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A compact simply connected complex homogeneous manifold is said
briefly a C-space, which was completely classified by H. C. Wang [12]. A
C-space is called to be Kiahlerian if it admits a Kéhlerian metric such
that a group of isometries acts transitively on it. Hermitian symmetric
spaces of compact type are typical examples of a Kahlerian C-space. Let
M be an arbitrary Kahlerian C-space and R its curvature tensor. M.
Itoh [6] expressed R in the language of Lie algebra and investigated various
properties of R. In this paper, we study higher covariant derivatives of R.

First we shall show that for each M there exists a positive integer
m such that

V...PR=0, V-.-PR=+0,
m times (m—1)times
where I denotes the covariant derivative of (1, 0)-type. We call the integer
m the degree of a Kahlerian C-space M. Obviously, Hermitian symmetric
spaces of compact type can be characterized as C-spaces with degree one.
Next we shall determine all C-spaces with degree two, which are
stated as Theorems 4.1, 4.2 and 4.7. They will form a class of the
“simplest” spaces among Kahlerian C-spaces except for Hermitian sym-
metric spaces.
Our results have some applications to a theory of Kéahlerian sub-
manifolds in a complex projective space. This will be discussed in a
forthcoming paper [10].

§1. Kihlerian C-spaces
In this section we recall the construction of irreducible Kahlerian
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C-spaces. For details, we refer to Borel and Hirzebruch [2], Itoh [6],
Nakagawa and Takagi [8], Takeuchi [11].

Let g be a complex simple Lie algebra and §j a Cartan subalgebra.
The dual space of a complex vector space §) is denoted by H*. An ele-
ment a of §* is called a root of (g, §) if there exists a non-zero vector E,
in g such that

[H, E,] = «(H)E, for He)y.

We denote by 4 the set of all non-zero roots of (g,%) and put g, = CE,.
Then we have a direct sum decomposition:

g=05+ 2 du-
a€d

Since the Killing form B of g is non-degenerate on § X §, for each £ ¢ §*
we can define H, €} by

B(H, H,) = &H) for Hey .
The following property of B is fundamental:
B(X,Y],Z) + B(Y,[X,Z]) =0  for X,Y,Zeg.

Put Yy, = > .., RH, and define an inner products (,) on the dual space
b of a real vector space §, by (§ 7 = B(H,, H,). We fix a lexicographic
order < on §¥. Let II = {a, ---,a;} be the fundamental root system of
4 with respect to < (so ¢ =dimyf). Put 4* = {eedlo<a}. For each
ae d we select a basis E, of g, in such a way that {H,,, - - -, H,,, E, (« € 4)}
forms a Weyl’s canonical basis of g, that is, it satisfies

{B(Em E—a) = -1 ’

(L) [E.,E] =N, ;E. Nooy=N_,,eR for a,fed.

The first equation is equivalent to [E,, E_,] = —H,. Then the following
g, is a compact real form of g:

1.2) g. = 2, RV—1H, + .,GZA (RA, + RB,),

acd

where we put A,=E,+ E_,, B,=+—-1(E, — E_,). The complex con-
jugation " on g with respect to g, is given by

1.3) E=E ,E,=E, H =—H, for ae 4+ .

Now we choose an arbitrary non-empty subset @ = {«;, ---,,} of II.
Define a subset 4'(®) of 4* by
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A+(@) = A+(0[7_-1, Tty air)

1.4
(L4 z{ini(xied*; (nin"',nir)io}-
1=1

It is clear that if «, e 4*(D), then « + e 4°(P), and that the highest
root in 4 always belongs to 4*(®). Define a complex subalgebra £, of g
associated with @ by

Bq; - 5 + Z P

a€d—-4+ ()

If we put {, =g, N 2, then it is a subalgebra of g, expressed as
(1‘5) f@ = Z RV —]_‘Ha + Z (RAa + RB&) .

agd a€Ed—4+ (D)

Let G be the simply connected complex Lie group with Lie algebra
g. Let L, be the connected complex Lie subgroup of G with Lie algebra
24, and G,, K, the connected Lie subgroup of G with Lie algebras g,, f,,
respectively. Then we obtain an irreducible C-space G,/K, = G/L,, de-
noted by M(g, &) or M(g, «;, ---,@,). Conversely, every irreducible C-
space can be obtained in this way ([12]).

Next we describe a G,-invariant Kéahlerian metric g on a C-space
M(g, ). For a vector space V, the complexification is denoted by V€.
Put
(1.6) me= 2., 6:+8-0.

acdt

Hereafter we put m = m, and ¥ = f¢ for simplicity. Then we have a
direct sum g = ¥ 4+ m orthogonal with respect to B. Denoting the tangent
space of M(g, @) at the origin o = K, by T,(M), we can identify T,(M)
with g,. So we may write m = T,(M)°. Since [g,, §5] € .., for a, B 4, we
see [f,m] C m by the definition of 4*(®#). The complex structure I of
M(g, @) is given at o by

1.7) I(A,) = B, I(B,) = —A, for ae 4*(D) .
Put m* = {Xem; I(X) = +4/—1X}. Then we have
(1'8) mi = Z gj:a )

a€d4+(0)

and hence a direct sum m = m* + m~. An element of m* is said to be
of (1, 0)-type. Now we define a mapping p of 4*(®) into Z" associated
with @ as follows: For o = 3! n(@)a, € 4*(;, - - -, @;,), We put

It
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Do = (n,(a), - - -, 0 () .

This mapping p plays an important role in this paper. Let o*, @* denote
the dual forms of E, E, (xc 4*(®)). Then any G,-invariant Kahlerian
metric g is given at o by

(1.9) g§=2 2. (c:pJo"-&"
a4+ (0)
for an r-tuple ¢ = (¢, - - -, ¢,) of positive integers c,, - - -, c,, where c.p, =

>roy cang (a) (Borel [1] or Itoh [6]). Conversely, any bilinear form on m X m
of this type can be extended to a G,-invariant Ké&hlerian metric on
Mg, D).

When 4*(@)>a and g satisfy n,(¢) = n, (8 for a=1,---,r and
n,(a) > n,(B) for some a, we write p, > p,. Hence we have equivalences
aed* (@)D E, em*&Sp, >0,

§2. Covariant derivatives on Kihlerian C-spaces

In this section we consider a Kahlerian C-space (M(g, D), g) con-
structed in Section 1, where @ = {«;, - -+, @;} is a non-empty subset of
the fundamental root system I of a complex simple Lie algebra ¢ and g
is a G,-invariant K#ahlerian metric on M given by (1.8). We extend tensor
fields, the connection and the connection form on M naturally over C,
and denote the extended ones by the same letters. Since M is homo-
geneous Riemannian manifold, it is sufficient to consider the degree at
the origin o.

First we have from (1.1) and (1.9)

21) g(ELE ) = —(cp)BE,E ;) = (c-p)d,s for a,ped*(D).
When r = 1, that is, @ consists of a single element, we take a Kahlerian
metric g such that ¢ = 1.

For Xeg we denote by X, (resp. X;) the m (resp. f)-component of X

with respect to the decomposition g = f + m. Define a symmetric bilinear
mapping U:m X m — nt by

22) 20(UX,Y),2)=¢g(2 X, Y) +8X,[2,Y],) for X,Y,Zem.

Then the connection form 4:m X m — m associated with g is given by
(Kobayashi and Nomizu [17] and Nomizu [9])

(2.3) AX)Y = UX, Y) + X, Y] for X, Yem.
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The curvature tensor R of g is given by (Nomizu [9])

R(X, Y)Z = [A(X), AY)1Z — AX, Y].)Z — [[X, Y], Z]

2.4)
for X, Y, Zem.

For Xeg we denote by X* the vector field on M induced by a one-
parameter subgroup exptX of G,. It is easy to see that

{(X*)o = X,

(2.5)
[X* Y¥] = —[X, Y]* for X, Yeg.

The covariant derivative V. Y* of Y* in the direction X* is given at o
by ([7], p. 201)

(2.6) VY, =A)X=UXY)— 3[X Y], for X, Yem.

In the following, in order to simplify the notation, we identify a root
vector E, with « itself for e¢e 4, and put VyY = (Vy.Y*), for X, Yem.
Under this identification, a subset 4*(®) U 4*(®) of 4 forms a basis of the
complexified tangent space m = T,(M)¢ of M at o. We also call a root
a € 4*(P) a tangent vector.

M. Itoh [6] determined the connection form /A of g, which can be
stated as

PropositioN 2.1. Let «, e 4°(D). Then,
A@)B = (c-pslc-pa.ple, B,

Np [a, ﬁ] if p. < pg

2.7) Aep = {0 otherwise ,
<l Bl if pa <p,

A@)s = {0 otherwise .

This and (2.6) give
CoroOLLARY 2.2. Let «, pe 4*(D). Then,

V.p= —(c-pufc-pa.pla, B,
rE— {—[oc, Bl if p.>ps

(2.8) 0 otherwise ,
VMB _ {—[a’s!ﬁ] if pa >.p15
0 otherwise .

The curvature tensor R of g can be restated as
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R(a, 2, B) := R(e, )
(29) = [/1(0{), A(Z)]ﬁ - A([O(, zlm)ﬁ - [[“’ Z]E’ AB]
for a, 2, B 4*(D) .
Put R(a, 2, B, ) = g(R(, 2, B), ). Then we obtain fundamental formulas

R(Gf, 2: /3, ﬂ) = R(‘B’ z’ a, P) = R((X, s .B, 2) = R(Z’ a, s B)

2.10
(2.10) for o, B, 2, p € 47 (D) .

Now we define the s-th covariant derivative F°R of R inductively as
follows:

.R(O(, z; 18; Tb Y Ts) = Z R(C(, ’_29 Ba ﬂ§ TI; Tty Ts)/«‘/g(FQ ﬂ)

pe4+(9)
=V, R(@, 2, 8;Ts, -+, Tos)
— RV, a, 2, 8371y - -+, Tay)
(2.11) — R, V, 2, B3 Ty -+, Tomn)
— R(, 3,7, 851y -+, Tyo)

s—1
- Z R(C(, '_2’ ﬂ: Tb - "Vr‘rw ft 7’s—l)
a=1
for a,2,e4*(@) and 7,,---,7T,em.

When vectors 7, ---,7, in (2.11) belong to 4*(®), we write V'R instead
of V°R, which is called the s-th covariant derivative of (1, 0)-type of R.

Then we have a basic property with respect to the covariant derivative
of R:

LemMma 2.3. For a,2,8e4*(@) and 7,,---,T,em,
R(a, 2, B; 71, -+ 5 1) € Gacaspuryiomesr, -
Proof. This follows from a relation [g,, ;] C g..; (2.7), (2.8) and (2.11).
COROLLARY 2.4. Let v be the highest root in 4. Putp, = (n,, ---,n,;),
and t = t(P) = n, + --- + n,. Then we have pe-1R = 0,

Proof. For de 4*(®) we denote by ||| the sum of the components of
ps. Then clearly, 1 < ||6]| < ¢t =||v|. Lete, 2,87y, -+, 75-1€4*(®P). Then
we have

”0(-—2—}-13—}—7’1—]— coe A To|

= llell + 181+ 17l 4+ -+ A+ 7ee=all = 1121)
Z14+14+2t—1—t=t+1.
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This and the definition of ¢ show that aforma — A+ 8+ 7, + -+« + 7oy
cannot be a root. Thus by Lemma 2.3 we have R(a, 2,857, - ) Voior) =
0. q.e.d.

By Corollary 2.4, there exists uniquely the integer d = d(g, @) such
that R = 0 but F*'R + 0. We shall call the integer d the degree of
a C-space M(g, ). Hermitian symmetric spaces of compact type can be
characterized as C-spaces with degree one. In fact, let @ consist of a
single element «, such that p, = 1, where v denotes the highest root in
4. Then Corollary 2.4 and (2.10) imply that a C-space M(g, «,) is sym-
metric. Conversely, every irreducible Hermitian symmetric space of

compact type can be expressed as a C-space of the form M(g, «,) where
p, =1 (Wolf [13]).

§3. C-spaces with degree two

In this section we shall determine all irreducible C-spaces with degree
two. Keep the notation in Section 2. Hereafter we denote by o, 5,7, 9,
A, 1o any elements of 4*(®) unless otherwise stated.

From (2.11) we have

R(a, %, B;7,8) = Va7, R(e, D — V', Rlet, DB — 7, R(sat, )P
— V. R(ee, V;2)B — V,R(ex, )V 58
— ViRV, @, DB + B(V;,a, B + RV Ve, DB
+ R(7,a, 7,28 + R(,a, DV,
— V:R(e, 7, 2)8 4 BR(V.ex, V,2)B + R(, V;,.2)B
+ R, 7,7:2)p + Rle, 7, 2)7,p
— V,R(a, )V, + R(st, DV,B + R(a, 7,0V,
+ R(a, )V;,8 + Rla, )V VB .

3.1

The equation (8.1) is not so complicated as it looks because it contains
many simple cases. For example,

Lemma 3.1. Unless p, > p;, then V,B =0 and A(Pa = 0. In partic-
ular, if 2 is the highest root in 4, then V,2 =0 and A(Q)a = 0.

Proof. This is a restatement of (2.7) and (2.8). q.e.d.

Lemma 3.2. (1) If « + B — 2 4, then R(x, ) = 0. (2) Let 1 satisfy
pPi=p, for allt. Let a and B satisfy p; = p. + ps. Then R(e, ) = 0.
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Proof. (1) is evident from a special case R(a, 2) € g,.5-; of Lemma
2.3. To show (2) we use (2.9). From Lemma 3.1 we have A(A)a = 0, and
so from (2.7)

AR A()B € AN s -
But, by Lemma 3.1, A(%)3,., = {0} whether a + B¢ 4 or not, hence A(2)4(x)B
=0. If « +2&4, then R(e,1)p =0 since [¢,2] =0. If « + 1€ 4, then

A—aecdv (@) since p, ,=p;>0. Thus R(e, )= —A(e, 2D =0 by
Lemma 3.1. q.e.d.

CoroLLARY 3.3 Let A, ¢ and B satisfy at least one of the following two
conditions:

Q) a+p—2c4
(2 pizp, for all 7, and p, = p, + ps.  Then,

R(e, 2, B;7,0) = — V,R(V;at, ) — V,R(V ¢, ))B — V,R(ex, 1)V,
— V:R(a, )WV, + Ry a, DB + R, ;B
+ RV Vs, DB + R(a, DV V.8 + RV, DV,
+ R(Vsee, )V B .

3.2)

Proof. Apply (2.8), Lemma 3.1 and Lemma 3.2 (1) to (3.1). q.e.d.

ProposiTiON 3.4. Let five vectors A, a, B, 7,8 € 4+(®) satisfy the follow-
ing three conditions:

1 a+p—2&4, or p,=p, for all T and p, = p, + p, (the same con-
dition as in Corollary 3.3).

(2) Let ¢ be the sum of any three of o, 8,7,6. Thene& d and p, > p,.
(3) Let p be the sum of any two of a,8,7,8. Then [u, 2] et.
Then we have
ZR(CV, 2, 137 7‘; T, 6) = B([(S, [Ol, 2]]’ [/9; [ry 2]])
+ B([7, [e, 410, (8, [0, 21D
- B([“D [T, 2]]’ [55 [133 2]])
- B([C(, [6’ 2]], [T9 [‘8’ 2]]) .
Proof. By Corollary 3.3 the equation (3.2) holds. The assumption
(2) and (2.8) imply V, a =V, p=VFV,a =VFV,3=0. Thus,

3.3

A= R, 2, B;7,0)
(3.4) — — VR0, DB — V,R(a, WV,B — VR, DB
— V,R(, DV, + R, DVsf + Rsat, V6.
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We shall express the right hand side of (3.4) with respect to the bracket
product [,]. The assumptions (2) and (3), together with (2.7) and (2.8),
imply [V, 2] €, 4(Q) =0 and A(V;x)8 = 0. It follows from (2.8) and (2.9)
that

4 VrR(Véaa 2)18 = [T, [[[53 0(], ':(], .B]] .

Applying similar argument to other five terms in (3.4), we find

44 = [r, [[[3, ], 21, £11 + [5, [[[T, &1, 21, 811 + [, [, 1, [5, A1
+ [0, [ler, 21, [r, N1 — [II7, a1, 21, [3, A1l — [I[5, al, A1, [, B11 .
For a while, we write f7d for [«, [, [7, [0, 2]]]]. Then the Jacobi identities
give
4A = (TPad — TBcx) + (Tfd — Tadp)
+ 0par — 0fTa + dafi — darp + oot — ofat
— BoTe 4 0BT + Brad — TRad — Proc + 7P .

In view of the identity 7raBd — radp = pora — df7«, obtained from [e, [B, 6]
= 0, we have

4A = —7Psa — Offe + Boar + Brad .

Now, by (2.1) and the subsequent comment and the formula B([«, g], )
= —B(B, [¢, 7]), we have proposition. q.e.d.

Here we shall specialize Proposition 3.4 in the form

LEMMA 3.5. Assume that there exists uniquely a vector 2¢€ 4*(D)
admitting a decomposition of the form 2 = ¢ + t where g, t € 4*(9). Assume
that (o,0) = (r,7) for all o,ve 4*(®) such that 2 = o + 7. Then, for all
&, B, 7,0 such that 22 = a + B+ T + 4, the following holds:

(3.5) B(la, [8, 21, [T, [5, 21D = B((B, [, 211, [0, [, 21D .

Proof. From the assumption on 1 we have equivalences a + e 4 &
a+B=287T+8=287+ded. Denote the left hand side of (3.5) by
aB-18. If a + B& 4, then we see af-76 = pa-0r since [a, [, 2]] = [B, [«, 4]}
by Jacobi identity. If « + pe 4, then o« + =7+ d = 2. Putting [a, f]
= N2 and [7, 8] = M2, we see from (1.1) [8,2] = Na, [, «] = NB, [6,2] =
M7 and [2,7] = Mé. It follows that

aB-176 — Pa-6r = NM(B(H,, H,) — B(H;, H;))
= NM({(«,7) — (,9)) .
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On the other hand, taking the norm of « — ¥ = § — B, we have (¢, @) —
2o, 7) 4+ (7,7) = (6,8) — 2(3, B) + (8, ). This and the assumption imply
(2, 7) = (3, p)- q.e.d.

§4. Theorems and proofs

In this section we shall state our results and prove them.

THEOREM 4.1. Let «, be any of the simple roots designed by the sym-
bol ® in the following Dynkin diagrams, and g be a complex simple Lie
algebra whose diagram contains a,. Then the degree of the irreducible C-
space M(g, a,) corresponding to the pair (g, «,) is equal to 2.

| ay ay ay
A, (0z1) e —O
ay ay g Qg [27]

B, (¢=3) : O—O—O— o —(I0

a as [2%:) Qg [29)

C (423) | @—0—0——0O<—® o
v ©
a; a  ag @pg
Dy (0z4) | ©—0—0— O,
2

a; @y a3 a; & ay

F : &—0=>0—0
G, | &0

(In the diagrams, the double circle «,© means that the corresponding C-
space M(g, ,) is Hermitian symmetric.)

In order to prove Theorem 4.1 and for later use, we shall state here
a positive root system 4* of each complex simple Lie algebra g, a fun-
damental root system «,, ---,a, of 4*, and the subset 4*(w,) associated
with a simple root «, (cf. e.g. [3] or [4] appendix of [5]). For the five
exceptional Lie algebras we omit 4*(a,) because the description is too
complicated and we can do without them somehow.

A, (¢ =1): A redundant orthonormal basis oy, - - -, 0.,
with o, + -+ + 0, = 0.



KAHLERIAN C-SPACES 11

4 ={o,—o;=0;+ -+ Fa, 3 1Si<j= L+ 1.
For1<a< 4,
A(a) = {o,— o i<a<j—1}.
B, ({ = 2): An orthonormal basis w, ---, o,
A+={wi=ai+-~~+ae;1§i§5}
U{wi—wj=0(i—|—-~+0(]_l;1§i<j_$_5}
U{wi+wj=ai+"'+aj—l+2aj+"'+2aé;1§_i<j§_£}'
For 1<a<
A (a) ={os i< U{o,—o;i<asj— 1}
U{wi+wj;i§aai<j}'
C, (¢ = 3): An orthonormal basis o, - -, w,.

A4t =0, =20, 4+ - + 20+ a; 1S £ 4}
Ulo,—oy=a;+ - +a; 5 12 <j = 4}
U{wi+wj=ai+"'+aj—l+2aj+"'+2a[—1+aé;

1<i<j< .
For1<a<y,
d(a) ={os i =a} U{o, —oj;isa=j—1}
Udo: + o5 1 < a, 1 <j}.
D, (¢ = 4): An orthonormal basis w, - -, v,
A+’={wi_wj=ai+""%aj—1;1§i<jég}

U{wi+wj=ai+"‘+aj—1+205j+"'+2a2—2+a2—1+az;

1<i<j<(—1}

Ufo,+ o=+ - +aa+a; 1<i< 40— 1.

For1<a<i?¢-—2
A+(“a):{wi—wj;i§a§j_1}
Ufo,+o;1Za, 1 <j}
E;: A basis o, -+, 0, with (0;, w,) = 8 and (w,, »;,) = —1 for i +j.

4 ={w;, —w;; 151 <j <6}

Ufo,+ o, +05 1Si<j<kZ6lU {0+ - + o .

=0, — 0, 1=1i<5) and a; =0, + o; + o, .
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E.: A basis w, -+, 0, with (0, 0,) = 8 and (0, 0,) = —1 for i +#j.

4" ={o;, —0; 1ZI<jET

Uloi+ o+ 05 1Z2i<j<RST

Ufor+ 4ot +os 1Si<T)
=0, —w,, 1<i<6) and o, = o, + 0, + @, .

E;: A basis o, - - -, 0w, With (0;, »,) = 8 and (0,, ;) = —1 for i +~j.

4 ={o;,—0; 11<jL8
Ut o,+0;3 1Z5i<j<kL8
Ufor+ -+ o+ -+, + -+ 1Zi<j< 8
Ufo, + - 4o+ 20+ 0+ - o 15158
=0, — w0, 1<i<T and o= w;+ 0, + @, .

F,: An orthonormal basis o,, ®,, v, ®,.

4 ={oto; 1=5i<j< 4}
Ufos 1<i<4}
U {30, + {0, + 10; + to,; independent signs}

— —_ - — 1
A=W — Wy Oy =Wy — @y, &g =0, and a, = Hw, — 0, — 0; — @,) .

G,: A redundant basis o, w,, @, With o, 4+ @, + o, = 0, (0;, ®;) = 2
and (w,;, 0;) = —1 for i +#j.

4 ={o;1<i<3U{o,—a; 1<i<j< 8

o = w; — W, o, = —w.

Proof of Theorem 4.1. We use Proposition 8.4 and Lemma 3.5. First,
we assert that 4+(a,) satisfies the condition of Lemma 3.5. In fact, when
g=E,(¢{=6,7,8), it is trivial since all roots have the same length. In
other cases, let 2 be the highest root in 4. Then A¢ 4*(«,). Further-
more, it can be easily checked that p, =2 and p, = 1 for any ¢e 4*(a,)
— {2}. Here, we write out all possible decompositions 2= a + 8, @, ¢
4*(a,) of 2 for ¢ = B,, D, F, and G,.

B, (423 2=, +o=@*o)+(@Fo) GB=js9).
D, (£=4): 2=o0 + 0, = (0, & 0;) + (0. T wy) BZjgy.
F;: 2=0)1+‘02:(‘01:’—'w1)+(0)2:§:w1) (=349

= o, + o, + 0, + 0) + Ho, + 0, F o, Fo,).
G: A=0w,— 0, = (0, — 0) + (0, — w) .



KAHLERIAN C-SPACES 13

As a result, we find (¢, @) = (8, f) in each case, which proves our asser-
tion.

Next, we assert that R(a, ¢ 8;7,5) = 0 for any «, 3,7, 0,e € 4*(a,). To
show this, put py=a+ g+ 7+ —e If p&d, then Lemma 2.3 proves
our assertion. So, assume ped. In view of the fact p, =1 or 2 for
any v, we have y=e¢=2 and p, =p,=p, =p;=1. Then it can be
easily seen that our five vectors 1, &, 5,7 and ¢ satisfy the condition of
Proposition 3.4. This, together with Lemma 3.5, completes the proof of
the Theorem. g.e.d.

Along the same line, we can prove

THEOREM 4.2. The degree of an irreducible C-space M(A,, a;, «,) (£ = 2)
is equal to 2.

Proof. Since 4*(@) ={oy + - - +a; 1 i< U e + - a1 Z
Jj < ¢}, the highest root 1 = 0, — w;ey = @, + --- + «, is the only vector
in 4*(®) admitting a decomposition of the form 2 =¢, 4- ¢, where ¢,¢,¢€
4+*(®@). Moreover, all elements of 4 have the same length. Thus 2
satisfies the condition of Lemma 3.5.

In view of the fact that p, = (1,1) and p, = (1,0) or (0,1) when a¢
4*(@) — {2}, we see that, if six vectors «, 8,7, 0,¢, p € 4*(®) satisfy ¢ + p
=a+ f+7+ 9, then e = y = 2 and the sum of two of «, 5,7, must be
equal to 2, and hence A, a, 5,7 and § satisfy the condition of Proposition
3.4. Now, Proposition 3.4 and Lemma 3.4 imply R(e, 2, 3;7,9) = 0. q.e.d.

In the following, in order to prove that the C-spaces of eight types
given in Theorems 4.1 and 4.2 exhaust all irreducible C-spaces with degree
two, we shall give a sufficient condition for a C-space M(g, @) to satisfy
7R + 0.

LemMmA 4.3. Let o, 8,7 € 4*(®) satisfy

1) a4+ ped,
2 p—red,
(3) p+red,

4 a+p—-Te4,

(B) a4+ p+71&d. Then,
@l R(e, 2, B;7,0) = — V R(e, A, V.B) — VRV« 2, B)
' + Ry, 2, B) + RW,, 2, V.B) ,

where we put 1 =« + B.
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Proof. Put 6 = a in (3.1). Then, by (2.8), all terms except for four
ones in (4.1) vanish since R(e, 2, ) = 0 by Lemma 3.2, V,a = FV,2 = 0 by
Lemma 3.1, V,,A=0 by (2), V/,=0 by (3), V/,A=0 by (4), and V, g =
ry.s=0 by (5). q.e.d.

Lemma 4.4, Let «, B,7 € 47(®) satisfy (1) ~ (5) in Lemma 4.3 and in
addition the following (6), (7) and (8).

6y 2a+7178&d or o+ 71— p&dHD),

(7 22+ ped,

(8 2a+ B+ 7r&d  Then,

R(a, 2, B; 7, ) = b(b + e, [[e, 71, 1], Bl
— b[lVieme, A1, A1,

where we put 2=oa + B and b = —c-p,/c D+,

Proof. We shall deform the right hand side of (4.1) using (2.9) and
Lemma 3.1;

R(a, )V .p = — A([er, DV .p (by ()
— [le, 23, V.81 (by (2.7),
— A[V,ex, 21.)B
— Ve, 21y, A1 (by (2) and (8))
= — [V,a, 2], A] (by (2.7)),
RV o, YW B = — A[V,e, 2DV B
— Ve, 21, Bl (by (2) and (8))
= — [V, 2,701  (by 27),
Ry 0, Dp = — AVr 0, )8
— 7y, 21, B (by (8))
= — [y, ], Al (by (6) and (2.7)) .
Here, put a = —c-p,/c'porp. Then V,=a [a, ] and Ve — (a + Dle, §]
by (2.8). On the other hand, since V,a = (b + 1)[a, 7], we have

R(et, 2, 8;7, @) = a(b + Dllle, 4], [, A11, 7]
+ b(b + Dle, [[le, 71, 21, £]
— a(b + DI[[e, 71, 21, [, A1
— [7ra, 21, A1 .

The sum of the first and third terms vanishes because of (4), (5) and
Jacobi identity. q.e.d.

I

I

RV .0, DB
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LEmMMA 4.5. Let «, B,7 € 47(®) satisfy (1) ~ (5) in Lemma 4.3 and (7),
(8) in Lemma 4.4 and in addition the following (6), (9)

6) 2a+T784,

) a-+71ed Then,

R(o,a + B, B; 7, &) = b(b + Dlev, [[[er, 7], e 4 81, fll # 0.

Proof. This is obtained from Lemma 4.4 and the fact that « + 7 ¢ 4,
T — pfed and b+ 1) #0. g.e.d.

Remark 4.6. (1) If « + B is the highest root in 4, then the conditions
(5), (7) and (8) are necessarily satisfied. (2) Let @’ be another subset of
a fundamental root system {«,, ---, @} of g, and R’ denote the curvature
tensor of any Kihlerian metric of the form (1.9) on a C-space M(g, 9').
Assume that @ C @ and «, 8,7 € 4*(®) satisfy the condition of Lemma
4.5. Then Lemma 4.5 implies

R, + B, B;7,0) = Ra, + B, B; 7, ) .

THEOREM 4.7. Let g be a complex simplex Lie algebra and @ be a
non-empty subset of a fundamental root system of g. Assume that the C-
space M(g, @) corresponding to the pair (g, @) is neither a Hermitian sym-
metric space nor any of the C-space of eight types given in Theorems 4.1
and 4.2. Then, the degree d of the C-space M(g, @) is not smaller than 3.
If @ consists of a single element a, and the coefficient of «, in the highest
root in 4 is equal to 2, then d = 3.

Proof. Throughout the proof, let «, stand for any of the simple roots
designed by O in the diagrams of Theorem 4.1 (thus not a simple root
designed by © or ®). We divide the proof into four parts;

(I) Case where @ = {¢,}. We shall show d = 3. Let 1 be the highest
root in 4. Then, since p, = 2, we have d < 3 by Corollary 3.4. Thus,
by Corollary 4.5 it suffices to find three roots «, 8 and 7 in 4*(«,) satisfy-
ing nine conditions (1) ~ (9) in Lemmas 3.3, 3.4 and 3.5. In the following
we state examples of such roots «, 8 and 7.

(A) Forg=B,({=243<a<{—-1or D, ((=53Za<?i—1),
put ¢ =0, + o, =0, — 0, and T = 0, — o,

B) Forg=C,({=23,2<a</{—-1), put a=0+0, =0 —0
and 7 = 0, — w,

(C) For g = E,, put
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a= ("1 f VD vt o+ o,
s=(" P 1P ) =atrota,
and
(1 1 11 O)
r = 0 | = W, — W5,
where (n‘ n; 23 . n”) means a root na, + --- + n,. Hereafter we
6
use the similar notation.
(D) For g = E,, put
a=(" T T2 Y utota,
,B=<1 12 ? 2 1)=w1+w3+w5,
and
r:(l 1 2 ? 1 0)=w1+w3+w7.
(E) For g = E,, put
a:(l 1 1 1 i 1 1 — v+ o+ o,
18:<1 2 3 4 g 3 1>:w1+"'+0)5+w8,
and
72(0 123 ; 2 1>=w2+-'-+w5+w7+ws-
(F) For g = F,, put
a=01 1=>1 1),
p=(1 233 1),
and

r=@0 1=>2 1).

(II) Case where a,c®. By Lemma 4.5 and Remark 4.6 (2) we have
R(a,x + B, B;7, @) # 0 for a, B and 7 just given in the case (I).
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(II) Case where @ consists of only simple roots designed by © or
®, and where g == B,., We shall describe all possible pairs (g, #) and
examples of three roots «, f and 7 in 4*(®) satisfying nine conditions (1)
~ (9).

(A) For (A, a,a)(£=23,1=r<s<£-+1),put @« =0 — 0, =
Wy — Wy ANA T = @, — 04

(B) For B,ay,a) (£ =3) or (Dy,a,a) (£ =4), put @ =0, — 0,y f=
0, + o, and 7 = 0, — o,

(C) For (B,ay,a) (£ =3) or (B,a, ) (£ =3), put « =, —w, =
o, + w, and 7 = w,.

(D) For (D, e, ,.) (6 Z4) or (D, a0, ) (£ = 4), put @ = 0, + o, f =
w, — o, and 7 = 0, — o,

(E) For (D, a;, ,a) (b =4), put @ =w,_; —w, = @, + 0w, and 7 =
0, + o,

¥ For (C,ap,a) (623), put e =w, —w;, B=0, + o, and 7 = w,
—+ w,.

(G) For (E,, oy, ;) or (K, ay, ), take the same «, f and 7 as in the
subcase (C) of the case (I). By the symmetry of the Dynkin diagram of
E,, we can find similar three roots for (E;, s, o).

(H) For (E, a,, @), take the same «, 8 and 7 as in the subcase (D)
of the case (I).

(IV) Case where g= B, and @ = {o;, 0o} Put a =0, =0, 7 = 0, — o,
and § = o, + w,. Then we can take them in such a way that [, 7] = 8
and [o, f] = 4, and so [&, f] = —7, [J, Bl = @ and [&, 6] = 8 by (1.1) (cf. e.g.
[4], p. 277). On the other hand, since three roots «, 8 and 7 satisfy the
condition of Lemma 4.4, we have

R(e, 3, B5 7, a) = b(b + e, [[[«, 71, 41, Al
— o[V se, 0], 8] .
Here, from (2.7) we have P« = a[f, a] = ad, where a = —c-ps/C-Dsin
Hence,
R(e, 3, B; 7, @) = b(b + Dle, [[B, 1, B1] — ablls, 3], £
= bla + b+ 1)B.
But, in view of p, = (0, 1), p, = (1, 1), p, = (1,0) and ¢ = (¢, ¢;), we have

at+b+1= —cflc, + c)(e; + 2¢,) + 0, which completes the proof of The-
orem 4.7. q.e.d.
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