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THE BERGMAN METRIC ON A THULLEN DOMAIN
KAZUO AZUKAWA anp MASAAKI SUZUKI

§1. Introduction

In this paper we shall study the holomorphic sectional curvature of
the Bergman metric on a domain

D,: ={z, weCz| <1, lwf <1~ [2)}
in C* where 0 <p < 1. (If p # 0 then
D, = {(& w) e C*||2]" + [w['* <1})

If 0 <p <1 then D, is called a Thullen domain. (D, is the unit bidisc
and D, the unit ball.)

We shall determine the maximum and the minimum of the curvature
at an arbitrary point of D, (Theorem 1), and examine the boundary be-
havior of the curvature (Corollary of Theorem 2).

We shall have the maximum and the minimum of the curvature on D,,
which are negative and given by simple rational functions of p (Theorem
3).

§2. Bergman metric on a complete Reinhardt bounded domain in C*

Let D be a bounded domain in C* with the natural coordinate (2!, - - -, 2")
and K(2, ---,2") be the Bergman kernel function of D. The Bergman
metric on D is defined by

hi= 23 hodz®-dz°,
a,b

where h,; := 3*log K/0z°0z°. The Riemann curvature tensor of the metric
is given by
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where (h¢7) is the inverse matrix of (h,;) in the sense that >, h ;A% = 5.
The holomorphic sectional curvature of the Bergman metric in a direction
u at ge D, which is a holomorphic tangent vector at g (i.e. u e T(D))
such that h(g)(u, @) = 1, is given by

H(g;w) := — Zd R s(Quen’uu’
a,b,c,

where u = >, u%(0/0z%),. We use the following notations:
Ka = aK/BZ“, KEZZ aK/aza for a,::]_’...,n;

Ka;---a:a = aKal...as/Gz“ , Kal---asﬁ c= aKm...a,/aZ“
fore,=1,---,n,1,---,fn and a=1,---,n.

Then the following formulas hold (cf. Kobayashi [4], p. 275):

- KK,; — K, K; )
“ K®
Risea = — (Roshea + hoghes) + éaﬁcd ,
where
A K,; K, K;
R g p— abed  __ actdpd
abed K K*

— 7 D KKy — KoK KKy, — KiK.

@.1)

Suppose D is a complete Reinhardt bounded domain. Since then K

is a C=-function of the variables |2’} (j = 1, - - -, n), making use of (2.1),
we have
(2-2) Rchd = ﬁcﬁad ’ Raﬁcd = éadcﬂ ’ Raﬁci = Rb&dé .

If n = 2, making use of (2.2), we obtain the following:
Lemma 1. If D is a complete Reinhardt bounded domain in C* then
2 — H(g; u(0/02"), + v(3/32%),)
= Rlili(q)lul4 + 4R1I2§(Q)|u|2lvl2 + Rzézé(‘])lvr
+ 2Re(2R;1(Q)u* 0 + Rya(Q)u’t’ + 2Rzs(q)uvt’) ,
where q e D, (u, v) e C* with
hia(@)|ul” + 2 Re (hu(@)ud) + ha(@)|vf =1
and R is the tensor defined by (2.1).
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§3. Upper and lower curvatures of a bounded domain

Let D be an arbitrary bounded domain in C*. Let A be the Bergman
metric on D and H(q; u) the holomorphic sectional curvature of A in a
direction v at g e D. We shall use the following:

DEeFINITION. Set

Ux(q) := max {H(q; u)|u € T(D), h(g)(u, ) = 1},

L(q) := min {H(g; u)|ue T(D), h(g)(w, @) =1}, qeD;
up 1= sup {Ux(q)|q € D},
¢, :=inf{L,(q)|q € D} .

We call Uy(q), L,(q), u, and ¢, the upper, the lower curvature at q, the
upper and the lower curvature of D respectively.

The upper and the lower curvatures are biholomorphically invariant
quantities on the bounded domains in a fixed C":

ProrositioN. Let f be a biholomorphic mapping of D to ﬁ, where D
and D are bounded domains in C*. Then U,=Upof, Ly=Lsof, up=u;
and ZD =/ D

Proof. Let h and A be the Bergman metrics on D and D respectively,
and H,, H; and H,.; the holomorphic sectional curvatures of A, h and f*h
respectively. Then A = f*h. If ue T(D) (ge D) and A(q)(u, @) =1 then
AF(@)fuu, f)) = (f*h)@)(w, @) = h(g)(u, @) = 1. Hence the fact H,(q; )
= H,(q; v) = Hy(f(q); f«u) implies our assertion. Q.E.D.

§4. Upper and lower curvatures at a point of D,

We now return to our domain D, defined in the section 1. The Bergman
kernel function of D, is given by

(1 — (2P — rlwp
4.1 = ’ ) Dp ’
@1 Kew =y - wpa -’ @W°

where 1/c (= 7*/(1 + p)) is the volume of D, with respect to the euclidean
metric on C? and

(4.2) r=r(p):=Q0—-p)J/Q1+p

(cf. Ise[2]). The group of all biholomorphic transformations of D, includes
the group of the mappings
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“3) {z’ = ANz + a)/(1 + az),

w = p(l — [af)”*(1 + @2)"w,
where 2, y, a€C; (2] = |p| =1, |a] <1 (cf. Ise[2], p. 517). Now we set
Uy,:=Up, Lyi=Lp, u,:=up, £,:=4,,.
Lemwma 2. If (2, w)e D, then
U,(z, w) = U0, |w| 1 — [2[)"*") ,
Ly(z, w) = L,©0, [w| (1 — |2[)~*") .
Proof. Let (2, w)) e D,. Set
fz, w) :=((z — 2)/(1 — 22), p(1 — [2,[)"*(1 — Z2)""w) ,

where p:=|w,|/w, if wy#0, or p:=1 if w,=0. Then f satisfies the
condition (4.3) and maps (2, w,) to (0, |w,| (1 — [2[)~?%). Therefore, Pro-
position in the previous section implies our assertion. Q.E.D.

By virtue of Lemma 2, for the purpose of finding the values U,(z, w)
and L,(z, w), it is enough to examine U, and L, at (0, w) with |w| < 1.
For the convenience of calculations we introduce a new variable

4.5) t=tw):=QA - |wp/A — rlwp, lw <1,
where r = (1 — p)/(1 + p) as (4.2).

LEMMA 3. Let 0<p<1and|w| <1l Ifrandtareas(4.2) and (4.5)
then

2 — U,(0, w) = 4min {Ax* + 2Bxy + Cy*|x,y = 0, ax + By = 1},
2 — L,(0, w) = 4max {Ax* 4+ 2Bxy + Cy*|x,y = 0, ax + By = 1},

where
a=38+rf, p=3—rt;
A=6+4r* + 1+ r)rt*,

B =209 + 3rt* — 3(1 + r)rt* + 2r'")/8 + rtH),
C =236 — 6rt* + A + rre)/(8 — rt?) .

(4.6)

Proof. We note 0 <r <1, because p >0. Then 0<¢t<1 and |w}
=1 — )/ — rt). It follows that
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hi(0, w) = /1 + 1)t ,

hs(0, w) = Bl — rey’(1 — rye,

hz(0, w) =0 ;

R0, w) = 44/ + rye*,

Ris(0, w) = 201 — rt)*B/1 + 1)1 — ),
Ryn(0, w) = 4(1 — rt)*'Cl(1 — r)'e,
émi(O, w) =0 ’

R0, w) = 0,

,\éﬁzé(O, w)=0.

Setting x := |ul}/(1 + r)t, y := |v(1 — rt)*/(1 — r)*?, we obtain the desired
formulas by Lemma 1. Q.E.D.

Now our key theorem is the following:

THEOREM 1. Let 0<p <1 and |w|<1. Ifr and t are as (4.2) and
(4.5) then

U0, w) = 2 — 4F/(3 + rt’)’E,
L0, w) =2 — 4max {3(6 — 6rt* + (1 + r)rt)/(8 — rt*)*,
(6 + 4rt* + (1 + r)re)/(8 + )},
where
E = 1621 + r) — 180rt — 81(1 + r)re* + 48r%® + 241 4+ r)ri
—12r*t — Q4+ rree >0,
F = 9721 + r) — 1080rt + 162(1 + r)rt2 — 27(3(1 + r)* + 16r)re*
+ 721 + r)r*tt + 18(3(1 + r)* — 4r)r*t® — 541 + r)riet
+ (3(1 + r)* + 16r)rét’ .
To prove Theorem 1, we prepare the following:
Lemma 4. Let a, B, A, B and C be real numbers such that «, B, Ca — Bp

and AB — Ba are all positive. Set f(x,y) := Ax* + 2Bxy + Cy*, g(x,y) :=
ax + py. Then we have

max {f(x, y)|x,y = 0, g(x, y) = 1} = max {A/a’, C/f},

AC — B
AR — 2Bpa + Ca* *

min {f(x, y)|%,y = 0, g(x,y) = 1} =

Proof. Using Ala?, B|f* = (AC — B)/[(AB* — 2Bpa + Ca*), we obtain
our assertion by the Lagrange’s method. Q.E.D.
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Proof of Theorem 1. Suppose 0 <p < 1. Let a, B, A, B and C be as
(4.6). It follows that

Ca — BB = rt’E,[(3 — rt®)(3 + rtY) Af — Ba = rt'E,

Ap* — 2Bfa + Co® = B(AB — Ba) + a(Ca — BpP) = rt’E((3 — rt?) ,
E=@—rt)E, + E,,

AC — B* = rt'F|(3 — rt)(3 + rt*)?*,

where

E :=9E,+ E ', E,:=91+r)—12rt — 91 + r)re?,
E,:=91+r)—4rt,
E,:=90+r)—8rt— @A+ ryr®.

fO<p<lthenO0<r<landE, E,E,>0(0<t<1). Moreover
Ca — BB >0, AB — Bax > 0. Applying Lemma 4 to the above values, we
obtain the desired formulas in the case 0 < p < 1.

If p =1 then r = 0. In this case we can prove our assertion directly
from Lemma 3.

Suppose p = 0. Then ¢ =1 identically. But we know that Uy(0, w)
= — 1/2, L(0, w) = — 1 (cf. Kobayashi [5], p. 40). Hence our assertion is
valid also for p = 0. Q.E.D.

§5. Upper and lower curvatures of D,

From Theorem 1 we induce some consequences.
THEOREM 2. Let 0 <p < 1. Then:

(i) lim,_, L0, w) = lim,,,_, U0, w) = — 2/3.

(ii) L0, w) is strictly increasing with respect to |w|.
(iii) U,(0, w) is strictly decreasing with respect to |w|.

Proof. (i): Obvious by Theorem 1.
(ii);: fo0<r<1land 0<t<1 then

_8__( 6 —6rt® + @1+ r)rts) _ 3r(B(L + 1) — 8rt + (1 + r)rt) >0

ot B — rt¥y @3 — rtty
_6_(6 +4r* 4+ (1 + r)rt3) _ 19 + r) — 8rt — (1 + r)rt’) >0
ot (8 + ey @+ rey '

It follows that L,(0, w) is strictly decreasing with respect to &.
(Gil): fo<r<1land 0<t<1 then
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—gt_(F/(3 + rE) = ((%E — F?aﬂt)(s + ) — 4rtEF> / @ + reyE®

= ri’M/(3 + r&®y’E® ,

where

(M := M, + 9t M, + 3r'e"M, ,

M = —2.910 + 3r + 3r* 4+ r®) + 56-9°@ + 2r* + r’)t
+ 5.9(45r + 23r? + 23r® 4 45r*)t* — 48(123r* 4+ 206r® + 123r%)¢
— 3(141r* — 1385r° — 1385r* + 141r°)¢° + 48(13r® — 6r* + 13r°)¢
+ 6(31r* 4 109r* + 109r° 4 31r%)e® — 32(9r* + 26r® 4 5ro¢" ,

M, := — 32.9-4r* — 16-9(3 — r — r* + 3r®)t + 8(75 + 86r* + T6ré)e*
+ (21r — 241r* — 241r® + 21rY¢ — r¥t,

(M, := (— 45 + 32r — 48r%) + (3 4 25r + 25r* 4 3rd)t .

6.1

But it can be proved that M,, M,, M, <0 for 0<r<1land 0<¢t< 1.
As the authors’ proof is tedious, we leave it in Appendices (Proposition
A3 and Proposition A4). Admitting the above facts, we conclude our as-
sertion by a similar proof to (ii). Q.E.D.

Instead of (iii) the following is more easily proved:
Gii") U0, w) > — 2/3 for |w| <1;
which we shall use in the following:

CoroLLARY. Let 0 <p < 1. Let H,(z w;u) be the holomorphic sec-
tional curvature of the Bergman metric on D, in a direction u at (2, w) €
D,. Let (¢, w)edD,. Then:

(i) If o +#0 then lim ,, .. H(2, w;u) = — 2/3 uniformly in the
directions u.

(ii) If o =0 then there does not exist the uniform limit of H,(z, w; u)
as (z, w) — (¢, 0).

Proof. By Lemma 2 the image of the mapping u — H,(z, w; u) is the
closed interval [L,(0, |w| (1 — [2)~?%), U,(0, |w| (1 — |z])~*?)].

(i): If o #0 then |w|Q — |2)"?"* -0 as (2, w)— ({, »), hence
Im H,(z, w; -) > {—2/3} as (2, w) — (§, ®) by (), (ii) in Theorem 2 and (iii’).

(ii): If w =0 and a complex sequence (z,) satisfies |2,/ <1, 2; >
then Im H,(z;, 0; -) = [L,(0, 0), U,(0, 0)] 2 {— 2/3} by (i), (ii) in Theorem 2
and (iii"). Q.E.D.

Remark. If D C C" is a strongly pseudoconvex bounded domain with
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C= boundary and if § € 9D then lim,., H(q, v) = — 2/(n + 1) uniformly in
the directions u (cf. Theorem 1 in Klembeck [3]). In our domain D,, suppose
1/p be a positive integer. Then D, is with C~ boundary and is strongly
pseudoconvex at ({, w) € dD, if and only if w #+ 0. Corollary gives a counter
example to the question whether the above theorem is valid under the
assumption that D is pseudoconvex instead of strongly pseudoconvex.

As an immediate consequence of Theorem 2, we obtain:

THEOREM 3. Let 0<p < 1. Then:
(i) ¢,=L,0,0) = — (1 + 4p + P)/1 + 2p)~
(i) u, = U,0,0) = — 22 + 11p + 15p* + 8p)/(2 + p)(1 + 3p)(4 + 5p).

Instead of (i1) the following is more easily proved:
() u, = max {U,0, w)||lw| <1} < 0.

According to Proposition in the section 8, we obtain:

Cororrary 1. If 0 p, <p, <1, then ¢, <4,, hence D, is not
biholomorphically equivalent to D,,.

From (ii’) we have the following:

CoroLLARY 2. Let 0 < p <1. The holomorphic sectional curvature of
the Bergman metric on D, is strictly negative.

Appendices

Al. Fourier’s theorem concerning to the zeros of a polynomial

Set sgnc :=cflc|, ce R — {0}. Let g be the number of the non-zero
terms in a real finite sequence (c;)?_,. We define the number of changes
of sign in (c;) as follows:

q-1
1—sgnc,, Cn 2, >2,
V(co: Y Cp) = jz=:‘;( gn i— j)/ q

0, g=0orl,

where if ¢ > 1, (c, )iz is the subsequence deleted the terms ¢; with ¢; =0

(i.e. no=min{klc, =0}, n,=min{k > n; ,jc, #0} A<j< q—1).
Let fe R[] — {0}, ce R and I C R be an interval. We denote

Vle) := V(o) := V(f(c), f(c), - - -5 f™M(c), n:=degf;
NI := N,I:= 3, (the order of zero to f at ?).

tel
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The following theorem is well known:

Fourier’s THEOREM ([1]). Let fe R[t] — {0} and a, be R with a < b.
Then there is a non-negative integer v such that

N(a, b] = V(@) — V(b) — 2v.
As an immediate consequence of Fourier’s Theorem we have:

ProrositioN Al. Let f, a and b be as in Fourier’s Theorem. Then:
(i) If V(a) = V(b), then f has no zero in (a, b].
(ii) If Vi(a) = V(b) + 1, then f has only one simple zero in (a, b].

We shall use Proposition Al in the following section.

A2. Negativity of M; in the proof of Theorem 3

In this section we shall show that the functions M, of the variables
r and ¢ defined by (5.1) are negative for (r, £) € (0, 1]2. First we can write

a—aﬂf—‘ = 6rN, + 4r*t’N, ,

where

(N, := T56(1 + 2r + r?% 4 15(45 4 23r 4+ 23r® 4- 45r®)¢
— 24(123r + 206r? 4- 123r%)* — 2(141r — 1385r% — 1385r® + 141r*)e
+ 40(13r* — 6r® 4~ 13r9)¢* 4 186r%° ,
N, := 9(109 4 109r + 31r%) — 56(9 + 26r 4 5r)¢.

PropositioN A2, N(r,t) > 0 for (r, t) e (0, 1]%

Proof. Set f(t) := N, %), (r,t)e(0,1]>. We shall apply Proposition
Al to f, and the interval (0,1]. It follows that

f9(0) = j! (the coeficient of ¢ in f,) ;

F(1) = 1431 — 1377r — 367r* 4 253r° + 2387,
f®Q) = 675 — 6405r + 1777r* 4 2121r® + 1234r*,
f@(1) = 12r(— 633 + 1391r + 653r% + 379r%) ,
fO(1) = 12r(— 141 + 3355r + 905r® -+ 899r°) ,
FO(1) = 240r2(145 — 24r + 52r%) ,

(1) = 240-.93r*.

Applying Proposition Al to the polynomials f¢°(0), f¢*(1) of variable r and
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the interval (0, 1], we can see that £,(0), f&(0), f®(0), f*(0), f&(0), £.(1),
(1) and f®(1) have no zero in (0, 1], while each of f&(0), f®(1), f&(1)
and f®(1) has only one simple zero in (0, 1], say r,, r,, r; and r, respectively.
Moreover we have

1 1 1
0 — il il
<r4<20<r‘<10<r2<5<r3<1

and the following tables of signs:

r o r 1 r O r, r, r, 1
1+(0) 4 f.Q) R R
fPO) | s+t M) | i+ i+ 00—
f20) | 0—:—: fM | 0—:—: —0+:
f20) | 0—-0+ : M | 0—0+:4+: 4
£P0) | 04 : 4 : fEM) | 04 4+ +
f&0) | 04 : + O | 0444+

Table 1. Table 2.

It follows from the tables that V,(0) = V,(1) = 2, re(0,1]. Therefore f,
has no zero in (0, 1] for any re (0, 1]. Q.E.D.

ProposiTiOoN A3. M, <0 for (r,t) (0, 1]
Proof. It is easily seen that
(A2.1) N, = Ny(r,1) = N(1,1) =1.

Proposition A2 and (A2.1) show that M (r,t) < M(r, 1), (r,t)€(0,1]°. But
we have

M(r,1) = —2-9 + 3-9r — 66-9r* — 10-9°r® + 354r* + 23r° 4 26r° ;
therefore using Proposition Al, we obtain M,(r,1) <0, re(0,1]. Q.E.D.

Finally we consider M, and M, Set g,(t) := My r,?), (r,t)c(0, 1]
Then V,(0) = V, (1), r€(0,1]. On the other hand, M, < My(r,1) < M1, 1)
= — 5. Therefore we have proved the following:

ProposiTiON Ad. M,, M, <0 for (r,t)e (0, 1]%
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