Then we obtain an irreducible C-space GJKΦ = G/Lφ, de-

noted by M(q, Φ) or Λf(g, α:̂ , , αrίr). Conversely, every irreducible C-

space can be obtained in this way ([12]).

Next we describe a Gπ-invariant Kahlerian metric g on a C-space

M(g, Φ). For a vector space V, the complexification is denoted by Vc.

Put

(1.6) mΦ= Σ (flα + 9-.).
α€^ + (Φ)

Hereafter we put m = rπφ and ϊ = ϊc for simplicity. Then we have a

direct sum g = ϊ + m orthogonal with respect to B. Denoting the tangent

space of M(g, Φ) at the origin o = Kφ by T0(M), we can identify T0(M)

with gw. So we may write m = TO(M)C. Since [gα, gj e gα+/} for or, β e Δ, we

see [ϊ, m] C m by the definition of J+(Φ). The complex structure / of

M(g, Φ) is given at o by

(1.7) I(Aa) = Ba, I(Ba) = - A β for α e J+(Φ) .

Put l ί i ^ f l e m ; J(Z) = ± / = Γ Ϊ Z } . Then we have

(1.8) m* = Σ δ±α ,
aGA+(Φ)

and hence a direct sum m = m+ + m~. An element of m+ is said to be

of (1, 0)-type. Now we define a mapping p of Δ+(Φ) into Zr associated

with Φ as follows: For a = 2*=i ^(^Vz € ^+(α ί l ? , <xίr), we put
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pa = (nίχ(a), , nίr(a)) .

This mapping p plays an important role in this paper. Let ωa, ωa denote

the dual forms of Ea,Ea (aeA+(Φ)). Then any G^-invariant Kahlerian

metric g is given at o by

(1.9) g = 2 £ (c.pa)ωa.ωa

« G J + ( Φ )

for an r-tuple c = (cu , cr) of positive integers c,, , cr, where c pα =

XX=i ca^ίa(
a) (Borel [1] or Itoh [6]). Conversely, any bilinear form on m X m

of this type can be extended to a GM-invariant Kahlerian metric on

a, Φ).
When A+(Φ) B a and β satisfy nίa(a) :> nia(β) for a = 1, , r and

a) > 7iiα(j8) for some α, we write p α > pβ. Hence we have equivalences

§2. Covariant derivatives on Kahlerian C-spaces

In this section we consider a Kahlerian C-space (M(g, Φ), g) con-

structed in Section 1, where Φ = {atl, , air} is a non-empty subset of

the fundamental root system Π of a complex simple Lie algebra g and g

is a Gw-invariant Kahlerian metric on M given by (1.8). We extend tensor

fields, the connection and the connection form on M naturally over C,

and denote the extended ones by the same letters. Since M is homo-

geneous Riemannian manifold, it is sufficient to consider the degree at

the origin o.

First we have from (1.1) and (1.9)

(2.1) g(Ea, E.β) = -(c.pa)B(Ea, E.β) = (cpa)δaβ for a,βe J+(Φ) .

When r = 1, that is, Φ consists of a single element, we take a Kahlerian

metric g such that c = 1.

For l e g we denote by Xm (resp. Xt) the m (resp. ϊ)-component of X

with respect to the decomposition g = ϊ + m. Define a symmetric bilinear

mapping U: m X m —> m by

(2.2) 2g(U(X, Y), Z) = g([Z, X]m, Y) + g(X, [Z, Y]m) for X,Y,Zem.

Then the connection form i : i ί i X m - > m associated with g is given by

(Kobayashi and Nomizu [17] and Nomizu [9])

(2.3) Λ(X)Y - U(X, Y) + i[X, Y] for X, Ye m .
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The curvature tensor R of g is given by (Nomizu [9])

R(X, Y)Z = [Λ(X), Λ(Y)]Z - Λ([X, Y]m)Z - [[X, Y]t, Z]
(2.4)

for X, Y,Zem.

For l e g we denote by X* the vector field on M induced by a one-

parameter subgroup exp tX of Gu. It is easy to see that

(2.5) ax*)0 = xm
\[X*, Y*] = -[X, Y]* for X, Yea,.

The covariant derivative VX*Y* of Y* in the direction X* is given at o

by ([7], p. 201)

(2.6) (FχtY*)0 = Λ(Y)X = U(X, Y) - }[X, Y]m for X,Yem.

In the following, in order to simplify the notation, we identify a root

vector Ea with a itself for aeJ, and put PΣY= (FX*Y*)O for X, Yetn.

Under this identification, a subset J+(Φ) U Δ+{Φ) of // forms a basis of the

complexified tangent space m = TO(M)C of M at o. We also call a root

α e J*(Φ) a tangent vector.

M. Itoh [6] determined the connection form A of g, which can be

stated as

PROPOSITION 2.1. Let a,βe /S*(Φ). Then,

(2.7)

This and (2.6) give

COROLLARY 2.2.

(2.8)

A(a)β

/ί/ΛΛo

Let a, β

Faβ =

_

aβ~

aβ —

eΔ

— (

ί-
lo
ί-
0

\ [a, β]

[0

\{a, β]

to

+(Φ)

[c-pjc

-[oc,β]

-Wβ]

if Pa < Pβ

otherwise ,

if Pa < Pβ

otherwise .

Then,

'P. + β)[«,β]9

if Pa > Pβ

otherwise ,

if Pa > Pβ

otherwise .

The curvature tensor R of g can be restated as
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R(a,λ,β):=R(a,λ)β

(2.9) = [Λ(a\ ΛQ)]β - A([a, 2]Jβ - [[«, ^] t, β]

for a, λ, β e Δ*ψ) .

Put R(a, λ, β, μ) = g(R(a, \ β), μ). Then we obtain fundamental formulas

R(a, λ, β, μ) = R(β, λ, a, μ) = R{oc, μ, β, λ) = R(λ, a, μ, β)
( " ) for a,β,λ,μeJ+(Φ).

Now we define the s-th covariant derivative FSR of R inductively as

follows:

R ( a , λ,β;ΐ1, , ϊ s ) = Σ R(<x> lβ,μ;ru- , rs)μlg(μ, μ)

(2.11)

Σ
a=l

i ^ l β ΐ,, •••,Fja, •••,ΐs-i)

for <x,λ,βe Δ+{Φ) and Tί9 , ΐs e m .

When vectors Λ, — ,ΓS in (2.11) belong to A+(Φ), we write FSR instead

of FSR, which is called the s-th covariant derivative of (1, 0)-type of i?.

Then we have a basic property with respect to the covariant derivative

of R:

L E M M A 2.3. For a,λ,βe Δ+(Φ) and rl9 , Ts e m,

R{a, λ, β; Tl9 - ,rs)e qa.λ+β+ΐi+...+rs .

Proof. This follows from a relation [qa, qβ] c gα+i3, (2.7), (2.8) and (2.11).

COROLLARY 2.4. Let v be the highest root in Δ. Put pv = (nix, , nίr),

and t = t(Φ) = nίλ + - + nίr. Then we have F2t-'R = 0.

Proof. For δeΔ+(Φ) we denote by ||5|| the sum of the components of

pδ. Then clearly, 1 £ \\δ\\ ̂  t = \\v\\. Let a, λ, βJ^ - J ^ e Δ+(Φ). Then

we have
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This and the definition of t show that a form a — λ + β + Tί + + Γ2ί-i

cannot be a root. Thus by Lemma 2.3 we have R(a, λ, β; Tu , Γ2ί_i) =

0. q.e.d.

By Corollary 2.4, there exists uniquely the integer d = <f(g, Φ) such

that P i ? = 0 but Fd~ιRφ 0. We shall call the integer d the degree of

a C-space Λf(g, Φ). Hermitian symmetric spaces of compact type can be

characterized as C-spaces with degree one. In fact, let Φ consist of a

single element aa such that pv = 1, where v denotes the highest root in

Δ. Then Corollary 2.4 and (2.10) imply that a C-space Λf(g, aa) is sym-

metric. Conversely, every irreducible Hermitian symmetric space of

compact type can be expressed as a C-space of the form Λf(g, aa) where

pv = 1 (Wolf [13]).

§ 3. C-spaces with degree two

In this section we shall determine all irreducible C-spaces with degree

two. Keep the notation in Section 2. Hereafter we denote by a, β, 7, δ,

λ, μ any elements of Δ+(Φ) unless otherwise stated.

From (2.11) we have

R(a, X β; r, δ) = VδVγR(a, λ)β - FΓδTR(a, X)β - VγR{Vδa, λ)β

- F7R(a, FδJ)β - FrR(a, λ)Fδβ

- FδR(Fγa, λ)β + R(FF§ra, λ)β + R(FrFδa, λ)β

- FδR(a, Frλ)β + R(Fδa, Frλ)β + R(a, V?δj)β

+ R(a, FrFδJ)β + R(a, Fyλ)Fδβ

- FδR(a, λ)Frβ + R(Fδa, λ)Frβ + E(α, Fδλ)Frβ

+ R(a, λ)FF§rβ + R(a, λ)F/δβ .

The equation (3.1) is not so complicated as it looks because it contains

many simple cases. For example,

LEMMA 3.1. Unless pa > pβ, then Fa~β = 0 and Λ(β)a = 0. In partic-

ular, if λ is the highest root in Δ, then Faλ = 0 and Λ(I)a = 0.

Proof. This is a restatement of (2.7) and (2.8). q.e.d.

LEMMA 3.2. (1) // a + β - λ $ Δ, then R(a, λ)β = 0. (2) Let λ satisfy

Px ̂  Pr for all T. Let a and β satisfy pλ^>pa+ pβ. Then R(a, λ)β = 0.
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Proof. (1) is evident from a special case R(a, 2)β e Qa+β-λ of Lemma

2.3. To show (2) we use (2.9). From Lemma 3.1 we have Λ(2)a = 0, and

so from (2.7)

AQ)Λ(a)βeΛ(λ)sa+β.

But, by Lemma 3.1, A(2)qa+β = {0} whether a + β e Δ or not, hence A(2)A(ά)β

= 0. If a + 3 $ 4 then 22(α, 2)0 = 0 since [a, 2] = 0. If or + 2 e J, then

Λ - α e Δ+(Φ) since p,_α ^ pβ > 0. Thus £(<*, 2)β = -Λ([α, 5])0 = 0 by

Lemma 3.1. q.e.d.

COROLLARY 3.3 Let λ, a and β satisfy at least one of the following two

conditions:

(1) a + β ~ λ e Δ.

(2) pλ >̂ pr for all T, and pλ^pa + pβ. Then,

R(a, l9 β; r,δ) = - F r # ( F Λ )̂/3 - F,i?(Fr«, λ)β - FrR(a, l)Vφ

- VδR{^, Wrβ + Wv9J*> Dβ + R(«> Wffβ

+ R(FrFδa, λ)β + R(a, λ)FrFδβ + R(Fra, λ)Fδβ

+ R(Fδa, λ)Frβ .

Proof Apply (2.8), Lemma 3.1 and Lemma 3.2 (1) to (3.1). q.e.d.

P R O P O S I T I O N 3.4. Let five vectors λ, a, β,T,δe Δ+(Φ) satisfy the follow-

ing three conditions:

(1) a + β — λ $ Δ, or pλ ;> pγ for all ΐ and pλ^pa + pβ (the same con-

dition as in Corollary 3.3).

(2) L e t ε be the sum of any three of a, β, ϊ, δ. T h e n e $ Δ and p ε > p x .

(3) Let μ be the sum of any two of a, β, ϊ, δ. Then [μ, λ] e ϊ.

Then we have

2R(a, X β, λ; r, δ) = B([δ, [a, 2]], [β, [ϊ, 2]])

+ B([r,[«,m, [β,[d,m)
-B([a,[T,2]l [δΛβ,*]])

- B([a,[δ, 2]], [r,[/3j]]).

Proof. By Corollary 3.3 the equation (3.2) holds. The assumption

(2) and (2.8) imply V?5ta = Vvβ = FrF6a = VyVφ = 0. Thus,

A : = R(a, λ, β; ϊ, δ)

(3.4) = - VrR(Vsct, λ)β - F7R(a, λ)Vφ - FδR(Fra, λ)β

R(Fδa, λ)F7β .
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We shall express the right hand side of (3.4) with respect to the bracket

product [, ]. The assumptions (2) and (3), together with (2.7) and (2.8),

imply [Faa, λ] e ϊ, Λ(λ)β = 0 and A(Fδa)β = 0. It follows from (2.8) and (2.9)

that

Applying similar argument to other five terms in (3.4), we find

4 A = [Γ, [[[δ, a], λl β]] + [δ, [[[Γ, a], λ], β]] + [T, [[a, λ]
9
 [δ, β]]]

+ [δ, [[*, λ], [Γ, β]]] - [[[Γ, a], λl [δ, β]] - [[[*, a], 3], [ϊ, β]] .

For a while, we write aβϊδ for [a, [β, [Γ, [δ, λ]]]]. Then the Jacobi identities

give

4A = (ΐβaδ - ϊβδa) + {ϊaβδ - ϊaδβ)

+ δβaϊ - δβϊa + δaβϊ - δaϊβ + βδaϊ - δβaϊ

- βδϊa + δβϊa + βϊaδ - Tβaδ - βϊδa + Tβδa .

In view of the identity Taβδ — ϊaδβ = βδϊa — δβϊa, obtained from [a, [β, δ]]

= 0, we have

4A = -ϊβδa - δβϊa + βδaϊ + βTaδ .

Now, by (2.1) and the subsequent comment and the formula B([a, β], ϊ)

= —B(β, [a, 7]), we have proposition. q.e.d.

Here we shall specialize Proposition 3.4 in the form

LEMMA 3.5. Assume that there exists uniquely a vector λ e J+(Φ)

admitting a decomposition of the form λ = a + τ where σ,τe J+(Φ). Assume

that (σ, σ) = (τ, τ) for all σ, τ e A+(Φ) such that λ = σ + τ. Then, for all

a, β, T, δ such that 2λ = a + β + T + δ, the following holds:

(3.5) B([a, [β, λ]l [ϊ, [δ, I]]) = B([β, [a, λ]], [δ, [T, λ]]) .

Proof From the assumption on λ we have equivalences a + β e Δ ^

a + β = λ&γ + δ = λ&r + δeA. Denote the left hand side of (3.5) by

aβ-ϊδ. If a + β 6 J, then we see aβ-ΐδ = βcc-δϊ since [a, [β, λ]] = [β, [a, λ]]

by Jacobi identity. If a + βeJ, then a + β = ϊ + δ = λ. Putting [α, β]

= Nλ and [r, δ] = Ml, we see from (1.1) [β, λ] = Nά, [λ, a] = Nβ, [δ, λ] =

My and [3, T] = Mδ. It follows that

aβ ΐδ - βa δΐ = NM(B(Ha, Hr) - B(Hβ, Hδ))

= NM((a, 7) - 08, δ)) .
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On the other hand, taking the norm of a — ϊ = δ — β9 we have (a, a) —

2(α, ϊ) + (T, ϊ) = (δ, δ) - 2(δ, β) + (β, β). This and the assumption imply

(a, γ) = (δ, β). q.e.d.

§4. Theorems and proofs

In this section we shall state our results and prove them.

THEOREM 4.1. Let aa be any of the simple roots designed by the sym-

bol (x) in the following Dynkin diagrams, and $ be a complex simple Lie

algebra whose diagram contains aa. Then the degree of the irreducible C-

space M(g, aa) corresponding to the pair (g, aa) is equal to 2.

a2

(In the diagrams, the double circle aa© means that the corresponding C-

space M(g, aa) is Hermitian symmetric.)

In order to prove Theorem 4.1 and for later use, we shall state here

a positive root system J + of each complex simple Lie algebra g, a fun-

damental root system aί9' ,as of J + , and the subset d+(aa) associated

with a simple root aa (cf. e.g. [3] or [4] appendix of [5]). For the five

exceptional Lie algebras we omit A+(aa) because the description is too

complicated and we can do without them somehow.

Aί (S ^ 1): A redundant orthonormal basis ωl9 , ωe+ί

with ω1 + + ω^+1 = 0.
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A+ = {α>, - co,. = a, + . . . + α , ^ ; I ^ ί < j ^ β + 1} .

For 1 ^ a ^ A

Λ+Oα) = {ω* — ω^; i <̂  a ^ j — 1} .

^ ^ 2): An orthonormal basis ωly , ωΛ

Ό {ωt + ωJ = ai+ + a^, + 2a3 + + 2α,; 1 ^ i < j ^ £} .

For 1 ^ a ^ A

J+(α:α) = {coil i ^ α} U {ωt — ω^\ i <, a £ j — 1}

U {cot + coj; i <̂  α, i < jf} .

Ĉ  (^ ^ 3): An orthonormal basis ω1? , ω£.

A" - {ω, = 2a, + + 2^_2 + α,; 1 ^ i < £}

Ό {ωi-ωj = ai+ -" + a}.x\ 1 ^ ί < j £ £}

Ό {ωt + (Oj = at + + aj_1 + 2a5 + + 2a£_ί + at\

1 ^ i < j ^ }̂ .

For 1 <; α ^ ^,

A+(aa) = {ωύ ί ^ a) U {c^ — ω^; £ <: α ^ — 1}

U {ωt + ωό; i < a> ί < j} .

D^ (^ >̂ 4): An orthonormal basis ω19 , ω .̂

J + = {ω, - ωy = at + + aj-r, 1 < ί < j ^ £}

U {ωi + ω5 = α4 + + «j-i + 2 ^ + + 2^_ 2 + ^ ^ + ^

1 < ί < j ^ £ - 1}

U {ω* + ω̂  = ofi + + α -̂2 + ^ 1 ^ £ ̂  £ — 1} .

For 1 ^ α ^ ^ - 2,

J + (^ α ) = {̂ ί — (ύji i ^ α ^ — 1}

U {ω̂  + ω^; i ^ α, i < j} .

E6: A basis ωl5 , ω6 with (ω i? ω j = 8 and (ωf, ω;) = — 1 for i Φ j .

J+ = {ω. - ω.; l ^ ί < j £ 6}

U {ωt + ωj + ωk; 1 ^ i < j < k £ 6} U {ω1 + + ω6} .

α^ = α^ — ω ί + 1 (1 ^ ί ^ 5) a n d <x6 = ω4 + ω5 + ω6 .
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E7: A basis ωl9 , ω7 with (ωu ω^ = 8 and {ωi9 ω}) = — 1 for ί Φ j .

Δ+ = [ωί-ωj; 1 ^ i < j ^ 7}

U K + α>, + ωk; 1 ^ i < j < k < 7}

U {ωι + + ώ t + + ω7; 1 ^ i ^ 7}

αr* = ω* — ω i + 1 (I ^ i <L 6) and #7 = ω5 + ω6 + ωΊ .

E8: A basis ωu , ωQ with (ωu ωt) = 8 and (ωi9 a)j) = — 1 for i ^ J.

J+ = { ω < - α > i ; l ^ i < y ^ 8 }

U {ω, + (Oj + ωfc; 1 ^ i < j < k ^ 8}

U {ωx + + ώi + + ώj + + ω8; 1 ^ i <j ^ 8}

U K +-•••+ ω,.! + 2ω4 + ωί+1 + . + o),; 1 ^ ί ^ 8}

α< = ωί — ωί+ί (1 ^ i ^ 7) and α8 = ω6 + ω7 + ω8 .

F 4 : An orthonormal basis ωu ω2, ω3, ω4.

Δ + ={ωi±ωJ; l ^ i <j ^ 4 }

U {ω,; 1 ^ i ^ 4}

U {iα>! ± Jω2 ± ^ω3 ± Jω4; independent signs}

<̂ i = ω 2 — ω 3 , αf2 = ω 3 — ω 4 , <x3 = ω4 a n d α 4 = \{ωx — ω2 — ω^ — ω

G2: A redundant basis ωl9 ω29 ω3 with ωx + ω2 + ω3 = 0, (ω^ α^) = 2

and (ω,., ω )̂ = — 1 for ί Φ j .

Δ+ = {ωt; 1 ^ i ^ 3} U {ω, - ω^; 1 ^ i < ; ^ 3}

Proof of Theorem 4.1. We use Proposition 3.4 and Lemma 3.5. First,

we assert that Δ+(aa) satisfies the condition of Lemma 3.5. In fact, when

g = E£ (£ = 6, 7, 8), it is trivial since all roots have the same length. In

other cases, let λ be the highest root in Δ, Then λ e Δ+(aa). Further-

more, it can be easily checked that pλ = 2 and ps = 1 for any ε e Δ+(aa)

— {λ}. Here, we write out all possible decompositions λ — a + β9 a, β e

Δ+(aa) of λ for g = Bif Di9 FA and G2.

B£ (£ ^ 3 ) : λ = ω, + ω2 = (ω, ± ω,) + (ω2 + ω )̂ (3 ^ j ^ ί ) .

A (^ ^ 4 ) : ^ = ωt + ω2 = (ωt ± ω3) + (ω2 X ω3) (3<Lj<:£).

F,: λ = ω, + ω2 = (ω,± ωj) + (ω2 =F ω^ (j = 3, 4)

= i ( ω i + ω2 ± ω3 ± α>4) + K ω i + ω2 T ω3 + <*>4) .

G 2 : ^ = ω3 — ω2 = (ω3 — ωj) + (^i — ω2) .
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As a result, we find {a, a) = (β, β) in each case, which proves our asser-

tion.

Next, we assert that R(a, έ, β; r, δ) = 0 for any a, β} T,δ,εe Δ+(aa). To

show this, put μ=a+β+ϊ+δ— ε. If μ § J, then Lemma 2.3 proves

our assertion. So, assume μe Δ. In view of the fact pv = 1 or 2 for

any v, we have μ — ε = λ and pa = pβ — pr = pδ = 1. Then it can be

easily seen that our five vectors λ, a, β, T and δ satisfy the condition of

Proposition 3.4. This, together with Lemma 3.5, completes the proof of

the Theorem. q.e.d.

Along the same line, we can prove

THEOREM 4.2. The degree of an irreducible C-space M(Ae, au a£) (£ ̂  2}

is equal to 2.

Proof. Since J+(Φ) = {a, + + at; 1 <: i £ £} U {aj + + at\ 1 <

j ^ £}, the highest root λ = ωx — ω£+1 = aλ + + a£ is the only vector

in A+(Φ) admitting a decomposition of the form λ = εx + ε2 where ε1? ε2 6

Δ+(Φ). Moreover, all elements of Δ have the same length. Thus λ

satisfies the condition of Lemma 3.5.

In view of the fact that pλ = (1,1) and pa = (1, 0) or (0,1) when a e

Δ+(Φ) — {λ}, we see that, if six vectors a, β, T, δ, ε, μ e Δ+(Φ) satisfy ε + μ

— a + β + ϊ + δ, then ε = μ = λ and the sum of two of a, β, ϊ, δ must be

equal to λ, and hence λ, a, β, ϊ and δ satisfy the condition of Proposition

3.4. Now, Proposition 3.4 and Lemma 3.4 imply R(a, λ, β; ϊ, δ) = 0. q.e.d.

In the following, in order to prove that the C-spaces of eight types

given in Theorems 4.1 and 4.2 exhaust all irreducible C-spaces with degree

two, we shall give a sufficient condition for a C-space M(g, Φ) to satisfy

F2R Φ 0.

L E M M A 4.3. Let a, β,T e Δ+(Φ) satisfy

(1) a + βeΔ,

(2) β-ϊeΔ\

(3) β + r 6 Δ,

(4) a + β-Ϊ^Δ,

(5) a + β + Ϊ&Δ. Then,

R(a, λ, β; r, a) = - FrR(a, λ, Vaβ) - VaR(^^ I β)

+ R(VVara, X β) + R(Fra, λ, Vaβ) ,

where we put λ = a + β.
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Proof. Put δ = a in (3.1). Then, by (2.8), all terms except for four

ones in (4.1) vanish since R(a, 2, β) = 0 by Lemma 3.2, Vaa = V~λ = 0 by

Lemma 3.1, VfJ = 0 by (2), Vrβ = 0 by (3), Fγl = 0 by (4), and Ffαr/3 =

PγPaβ = 0 by (5). q.e.d.

LEMMA 4.4. Lei a, β,ϊ e Δ+{Φ) satisfy (1) — (5) m Lemma 4.3 ami m

addition the following (6)', (7) and (8).

(6y 2a + r ^ / J o r « + r - i s e J + ( Φ ) ,
(7) 2a + β$J,

(8) 2a + β + T $ A TYiera,

Λίa, 3, /3; r, a) = 6(6 + l)[a, [[a, r], ί], fl

where we put λ = a + β and b — —c pjc pa+τ.

Proof. We shall deform the right hand side of (4.1) using (2.9) and

Lemma 3.1;

R(a, λ)Faβ = - Ada, W«β (by (7))

= - [ [ « , Ά, raβ] (by (2.7)),

R(Faa,2)β= -Λ([Pra,λΏβ

-tiF&Duβ] (by (2) and (8))

= - [Ψrcc, λ], β] (by (2.7)),

R(Fra, ~λ)Faβ = - A([Fra, λ])Faβ

- [Ψrcc, l]t, β] (by (2) and (8))

= - [Ψ7a, λ], Faβ] (by (2.7)) ,

R(FFara, λ)β = - A([Frara, λ]Jβ

- [[FΓ r fα, Άτ, β] (by (8))

= - [tFΓ r f«, Ά, β] (by (6) and (2.7)) .

Here, put a = —c pjc-pa+β. Then Faβ = a [a, β] and Fβa — (a + 1)[«> j3]

by (2.8). On the other hand, since F7a = (6 + l)[αr, Γ], we have

R(a, λ,β;ΐ,a) = a(b + l)[[[α, I], [α, j3]], Π

+ 6(6 + l)[α, [[[α, ΐ], λ], β]

- [Wfjx, Ά, β] •

The sum of the first and third terms vanishes because of (4), (5) and

Jacobi identity. q.e.d.
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LEMMA 4.5. Let a, β,ϊ e Δ+(Φ) satisfy (1) - (5) in Lemma 4.3 and (7),

(8) in Lemma 4.4 and in addition the following (6), (9)

(6) 2a + 7 $ Δ,

(9) a + 7eΔ. Then,

R(a, a + β, β; 7, a) = b(b + ΐ)[a, [[[a, 7], a + β], β]\ Φ 0 .

Proof. This is obtained from Lemma 4.4 and the fact that a + 7 e Δ,

7 - βeΔ and b(b + 1) =£ 0. q.e.d.

Remark 4.6. (1) If α + β is the highest root in Δ, then the conditions

(5), (7) and (8) are necessarily satisfied. (2) Let Φ' be another subset of

a fundamental root system {aί9 , as} of g, and i?' denote the curvature

tensor of any Kahlerian metric of the form (1.9) on a C-space M(q, Φ').

Assume that Φ c Φr and a, β,ϊ e Δ+(Φ) satisfy the condition of Lemma

4.5. Then Lemma 4.5 implies

R(a, a + β, β; T, a) = R'(a, a + β, β; 7, a) .

THEOREM 4.7. Let § be a complex simplex Lie algebra and Φ be a

non-empty subset of a fundamental root system of g. Assume that the C-

space M(Q, Φ) corresponding to the pair (g, Φ) is neither a Hermitian sym-

metric space nor any of the C-space of eight types given in Theorems 4.1

and 4.2. Then, the degree d of the C-space M(g, Φ) is not smaller than 3.

If Φ consists of a single element aa and the coefficient of aa in the highest

root in Δ is equal to 2, then d = 3.

Proof Throughout the proof, let aa stand for any of the simple roots

designed by O in the diagrams of Theorem 4.1 (thus not a simple root

designed by © or ®). We divide the proof into four parts;

( I ) Case where Φ = {aa}. We shall show d = 3. Let λ be the highest

root in Δ. Then, since pλ = 2, we have d <; 3 by Corollary 3.4. Thus,

by Corollary 4.5 it suffices to find three roots a, β and 7 in Δ+(aa) satisfy-

ing nine conditions (1) — (9) in Lemmas 3.3, 3.4 and 3.5. In the following

we state examples of such roots a, β and 7.

(A) For g = Bt (J, > 4, 3 ^ a < £ - 1) or De (S ^ 5, 3 ^ a ^ i - 1),

p u t a = ωx + o){, β = ω2 — ωe a n d 7 = ωa — ω£.

(B) For β = Cs (£ ^ 3, 2 £ a ^ t - 1), put a = ωx + ω£, β = ω1 - ωt

and 7 = ωa — ω£.

(C) For a = E6, put
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/0 1 2 1 1\ , ,
oc = I ) = ω2 + ω3 + ω5 ,

1 1 0\

J = α)! + a>
I 1 1 1 0\

and

I 1 1 1 0

o

where ( n i ^ JJ3 n 4 ^5) means a root n ^ + + n6a,. Hereafter we

use the similar notation.

(D) For g = E79 put

/O 1 1 2 1 1\ . .
a = I ) = ω2 + cy4 + ω6 ,

0 /I 1 2 2 2 1\
i8 = I j = ωi + α>3 + ω5 ,

and

r /I 1 2 2 1 0\ , ,

(E) For g - Es, put

/I 1 1 1 1 1 1\ , ,
a = i J = α)j + ω6 + ω7 ,

« A 2 3 4 5 3 1\ , , ,

β = y 2 J = o){ + " - + ω5 + ω8 ,
and

Y (0 1 2 3 4 2 1\ , , , ,

(F) For tj == F4, put

α = (l l φ l 1),

^ = (1 2 => 3 1) ,

and

r = (o l => 2 l ) .

(II) Case where αα e Φ. By Lemma 4.5 and Remark 4.6 (2) we have

R(a, a + β, β T.a) Φ 0 for α, β and r just given in the case (I).
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(III) Case where Φ consists of only simple roots designed by © or

®, and where g Φ B2. We shall describe all possible pairs (g, Φ) and

examples of three roots a, β and 7 in A+(Φ) satisfying nine conditions (1)

- ( 9 ) .

(A) For (A£, <xr9 as) (S :> 3, 1 <: r < s < I + 1), put a = ωι - ωr+1, β =

ω r + 1 — ω^+1 and 7 = ω r + i — ω s + 1,

(B) For (B,, αrj, αr2) (I ^ 3) or (A, ocl9 a2) (t ^ 4), put a = ω2 - ω3, ^ =

a>! + o)3 and 7 = ωλ — ω2.

(C) For (B,, Λ l , a4) (£ ^ 3) or (Bi9 α2, α,) (^ ^ 3), put or - α^ - ωt, β =

ω2 + ω£ and 7 = ω£.

(D) For ( A , «i, «<-i) (^ ^ 4) or (A, «s, «/) (^ ^ 4), put a = ωι + ωt9 β =

ω2 — ω£ and 7 = o)a — a)e.

(E) For ( A , ctt-u ot4) (S ^ 4), put a = ω,_3 — ωi9 β = ω£-2 + ω, and r =

(F) For (Ci9 aί9 a£) (£ ^ 3), put a = ωι - ωί9 β = ωλ + ωe and 7 = ω2

(G) For (E69 al9 ab) or (E%9 al9 a6)9 take the same a, β and 7 as in the

subcase (C) of the case (I). By the symmetry of the Dynkin diagram of

E6, we can find similar three roots for (E69 <x5, a6).

(H) For (E19 al9 a6), take the same a, β and 7 as in the subcase (D)

of the case (I).

(IV) Case where g = B2 and Φ = {al9 a2}. Put a = ω2, β = ωl9 7 = ω1 — ω2

and δ = ωx + ω2. Then we can take them in such a way t h a t [a, 7] = β

and [a, β] = δ, and so [α, ̂  = -7, [δ, β] = a and [a, δ] = β by (1.1) (cf. e.g.

[4], p. 277). On the other hand, since three roots a, β and 7 satisfy the

condition of Lemma 4.4, we have

R(a, δ, β; r, a) = 6(6 + l)[α, [[[α, r], S], ]3]]

Here, from (2.7) we have F^α = a[β9 a] = aδ, where a = —c-pβlc'pβ+a.

Hence,

R(a, δ, β; r, a) = 6(6 + ΐ)[a, [[β, ~δ], β]] - ab[[δ, δ], β]

= b(a + b + ί)β .

But, in view of pa = (0,1), pβ = (1,1), pr = (1, 0) and c = (cl9 c2), we have

a + b + 1 = —ciKc! + c2)(cλ + 2c2) ^ 0, which completes the proof of The-

orem 4.7. q.e.d.
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