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LEVY'S FUNCTIONAL ANALYSIS IN TERMS OF AN INFINITE

DIMENSIONAL BROWNIAN MOTION III

YOSHIHEI HASEGAWA

§ 0. Introduction

The purpose of this paper is to define minimality of surfaces in an
infinite dimensional space E by probabilistic methods with the description
of the relation between minimal surfaces and harmonic functions on the
space E, and to analyze purely analytic properties of a certain class of
quadratic forms on the space E.

We have constructed in the previous papers (Hasegawa [3], [4])υ an
infinite dimensional sequence space E:

(0.1) E= {x = (χu , χn, . •)€ R~; sup(x? + + xl)/N < oo} ,
N

a system of semi-norms {|| ||v; 1 < i V < oo}:

(0.2) \\x\\N = [(xl + + x>N)/N]1/2 and ||x|U = Π S ||*||A\\N
N ] c

and an infinite dimensional Brownian motion B — (Ω, Bit, ω), Px) on the
space E:

(0.3) B(t, ω) - (b^t, ω), , bn(t, ω), - •) e E ,

where {bn(t, ω); n > 1} is a family of mutually independent 1-dimensional
Brownian motions. The Laplacian Δ^ on the space E is defined as the
infinitesimal generator of the Brownian motion B up to constant 1/2.
Then we have interpreted some peculiar phenomena to P.Levy's potential
theory on the real Hubert space L2([0, 1]) mainly through the semi-norm
|| Hoo. In this paper we shall describe other peculiarities to his theory
again with the aid of the semi-norm || 1̂ .

Levy has introduced to his theory important concepts in the geometry
of the space L2([0, 1]), i.e., the curvatures, in particular the mean curvature

Received May 15, 1982.
υ Without special mentions we shall use the terminologies in Hasegawa [3], [4].
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if of a surface, (cf. Levy [1]). An analogue of such K, still denoted by the

same symbol, will play a dominant role in this paper.

Suppose we are given a surface S = {xeD; u(x) = 0} by a function

u(x) on a domain D of the space E. Then the mean curvature K of the

surface S would be expected to have the following form:

(0.4) K=AOO u/Wgr&d u\l ,

similar to the formula in the finite dimensional case. Unfortunately,

there are some difficulties in defining the gradient. We are therefore in-

terested in the correspondence between the properties K> 0, K = 0, K<0

of the surface S and the ones Δ w u > 0, Δoo u = 0, ΔM u < 0 of the func-

tion u(x) on the surface S, respectively, (see Definition 2 and Theorem 1).

On the other hand, Levy has also observed the following peculiar

phenomenon to his theory: For any point x of a minimal surface S in

the sense that K = 0, the "uniform probability measure" on the sphere

S(x) around the point x concentrates on the poor subset S Π S(x).

Motivated by this phenomenon, we introduce the concept of 2?-mini-

mality with the aid of our Brownian motion B.

DEFINITION. The surface S in the domain D(a E) with the first exit

time τ is said to be B-minimal, if the following holds:

(0.5) Bt(ω) 6 S for all t e [0,τ(ω» a.s. Px, x e S .

Then we shall prove the equivalence of the minimality (K — 0) and the

^-minimality of surfaces, which contrasts with the finite dimensional cases.

THEOREM 1. Let f(x) be a measurable, \\ W^-contίnuous function on a

regular domain D(d E). Then the following assertions are mutually equi-

valent

1) The function f(x) is harmonic on D.

2) For any constant c, the surface Sc = {xe D; f(x) = c} is B-minimal.

It is noted that this theorem tells also the restrainted behaviour of

the Brownian sample paths B(t, ω).

We can then formulate Plateau's problems in the 2?-minimality sense,

and we have the following theorem.

THEOREM 3. Let φ(ξ) be a bounded, measurable, || {^-continuous func-

tion on the surface S of a strongly regular domain £)(c E) with the bounded
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exit time τ. Then there exists a unique function f(x) on D satisfying the

following conditions:

1) The function f(x) is bounded, \\ W^-continuous and harmonic on D.

2) For any point ζ e S, the function f(x) converges to φ(ζ), if xeD

tends to ζ in the \\ W^-sense.

As Levy insists in his book (Levy [1]), we see the equivalence between
the Dirichlet problems and Plateau's problems, which also contrasts with
the finite dimensional cases. Indeed, the surface Sc = {xe D; f(x) = c}
with f(x) in Theorem 3 is 5-minimal by Theorem 1 and it is spanned in
the contour "line" Cc = {ζ e S; φ(ζ) = c}.

The role of the strong regularity property of D in Theorem 3 will be
explained in Section 3, (see Theorem 4), and strongly regular domains
will be illustrated there, (see Theorem 5).

We now turn to the analysis of functions f(x) on the space E, in
particular infinite dimensional quadratic forms. There are requested purely
analytic methods for our profound analysis of f(x) on E, since the Bro-
wnian sample paths B(t, ω) behave in a very much restricted manner, as
was seen above. Another observation on the paths is concerned with
the derivatives of the function f(x) = ||x||L The gradient of the function
f(x) at a point a = (au , an, •) e E vanishes from the probabilistic point
of view:

lim (f] anbn(t, ω)) /N=0 for all t > 0 a.s. P°.
N]oo \n = l / /

Hence, for the study of the differentiation of general functions f(x) on ET

we need not only probabilistic methods but also analytic ones. We shall
therefore put more stress on the study of analytical properties of the
functions f(x).

To fix the idea, we shall first restrict our attention to the class of
quadratic forms. Such a restriction enables us to think of a counterpart
of the fact that the quadratic forms are concordant with the concepts of
curvatures in the finite dimensional case.

Next we shall state the main results concerning the quadratic forms.
Given a bounded sequence {λn; n^ 1} of real numbers λn with the limit
λ = limjv τ so (λx + + λN)jN satisfying also the restriction λn > λ0 for
some constant Λo > 0. Then we define a function f{x) on the space E as
follows:
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(lim (λxx\ + + λNx2

N)jN, if the limit exists ,

+ 00, otherwise .

Setting E — {xeE; fx(x) < + 00}, the complement E! — E\E is a || H

dense subset of E, (see Theorem 6). While we shall prove (see Theorem 7):

Bt(ω) e E for all t > 0 a.s. P\ x e E ,

which describes the restricted behaviour of the Brownian paths B(t, ώ)

topologically. This result suggests us to define a quadratic form f2(x) as

follows:

f2(x) = lim (λ.xl + . . . + λNx2

N)IN, x = (xl9 , xn, •) e E,
2Vi«,

which is II H^-continuous on the whole space E, contrary to the function

fι{x). In a similar spirit to the definition of/2(x), we have, (see Theorem 8):

lim (λΐ(ί)xl + + λΐ{N)x
2

N)IN = lim (ΛxJ(1) + + λNx2

σ{N))IN on E ,

where σ denotes some permutation on the natural numbers with the in-

verse τ. This theorem shows how the surfaces {x e E; f2(x) = c} change

under the permutation σ. We shall also have a criterion of harmonicity

for a class of quadratic forms, (see Theorem 7).

Finally we show that the most basic quadratic form ||x||L cannot be

Frechet differentiable at some points, which is most typical in analytical

character, (see Theorem 12).

§ 1. Harmonic functions and 2?-minimal surfaces

In this section, we shall introduce the concept of 2?-minimality of a

surface in the space E and describe the relation between jB-minimal sur-

faces and harmonic functions.

First we recall the definition of harmonic functions on E. The to-

pology induced by the semi-norms {|| \\N; 1 < 2V< 00} is called the Oλ

topology, and the one induced by the semi-norms {|| ||^; 1 < N < 00} is

called the O2-topology, respectively. We shall use the OΓtopology only,

without special mentions. But the σ-algebra S of the space E is generated

by the O2-open subsets. Next a subset A of E is said to be semi-bounded,

if the set {\\x\\N; xe A} is bounded for some semi-norm || ||^, (1 < iV< 00).

Now we are in a position to state the following
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DEFINITION 1. For a given domain D(d E), we denote by <%(D) a

family of semi-bounded domains U such that the closure U of U is

included in D and that the first exit time τυ from U is an {^t} stopping

time. Then a real measurable function f(x) on D is said to be harmonic

on the domain D, if for any UeW(D) the following holds on D:

(1.1) E*[f(B(τu))] = f(x) .

Next we remind the definition of Z?-minimality.

DEFINITION 2. For a given continuous, measurable function u(x)

defined on a measurable domain D(d E), a level set {xeD; u(x) = c},

(c: a constant) is called a surface in the domain D defined by the func-

tion u(x) and denoted by SUjC or simply by Sc, admitting degenerated

surfaces.

DEFINITION 3. A surface S in a measurable domain D with the first

exit time τ is said to be B-minimal, if the following holds:

(1.2) Bt(ω) e S f o r a l l t e [ 0 , τ(ω)) a . s . P*9 x e S .

Then, as stated in the introduction, we have the following theorem which

shows the equivalence of the minimality (K — 0) and the Z?-minimality

of surfaces.

DEFINITION 4. We say that a nonempty open set D is regular, if

there exists a || l^-continuous, measurable function u(x) on E such that

D = {xeE; u(x) < 0} and u(x) is bounded on each || lU-ball.

THEOREM 1. For a measurable, || {^-continuous function f(x) on a

regular domain D, the following two conditions are equivalent:

1) The function f(x) is harmonic on D.

2) For any constant c, the surface Sc = {xe D; f(x) = c} is B-minimal.

Proof. It is sufficient to show the Z?-minimality of the surfaces Sc

for the harmonic function f(x). Choose a function u(x) on E so as to

satisfy the condition in Definition 4. Fix a point xe E. The function

u(B(t)) is /\n=i σ(bn(t), bn + 1(t), - - )-measurable because of the || ||M-continuity,

(see (0.3)). Hence we have the following with the aid of Kolmogorov's

0-1 law:

(1.3) u{Bt(ω)) = Ex[u(Bt)] a.s. Px for all t > 0 .
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The || ^-continuity of the paths B(t, ώ) in t shows the continuity of the

function u(Bt(ω)) in t. Since u(x) is bounded on every || ^-bounded set,

the right-hand side of (1.3) is also continuous in t Hence we have the

following:

(1.4) u(Bt(ω)) = Ex[u(Bt(ω))] for all t > 0 a.s. Px.

Hence there exists a function τ(x) e [0, co] on the space E such that

τ(ω) = τ(x) a.s. Px, (x e E) ,

where τ(ώ) denotes the first exit time from the domain D. Next we fix

a point aeD and t0, T such that 0 < t0 < T < τ(α). Then, by (1.4) we

have a constant δ:

max {u(Bt(ω)); 0 < £ < T } = - d < 0 a.s. Pa.

Therefore

(1.5) Bt{ω) e Gδ for all t e [0, T] a.s. Pa,

where Gδ = {xe E; u(x) < —δ/2}.

Then the first exit time τδ(ώ) from the measurable, || l^-open subset Gδ:

Gδ = Gδ Π {x e E; \\x - a\U < VTQ}

is deterministic and the formula (1.5) shows

τδ(ω) = t0 a.s. Pa.

Noticing the closure Gδ of Gδ is included in D, we have consequently the

following equality by the harmonicity of f(x):

(1.6) E"[f(B(Q)] = E«[f(B(fs))] = f(a) .

In a quite similar manner to the derivation of (1.4), we have therefore

the following:

(1.7) f(Bt(ω)) = Ea[f(Bt)] = f(a) for all t e [0, τ{a)) a.s. Pa. Q.E.D.

Consequently the Brownian paths B(t, ω) move almost surely on the

surface Sc — {xe D; f(x) — c} defined by the harmonic function f(x) on

the domain D.

Here we shall describe some properties of the boundary of the regular

domain D in Definition 4. The boundary of D with respect to the O r
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-topology coincides with the one of D with respect to the || l^-topology,
and, however, may not be measurable. We shall forward denote by 3D
and S the boundary of D and the surface {xeE; u(x) = 0}, respectively.
Then it is easily seen that dD d S, and further the following theorem
holds.

THEOREM 2. The boundary dD of a nonempty regular domain D coin-
cides with the surface S, provided that the function u(x) defining D — {x
e E; u(x) < 0} is convex on E.

Proof. It is sufficient to prove S c 3D. Take points ζ e S and ae D,
and set f(r) = u(r(ζ — a) + α), (r > 0). Then it can be seen that /(r) is
convex and /(0) = u{a) < 0, /(I) = 0, which shows that r = 1 is the unique
solution of the equation f(r) = 0. Since r(ζ — a) + a belongs to D for
r e [0, 1) and converges to ζ as r | 1, the proof is now complete.

Lastly we note that the first exit time r of a regular domain is
deterministic.

§ 2. Plateau's problems and the Dirichlet problems

In this section, we shall formulate Plateau's problems under the
identification of the minimality (K = 0) and the Z?-minimality.

DEFINITION 5. A nonempty regular domain D(d E) is said to be
strongly regular, provided that the function u(x) defining the domain D
= {x e E; u(x) < 0} in Definition 4 is strictly subharmonίc on the surface
S = {xeE; u(x) = 0} in the following sense:

(2.1) ϊu(ζ + rξ)μ(dξ) > 0 for any r > 0 and ζ e S ,

where μ stands for the standard Gaussian white noise.

Remark. A finite intersection of (resp., strongly) regular domains is
(resp., strongly) regular.

Now we are ready to state our realization of Levy's insistence that
Plateau's problems and the Dirichlet problems are mutually equivalent
in his theory.

THEOREM 3. We are given a strongly regular domain D(d E) with
the bounded exit time τ. Then for a bounded, measurable, \\ {{^-continuous
function φ(ξ) on the surface S of D, the function f(x)
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(2.2) f(x) = E°[φ(B,)], (xeD),

is the unique one satisfying the following two conditions:

1) The function f(x) is bounded, \\ {^-continuous and harmonic on D.

2) For any point ζ e S, the function f(x) converges to φ(ζ), if xe D

tends to ζ in the || W

Proof. First choose a function u(x) on E such that D = {xeE; u(x)

< 0} and the function u(x) satisfies the condition of Definition 5. Set

(2.3) v(x, t) = ί u(x + V~tξ)μ(dξ) for t > 0 and x e E.

Then in a quite similar way to the derivation of (1.4), we have the fol-

lowing:

(2.4) u(Bt(ω)) = υ(x, t) for all ί > 0 a.s. Px, (xeE) .

Hence there exists a bounded function τ(x) e [0, oo) on fl such that

τ(ω) = τ(x) a.s. Px,

and τ(x) is a solution of the following equation:

(2.5) v(x, t(x)) = 0 , (xeD).

Suppose now we have a solution t(x) of (2.5) other than τ(x), (xeD;

fixed). Then by (2.4), it holds that

u(B(t(x))) = u(B(τ(x))) = 0 a.s. Px.

Hence observing the mutual independence of B(t(x)) — B(τ(x)) and B(τ(x)),

we get the following contradiction from the strict subharmonicity of u(x)

0 = E*[u(B(t(x)))\σ(B(s); 0 < s < τ(x))]

(y+ Vί(x) - τ(x)ξ)μ(dξ) > 0 a.s. P^ .

Therefore r(x), (x 6 D) is the unique solution of the equation (2.5). Namely

it holds that

v(x, t)<0 for all t < τ(x), and v(x, t) > 0 for all t > τ(x).

Hence we obtain

{x e D; τ(x) > t} = {x e D; v(x, t) < 0} for all t > 0 ,
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which implies the measurability of the function τ(x).

If ||xB - x\U -> 0, τ(xn) -* t as n | oo, (χn, x e D), then

u(x, t) = lim u(*n, τ(xj) = 0 .
T l T o o

Thus the || | ̂ -continuity of τ(x) on D also follows from the uniqueness

of the solution t(x) of (2.5).

Next assume that there exist t > 0, a point ζ e S and a sequence

{xn; n > 1} of points xn e D such that ||xre — ζlU -> 0, τ(xn) -* ί as wfoo.

Then it holds that

u(ζ + 5(0) = lim u(xw + B(τ(xn))) = 0 a.s. P°.

Hence the strict subharmonicity of u{x) on S induces the following con-

tradiction:

= ju(ζ+Vtξ)μ(dξ)>0,

which shows that τ(xn) -> 0 as n f oo, if \\χn — ζ||TO —• 0 as n -> oo. Since

the function φ(ξ) on the measurable surface S is || l^-continuous, mea-

surable, and the Brownian motion B is strong Markov, it is now easily

seen that the function /(x)

(2.6) f(x) = Ex[φiBτ)} = [φix + V:φc)ξ)μidξ), ixeD) ,

satisfies the conditions 1), 2) of this theorem.

Finally, assuming that there is another function g(x) satisfying

the conditions 1), 2), we shall prove /ι(x) = fix) — gix) must be zero. Now

fix a point ae D and define regular domains Dn = {xe E; uix) < — l/n}9

in > 1). The first exit times τn from Dn are deterministic and have the

limit τ0 = lim,,^ τn ( < τ < oo). Then it holds that via, r0) = 0. Hence the

uniqueness of the solution Z(α) of (2.5) shows lim^^r,, — τ(α) a.s. Pa, and

we obtain the following:

lim Λ(B(τn)) = 0 a.s. Pa.

Therefore the harmonicity of the function Λ(x) on D gives

hid) = E«[hiBiτn))] = lim E"[hiBiτn))] = 0

with the aid of Lebesgue's dominated convergence theorem. That is,
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f(x) = g(χ) on the domain D . Q.E.D.

Remark. If the D is || Unbounded, the exit time τ(x) is bounded

on D.

§ 3. Strongly regular domains

In this section, we shall explain the necessity of the strong regularity

condition on the domain D to have Theorem 3, and give some (strictly)

subharmonic functions u(x) associated with the D.

DEFINITION 6. Let {μx; x e ΰ } be the harmonic measures relative to

a regular domain D and xeD:

μx(A) = Px(B(τ)eA), (AdS),

where τ and S denote the first exit time from D and the surface of D,

respectively. Then a boundary point ζ e 3D is said to be irregular, if there

exists a bounded, measurable, || l^-continuous function φ(ξ) on S such

that the function f(x) = φ(ξ)μx(dξ) on D does not converge to φ(ζ) a s x e ΰ

tends to ζ in the || H -̂sense.

THEOREM 4. Let D be a regular domain with the first exit time τ de-

fined by a function u(x) on E such that D = {xe E: u(x) < 0}. Suppose we

are given a boundary point ζedD and a ball U = {xe E; \\x — ζl^ < r),

(r > 0) with the first exit time τσ such that u(x) is superharmonic on U

in the following sense:

(3.1) Ex[u(Bt)] < u(x) for all t < τυ a.s. P*, (xeU).

Then the boundary point ζ is irregular.

Proof. First fix a point aeD f) Usuch that \\a - fl^ < VΊΓ r/2. Then

the superharmonicity of u(x) on U gives:

u(Bt(ω)) = Ea[u(Bt)] < u(a) < 0 for all t < τv a.s. Pa,

where τ^ω) = r2 — \\a — ζ||i > r2/4 a.s. Pa. Since τ is deterministic, there-

fore, we obtain:

\\B(τ) - CHI = IK - α||L + τ > r2/4 a.s. Pa.

Now it is clear that ζ e 3D is irregular in the above-mentioned sense.

Q.E.D.
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EXAMPLE. Set

2> = {*€E; | |* |L<1, <*, ?>„>(>},

where ξeE with \\ξ|U = 1 and 4<x, £>«, = ||* + fill - \\x - fill. Then the

boundary point ζedD such that HCĤ  < 1, <ζ, £>«, = 0 is irregular.

Observing the proof of the above theorem, it is reasonable to assume

the strict subharmonicity of u(x) on S for the sake of the regularity of

the boundary.

Next we give some (strictly) subharmonic functions u(x) on E.

THEOREM 5. We are given a sequence {λn; n > 1} of real numbers λn

with λmΆX > λn > λmin > 0 and a continuous, subharmonic^ function φ(s) on

Rd such that

(3.3) \φ(s) - φ(t)\ < c\t - s|«(l + |s | + |ί|)2-*, (s,teRd),

with constants c, a, (c > 0, 0 < a < 1). Then the function u(x)

[ N "I /

Σs^nφ{X(n-l)d + U * * , Xnd)\/N, X = (Xu , Xn ' ' >) 6 E ,
n=l A/

is || Wπ-continuous and bounded on every \\ ^-bounded set:

(3.5) Iu(x) - u(y)\ < 3c^ m a x \\x - y\\l (1 + ||*||L + \\yZ)ι~a/\ fe V e E) ,

and subharmonic on E in the following sense:

(3.6) £ X M£J] > u(x) for all t > 0, xeE.

Furthermore, if the φ(s) is not harmonic on Rd, then u(x) is strictly sub-

harmonic on E in the following sense:

(3.7) Ex[u(Bt)] > u(x) for all t> 0 and x e E.

Proof First we shall prove the estimate (3.5). Put xn = (X(n-i)d+u

", xnd) and yn = (y(n-1)d+1, , ynd), (n > 1) for x = (xu - -., xn9 •) e E

and y = (yu , yn, •) e E, respectively. Then we have the following

inequality:

1 N N

. . / 1 " i * - I*YΎ 1 v^
< ^ m a x l ^ Σ l̂ n — yn\) (~^ΓΣI

w = l

l-β/2

υ The terms of harmonicity, subharmonicity and superharmonicity of functions on
Rd are understood according to Port-Stone [5].
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with the aid of Holder's inequality. Hence by limiting iV | oo, we obtain

t h e e s t i m a t e (3.5) . N e x t w e s e t ft(s) = £s[φ(b(t))] - φ(s), (s e R d , t > 0 ) ,

where {P% b(t)} stands for the d-dimensional Brownian motion. Fix t > 0

and x = (xu , xn, -)eE and choose a strictly increasing sequence

{Nk k > 1} of integers Nk such that Nk | oo as k t oo and

lim \Σ λnφ(xn)] /NU = u(x) .

Then, noticing \\B{t, ω)||L = ί + IM|l for all t > 0 a.s. P*, we have:

oo > E'MBd] > I S f(f WX*.) + Φ(XJ))/N]

Hence the subharmonicity of φ(s) shows the one of u(x) on E. Moreover

suppose t h a t Ex[u{B~^\ = u(x) at a point xeE and a ί > 0. Then, by (3.8),

it holds that

0 = E*[υ{BiJ\ - u(x) = Ihn

> ^min pr ϊϊm {n < iVfc; \xn\ < V~dr}/Nk > 0 ,

where ρr = min{f~t(s); \s\ < V dr}, (r > 0). Here assume that the φ(s) is

not harmonic on Rd. Then there exist a point ae Rd and an r0 > 0 such

that

> Φ(a) ,

where σ denotes the uniform probability measure on the unit sphere of

Rd. We can, therefore, see that ft(s) > 0 for all t > 0, s e Rd, which gives

pr > 0. Hence we have the following contradiction:

d\\x\\i > Π H - ί - Σ \Xnf > dr2 for any r > 0 .

Consequently w(x) is strictly subharmonic on E. Q.E.D.

Remark. In the above theorem, if the φ(s) is convex on Rd, then the

u(x) is convex on E. Hence the domain D = {xe E; u(x) < c}, (c; a constant)

is regular and the boundary 3D coincides with the surface S = {x e E; u(x)

= c}, (if D is nonempty), (see Theorem 2).



LEVY'S FUNCTIONAL ANALYSIS

For example, the function ua{x), (1 < a < 2),

(3.9) ua(x) = Πm flx^ + + \xN\a)/N, x = (xl9
N

167

',xB, ) e £ ,

is || Hoo-continuous, strictly subharmonic and bounded on every || Un-

bounded set, and it holds that dDa = Sa, where Da = {xe E; ua(x) < 1} and

Sa = {xe E; ua(x) = 1}. Although Da, (1 < a < 2) is not || ^-bounded,

there exists a constant Ma > 0 such that τa(ω) < Ma a.s. Px, (x e Da),

where τa denotes the first exit time from Da.

Thus we can obtain a lot of || l^-continuous, strictly subharmonic

functions bounded on every || Unbounded subset of E and equivalently,

of strongly regular domains.

§ 4. Quadratic forms and transformation groups

Our analysis established in Sections 1 — 3 depends heavily on the pro-

babilistic methods. In this section we shall put stress on study of purely

analytical properties of quadratic forms on the space E.

To begin with, we introduce the following two functions /Ί(x), f2(x):

(4.1)

(4.2)

with

(4.3)

and

(4.4)

the

put

flim [λ.xl + •

\+ oo,

/,(*) = Hi

restriction:

E = {x e E;

n [λxxl +

fix) <

"ΛΓ]/̂ V, if the limit exists ,

otherwise ,

•••+λNxl)IN,

+ oo}, E' = E\E.

Then our first assertion is the following

THEOREM 6.

1) The function fx{x), (resp., f2{x)) is \\ -continuous on E, (resp., on E).

2) The set Ef is || W^-open, and dense in E with respect to the O^

topology.

Proof. We shall prove the denseness of Ef in the space E. Take a

point a = (au - - -,an, •) e E such that \\a\\a, > 0, a sequence {Nk; k > 0}

of integers Nk such that Nk | oo, Nk/Nk.1—> oo as k f oo, and No = 0.

Next put
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Cn

-an if N2k_x <n*ζN2k,

an if N2k<n < N2k+1 .

Then, noticing the following:

l im [λxa\ λNka
2

Nk]/Nk = fx{a) > λ m i n | |α||L=>[0 ,

we have:

lim \Σ hancλ / N2k = -/• (α) < 0, lim ΓfΓ Jnαncn] / N2k_, = Λ(α) > 0 .

Therefore we have points bε = α + εc e i^, (ε > 0) and limεi01|6, — a\\p = 0

for jp e {1, 2, , oo}. For a point α e έ with HαJU = 0 the proof is imme-

diate. The proof of the other assertion is straightforward. Q.E.D.

For the sake of the continuity on the whole space E of "quadratic

forms", we prefer the following

DEFINITION 7. The function fix)

(4.5) f(x) = En [λX + + λNx2

N]/N, x = fo, , xn, •) e E,

on the space Z? with bounded coefficients {λn} is called a quadratic form

of diagonal type.

Then the quadratic form fix) is measurable || l^-continuous on E.

Moreover we have the following

THEOREM 7. Assume the existence of the limit

(4.6) λ = lim iλt + - - + λN)/N.

Then it holds that

(4.7) fiBtiω)) = fix) + λt for all t > 0 α.s. P*, (x e £ ) .

j>z addition, we have

(4.8) l i m 4 r Σ ^»(6.(t ω) - 6n(s, ω))2 = ^ | ί - s | for all t, 8 > 0 a.s. Px,

1).(x e £), provided that λn > 0,

Proof. The proof proceeds in the same way as the ones of Proposi-

tion 1.3, Theorem 1.4 of Hasegawa [3]. Q.E.D.

If the sequence {λn} satisfies the condition (4.3) and has the limit λ
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(4.6), the formula (4.7) says that Bt(ω)eE for all t > 0 a.s. P\ (xeE).

Consequently Theorem 6 describes the restricted behaviour of the Brownian

paths B(t, ω) topologically. From (4.7) we have also Δoo f(x) = 2λ, which

can be rewritten as follows:

Aj(x) = lim

This is concordant with the finite dimensional construction method, (see

Sections 1 and 2 of Hasegawa [3]). Moreover f(x) is harmonic (resp.,

strictly subharmonic) on E, iff λ = 0, (resp., λ > 0). Analogous phenomena

can be observed in the case of quadratic forms with blockwise interaction

matrices A, (see Theorem 10).

Now we shall introduce a transformation group Go = {gσ; σ}. Fix a

sequence {nk; k > 1} of integers nk such that

(4.9) 2 < nx < < nk < , and nk+1lnk -+ 1 as k | oo .

DEFINITION 8. A transformation g of the space E onto itself is called

a blockwise permutation associated with the sequence {nk}, if there exists

a permutation σ of the set {1, 2, 3, } which is also a permutation of

each block {nk + 1, nk + 2, , nk+ί} for each k > 1, and g = gσ:

(4.10) (gσX)n = *σ(») for X = (Xl9 ' - - , Xn, " ') β E .

The permutation a itself is called a blockwise permutation also.

For a blockwise permutation a with the inverse τ and bounded coeffi-

cients {λn}, define a quadratic form fσ(x) as follows:

1 iV

(4.11) /,(*) = lim — - Σ λτin)xl x = (xu . . . , xκ, . .) e E.

;yto° iV n=i

Then we have the following invariance theorem.

THEOREM 8. Fix a blockwise permutation σ with the inverse τ.

1) For a bounded sequence {λn} with the limit λ, (4.6), it holds that
(4.12) J = l i m α ( 1 ) + . . . +λτ(N))/N.

2) For a bounded sequence {λn} with a definite sign, it holds that:

(4-13) /.(*) = f(g.x) ,

(4.14) lim (lmxl + • + λHmxl)/N = lim ( ^ ( 1 ) + +



170 YOSHIHEI HASEGAWA

Here the equality (4.14) means that if one of the both limits exists, so does

the other and the equality holds.

3) For a bounded sequence {λn} with mixed signs, the equalities (4.13),

(4.14) hold for points xeE such that lim^T o o ||JC||^ exist

Proof First we prove the equality (4.13) in case of λn > 0, (n > 1).

Fix a point xeE. For an integer N such that nk < N < nk+1, we put

fN(x) — {λxx\ + + λNx2

N)jN and choose an integer qk e {nk + 1, , nk+λ}

such that

fκ(g*x) = m&x{fnk+1(gσx), , fnk+ί(g'χ)}

Then we have the following:

&<»*? + + 1(N)X
2N)IN < (qkJN)fqk+1(gσx) ,

which induces:

(4.17) /.(*) < f(gσx) .

Similarly we have the converse inequality, which proves (4.13) together

with (4.17). The proof of (4.13) in the case of λn < 0, (n > 1) and the

one of the other assertion are now clear. Q.E.D.

The equality (4.12) shows the harmonicity-preserving property of the

blockwise permutation gσ: The harmonicity of f(x), (4.5) with the limit

λ = 0 implies the one of the quadratic form fσ(x).

From now on, we shall extend the results obtained for quadratic

forms of diagonal type to a little larger class of quadratic forms.

First of all, fix a sequence {nk} satisfying the condition (4.9). Then

an infinite dimensional symmetric matrix A = (aίtj) is called a blockwise

interaction matrix associated with the sequence {nk}, if the matrix A has

the following form:

where each matrix Ak, (k > 1) is a real symmetric (nk — nk-ϊ) X (nk — ftfe_i)

matrix and the set of the eigenvalues of matrices {Ak} is bounded.

DEFINITION 9. The following function f(x) defined on the space E

(4.18) f(x) = Mm — - Σ β^ ̂  for x = (xu ••-,*„, ->)eE

is called a quadratic form with the blockwise interaction matrix A.
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THEOREM 9. The quadratic form f(x) with the blockwise interaction

matrix A is \\ W^-contίnuous on the space E.

Proof. Since the eigenvalues of the matrices {Ak; k > 1} are bounded,

we can easily prove the theorem. Q.E.D.

Next we have an extention of Theorem 7.

THEOREM 10. Under the existence of the limit λ — l im^^ (αM + •

+ aNίN)IN9

(4.19) f(Bt(ω)) = f(x) + λt for all t > 0 a.s. Px, (x e E) .

Proof. The symmetry of the matrices {Ak; k > 1} and the rotation

invariance of the finite dimensional Brownian motions reduce the proof

to the one of Theorem 7. Q.E.D.

DEFINITION 10. We denote by Gλ the following group:

(4.20) G, = 0{n,) ® O(n2 - nλ) ® - . Θ O(nk - nk_d Θ ,

and call an element geGx a blockwise rotation.

Remark. \\gx\U = IMU for all geGίy xeE.

Next we define another blockwise interaction matrix B = (6ί>;) with

the aid of the blockwise rotation g = gί 0 g2 Θ 0 gk 0 e Gλ:

B = B 1 ® ••• ® B k ® '•-, B k = g k A k g k \ ( k > l ) .

The quadratic form with the matrix B is denoted by fg(x). Then we have

the following invariance theorem.

THEOREM 11. Fix a blockwise rotation g e Glβ For a point x =

(xu - - -, xn, - - •) e E such that lim^oo \\x\\N exists, we have:

(4.21) fg(x) - f(gx) ,

(4.22)

Here (4.22)^is understood in a similar manner to (4.14).

Proof. The proof is immediate. Q.E.D.

§ 5. Mean curvature K

As stated in the introduction, the mean curvature K of a surface
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S = {xe D; u(x) = 0} defined by a function u{x) on a domain D would be

of the following form:

(5.1) K = Δ . w/||grad u\\«, .

Here Δoo denotes the infinite dimensional Laplacian on the space E. Since

the Laplacian Δ^ is thought of as twice the infinitesimal generator of

the Brownian motion B, the part ΔM u can be calculated rather easily with

the aid of B. For instance, we consider the quadratic form u(x) = \\x\\lo.

Then we have:

||x + B(t, ω)\\l = 11*111 + t for all t > 0 a.s. P°,

which shows Δ^ u = 2. But the gradient part of the function \\x + B(t, ω)||L

vanishes because of the strong law of large numbers. Consequently our

next task is to define grad u(x) and ||grad ιφc)||oo analytically.

DEFINITION 11. A || H^-continuous function u(x) on a || H -̂open set

D(d E) is said to be Frechet differentiable at x = aeD, if there exists

a || I ̂ -continuous linear functional du(a) on E such that

(5.2) u(a + h) = u{a) + (du(a))(h) + ofl|ftp for heE with a + heD.

Then it seems reasonable to define grad u and ||grad u ^ as follows:

(grad u)x=a - 3u(o) and ||(grad u)M\l = sup {(9M(α)XΛ); ||Λ|U = 1},

provided that u(x) is Frechet differentiable at x = aeD.

Unfortunately even the most basic quadratic form u(x) = \\x\\t is not

Frechet differentiable at some points of E.

THEOREM 12. Let {Nk; k > 1} be a strictly increasing sequence of

positive integers Nk with l im*^ (JVΊ + + Nk^)/Nk = 0, and define a

point a = (au , an, •) e E by

(5.3) an= .
[0 otherwise .

Then Hall*, = 1 a^d ί/ie quadratic form u(x) — ||x||L oτι E is not Frechet

differentiable at x = aeE.

Proof First we define a point ξ = (ξu , ξn, •) e E by

if 7i = iV2fc ,

l if n = N2k-l9

0 otherwise.
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T h e n , o b s e r v i n g l i m p t » | |o| | l V 2 ) = l i m p t o o \\ξ\\Np = 1, w e h a v e , (teR):

\\a + if HI = Πm --^-(iMIΪv, + ί2 | | fll^ + * (aNlξXl + ••• + aNpξNp)) ,

= fim ( | |α | | 2 ^ + ί2||f||2Vp + ® (aXιξKί + ••• + aNpξ^ = 1 + t + 2 | ί | .

H e n c e i t h o l d s t h a t

l i m (||α + if||L - ||α||L)/ί = 2, l i m (||o + if||L - ||o||l,)/< = - 2 ,
t ιo no

which shows our assertion. Q.E.D.

ACKNOWLEDGEMENT. The author would like to express his hearty
thanks to Professors Takeyuki Hida, Izumi Kubo, Akinobu Shimizu and
Akihiro Tsuchiya for their invaluable advices and encouragements.

REFERENCES

[ 1 ] Paul Levy, Problemes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris,
1951.

[ 2 ] E. Bombieri, Theory of minimal surfaces and a counter-example to the Bernstein
conjecture in high dimensions, The Courant Institute, New York Univ., 1970.

[ 3 ] Y. Haseg awa, Levy's functional analysis in terms of an infinite dimensional
Brownian motion I, Osaka J. Math., 19 (1982), 405-428.

[4 ] , Levy's functional analysis in terms of an infinite dimensional Brownian
motion II, Osaka J. Math., 19 (1982), 549-570.

[ 5 ] S. C. Port and C. J. Stone, Brownian motion and classical potential theory,
Academic Press, New York, (1978).

Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa-ku, Nagoya 466, Japan




