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PSEUDO-REFLECTION GROUP ACTIONS ON LOCAL RINGS

LUCHEZAR L. AVRAMOV

§ 1. Introduction

In a classical paper [C] Chevalley considered the invariants of a finite

group H C GLjciSί) generated by pseudo-reflections, acting on the graded

polynomial ring S = k[Xί9 , Xn] over a field k of characteristic zero. He

proved that S is free as a graded S^-module, hence SH is a graded poly-

nomial ring (Theorem A), and that the natural representation of H in

S/SξS is equivalent to the regular representation (Theorem B). On the

other hand, a theorem of Shephard and Todd shows that when SH is a

polynomial ring, the (finite) group H is generated by pseudo-reflections.

These results have been extended by Bourbaki [Bo2] to fields whose charac-

teristic may be positive, but does not divide the order \H\ of the group.

The study of invariants of pseudo-reflection groups acting on local

rings was initiated and largely motivated by Serre's [Se] generalization of

the Chevalley-Shephard-Todd theorem to regular local rings. In this note

we are interested in a general local situation. To describe it we introduce

some notation which will be in force for the rest of the paper. We fix a

commutative noetherian unitary local ring (R, m, k), and a finite group G

of automorphisms of R. The subring of invariants RG={x e R \ Vg e G: g(x)

= x}, over which R is integral, is local with maximal ideal mG = m Π RG

(cf. e.g. [BoJ). For an ideal α c R, Gτ(ά) = {geG\VxeR: g(x) - xe a} is the

inertia subgroup of α. We set H — Gτ(τή), which is the normal subgroup of

G, equal to Ker (G —• Aut (&)), and denote by ε the canonical homomorphism

H-> GLfc(m/m2). When \H\ e Rx ( = the group of units of R), RG is noetherian,

RGlmG = kG/H, and ε is injective: cf. (8), (9), and (10) below. An element h e H

is called a pseudo-reflection when ε(h) is a pseudo-reflection in the sense

of linear algebra, i.e. when rank (ε(h) — 1) = 1. From lemma (12) below one

has:
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(1) Suppose \H\ e Rx. Then he H is a pseudo-reflection if and only if

there exists an element xh e m such that h e Gτ(xhR). In this case xh e m2,

and is defined uniquely up to an ίnvertible factor.

We say that the action of G is generically without inertia if every as-

sociated prime of R has a trivial inertia subgroup. Clearly, it suffices to

impose the restriction on the maximal elements of Ass (R), and the condi-

tion is trivially satisfied when R is a domain. The symbol R*G is used

to denote the skew group ring (or trivial crossed product), i.e. the free

iZ-module with basis geG and (non-commutative when G Φ 1) multiplica-

tion defined by (xίgι)(x2g2) = X\g\(Xz)g\gi- In order to avoid confusion we

shall, for a — Σgeo agg € R*G and xeR, write ax when the product is taken
in JR*G, and a(x) when it is in the i?*G-module R: a(x) = ΣgeG <igg(x)-

Finally, the group ring of G over RG is denoted RG[G\.

(2) THEOREM. Suppose that \H\ e Rx, and that generically G acts on

R without inertia. If H is generated by pseudo-reflections, then:

(i) R has a normal basis with respect to G, i.e. R ~ RG[G] as RG[G]-

modules; in particular:

(iX R is a free RG-module of rank \G\;

(ii) the fibre (R, m) = (R/mGR, m/mGR) is an (artinian) strict complete

intersection, in the sense that the associated graded ring gγmR also is a

complete intersection.

Recall that the complete intersection defect, or deviation, of R is defined

to be the integer d(R) = v{a) — (dim R — dim R), where R is some regular

local ring, provided by Cohen's structure theorem, such that R = R\a, and

v denotes the minimal number of generators; this is an invariant of R,

and d(R) > 0, with equality holding precisely for the complete intersections.

When R is Cohen-Macaulay, the type of R is by definition the integer t(R)

= dimfe Exti i m i 2 (k, R); then t(R) > 1, the equality characterizing the Goren-

stein rings. The Hilbert-Samuel series of R is the (rational) power series

H$(t) = Σm>o SR(Rlmn+ι)tn; the function τn-> SB(Rlmn+ί) is a polynomial for

sufficiently large n, and (dim R)! times its leading coefficient is the multi-

plicity e(R). The Poίncare series of a finitely-generated iϋ-module M is the

formal power series P%(t) = Σln>o dimfc Tor̂ f (k, M)tn. The sign < denotes a

coefficientwise inequality of formal power series.

(3) COROLLARY. Under the assumptions of (2) one has:

( i ) d(RG) = d(R); in particular, RG is a complete intersection if and only
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// this is true for R;

(ii) RG is Cohen-Macaulay of type t if and only if this is true for R;

in particular, RG is Gorenstein if and only if R is Gorensteίn;

(iii) for every finitely-generated R*G-module M, MG is a finitely-gener-

ated RG-module and

pss(t)« PS®, pm = PKt) (i - tr,

where m is the difference of the embedding dimensions of R and RG;

(iv) mi(t) « m\t\ hence e(RG)^e(R);

(v) if R is a normal domain, then so is RG, and the canonical map

of divisor class groups Cl(RG)-^ Cl(R) is an injection; in particular, if R is

factorial, then RG is factorial

The references are: [A, (3.6)] for (i); [HK, (1.24)] for (ii); [G2, (1.1)],

applied via (8) and (10) below—for the inequality in (iii); [A, (1.1)] for the

equality in (iii); [L, Remark 4, p. 87] for (iv); [F, (6.11)] for (v).

Recall that a prime $ c R is said to be unramified over RG if for p =

^βf]RG the field extension RG/pRG <=—-> Ryl?βR% is separable, and pR# = φi? $;

otherwise Sβ is said to be ramified. The ramification locus of R over RG

is the closed subset of Spec R, consisting of primes containing one of the

three differents: the Dedekind, Noether, and Kahler one (for the notions

of ramification theory used in this paper we refer to the lecture notes of

Scheja and Storch [SSJ). According to Theorem (2), we are under the

hypotheses of [SSlf (16.8)] and of [SS2, (5.5), (5.6)], which show that all three

differents of R over RG coincide, and are a principal ideal, denoted hence-

forth by S)(i2|J2G). Our main result in this note is the complete descrip-

tion of the ramification of R over RG.

(4) THEOREM. Suppose G acts on R generίcally without inertia, H is

generated by pseudo-reflections, and \H\ e i? x. Let hu , hr be all the dis-

tinct pseudo-reflections contained in H, and let xt be an element defined by

hi according to (1).

Then S)(i? | RG) is the regular principal ideal of R generated by x =

W r

i=1 xi9 and the discriminant b(R | RG) is the regular principal ideal of RG

generated by NG(x) = Π *e<*£(*)•

Moreover, ^(RIR0) is equal to the intersection of all H-stable ideals

of R, which are not contained in mGR — mHR.

(5) Remarks. We assume for simplicity G = H, and [fiΓ| e Rx.
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( i ) After Serre proved [Se] (cf. also the proofs in [Bo2, Exercise 7],

[St, (3.7)], [Wj, Section 2]) that the descent of regularity from R to RH is

equivalent to the fact that H is generated by pseudo-reflections, various

properties of R have been shown to be inherited by RH under this as-

sumption on the group. Under slightly restrictive conditions on R, this

was obtained in [SiJ for unique factorization; (3.v) extends and generalizes

his result, and is itself contained in a theorem of Storch [St, (3.9)], which

holds for more general groups. The claim of (3.ii) is a more precise version

of a result obtained by Hochster and Eagon for graded rings [HE, Pro-

position 15]. In one direction, (3.ii) holds in the Gorenstein case without

assumptions on the action of G: K. Watanabe has shown [Wk2] that R

Gorenstein implies RG Gorenstein. A partial generalization of this has

been given by Goto [GJ, [G2], assuming the action of G to be liftable to

a regular local ring; in the same situation, he also shows that d(RG) < d(R).

In view of these results, and (3.i), (3.ii) above, it is natural to ask the

QUESTION. Assume \H\ e Rx and H is generated by pseudo-reflections.

Is it true that d(RG) < d(R)9 and when R is Cohen-Macaulay, that t{RG) <

*(£)?<*>

(ii) Chevalley's Theorem B [C] has been extended in [G2(1.2)] to local

domains. Theorem (2.i) is a further generalization, allowing some zero-

divisors.

(iii) Singh has recently asked whether the inequality H§l(t) < Hi\t)

holds for the Hubert series Hφ){t) = (1 - t)Ή^{t) [Si2, Question 1]; assuming

the action of G is liftable to a regular local ring, he has answered in the

affirmative when R is a hypersurface ring or when G is abelian. Our

result in (3.iv) can be viewed as a strong argument in favor of the con-

jecture.

(iv) The description of the different given in Theorem (4) has a clas-

sical counterpart in the case of pseudo-reflection group actions on poly-

nomial rings: cf. [Bo2, Proposition 6.(i)].

(v) Although the assumption that G acts on R without generic inertia

is not necessary for the jRσ-freeness of R, it is seen from (6) that it is

implied by the conclusions of (2.i') and of (4).

(*> The inequality of the types has been meanwhile proved by A. Aramova in her
M. A. thesis (University of Sofia, 1981). On the other hand, using G. Mϋller's result
(20) as in Step 3 of the proof of Theorem (17) in Section 6, one can deduce in the
equicharacteristic case both inequalities from the particular case proved in [GJ.
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(vi) When H is generated by generalized reflections, i.e. by elements

lying in the inertia subgroups of regular principal ideals (cf. [HE]), the

iϊ^-flatness of R is known (cf. (19) below); combined with the ίiniteness

result in (8), this implies freeness. Since it is easily seen (cf. (18.ii)) that

under the hypotheses of (2) H is generated by generalized reflections, the

freeness statement in (2.i') (but not the information on the rank, when R

has zero-divisors), can be alternately deduced from the existing literature.

Thus it seems interesting to compare the hypotheses of our main results

(2) and (4) to the seemingly weaker requirement that H be generated by

generalized reflections (which is the case considered by several authors,

e.g. [HE], [Wj], [Si2]). It is the subject of Section 6, to show that—at least

under equicharacteristic assumptions, and presumably in general—the

hypotheses are equivalent. The proof of this result, Theorem (17), depends

on (2) and (4).

Theorems (2) and (4) are proved in sections 4 and 5 respectively. In

the next section we establish several results of a general nature, some of

them interesting in their own right, while section 3 contains preliminaries

on pseudo-reflections.

§2. Finite group actions

The notation used below is that of the Introduction. The assumptions

on R, G, etc. are detailed in each statement.

(6) Let ψu , ψs be a set of prime ideals of R, such that the multi-

plicatiυely closed set Ό — i2\UI~i*Pi is G-stable. With NG(u) = X\gQGg{u)> s e i

V={NG(u)\ueU}.

Then V-'R = U~ιR, V~\RG) = {U~λR)G, and the following conditions are

equivalent:

(a) Gτ(ψz) = 1 for 1 < i < s;

(b) U~ιR is unramified over V~1RG, and is free of rank \G\ as a V~ιRG-

module.

When these conditions are fulfilled, U-lR~(V-lB?)[G\ as (V-'R^IG]-

modules.

For the isomorphism of V~'RG and {JJ-ιR)G cf. e.g. [SS1? p. 104]. In

particular, it shows that U~XR is integral over V~XRG, hence the last ring

is semi-local. Note that the maximal ideals of U~ιR are among the t / " 1 ^

), and that G 7 ^,) = GT{U'^ by [Bo^ Lemma 3]. The equivalence
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of (a) and (b) becomes now a particular case of [SS^ (21.7)]. (An alternate

reference for the implication (a) =$> (b) is given by [CHR, (1.3) and (4.1)].)

The last statement is obtained from [CHR, (4.2.c)].

The first statement of the following proposition is taken from [SSt,

(20.4)], while the second one comes from [CHR, (1.6)].

( 7) RH is unramified over RG, and is a free RG-module of rank \ G/H\.

There exists an element rf e RH, such that tG/H(r') = 1 e RG.

Here and below tG denotes the trace element J^gQβgeR*G.

( 8 ) Suppose \H\ e Rx. Then:

(i) RG is a noetherian local ring;

(ii) an R-module M is finitely-generated over R (if and) only if it is

finitely-generated over RG.

Proof. That RG is local is an immediate consequence of the fact that

R is integral over it. That it is noetherian can either be deduced from (ii)

via the Eakin-Nagata theorem, or seen directly as follows: the noetherian

property descends from R to RH because of the existence of the Reynolds

operator \H\ΉH: R -> RH, and from RH to RG by faithful flatness (7).

As for (ii), it is sufficient to prove that R is finitely-generated over

RG, which follows from the finite generation of RH over RG (7), and that

of R over RH [LP, (3.4)].

( 9 ) The following conditions are equivalent:

(a) \H\eR»;

(b) ( )G is an exact functor from the category of left R*G-modules to

that of RG-modules]

(c) there exists an element reR with tG(r) = 1.

When these conditions are satisfied, MG = tG(M), and ( )G carries finitely-

generated modules to finitely-generated ones.

Proof. The equivalence of (b) and (c) is established in [G2, (2.2)] (cf.

also [X, Lemma 1]).

Assume (c), and denote by f the image of r in k. Then in RGjmG one

has:

1 = tG(f) = tG/H(tH(r)) = \H\tG/H(r),

hence \H\ e(RG)x a Rx, which is (a).
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Conversely, suppose (a) is satisfied, and let r' e RH be an element given

by (7). Since rr = \H\ΉH{r'), one has:

1 = W O = WW1**^)) = tG{\H\~Ψ),

hence (c) holds.

For the last statement, note that tG(m) clearly belongs to MG, while

the inverse inclusion follows from the equalities m! = tG(r)m' — tG(rm'),

holding when mr e MG; the claim on finite generation is a consequence of

(8.ii).

As an immediate consequence of the last two lemmas we have the

next statements, of which (i) is well-known: cf. e.g. [Bo2, Exercise 7(c)],

[Sij, Lemma 3], [Wj, (2.16)], etc. The conclusion of (ii) is asserted in [K,

Chapter II, Lemma 1] under the assumption that RG is noetherian; how-

ever, in the proof the finite generation of R over R° is essentially used,

and it is not clear whether it is implied by the noetherian character of RG.

(10) Suppose \H\eRx. Then one has:

(i) the natural map ε: H-^GLk{mjm2) is injective;

(11) denoting by ( )~ completions in the respective maximal-ideal-adίc

topologies, R ~ R ®Λ β (RG)~, hence G acts naturally on R via the first factor,

and (R)G ~ ( i ? T

We skip the proof of (i). The first isomorphism in (ii) is immediate

from (8), since mGR is an m-primary ideal, and it implies the second one

by the flatness of the completion: cf. [SSl5 (19.2)].

(11) Let Q = gτmR = ©<>0^V^<+1> an^ ^et S be the symmetric algebra

over k of m/m2, considered with the natural degree-preserving actions of H

by k-algebra automorphisms, induced by ε.

If\H\eRx, there exist natural H-equίvarianl surjectίve homomorphίsms

of graded k-algebras:

g r H £ < — QIQ*Q<r— SIS*S

where ( )+ denotes the irrelevant maximal ideal, and R = R/mGR.

Proof. By the universal property of the symmetric algebra, there is

a surjective homomorphism p: S -> Q of graded ^-algebras, which in degree

one is the identity map of m/m2, and which defines a commutative diagram

of homomorphisms of graded ^-algebras:
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Note that by (9) pH also is surjective. This shows that with k — SH\SIi>

QΘsπk = QIS*Q = QIQ^Q, hence the right-hand map is simply p®sτik.

On the other hand, it is easy to see that Q^ is contained in I = Ker (Q

= grm R —> grm R). In fact, suppose α* e Q^ is the initial form in Q of the

element aeR, such that aemn\mn+ί. Then for every geH one has α —

g(a) e mπ+1, hence α* = {Hl^ΣgeH giβ) e /. The inclusion of ideals Q*Q e I

defines the left-hand map. (The author is indebted to the referee for point-

ing out that the original longer proof of this inclusion could be replaced

by the argument above.)

The iϊ-equivariance of both maps is clear from their definition.

§ 3. Pseudo-reflections

In this section we assume that \H\ e Rx. The equivalence of (a) and

(b) in the first lemma has been proved under different restrictive assump-

tions in [Si!, Lemma 6], and [Wj, (2.15)].

(12) The following conditions on heH are equivalent:

( a ) h is a pseudo-reflection;

(b) h Φ 1, and there exists an element xh e m, such that heHτ(xhR);

(c) the ideal ah, generated by all the elements h(a) — a when a runs

through R, is principal and different from zero.

Furthermore, when they are fulfilled, an element xr e m has the property

that h e Hτ{xfR) if and only if xf is a generator of ah. In particular, x' g

m2, and is defined uniquely up to an inυertible factor.

Proof, (a) => (c): Suppose first R is complete. In an appropriate basis

of m/m2, ε(h) is given by a diagonal matrix, whose only entry different

from 1 is a primitive τn-th root of unity ω e k, m denoting the order of h

(cf. (lO.i)). By HenseΓs lemma and the condition that the characteristic

of k does not divide \H\, R contains a unique primitive m-th root of unity

ω which maps onto ω. Under these assumptions it is proved in [Se, pp.

8-9], or [Si!, Lemma 6], that there exists a xh e m, such that h(xh) — ωxh,

heHτ(xhR). It is clear that ahdxhR, and the reverse inclusion is given

by the equality (ω — ϊ)xh — h(xh) — xh, since ω =£ 1 modulo m.
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Passing to the general case, we denote by ah the ideal defined in (c)

for JR, and by hn the corresponding one for JR. Let b19 , bq be a system

of generators (8.ii) of R over Rih). According to (lO.ii) they also generate

R over R(h\ For an arbitrary b e R, write 6 = 2] &A with ct in Rih\

Then h{b) — 6 = 2 (Λ(&<) — bt)ciy hence 6AcαA2ί. The converse inclusion

being obvious, we see from the first part that ahR is principal, hence ah

is principal.

(c) =φ> (b): Any generator of ah has the required properties, since h e H

implies ah c m.

(b) => (a): Let xh denote the image of xh in m/m2. Since W = Im (ε(/ι)

— 1) C JcΛ£, it is sufficient to show WφO. But W — 0 means ε(Λ) = 1,

hence by (lO.i) h — 1, which is absurd.

Let now Λ/ be an element such that h € Hτ(x'R). The last part of the

proof shows that x' £ m2. The ideal x'R being Λ-stable, h{x!) = cxf for some

c e R, hence ε(h)xf — ex' Φ 0, where c is the image of c in k. By Maschke's

theorem, there is an isomorphism of &[(/0]-modules: m/m2 ~ x'k 0 m7πι/2,

with m/ = mlx'RcRjx'R = Rf. Since by assumption /ι induces the identity

map on R\ m7m/2 is a trivial &[(Λ)]-module, and c is a primitive m-th root

of unity, m being the order of h. In particular, c ^ 1 modulo m, which

permits to conclude from the equality h(xf) — xf = (c — ϊ)x' that xf eah.

Now all our claims have been proved.

The next two lemmas will not be needed before the last section.

For a pseudo-reflection h contained in H we denote by B(h) the reflec-

ting hyperplane Ker (ε(h) — 1) C m/m2, and set C(h) — Im (ε(h) — 1) C m/m2.

It is well known that the subgroup HB of those elements of H which leave

pointwise fixed a hyperplane B is either trivial, or is cyclic generated by

a pseudo-reflection: as a consequence of Maschke's Theorem, the canonical

homomorphism HB —> GLfc((m/m2)/J5) is injective.

(13) For two pseudo-reflections hίy h2 contained in H, the following con-

ditions are equivalent:

(a) B(K) = B(h2);

(b) HB(hl) = HB(h2)

(c) ahl = α Λ 2 ;

(d)

Proof, (a) => (b) is obvious.

(b) =φ> (c): Let h be a pseudo-reflection, generating ί/s^i) — HB(hi). It
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suffices to prove that for any integer i between one and the order of h,

ahi = ah. Since h^ά) — a = J^fJ0 (h(hj(a)) — hj(a)) e αΛ, one has ahi c αA, in

particular xhi = ytxh. Assuming ytem one gets xht e m2, contradicting (12),

hence ytem and ahι = ah.

(c) => (d) is clear, since C(λβ) = Im (ε(hq) - 1) = (αΛg + m2)/m2 (qr = 1, 2).

(d) => (a): Let / F be the subgroup of H generated by hx and h2. By

assumption, the line C = C(/ij) = C(Λ2) is ίF-stable. By Maschke's theorem,

there exists a ίF-stable complementary hyperspace B. The restriction of

ht to ΰ has dim B eigenvalues equal to 1, in particular hx fixes a non-zero

eigenvector in B. The existence in B of a ίP-stable subspace comple-

mentary to the line passing through this vector permits to conclude by

induction that ht\B is the identity, hence B = B(h^). By symmetry one has

B = B(h2), hence the claim.

(The last implication is usually proved for k = C by using the existence

of an invariant hermitian scalar product: cf. e.g. [Sp, (4.2.15)]; the elegant

argument above has been communicated to me by V. Drensky,*and replaces

an earlier one worked out jointly with P. Siderov.)

When h is a pseudo-reflection, then so is ghg'1 for every geH, and

g(ah) = (tghg-i. This defines a left action of H on the set of ideals si =

{ah}he0,, where 0* denotes the set of all pseudo-reflections contained in H.

(14) Suppose H is generated by pseudo-reflections, and let @t c & be a

generating set. Then the map 0t -> s//H, sending each reflection to the orbit

of ah, is surjectiυe.

Proof. In the notation of the previous lemma, choose for each h e 0*

a generator eh of C(h). For an orbit 0 of the action of H on the set #

={C(/ι)}Λe^ (gC(h) being C(ghg~ι)\ set eβ = Π<w)eA'> which is an element

of the symmetric algebra S of the ^-vector space m/m2. By [Sp, (4.3.4.i)],

h(eφ) = eφ, when C(h) & Θ, and h(eΘ) = det (h)eβ otherwise. (Springer states

his theorem for k — C and for the action of H on the dual vector space,

but only notational changes are needed to transport the proof to the situa-

tion considered here.) Assume the orbit 0 is not in the image of the

natural map dt -> &IH, assigning to h the orbit of C(h). Then h(eφ) = e0

for all he&, and 01 being a generating set this implies g(e0) = e0 for all

geH. This contradicts the fact that eΘ is not invariant, hence 0ί —>Ή/H

is surjective. It remains to note that by (13) the map φ: ah •-> (αΛ + m2)/m2

= C(/ι) is a bijection from si to #, which commutes with the action of
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H9 and that 9t -» <€ factors through φ.

We conclude this section with a quotation from N. Bourbaki: it con-

tains these consequences of his extension of Chevalley's theorem, which

will be needed in the following sections.

(15) Choosing a k-basis Xu , Xl9 identify the symmetric algebra S

of the vector space m/m2 with the polynomial ring k[Xl9 , XJ. // H is

generated by pseudo-reflections, then:

( i) S^ is generated by £ homogeneous polynomials Fl9 - ,F£ which

form an S-regular sequence, and whose degrees dί9 , d£ satisfy the rela-

tions: dim, SIS*S = d,d2- - d£ = \H\;

(ii) let hl9 , hr be the distinct pseudo-reflections contained in H, and

let et e m/m2 be a generator of Im (ε(/^) — 1), 1 < ί < r; then the element e =

exe2- - ere S is a non-zero scalar multiple of the Jacobian J = det (3FPldXq).

References: that the generators of Sξ form a maximal S-regular se-

quence is seen from [Bo2, Theorem 4 and Lemma 5]; since by the same

theorem S is free as an SH-module, the expressions for the product of the

<2/s are obtained by computing rank S via localization at all non-zero

elements and via reduction modulo S*; (ii) is taken from [Bo2, Proposition

§ 4. Proof of Theorem (2)

Since R is finitely-generated over RH by (8.ii), it follows from (11) and

(15.i) that it can be generated by |H| elements. Let /: F->R be a sur-

jective homomorphism of Jϊ^-modules, with F free of rank |H|. Denote by

U the set of non-zero divisors of R and let V = {NG(u) \ u e U}. Under the

hypotheses of the theorem, (6) shows that V~ιR is V^iϊ^-free of rank |fiΓ|,

hence V~ιf is an isomorphism, being a surjective map of free modules of

the same rank. This implies that V meets every prime in AssRH (Kerf)

C Ass RH. Since by definition V consists only of non-zero divisors, this is

possible only when K e r / = 0, i.e. when R is iϊ^-free of rank |H|. Com-

bining this with (7), we see that R is i^-free of rank \G\. Thus we have

obtained (2.iO, and in doing this we have also shown that

(16) gτm R ~ S/S^S as graded rings and as k[H]-modules. Indeed,

(7) shows that mGR = mHR, hence R = RlmGR = R/mHR, and the previous

discussion has established that dimfc R — \H\. Comparing with (13.i), one

sees that the canonical map in (11) is an isomorphism, which gives the
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claim of (16), and also that gr^ JR is a complete intersection. It is well

known that R itself is in such a case a complete intersection, (e.g. [Wki,

Lemma 10]), and this completes the proof of (2.ii).

The idea of the proof of (2.i) is taken from Goto's argument in [G2>

(5.1), Proof of (3) => (1)]. First note that 2 ag£ ^Σag defines a map of

left i?*G-modules R*G-+ R, which i?*G-linearly splits the map x ι-> x(tGr),

where reR is an element such that tG(r) = 1: cf. (9). This shows R is

i?#G-projective. But R*G being RG[G]-ϊree of finite rank by the part of

the theorem already proved, we see that R is RG[G]-projective of finite

rank. According to [Ba, Chapter XI, (5.1)], in order to prove that R arid

RG[G] are isomorphic as i?G[G]-modules, it is sufficient to establish a cor-

responding isomorphism of their localizations at some multiplicatively closed

subset of RG, consisting of non-zero divisors. This is given by the last

statement of (6), taking as above U to be the set of all non-zero divisors

of R.

§ 5. Proof of Theorem (4)

As noted before the statement of the Theorem, the Noether, Kahler,

and Dedekind differents of R over RG coincide, and are a principal ideal,

say ®(R\RG) = JR. The extension RG^—>RH being unramified by (7), the

modules of Kahler differentials of R over R° and over RG are canonically

isomorphic, which by the definition of the Kahler different (e.g. [SS^ § 15])

implies that ^(R\RG) = &(R\RH). Hence, in computing the different, we

shall assume G = H. This computation is carried out in five steps.

Step 1. j is a non-zero divisor, jR is an if-stable ideal, and jR ==

(0:m)Λ.

For the first fact, with U denoting the set of non-zero divisors of R,

note that by (6) U~ιR is unramified over V~ιRH, which clearly implies

U"\jR) = U-'R: cf. [SSt, (15.2) and (15.3)].

In order to prove that jR is ίf-stable, note that the multiplication

map μ\ R®RHR -> R, μfa® b) •= αb, becomes a komomoϊphism of H-mo&ules,

if one defines h(a (8> b) = h(a) ® h{b). This implies I = Ker μ is iϊ-stable,

hence also its annihilator (0:7) in R®RHR is ίf-stable. By definition,

the Noether different of R over RH is the ideal μ(0:1), hence the stability

of jR is established.

For the proof of the last assertion, we note that by the base change

properties of the different [SS1? (15.1)], <&(R\k) = &(R\RH)R =jR. On the



LOCAL RINGS 173

other hand, by (2), the ^-algebra R is an artinian complete intersection,

with residue field k, and with dimfc R = \H\ prime to the characteristic of

k. A result of Scheja and Storch ([SS2, p. 187], or [SS1? p. 101]) says that

under these conditions ^(R\k) — (O m)^, and we are done.

It follows from Step 1 that for each geH there is a uniquely defined

χ(g) e Rx, such that g(j) = χ(g)j. It is well-known and easily verified,

that the map χ: H-+Rx, g \-> χ(g), is a crossed homomorphism: χ{ggf) =

g(l{gf))'X(g\

Step 2. The set Rf = {ae R\Vge H: g(ά) = χ(g) a} of semiinvariants

of H of weight χ is a free iϊ^-module generated by j .

Following Hinic [X], we consider the twisted Reynolds operator a »->

pχ(ά), where ρχ = \H\~1ΣgeH{χ{g))~1geR*H. Since it gives an .R^-linear

splitting of the inclusion Rf <=—> R, Rf is a free iϋ^-module by (2.i')

Denoting by bars reduction modulo mH, the naturality of pχ shows that

Rf®Rjίk is the direct summand Rf of R corresponding to the crossed

homomorphism χ: H->RX ->kx. Since H acts trivially on k, χ is simply

a linear character (or group homomorphism H -> kx), and by Maschke's

theorem Rf is as a &[ίf]-module the semi-simple component of R which

corresponds to the linear representation defined by χ. By (2.i) R is equiva-

lent to the regular representation, in which every linear representation

enters with multiplicity one. Hence Rf ~ k, which implies Rf ^ RH as

i^-modules. Finally, Rf being a direct summand of R, in order to prove

that it is generated by j it is sufficient to show that j has a non-zero image

in R, and this is given by the last claim of the previous step.

The next proposition gives a remarkable ideal-theoretic characteriza-

tion of ^(R\RH):

Step 3. jR is the intersection of all the ίZ-stable ideals of R, which

are not contained in mHR.

One inclusion being clear by Step 1, we denote by b an iϊ-stable ideal,

b ςzί mHR, and want to show that j 6 6. First note that j is contained in

6 + mHR. Indeed, R being an artinian complete intersection by (2.i), the

ideal hR Φ 0 contains the socle (0: m)^, which by Step 1 is equal to jR~

Write jf = & + Σ miai w ^ t n & 6 β> mi e mH> ai e -S Then:

J = PxU) = Pχ(b) + Σ miPxiVi)

By Step 2 we can write pχ(at) = jct with ci e RH, hence:

7(1 - Σ m A) = pχ(b) e 6 ,
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]the inclusion holding since 36 is ZZ-stable. We conclude that j e δ, which

proves our claim.

Step 4. xR is an ΐf-stable ideal, and xR = (0: m)^.

Recall that x — xxx2 xr9 where xt is an element of m defined by the

pseudo-reflection ht via (12) (or (1)), and hl9 h29 , hr are all the distinct

pseudo-reflections contained in H. By (12) again, Rxt is the ideal ai9 gener-

ated by h^ά) — a as a runs through R, hence xR — α ^ αr. Now clearly

for any geH and any pseudo-reflection heH, ghg~x is a pseudo-reflection.

Since &ghg-i — g(ah) by a direct computation, the previous remarks show

that xR is iΐ-stable.

Let now d be the largest integer for which ϊΐ\dΦθy and consider the

inclusions:

(0: m)a z> md = gr | ϊ? c (0: gr^ m)gr- ϊ? ,

where the equality denotes a canonical identification. Since by (2.ii) the

vector spaces on both ends are one-dimensional, we have equalities through-

out. Hence in order to prove the equality xR = (0: xn)M it is sufficient to

show that the socle of grm R is generated by the initial form x of the image

of x in R. Note that x is the product of x19 x2, , xr9 where xt is the

leading form of the image of xt in R. By (12) xt has degree one and is

a generator of the image in m/m2 of the vector space Im (e(Λ4) — 1) C m/m2.

Setting S = S/S+S and denoting by bars the images in S of the homo-

geneous elements of S, we identify S with grm R as in (16). Under this

identification, the preceding discussion yields the equality x = exe2 er,

where the e/s are the elements of Sγ defined in (lδ.ii). According to this

proposition, we are reduced to showing the equality JS = (0: S+)§9 with

J denoting the Jacobian.

This can be obtained by base change, as in the proof of the last state-

ment of Step 1, by invoking the description of the different ^(S\SH) given

in [Bo2, Proposition 6(i)]. A simple alternate argument is as follows. Let

K denote the Koszul complex on the images of Xl9 , Xt in S, and choose

a basis Tu , Tβ of Kx such that dT, = Xt modulo S*S. From (15.i) the

•d/s are invertible in k, hence by Euler's formula the classes of the cycles

z. = d^Σl^tfFJdX^T, form for i = 1, , ί a basis of H^K). The

artinian ring S being complete intersection (13.i), H(K) is the exterior

algebra on H^K), in particular H£(K) = J SΓj Λ ΛΪ^. Since the map
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S -> K£, which sends 1 to Tλ Λ Λ T£, induces an isomorphism of (0: S+)s

with H£(K), the proof of Step 4 is now complete.

Step 5. Conclusion of the proof. By Step 4 xR is an ϋf-stable ideal,

which is not contained in mHR, hence j = xy for some y e R, as follows

from Step 3. Assuming y em, Step 4 implies the image of j in R is 0,

which contradicts Step 1. We see that y e i?x, which implies the required

equality jR = xR.

Now we turn to the description of the discriminant. By [SS2, (5.4)],

b(R IRG) is generated by the norms of the elements of 3)(i? | RG), hence by

NB]Ba{x). One has to show that the norm of an element a e R, i.e. the de-

terminant of the i?G-linear map b f-> ab, b e R> is equal to NG(a) = Π^GG g(a)

But NRlRH = NH: R-> RH by [SS1? (21.14)], since \H\eRx, and NRπlRσ =

NG/H:RH-+RG by [SSj, (21.2)], since j?* is a Galois extension of Λ* (7).

By the transitivity of norms one now gets NR]RG — NRH]RG'NR]RH = NG/H NH

= Nβ.

Note on the proof. A close look at the proof of Theorem (4) shows

that from the statement of (lδ.ii), only the fact that e and J have the same

degree is used, and this boils down to the expression 2ί- i (4t — 1) for the

number of pseudo-reflections contained in H. When the characteristic of

k is zero, this is an easy consequence of Molien's Theorem (cf. [Bo2, Pro-

position 3]), hence in this case our result gives an independent compu-

tation of the different ^(S\SH) for the polynomial ring. In contrast, when

the characteristic of k is positive, Bourbaki's proof of (lδ.ii) is based on

the knowledge of

§6. Generalized reflections.

The main result of this section, besides clarifying the relations of the

work above to that of some other authors, can be viewed as a criterion

for checking whether the premises of Theorems (2) and (4) are met. Recall

that a generalized reflection in the sense of Hochster and Eagon [HE] is

a non-identical automorphism of R, which is contained in the inertia sub-

group of some principal ideal, generated by a regular element of m.

(17) THEOREM. Let G be a finite group of automorphisms of the local

ring (R, m, k), such that the order of H — Gτ(m) is ίnυertίble in k. Consider

the following conditions:
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(a) H is generated by pseudo-reflections, and G acts on R generically

without inertia]

(b) H is generated by generalized reflections.

Then (a) implies (b).

If furthermore R contains some field, then the converse also holds.

Until the end of this section we assume \H\ e Rx. We start by a

lemma, which immediately reduces everything to the proof that condition

(b) implies that G acts on R generically without inertia.

(18) (i) Each generalized reflection is a pseudo-reflection.

(ii) Assume G acts on R generically without inertia. Then each pseudo-

reflection is a generalized reflection.

Proof, (i) is a consequence of the easy implication (b) => (a) of (12).

(ii) According to (12), the pseudo-reflection h lies in the inertia sub-

group of a non-zero principal ideal xhR. If xh were a zero divisor, there

would be a prime 5β e Ass (R) such that xhR e 5β, hence Gτ($) z> Gτ(xhR) 9

hφl, which contradicts our hypothesis.

The rest of the proof of Theorem (17) is subdivided into three steps,

only the last one of which makes use of the equi-characteristic assumption.

Condition (b) is assumed.

Step 1. Every pseudo-reflection contained in H is a generalized re-

flection.

In fact, by our hypothesis and by (18.i), H is generated by a set 0ί

of pseudo-reflections, such that αΛ, is a regular principal ideal for each

h' e 01. Let 9 be the set of all pseudo-reflections of H. According to (14)

for each he 3? there is an h! e 0t such that ah and ah, are in the same

orbit for the natural action of H, i.e. there is a geH such that ah = g(ah,).

This shows that ah is generated by a regular non-invertible element of R,

hence h is a generalized reflection.

Step 2. Reduction to the case of complete R.

Let ah(R) denote the ideal generated by the elements h(a) — α, when

a ranges over R. The argument in the proof that (12.a) implies (12.c)

shows that ah(R) = ah(R)R, where the action of G on R is that described

in (lO.ii). Since H clearly is contained in Gτ(xtιR)9 the equality shows, for

one thing, that H considered as a subgroup of Aut (R) is generated by

generalized reflections. Assuming that the fact that condition (b) of the
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Theorem has already been shown to imply for complete rings that G acts

generically without inertia, we shall deduce the corresponding property

for R. So let $β be an associated prime of R and h be an arbitrary ele-

ment of Gτ(ψ). Choose an associated prime £}' of k(ψ) Θ^ R, and let Q be

its inverse image in R for the canonical map. Then O (Ί R = ψ, and <Q

e Ass (R). By our choices,

ah(R) = αΛCR)JR c p c Q ,

hence /ι e Gτ(€x), and the last group is trivial by assumption.
Before going over to the last step, we recall a well-known fact:

(19) If H is generated by generalized reflections, then R is RH-free of
finite rank.

Finite generation being clear by (8), it remains to establish flatness,
which has been done by Serre in [Se, pp. 7-11]. A slicker arrangement
of his argument is given in the proof of Theorem 1 in [Bo2], which treats
the graded case. There is no trouble in translating it to the local case,
once it is noted that by (12) for each reflection of h there is a xh e m such
that for an arbitrary jR-module M with compatible G-action, (h — Ϊ)M c

xhM.

Step 3. Completion of the proof that (b) implies (a) in the equicharac-

teristic case.

By the result of Step 2 we can assume R is complete, hence so is RH

according to (lO.ii). Choose a coefficient field for RH. Since the inclusion

RH c R induces an isomorphism of residue fields, this is also a coefficient

field for R, and we shall denote it by the same letter k. One sees that

H acts on R by Minear automorphisms.

Now we can apply the following lifting result, proved in G. Mύller's

thesis [M]. In the preprint version of the present paper, circulated before

the author was aware of [M], instead of a reference to this proposition

we had to assume that (a statement slightly weaker than) its conclusion

holds for the action of H on R.

(20) [M, (2.3)]. Let R = JS'/ct, where R' is the formal power series ring

k[[Xu , Xn]]9 m' = (Xu , Xn), a c m'2. Suppose H acts on R as a (finite)

group of k-algebra automorphisms. Then there is a group Hf of k-algebra

automorphisms of i?', such that a is H'-stable, and the canonical projection

R' -> R induces a commutative diagram of group homomorphisms:
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H' -!-+ GLk(m'lm'2)

Ί ϊ>
H • GLk(m/m2)

In particular, p is an isomorphism (cf. e.g. (lO.i)), and restricts to a

bijection from the set of pseudo-reflections of H' to that of H. We shall

henceforth identify H and H' (and set p = id).

In the notation of the previous two steps, note the equality ah(R) =

ah(R')R for every heH, hence one has

Π ak(R) = Π

when h ranges over the set 3P of pseudo-reflections of H. Theorem (4),

applied to the regular domain R', shows that the product ΠΛG* <**(#') i s

generated by a non-zero element x', which is contained in every H-stable

ideal V of R', such that V <£ ra'HR. We conclude that α C m'HR', since

otherwise one would have had x'ea, implying Y\he,ah(R)=0 in R; this,

however, is impossible, since by the result of Step 1 and by (12) each ah

is generated by a non-zero divisor in R.

Applying (9), we now see that mHR = mfHR = {m'HRr)ja, hence RjmHR

~ Rjm/HR. By (2) the dimension of the left-hand side over k = R'Hjm'H

= RHlmH is equal to |£Γ|, hence by (19) R is i?*-free of rank \H\, which

together with (7) shows that R is iϊ^-free of rank \G\.

From (6) one now sees that the required equalities Gτ(ψ) = 1 for ψ e

Ass(i?) will follow once we show that U~XR is unramified over V~XRG,

where U denotes the set of all non-zero divisors of R. To this end consider

the natural map of i?G-modules: RG
 ®R>GR' —>22, which is surjective since

by (9) the left-hand side is R'jaGRf. Also, the preceding discussion shows

that R is i^-free of rank \G\, while the same conclusion holds for RG ®R,GR'

in view of (2). Consequently, we are in presence of a module isomorphism

which, being induced by a map of rings, shows that RG
 ®R>G Rf ^ R as rings.

By the change of base properties of the Kahler different [SS1? (15.2)] and

by (4) one gets:

<&{R\RG) = <£>(R'\R'O)R - x'R - xR .

As already noted above, xR is the product of the regular principal ideals

ah(R) (he^), so that one obtains:

R l V~XRG) = ZJ-ί(S)(R\RG) = U'R ,
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which establishes that U-χR is non-ramified over V^R0.
The proof of Theorem (17) is now complete.

It is a pleasure to thank R. Achilles, G. Almkvist, V. Drensky, and
P. Siderov for discussions of various aspects of this paper; C. Lech for
explaining to me the unpublished proof of his result used in (3); and G.
Mύller for sending me a copy of his thesis.
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