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THE BERGMAN METRIC ON A THULLEN DOMAIN

KAZUO AZUKAWA AND MASAAKI SUZUKI

§ 1. Introduction

In this paper we shall study the holomorphic sectional curvature of

the Bergman metric on a domain

Dp: = {(z, w) e C2\\z\ < 1, \w\2 < (1 - \z\ψ}

in C\ where 0 ^ p <: 1. (Ifp^O then

Dp = {(*, w) e C2\\z\2 + \w\2/p < 1}.)

If 0 < p < 1 then Dp is called a Thullen domain. (Do is the unit bidisc

and Dλ the unit ball.)

We shall determine the maximum and the minimum of the curvature

at an arbitrary point of Dp (Theorem 1), and examine the boundary be-

havior of the curvature (Corollary of Theorem 2).

We shall have the maximum and the minimum of the curvature on Dp,

which are negative and given by simple rational functions of p (Theorem

3).

§ 2 Bergman metric on a complete Reinhardt bounded domain in C2

Let D be a bounded domain in Cn with the natural coordinate (z\ , zn)

and K(z\ , zn) be the Bergman kernel function of D. The Bergman

metric on D is defined by

a,b

where ha5 : = 32 log K/dzadz\ The Riemann curvature tensor of the metric

is given by

7? •— d2ftαδ v hej dha7 dhe5
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where (heJ) is the inverse matrix of (haB) in the sense that J^b hadh
cB = δc

a.

The holomorphic sectional curvature of the Bergman metric in a direction

u at qe D, which is a holomorphic tangent vector at q (i.e. u e Tq(D))

such that h(q)(u, u) = 1, is given by

H(q; u) : = - Σ Rα5cMuαΰbucΰd ,
α,b,c,d

where u = ΣαUα(dldzα)q. We use the following notations:

Kα:=dKldzα, K&:=dKldzα for α = 1, . , n

for (Zjr = 1, , n, 1, , n and α = 1, , n .

Then the following formulas hold (cf. Kobayashi [4], p. 275):

•u _ KKα5 — KαK5

Rαbcd = ~~ (hαbhca, + hαdhcb) + -Rαδc<Z >

where

p . _ KαUd _ KαcKU

(2.1) 1

- -^Γ Σ

Suppose D is a complete Reinhardt bounded domain. Since then K

is a C°°-function of the variables \z}\2 (j = 1, , ή), making use of (2.1),

we have

1

- -^Γ Σ Ae 7(#ίw - καcKj){κκm - κwκe).

(2.2) Rαbcd = Rcbαd > Rαbcd, ~ ^αdcb > ^αδcd = -Rδαίic

If n = 2, making use of (2.2), we obtain the following:

LEMMA 1. If D is α complete Reinhardt bounded domain in C2 then

2 - H(q;

+ ZRe(2Rim(q)u2ΰv + R

where q e D, (u9 v) e C2 with

Mi)Iu\ 2 + 2βe (hή(q)uv) + hdq)I v\2 = 1

JSα5c5 is ί/ie Censor defined by (2.1).
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§ 3. Upper and lower curvatures of a bounded domain

Let D be an arbitrary bounded domain in Cn. Let h be the Bergman

metric on D and H(q; u) the holomorphic sectional curvature of h in a

direction u at q e D. We shall use the following:

DEFINITION. Set

UM : = max{H(q; u)\ue Tq(D), h(q)(u, ΰ) = 1} ,

LD(q) : = min {H(q; u)\ue TQ(D), h(q)(u, ΰ) = 1} , g 6 D

uD : = sup {C/ Xg)Ig GZ>} ,

£D:=inί{LD(q)\qeD}.

We call UD(q), LD(q), uD and ^ the upper, the lower curvature at q, the

upper and the lower curvature of D respectively.

The upper and the lower curvatures are biholomorphically invariant

quantities on the bounded domains in a fixed Cn:

PROPOSITION. Let f be a biholomorphίc mapping of D to D, where D

and D are bounded domains in Cn. Then UD — U3 °/, LD = L$ of9 uD = u&

and £D = £β.

Proof. Let h and h be the Bergman metrics on D and D respectively,

and Hh, H^ and Hs^ the holomorphic sectional curvatures of h, h and f*h

respectively. Then h = f*L If u e Tq(D) (q e D) and h(q)(u, ΰ) = 1 then

h(f(q))(f*u9f~u) = (/*Λ)(g)(w, s) = Λ(9)(M, ΰ) = 1. Hence the fact ffΛ(g; M)

= Hf*fi(q; u) = Hfi(f(q);f*u) implies our assertion. Q.E.D.

§ 4. Upper and lower curvatures at a point of Dp

We now return to our domain Dp defined in the section 1. The Bergman

kernel function of Dp is given by

where 1/c ( = π2/(l + p)) is the volume of Dp with respect to the euclidean

metric on C2 and

(4.2) r

(cf. Ise[2]). The group of all biholomorphic transformations of Dp includes

the group of the mappings
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(z' = λ(z + ά)l(l

\u/ = μ(l - |αr|2)r|2)p/2(l + az)~pw,

where λ9 μ, a e C; \λ\ = \μ\ = 1, \a\ < 1 (cf. Ise[2], p. 517). Now we set

Up : = UDp, Lp : = LDp9 up : = w^, ^ : = ^ .

LEMMA 2. 1/ (2, w) e Dp then

U,(z,w)=U9(0,\w\(l-\zr)-"*)9

Lp(z,w) = Lp(O,\w\(l-\z\r*<2).

Proof. Let (zQ, w0) e Dp. Set

where μ : = |w;0|/ιι;0 if w0 Φ 0, or μ :—1 if iί;0 = 0. Then / satisfies the

condition (4.3) and maps (z0, w0) to (0, |M>0 |(1 - \zo\
2)-p/2). Therefore, Pro-

position in the previous section implies our assertion. Q.E.D.

By virtue of Lemma 2, for the purpose of finding the values Up(z, w)

and Lp(z, w)9 it is enough to examine Up and Lp at (0, w) with \w\ < 1.

For the convenience of calculations we introduce a new variable

(4.5) t = t(w) : = (1 - |^|2)/(1 - r\wf), \w\ < 1 ,

where r = (1 - p)/(l + p) as (4.2).

LEMMA 3. Lei 0 < p <̂  1 and |M;| < 1. 7/ r and t are as (4.2) and (4.5)

then

2 - 17,(0, «;) = 4min{AΛ;2 + 2Bxy + Cy2\x,y^ 0,ax + βy = 1} ,

2 - Lp(0, a;) = 4max{Ax2 + 2Bxy + Cy2\x,y^ 0,ax + βy = 1} ,

where

(4.6)

Proof. We note 0 ^ r < 1, because p > 0. Then 0 < t ^ 1 and |κ>|2

= (1 - 0/(1 - rt). It follows that

(α = 3 + rt\ β = 3- rt2

A = 6 + 4rtz + (1 + r)rί 3 ,

B = 2(9 + 3rf - 3(1 + r)rf + 2r2ί4)/(3 + rf),

C = 3(6 - 6rt2 + (1 + r)rί3)/(3 - rt2).
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MO, w) = α/(l + r)t,

2(0, w) = β(l - rtfl(l - r)H2,

•ffmϊ(O, w) = 4A/(1 + r)Ψ ,

ΛlM(O, α;) = 2(1 - rt)2jB/(l + r)(l -

i W θ , «;) = 4(1 - rtyC/il - r)4ί4,

Setting x := \u\2/(l + r)t, y := \v\2(l - rί)2/(l - r)Ψ, we obtain the desired
formulas by Lemma 1. Q.E.D.

Now our key theorem is the following:

THEOREM 1. Let 0 ^ p gΞ 1 and \w\ < 1. If r and t are as (4.2) and

(4.5) then

[7,(0, w) = 2 - 4F/(3 + r<2)2£ ,

Lp(0, M;) = 2 - 4 max {3(6 - 6rt2 + (1 + r)rίs)/(3 - rtj ,

(6 + 4rt2 + (1 + r)rts)l(3 + rtj),

where

E = 162(1 + r) - 180rί - 81(1 + r)rf + 48rΨ + 24(1 + r)rΨ

- 12r3ί5 - (1 + r)rψ > 0 ,

F = 972(1 + r) - 1080rί + 162(1 + r)rt2 - 27(3(1 + r)2 + 16r)rf

+ 72(1 + r)rH* + 18(3(1 + r)2 - 4r)r2ί5 - 54(1 + r)rY

+ (3(1 + rf + 16r)r3ί' .

To prove Theorem 1, we prepare the following:

LEMMA 4. Lei a, β, A, B and C be real numbers such that a, β, Ca — Bβ
and Aβ — Ba are all positive. Set f(x,y) := Ax2 + 2Bxy + Cy2, g(x,y) : =
ax + βy. Then we have

max {f(x, y)\x,y^0, g(x, y) - 1} = max {A/a2, C/β2} ,

AC-B2

min {/(*, y)\x,y^0, g(x, y) = 1} =
Aβ2 - 2Bβoc + Ca2

Proof. Using A/a2, B/β2 ̂  (AC - B2)l(Aβ2 - 2Bβa + Ca2), we obtain
our assertion by the Lagrange's method. Q.E.D.



6 KAZUO AZUKAWA AND MASAAKI SUZUKI

Proof of Theorem 1. Suppose 0 ..< p <; 1. Let a, β9 A, B and C be as

(4.6). It follows that

Ca- Bβ = rfEJ(3 - rf)(3 + rf) , Aβ - Ba = rt3E2,

A/32 - 25/fo + Ca2 = β(Aβ - Bar) + tf(Car - 5j8) = rfEI(3 - rt2) ,

AC- B2 = rfFI(3 - r*2)(3 + rί 2) 2,

where

(E, : = 9En + ίJ12r
2ί4 , En:= 9(1 + r) - 12rί - 9(1 + r)rt,

[E2 := 9(1 + r) - 8rί - (1 + r)rP .

If 0 < p < 1 then 0 < r < 1 and £JU, £J12, £J2 > 0 (0 < t ^ 1). Moreover

Ca — Bβ > 0, Aβ — Ba > 0. Applying Lemma 4 to the above values, we

obtain the desired formulas in the case 0 < p < 1.

If p = 1 then r = 0. In this case we can prove our assertion directly

from Lemma 3.

Suppose p = 0. Then t = 1 identically. But we know that UQ(0, w)

= — 1/2, L0(0, w) = — 1 (cf. Kobayashi [5], p. 40). Hence our assertion is

valid also for p = 0. Q.E.D.

§5. Upper and lower curvatures of Dp

From Theorem 1 we induce some consequences.

THEOREM 2. Let 0 < p < 1. Then:

( i ) l i m , ^ Lp(0, iι;) = limI ισH1 E7p(0, w) = - 2/3.

(ii) Lp(0, w) is strictly increasing with respect to \w\.

(iii) £7p(0, w) is strictly decreasing with respect to \w\.

Proof, ( i ) : Obvious by Theorem 1.

(ii): If 0 < r < l and 0<t^l then

9 / 6 - 6rf + (1 + r)rf \ = 3rf (3(1 + r) - 8rt
3ί \ )

3ί \

(3 - rtj ) (3 - rί2)4

r) - 8rt -

(3 + rί2)2 / (3 + rtj

It follows that Lp(0, w) is strictly decreasing with respect to t.

(iii): If 0 < r < 1 and 0 < t^ 1 then
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dt

where

+ rtJE) = (ί—E -
\\ dt dt

= rfMI(3 + rtJE2

+ rf) - /(3 + rtJE2

(5.1)

f M := 92MX + 9rHΊM2

Mx : = - 2 93(1 + 3r + 3r2 + r3)

+ 5 9(45r + 23r2 + 23r3 +

- 3(141r2 - 1385r3 - 1385r4

+ 6(31r3 + 109r4 + 109r5 +

M2 := - 32 9 4r2 - 16-9(3 - r -

+ (21r - 241r2 - 241r3 +

LM3 : = ( - 45 + 32r - 48r2) + (3

56 93(r + 2r2 + rz)t

48(123r2 + 206r3 + 123r4)*3

")f + 48(13r3 - 6r4 + 13r5)ί5

- 32(9r4 + 26r5 + 5r*)f ,

r3)ί + 8(75 + 86r2

rV ,

25r + 25r2 + 3rs)t .

But it can be proved that M19 M2, Mz < 0 for 0 < r < 1 and 0 < t <; 1.

As the authors' proof is tedious, we leave it in Appendices (Proposition

A3 and Proposition A4). Admitting the above facts, we conclude our as-

sertion by a similar proof to (ii). Q.E.D.

Instead of (iii) the following is more easily proved:

(iiiO 17,(0, w)> - 2 / 3 for |κ;| < 1 ;

which we shall use in the following:

COROLLARY. Let 0 <p < 1. Let Hp(z, w u) be the holomorphic sec-

tίonal curvature of the Bergman metric on Dp in a direction u at (z, w) e

Dp. Let (ζ, ω) e dDp. Then:

( i ) // ω Φ 0 then lim(ίf10)_*(ς,β) Hp(z, w; u) = —2/3 uniformly in the

directions u.

(ii) // ω = 0 ί/ien ί/iere does zoί exist the uniform limit of Hp{z, w; u)

as (z, w) -> (ζ, 0).

Proof. By Lemma 2 the image of the mapping u H-> HP(Z, w; ύ) is the

closed interval [Lp(0, |ιι;| (1 - |^|2)-p / 2), Up(0, \w\(l- \z\2yp/%

( i ) : If ω Φ0 then |u;| (1 - \z\2)~p/2 -+ 0 as (z, w) -> (ζ, ω), hence

Im Hp(2;, u;; •) -> {-2/3} as (2?, «;) -> (ζ, ω) by (i), (ii) in Theorem 2 and (iϋ').

(ii): If ω = 0 and a complex sequence fo) satisfies | ^ | < 1, zs-+ζ

then Imiϊpfe, 0; •) = [^(0, 0), Upψ, 0)] 2 {- 2/3} by (i), (ii) in Theorem 2

and (iiiO. Q.E.D.

Remark. l£ D d Cn is a strongly pseudoconvex bounded domain with
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C00 boundary and if g e 3D then l i m ^ H{qf u) = — 2j{n + 1) uniformly in

the directions u (cf. Theorem 1 in Klembeck [3]). In our domain DP9 suppose

1/p be a positive integer. Then Dp is with C°° boundary and is strongly

pseudoconvex at (ζ, ω) e dDp if and only if ω Φ 0. Corollary gives a counter

example to the question whether the above theorem is valid under the

assumption that D is pseudoconvex instead of strongly pseudoconvex.

As an immediate consequence of Theorem 2, we obtain:

THEOREM 3. Let 0 <: p <: 1. Then:

( i ) £p = Lp(0, 0) = - (1 +

(ii) W p = 0,(0, 0) = - 2(2

Instead of (ii) the following is more easily proved:

(ii') up = max {0,(0, w)\\w\ < 1} < 0.

According to Proposition in the section 3, we obtain:

COROLLARY 1. If 0 <: px < p2 <̂  1, ί/ιe?ι £Pι < £P2, hence DP1 is not

biholomorphically equivalent to DP2.

From (iiO we have the following:

COROLLARY 2. Let 0<p^l. The holomorphic sectional curvature of

the Bergman metric on Dp is strictly negative.

Appendices

Al. Fourier's theorem concerning to the zeros of a polynomial

Set sgnc : = c/|c|, ceR — {0}. Let q be the number of the non-zero

terms in a real finite sequence (c^-o We define the number of changes

of sign in (c;) as follows:

( Σ (1 " sgn cn._xcnj)l2 , q ^ 2 ,
V(c0, -,cp) : = o-i

1 0 , q - 0 or 1 ,

where if <? ̂ > 1, {cn))i\ is the subsequence deleted the terms c ; with Cj = 0

(i.e. n0 = min {k\ck Φ 0}, n3 = min{fe > n ^ | c f c ^ 0 } (1 ^ j ^ g — 1)).

Let fe R[t] — {0}, ceR and I c 2? be an interval. We denote

V(c) := Vf(c) := V(f{c\f^(c), . . •, /^(c)), n := deg/

NI:=NJ:=Σ ( t h e o r d e r o f z e r o t o / at ί)
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The following theorem is well known:

FOURIER'S THEOREM ([1]). Let feR[t] — {0} and a, beR with a < b.

Then there is a non-negative integer v such that

N(a, b] = V(a) - V(b) - 2v .

As an immediate consequence of Fourier's Theorem we have:

PROPOSITION Al. Let f, a and b be as in Fourier's Theorem. Then:

( i ) // V(a) = V(b), then f has no zero in (α, 6].

(ii) If V(a) = V(b) + 1, then f has only one simple zero in (a, b].

We shall use Proposition Al in the following section.

A2. Negativity of Ms in the proof of Theorem 3

In this section we shall show that the functions M3 of the variables

r and t defined by (5.1) are negative for (r, t) e (0,1]2. First we can write

dt

where

; : = 756(1 + 2r + r2) + 15(45 + 23r + 23r2 + 45r3)ί

- 24(123r + 206r2 + 123r3)*2 - 2(141r - 1385r2 - 1385r3

+ 40(13r2 - 6r* + 13r4)*4 + 186r2*5 ,

[N2 : = 9(109 + 109r + 31r2) - 56(9 + 26r + 5r2)*.

PROPOSITION A2. Nx(r, t)>0 for (r, t) e (0,1]2.

Proof. Set fr(t) : = Nfr, t), (r, t) e (0,1]2. We shall apply Proposition

Al to fr and the interval (0,1], It follows that

/o>(0) = j ! (the coefficient of tύ in fr)

/r(l) = 1431 - 1377r - 367r2 + 253r3 + 238r4,

/ci)(i) = 675 - 6405r + 1777r2 + 2121r3 + 1234r4,

/ f ( l ) = 12r(- 633 + 1391r + 653r2 + 379r3) ,

ff\l) = 12r(- 141 + 3355r + 905r2 + 899r3) ,

f?\l) = 240r2(145 - 24r + 52r2) ,

Applying Proposition Al to the polynomials f(

r

J)(0), f(

r

j)(ΐ) of variable r and
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the interval (0,1], we can see that /r(0), /'"(O), /<2)(0), /<4)(0), /<«(<)), fr(ί),

/<.4)(1) and /«>(1) have no zero in (0,1], while each of /<3)(0), /<?>(1), /<2>(1)

and ff\l) has only one simple zero in (0,1], say ru r2, r3 and r4 respectively.

Moreover we have

and the following tables of signs:

r

fM
/(1)/A\

/"(3)/A\
/ r \^v

/*(5)/YY\

0

:

0

0

0

0

r, 1

+ : + :

—
- 0 + :

+ : + :
+ : + :

fr(X)

: + : + 0 - : -
0 - : - : - 0 +
0 - 0 + : + : +
0 + : + : + : +
0 + : + : + : +

Table 1. Table 2.

It follows from the tables that F/r(0) = VJr(l) = 2, re (0,1]. Therefore /,

has no zero in (0,1] for any r e (0,1]. Q.E.D.

PROPOSITION A3. M, < 0 for (r, t) e (0,1]2.

Proof. It is easily seen that

N2 ^ N2(r, 1) ^

Proposition A2 and (A2.1) show that M^r, t) ^ M,(r, 1), (r, ί) e (0,1]2. But

we have

1) = - 2 93 + 3 9V - 66 9r2 - 10-9V + 354r4 + 23r5 + 26r6

therefore using Proposition Al, we obtain M^r, 1) < 0, re(0,1]. Q.E.D.

Finally we consider Mz and M3. Set gr{t) : = Mz{r, t), (r, t) € (0,1]2.
Then Vgr(0) = VSr(ΐ), r e (0,1]. On the other hand, M% ̂  M^r, 1) < Ms(l, 1)

= — 5. Therefore we have proved the following:

PROPOSITION A4. M2> M3 < 0 for (r, t) e (0,1]2.
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