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Introduction

Let D be a division algebra of finite dimension n2 over it's center F.
Suppose D has an involution, τ, of the first kind, of symplectic type (e.g.
[1], p. 169). By the theory of the pfaffian, τ symmetric elements have
degree less than nj2 over F. On the other hand, Tamagawa has shown
(unpublished) that involutions like τ are closely related to minimal sym-
metric idempotents in D ®F D. This author began by examining and trying
to generalize these relationships. But before any theory seemed possible
for division algebras, a theory relating subfields and symmetric idempotents
was required. This investigation gave rise to the results presented here,
especially the main theorem in Section Two.

We begin by considering a finite separable field extension LjF and it's
tensor power Tm(L/F) = L0F ®FL (m times). Already from Tamagawa's
work, it is clear that not all minimal symmetric idempotents are of interest
to us, but only those corresponding to symplectic involutions. It turns
out that what we are actually interested in is an F algebra Em(L/F) closely
related to the exterior power ΛmL. This is the exterior power of the title.
In Section Two we prove a correspondence theorem relating idempotents
of Em{HF) and subfields of L. Specifically, there is a one to one corre-
spondence between subfields U c: L of codimension m and certain minimal-
like idempotents of Em{LjF). This correspondence theorem generalizes
the facts concerning the pfaffian mentioned above.

Assuming L\F is a separable field extension is unnaturally restrictive.
It better serves our purpose to assume that L is a separable commutative
algebra over F, and that F is a finite direct sum of fields. We do so
assume in all of this paper. An F module V may not be a free F module,
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but it is free if the dimension of V is the same when viewed over any of

the components of F. Calling this dimension n, we say V has constant

dimension n over F.

This first section will contain the fundamental properties of the ex-

terior power F algebra Em(LIF). As mentioned above, F will always be

a finite direct sum of fields and L a commutative separable F algebra of

constant dimension n. We may write F = Fx Θ Θ Fr where the F/s

are fields, and then L=^LX® ®Lr where Lt is an algebra over Ft. Our

assumptions are exactly that for all i9 Lt is a separable commutative Ft

algebra of dimension n.

Denote by TJJL) or Tm(L/F) the tensor power L®F ®FL (m times).

T = TJJL) is, of course, a separable commutative F algebra. The sym-

metric group, Sm, acts on T in a natural way. Denote by Σm(L) or ΣJJLjF)

those elements of T fixed by Sm (i.e. the symmetric elements). Σm(L) is

easily seen to be a commutative separable F algebra of constant dimension.

Set V = ΛmL to be the mth exterior power of L over F. V is just a module

over F. There is a canonical surjection Φ: T-» V such that the kernel

of Φ is spanned by all elements of the form {a1 ® α2 ® ® am\a>i — Uj for

some i Φ j}. The following lemma shows that V is a module over Σm(L).

LEMMA 1.1. Let W be the kernel of Φ.

a) Σm(L)Wd W

b) V is naturally a Σm(L) module.

Proof. Of course, part a) implies b). To prove a), note that Σ m(L)

is spanned by elements of the form t = Σj*es«α*ω ® ' '' ® α*(w) where the

at eL. So without loss of generality, it suffices to show that t(b®b® b3

® * ® K) e W for any 6, 68, , bm e L. But ί(6 ® 6 ® 63 ® ® bm) is a

sum of terms of the form

(atb ® a5b + aft ® afi) ® αfc63 ® ® arbm

and the above expression is in W. Q.E.D.

Denote by Em(L), or Em(L/F), the image of Σm(L) in End^ (V). £m(L)

is our "exterior power" of the algebra L. It is, of course, a commutative

separable F algebra. Denote by Ψ: Σm(L) -> £m(L) the natural map used

to define Em(L). Since ΣJJL) is commutative and separable over F, there
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is a unique idempotent we call eeΣm(V) such that Ψ induces an iso-

morphism eΣm(L) ^ Em(L). In this way we will view Em{L) as a subset

of ΣJtL) and Tm{L).

We observe in the next lemma that the algebra EJJL) behaves well

with respect to direct sums and base change. We will omit the proof as

it is quite direct.

LEMMA 1.2. a) Suppose F= F,® F2. If Em(L) = EJJL\ Θ Em(L)2 and

L — LX®L2 are the corresponding decompositions of Em(L) and L, then

EniLJFi) ^ #m(LX in a natural way.

b) Suppose F/ Ξ> F is an extension of F and also a finite direct sum

of fields. Set U = L®FF'. Then EJJL'IF*) is well defined and Em(L/F)

An important special case of the above construction occurs when F

is an algebraically closed field. Assuming this, L = F® 0 F (n times).

Denote by β(l), , e(n) the full set of minimal idempotents of L. Tm(L)

has, as minimal idempotents, all the elements e(ix, , im) = e(ix) ® ®

e(im). Set e[i19 . , im] to be the corresponding symmetrized element. That

is,

σeSm

It is almost immediate that the symmetric algebra Σm(L) has the e[ίu , /m]'s

as a basis over F. Finally consider EJL) and the map Ψ: Σm(L) -> Em(L)

defined above. V = Λm(L) has the set of all e(Q Λ Λ e(ίm) as a basis,

where the i/s are all distinct. It follows that ίPXφΊ, , im]) = 0 if and

only if ii — ik for some j ψ k. Stated differently, we have part a) of the

next lemma.

LEMMA 1.3. a) Suppose F is algebraically closed as above. Considered

as a subspace of Tm(L), Em(L) has, as a basis, the set of all e[iλ, , im]'s

where the i/s are all distinct.

b) For general L and F, Em(L/F) has dimension r\\ over F.

Proof. Part a) has been shown and part b) follows from a) using 1.2.

We will end this section by giving an alternate description of Em(LIF).

Let us fix some notation. Suppose R is any commutative ring and f(x) e

R[x] a polynomial. Denote by R{f(x)} the R algebra R[x]l(f(x)). We call

the image of x in R{f(x)} a generic element of R{f(x)}. If R = F is a
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direct sum of fields, then a polynomial f(x) e F[x] is said to be separable

if it's image is separable over each of the components of F. Clearly, if

f(x) e F[x] is a monic separable polynomial of degree n, then F{f(x)} is a

separable algebra of constant degree n over F. Conversely, if L is a sepa-

rable commutative F algebra of constant dimension n, then L ^ F{f(x)}

for some monic separable f(x) of degree n.

One should think of F{f(x)} as the algebra obtained by formally ad-

joining a root of f(x) to F. In fact, if u1eFί = F{f(x)} is a generic element,

then, of course, uλ is a root of f(x). One can write f(x) = (x — u^fx(x)

where fλ{x) e F^x] is a monic separable polynomial of degree n — 1. We

continue this process inductively. Assume Fu ft e Ft[x] and ut e Ft have

been defined. Set Fi+1 = F^f^x)}, choose uί+ίeFί+1 a generic element, and

factor ft(x) = (x — uί+1)(fi+ί(x)) where fί+1(x) eF i + 1[x]. It is clear that each

fι is monic separable over Ft of degree n — ί, and that Ft is separable

over F of constant dimension n(n — 1) (n — i + 1). We focus on Fm

and think of it as the algebra obtained by formally adjoining m roots of

f(x) to F.

THEOREM 1.4. Suppose L — F{f(x)} and let Sm be the symmetric group

on {1, 2, , m}.

a) Setting σ(ut) = uσ(i) defines an action of Sm on Fm.

b) Em(L/F) is isomorphίc to the fixed ring of Sm on Fm.

Proof. Let Tm(L), Σm(L) and Ψ: ΣJL) -> Em(L) be as above. Once

again we let e e Σm{L) be the idempotent such that Ψ induces an isomor-

phism on eΣm(L), and set N = eTm(L).

We claim that N is isomorphic naturally to Fm. We will prove this

in a series of steps, as follows. First, we show that N has dimension

n(n — 1) (n — m + 1) over F. But using 1.2, we may assume F is an

algebraically closed field. Using our previous notation, N has, as an F

basis, the set of all idempotents e(iί9 , im) where the i/s are distinct.

The dimension of N is now clear.

To continue with the proof of our claim, we consider the following.

Denote by ηt: L -> Tm(L) the natural embedding of L onto the ith factor

of the tensor power Tm{L). We show now that if a e L generates L over F,

and r Φ s, then (ηr(a) — ηs(a))e is a unit in N. As before, we may assume F

is an algebraically closed field. Write a = a^ϊ) H h ane(ή) (at e F) and

note that ar Φ as if r Φ s. It suffices to show that 0?r(α) — τj8(a))e{i19 , ίm)
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Φ 0 for all m tuples (iu , im) with the ί/s distinct. But {ηr(a) — i)s{a))

'Φu - ', im) = (α* — oc^)e(iu , ίm) where k = ίr, t = ίs. This part is done.

To finish the claim, we will embed Fm in N. The embedding is con-

structed inductively. F1 = L we embed via %, and we denote the image of

JPI by iVj. The image of u± e L, in N19 we designate as xλ. More generally

we designate by xt the element η^u^e e N. Define a map F2 —> N by send-

ing u2 to x2. To show that this map is well defined, it suffices to show

that x2 is a root of f[(x) e N^x], fί being the image of fx e F^x], Now 0 =

f(x2) = (χ2 — χ^f[{χ^. Since x2 — x1 is a unit, fi(x2) = 0. In a similar

way, if φ: Ft~> N has been defined with φ{u^) = xi9 and Nt = φ(Fi)9 then

we let fieN^x] be the image of f ^ F M and note that 0 = f(xi+i) =

(xί+1 - ^ ) ( ^ + 1 - x2) (xi+1 - Xt)fi(xi+i) and so /-(x,+1) = 0. Now φ extends

to Fί+1 by setting φ(uί+ί) = xi+1. By this inductive process, we have defined

a map φ: Fm-> N such that ψ{uτ) = xt. φ is surjective because the x/s

generate N, and φ is injective because F m and N have equal dimensions.

This proves our claim.

Using the isomorphism φ9 we can transfer the action of Sm on N over

to an action on Fm9 and this latter action is exactly as is described in

this theorem. Finally the fixed ring of Sm on N is exactly eΣm(L/F) =

Em(LjF) and so the theorem is proved. Q.E.D.

The above theorem gives some handle on the nature of Em(L/F) when

L is a field. For example, one has this next corollary.

COROLLARY 1.6. Suppose L/F ίs a separable extension of fields of degree

n and the Galois group of L/F is Sn. Then Em(L/F) is a field, for any

1 < m < n.

§2. The correspondence theorem

The corollary which ended the last section showed that the existence

of idempotents in Em(LjF) implies that LjF is "not so bad". In this section

we develop a much more detailed relationship between idempotents in

EJJLjF) and the structure of L/F. Specifically, we are concerned with F

subalgebras of L of the following type. We say that the F subalgebra

U a L has codimension m if and only if L has constant dimension m over

U.

We are interested in a special class of idempotents of EJJLjF). Con-

sider Em(L/F) c Tm(L/F) and recall the maps %: L->Tm(LjF) defined in
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Section One. If e e Em(L/F) is an idempotent, one can view Γm(L/F)e as

a module over L via multiplication by ^(α) for a e L. We say e is regular

if Tm(L/F)e has constant dimension as an L module. Of course, if L is

a field then all idempotents of Em(LjF) are regular. The effect of assuming

regularity is to force such e to reflect the structure of L/F and not to

arise from idempotents of L or F. In order to make our next definition,

note that for regular e e Em(L/F), eEm(L/F) has constant dimension over

F. The rank of e we define to be the dimension of eEm{L\F) over F.

Consider the case F is an algebraically closed field. Any idempotent

of EJJjjF) is a sum of the primitive idempotents e[iu , im], where the i/s

are distinct integers between 1 and n. Changing notation, set e[iu , im]

— e[A] where A is the m element set {iu , im). Thus any idempotent

e e Em(L/F) can be written as e[At] -[-.. . + e[Ar], where the At are distinct

m element subsets of {1, , ή\. The integer r is the rank of e.

LEMMA 2.1. With F algebraically closed, e = e[Ax] + + e[Ar] is

regular if and only if n\rm and each j , 1 < j < n, appears in exactly rmjn

of the At's.

Proof. Write L = Fe(ί) + * + Fe(m). Once again, consider L c

Tm(LIF) by identifying L and ^(L). For an e as above, Tm(L/F)e has

constant L dimension if and only if the F modules Tm(L/F)ee(j) have

equal dimension for all j . Call this dimension s5. Note that e[A]e(j) Φ 0

if and only if j e A. Thus each j appears in exactly Sj of the A/s. Sup-

pose the s/s are all equal to, say s. Then by counting, s must be rm/n.

This lemma is now clear. Q.E.D.

For the rest of this section we assume that m divides n. Still treating

the case F is algebraically closed, we have that if e e Em(L) is regular,

then r > njm. We say e is basic if e is regular and has rank exactly n[m.

The next lemma is an immediate consequence of the last.

LEMMA 2.2. Assume m | n and that F is an algebraically closed field.

Then e = e[AJ + + e[Ar] is basic if and only if the At's form a partition

of the set {1, , ή}.

Consider, now, general L and F. If e e Em(L/F) then the above lemma

and 1.2 show that e has rank greater than or equal to n/m. As in the

special case, we say e is basic if it is regular of rank equal to n\m.

The main result of this paper is a bijection between basic idempotents
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in EJL/F) and F subalgebras U c L of codimension m. This bisection
is defined as follows. For a basic idempotent e e EJL), set Ψ(e) to be
the subalgebra of L equal to {a e L | ηx(ά)e = ^2(#M Note that since e is
symmetric, Ψ(e) is also equal to {aeL\ηr(a)e = ηs(a)e} where r Φ s.

THEOREM 2.3. Ψ induces a bijectίon between basic idempotents of Em(L)

and F subalgebras of L of codimension m.

Proof. Assuming e is basic, we first observe that basic idempotents
behave well with respect to direct sums and base change. That is, if F =
F, Θ F2 and EJL) = EJLJF,) © EJLJF2), then the basic idempotents of
Em(L) are exactly the elements of the form ex © e2 where et e EJLJFi) is
basic. One can quickly compute that W(eί © e2) = Ψ{e^) © Ψ(e2). Similarly
if F' 2 F and β e EJL/F) is basic, then e ® l e Em{L ® F'/F') is basic and
Γ(e®l)s Ψ{e)®FF\

The next step is to show that if e e EJLjF) is basic, then W(e) is as
claimed. Using the first paragraph, one sees that we may assume F is
an algebraically closed field. In this case, we can write e = e[AJ + +
e[Ar] where the A/s are a partition. An easy calculation shows that
ψ(e) = {axe(l) + + ane(ή) \ at = aό whenever i, j are in the same Ak}»

That Ψ(e) has codimension m is now clear.

Conversely, suppose U c L is an F subalgebra of codimension m.
Viewing L as an U algebra we can define Tm(L/L% Σm{Llϋ), and Em(L\Lf).
Denote by feΣm(LjL') the idempotent such that fΣm(LjU) = Em{LjLf\
Tm(LIU) only differs from Tm(L/F) in that the former is a tensor power
over a larger coefficient ring. Thus there is a natural F algebra surjection
φ: Tm(L/F) -> Tm{LjL'). Note that φ preserves the action of Sm, and so
induces a surjection ΣJJLIF) -> Σm(L/L'). Denote by V and V the mth

exterior powers of L taken with respect to F and U respectively.

Just as before, there is a natural map p: V —> V7. Using ψ we consider
V to be a ΣJJLjF) module and note the immediate fact that p is a Σm(LIF)
module map. It follows that p and φ induce a surjection μ: Em(LjF)-+
EJJLjV). When EJJLIF) and EJJL\L') are considered subsets of TJL/F)
and TJL/U) respectively, μ is just the restriction of φ. Let e e EJL/F)
be the unique idempotent such that μ induces an isomorphism eEJL/F)
^ EJL/L'). Since V has dimension one over U, Em(LjU) has dimension
7i/ra over F and so e has rank n/m. ψ induces an isomorphism from
eTJL/F) to fTJL/U), and so e is regular and hence basic. That Ψ(e) 3 U
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follows precisely from the fact that TJJL\U) is a tensor power over ZΛ

Finally, Ψ{e) — U using dimensions.

It remains to show that Ψ is injective. Suppose that ef e Em(LjF) is

basic and e e EJLjF) is constructed, as in the above paragraph, using

JJ = ψ{e'). Let W c Tm{LjF) be the F submodule spanned by all elements

of the form ηr{a) — ηs{a) for aeU and r Φ s. Then W is exactly the kernel

of ψ and ef annihilates W. If W is the annihilator of W, then ψ is in-

jective on W and β, e' e W. Since ef e Em(L/F), φ(ef) e Em(L\Lf) = fΣm(L/U)

and so ^(eθ/ = ^(e') Pulling back to W we have e'e — e'. But e and e'

have the same rank so e = e'. Q.E.D.

Consider the case L is a field. Then every idempotent of Em(L/F)

has rank > njm. Thus the basic idempotents are the minimal ones. Note

that a minimal idempotent will not be basic, unless some basic idempotent

occurs.

COROLLARY 2.4. Let L be a field. Then either L\F has no subfields

of codimension m, or there is a bijection between such subfields and the set

of minimal idempotents of Em(L/F).

Supposing e e Em(LIF) to be basic, then eEJJL\F) has dimension n\m

over F. Therefore it is natural to expect that eEm(LjF) is isomorphic to

Ψ(e) c L.

THEOREM 2.5. Em(LIF)e c ^(L)^, and if this last algebra is identified

with L, then Em(L/F)e = W(e).

Proof. To begin, let us show that Em(JL\F)e c ηx(L)e. As usual, it

suffices to show this when F is an algebraically closed field. We have

e = β[AJ + + e[Ar] where the A/s partition {1, , ή\. For each /,

1 <Ξ i < n, let r(i) be such that i e Ariί), and set Bt = ArU) — {i}. Write

fi — Σ * e (0 ® e(σ(a)) ® * *' ® e(σ(b)) where the summation is over all permu-

tations of Bt. An easy exercise shows that fu , fn form a basis of %(L)e.

Since e[AJ is the sum of /* for ί e A3, the inclusion is clear.

As EJJj\F)e and 3Γ(e) have equal dimension, we finish this proof by

showing Em(L/F)e c Ψ(e). But if ^(α)e 6 Em{LjF)e, then ^(α)e is fixed by

Sm and so ^(α)e = η2(a)e. That is, α e Ψ(e). Q.E.D.

It is instructive to consider a special case of 2.3. Suppose L is a field

and Galois over F with group G. For each σ e G, L®FL contains a unique
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idempotent e(σ) such that, for all aeL, (a®ΐ)e(σ) = (1® σ'1{d))e{σ). Fur-

thermore, L®FL = Σ* Le{σ).

An easy argument shows that for any σ2, , σm e G, Tm{LjF) has a

unique idempotent e(σ2, , σm) such that

%(a)e(a2, , <7m) = 37J(c7j1(α))e((72, , σm)

for all 2 < j < m and all α € L. The e(σ2, , σm)9s comprise all the minimal

idempotents of Tm(L/F). Therefore the action of Sm on Tm{LjF) induces

a permutation action of Sm on the β(σ2, • , σm)'s. We briefly describe this

later action. Viewing Sm as the permutation group of the set {1, , m),

consider Sm_ί C Sm to consist of those permutations which fix 1. Sm_!

acts on the e(σ2, , σm)'s via permutation of the σ/s. If r e Sm is the two

cycle (1 k), then τ(e(σ2, , σm)) = e(σ^σ29 , σ^\ , σ^σj.

Define e[σ29 - ,σm]e Tm(L/F) to be

Σ e(tfr(2)> * ' >tfr(m)) -
τ€5T O_i

It is now not hard to derive the following result.

THEOREM 2.6. The basic idempotents of Em(L/F) are exactly the idem-

potents e = e[σ2, - , σm] where {1, σ2, , σm) C G is a subgroup of order

m. Ψ(e) is the fixed field of this subgroup.
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