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EXCEPTIONALLY RAMIFIED MEROMORPHIC FUNCTIONS

WITH A NON-ENUMERABLE SET OF

ESSENTIAL SINGULARITIES

TOSHIKO KUROKAWA

§ 1. Introduction

In the complex function theory, Picard's Great Theorem plays an es-
sential and important role. It is well-known as generalizations of this
theorem that in a neighborhood of an isolated essential singularity, a
meromorphic function cannot be exceptionally ramified (see W. Gross [2])
and that even it cannot be normal (see O. Lehto and K. I. Virtanen [7]).
We are therefore interested in the behaviour of meromorphic functions
with non-isolated essential singularities as well as in generalizations of
the Gross' result. Several approaches in this direction have been made
by G. af Hallstrδm [3], S. Kametani [4], K. Noshiro [13], K. Matsumoto
[8], [9], [10], [11], [12], S. Toppila [15], etc..

As for the functions with "more than two Picard exceptional values",
K. Matsumoto ([10], [11]) has given sufficient conditions on Cantor sets E
whose complements do not admit such functions. One of his basic results
is

THEOREM A. Let E be a Cantor set with successive ratios ξn satisfying
the condition

then the domain complementary to E does not admit meromorphic functions
with "more than two Picard exceptional values" at each singularities.

Having been inspired by this theorem, we are led to ask whether there
is a Cantor set admitting no meromorphic functions with weaker conditions,
such as "exceptionally ramified" (or "normal"). An exceptionally ramified
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meromorphic function is defined as follows: A meromorphic function / on

the extended complex plane C is said to be exceptionally ramified, if there

exist wk9 1 ̂  k <̂  q, in C such that the multiplicities £ktJ of the roots zktj

of the equation f(z) = wk satisfy

^kj ^ vk except finite j ' s ,

for a sequence of integers vk ̂  2 with the property

(1.1) Σ (l - —) > 2

Our main theorem is stated as follows:

THEOREM. Let E be a Cantor set with successive ratios ξn satisfying

the condition

(1.2) fn+1 = o(flΰ ,

then the domain complementary to E admits no exceptionally ramified mero-

morphic functions with E as the set of essential singularities.

The author wishes to express her deep gratitude to Professor Kikuji

Matsumoto who made many valuable suggestions during the course of this

work, and she thanks Professor Masayuki Itό for his help in preparing the

manuscript.

§ 2. Preliminaries

2.1. Introducing the chordal distance χ(w,ζ) on C, we denote by \S\

the diameter of a subset S in C. Let Δ be a τ-ply connected domain

bounded by positively oriented analytic curves {/\}<βlf2f...fΓ, Γt: z = zt(t)

(a < t <ί b) and let / be meromorphic on the closure Δ of Δ. For ζ1? ζ2 g

/(ΓJ, 0(Λ; ζ1? ζ2) denotes the variation of (1/2TΓ) arg (f(z) - &)/(/(*) - ζ2) as

2: describes the curve Γt positively once.

We shall deal with an exceptionally ramified meromorphic function /

on Δ with q totally ramified values {wk}k=lt2t...tQ satisfying the following

three conditions:

(1) There exist mutually disjoint simply connected sectionally analytic

domains {£ }̂.,=i,...,«, 1 ̂  a <Ξ1 τ, with

(2.1) \Dj\ <
kφm

and the images {/>(/\)}<βlf...fΓ are covered with{D^=1>...,α, each Zλ, containing
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f(Γi) for at least one ί.

(2) The number v(w, /, Δ) of roots of the equation f(z) = w in Δ is

^ 1, for II; e C - U,α=i A

(3) / has no ramified values on each boundary dDj = Cj.

Here the multiplicity is always taken into account.

For each Cj9 the inverse image f~ι(Cj) of C, consists of a finite number

of simple closed analytic curves {Γ(

k

j)}k in J. Then 3F denote the family

of all subdomains of Δ which are bounded by some of {Γίj)}kJ. By intro-

ducing a partial order into 3* by inclusion, we choose a maximal element

Δf of &. The boundary dΔ' consists of a subfamily {Γί}ί3!l,...(T,(r' < τ) of

{Γkj)}k,r We may assume that Γ\ is positively oriented with respect to Δ\

Denoting by j(ΐ) the number j with Cs ZD f(Γβ, we assume that Cm, i =

1, . . ., T', form a subset {C; }i=1)...,α, of {Cj}Jaιlt...,a. For ζ0 e C - (Jj-i A> Ĉ  ω

€fl j(i), we set

Since Δ' is maximal in J^, we see that

st>0 (i = l,2,". . , r θ

and

Kζ,/ ,Λ ' )^1 for ζ e C - U A -

Since the Riemannian image S of Δ' under / may be viewed as a covering

surface of C — Uf=i -D̂> the exact value of the Euler characteristic p(Δf)

of # :

= Σ M^XC , /, Δ') + p(c-(j DΛV(CO, Λ 4'
l \ l /

for ζ0 e C — Uy=i Dj, ζj e Dj9 where v denotes the ramification index of S,

that is,

a'

τ> _ 2 = — 2 v(ζj, f, Δf) + (a! — 2)v(C0, /, JO + u .

Hence

2v(ζ0, /, JO - 2 = Σ {υ(ζ0, /, JO - iKζj, f, JO} -r' + v.
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The argument principle proves

(2.2) v(ζ0, f, Δ') - v(ζj, f, Δ') = Σ OiΓ, ζ0, Q ,

so that

2v(ζ0, /, Δ>) - 2 = Σ f Σ W ; ζ0) Q -ί) + v

Putting n = v(ζ0, /, Δ'\ we have

LEMMA 1.

(2.3) 2n - 2 = Σ (5, - 1) + υ .

2.2. Using Lemma 1 and (1.1) we shall show that Δ and Δf are at

least triply connected.

Let mk denote the number of roots zkJ of the equation f(z) = wk re-

stricted to Δf and let lkJ be the multiplicities of zkj9 j = 1, 2, , mk. For

a totally ramified value z^ (I <L k <L q), we write

ί{i li(0 = Λ}, if ^ e Dh for some jffc ,

and

σk = the number of Nk .

Obviously, by (2.1)

Nk Π iVm = 0 , Mkφm

and

(2.4) 0 ^ σj + σ2 + + <rg ̂  τ' .

Since 0^; ζ0, ζJft) = 0 for i with j(ΐ) Φ j k , i.e. i β iVfc, the equality

(2.5) n = 2 4,i + Σ *

comes from (2.2), whence we have
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(2.6) n ^ vkmk + σk (k = 1, 2, . , q) ,

because ϊkJ Ξ̂> vk and st I> 1 for i eiVfc.

Hence

(2.7) n Σ -i- ̂  Σ mk .

From (2.3) and (2.5), it follows that

(2.8) 2τι - 2 = Σ (*« - 1) + *>

= qn- Σmk- Σσk

so that

Using (1.1), (2.7) and (2.8)', we obtain

q q q Λ 0.

(2.9) Σ mk + Σ <** ~ 2 ̂  (q - 2)n > n ξj -i~ ^ g ^^

and hence, by (2.4),

(2.10) τ ^ r' ^ Σ σk ^ 3 .

Thus we have the following

LEMMA 2. A simply, or doubly, connected domain Δ does not admit

any exceptionally ramified meromorphic functions satisfying the conditions

(1), (2) and (3).

§3. Classification of covering surfaces generated by exceptionally

ramified meromorphic functions

3.1. For approach it is essential to determine all covering surfaces

generating by an exceptionally ramified meromorphic function / with three

totally ramified values on a triply connected domain Δ(q = 3 and τ = 3).

With this choice of q and r, the inequalities (2.9) and (2.10) imply
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(3.1) n = mx + m2 + mz + 1

and

(3.2) τ = τ' = ^ + σ2 + σ3 = 3 .

The inequality in (2.8) should be equality, so that / cannot have any

ramified value other than {wk}kssίf2,s. By (3.2), each D3 (1 <^j <^ a') contains

one of the {wk}k=1)2>3. Since both Δ and Δ' are triply connected, each com-

ponent of Δ — Δr is a ring domain. The image of a component under /

is contained in one of the {Dj}j=lf...)a,. Consequently a = af.

Combining (3.1) with (2.6), we have

(3.3) mx + m2 + m3 + 1 ^ vkmk + σk, k = 1, 2, 3 .

There are four possibilities:

( i ) 772! ^ 1 , m2 ^ 1 , m3 JΞ> 1 .

(ii) 772! >̂ 1 , m2 ^ 1 , τn3 = 0 .

(iii) mί >̂ 1 , τn2 = m3 = 0 .

(iv) mx = m2 = mz = 0 .

Case (i). By (3.2) and (3.3), we have

(3.4) 0 ^ (v, - 3)m! + (ι>2 - 3)ττ22 + (p, - 3)m3 .

From (1.1) and (3.4), follow

vx = 2 , iλj ^ 3 and v3 ^ 4 .

From (3.3) and (3.4) follows

(3.5) 1 ^ (V2 - 4)7722 + (V3 - 4)7723 .

By (1.1), the following two possibilities occur

(i«) 2̂ = 4 , y3 ^ 5

(h) v2 = 3 , ^ 3 ^ 7 .

Case (ia). From (3.5), τn3 = 1 and vz = 5 follow. Hence by (3.3), there

are the following possibilities:

( a ) 772! = 2 , 7722 = 1 .

(b) 772i = 3 , m2 = 1 .

(c ) 772J = 4 , m2 = 2 .
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In each case, the numbers n9 £k>j, σk, ^ are determined by (2.5), (3.1) and

(3.2). Since 2?-i st ^ 3, the case (a) does not occur.

Case (b). Since n = 6, we have

Σ hi + Σ«* = hi + 4Σ «, = ̂  + .Σ st = 6.

This implies

(n = 6, Aj = 2 for = 1, 2, 3, 4,i = 4, 4,i = 5 ,

< O\ = = U, (T2

 = z &•> <?3 = = -Lj L^iji6iV2 = = 1̂ -5 -"-J )

I{β|}i6^ = {1}

This covering surface is said to be of class 1.

Case (c). Similarly as above, we have

[n = 8, £ltJ = 2 for j = 1 to 4, ^2fl = ^2)2 = 4 ,

3,1 = 5, <7i = (̂ 2 = = 0, (73 = 3, {̂ iĵ gjVg = {1, 1, 1} .

This covering surface is said to be of class 2.

Case (iβ). The inequality (3.3) with (3.2) gives

(3.6). mι ^ 4m3 .

From (3.3), it follows that

(3.7) 2(m3 + 1) ^ m2 ,

so that by (3.3), (3.6) and (3.7), we have

m3 = 1, 2 or 3.

Hence, using the inequalities (3.3) and (3.6) again, we have seven^pos-

sibilities:

(d) mx = 4 , m2 = 2 , m3 = 1 .

(e) mi = 4 , m2 = 3 , m3 = 1 .

(f) mi = 5 , m2 = 3 , m3 = 1 .

(g) mx = 6 , m2 = 4 , m3 = 1 .

(h) mι = 8 , m2 = 5 , m3 = 2 .

(i) mi = 9 , m2 = 6 , m3 = 2 .

(j) TO, = 12 , m2 = 8 , m3 = 3 .
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In each case, the numbers n, £ktj, σk and st are determined as follows:

Case (d). In = 8, £UJ = 2 for jf = 1 to 4 ,

/ p HP 7
• 2̂,1 — ^2,2 — °> #3,1 — * >

ax = 0, (72 = 2, σ3 = 1 ,

.{««W, = {1,1}, {**W, = {1}

This covering surface is said to be of class 3.

Case (e). In = 9, £UJ = 2 for / = 1 to 4 ,

4 f i = 3 for j = 1 to 3, ^,! = 7 ,

σx = 1, σ2 = 0, σ3 = 2 ,

{*}«€* = {1} {βλei,. = {1, 1}

This covering surface is said to be of class 4.

Case (f). In = 10, 4,, = 2 for = 1 to 5 ,

£2J = 3 for y = 1 to 3, ^,i = 7 ,

tfi = 0, σ2 = 1, <73 = 2 ,

{Si}ie*, = {!}» {St}ieNt = {1, 2} ,

ji = 10, A,i = 2 for = 1 to 5 ,

£2J = 3 for = 1 to 3, ^3>1 = 8 ,

σ1 = 0, <72 = 1, σ3 = 2 ,

{s<W a = {!}, {Sflie r̂, = {1, 1} >

(Λ = 10, 1̂><7 = 2 for = 1 to 5 ,

{4,i, 4,2, 4,3} = {3, 3, 4}, 4,, - 7 ,

σ% = σ 2 = 0, σ3 = 3, {sjίe^, = {1,1,1} .

These covering surfaces are said to be of classes 5, 6 and 7, respectively.

Case (g). (n = 12, ^ l f J = 2 for j = 1 to 6 ,

2>j = 3 for = 1 to 4, ^8>1 - 7 ,

σj - σ2 - 0, σ3 - 3, {sτ)ίeN3 = {1, 1, 3} ,

ΓM = 12, £ίtj = 2 for = 1 to 6 ,

1 ^ = 3 for .7 = 1 to 4, ί,fl = 7 ,

[^ = a2 = 0, σ3 - 3, fo}^, - {1, 2, 2} ,

(n == 12, 4 f i = 2 for j = 1 to 6 ,

2J = 3 for j = 1 to 4, ^3>1 = 8 ,

= <τ2 = 0, σ, = 3, {s,}ίGiV3 = {1,1, 2} ,
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n = 12, £UJ = 2 for j = 1 to 6 ,

£2J = 3 for j = 1 to 4, ^8ιl = 9 ,

^ = σ2 = 0, σ3 = 3, fokear, = {1,1, 1} .

These covering surfaces are said to be of classes 8, 9, 10 and 11, respec-

tively.

Case (h). in = 16, £ltj = 2 for j = 1 to 8 ,

( j = 3 for j = 1 to 5, £ZΛ = A,2 = 7 ,

= 0, σ2 = 1, σ3 = 2 ,

This covering surface is said to be of class 12.

Case (i). [n = 18, £uj = 2 for j = 1 to 9 ,

'2>j = 3 for j = 1 to 6, £ZΛ = 4,t2 = 7 ,

7l = σ2 = 0, <73 = 3, {Si}ieNs = {1,1, 2} ,

[n = 18, ^ = 2 for = 1 to 9 ,

e2tJ = 3 for 7 = 1 to 6, {̂ Sιl, ̂ 3,2} = {7, 8} ,

[σι = <χ2 = 0, σ, = 3, {sλe*. = {1, 1,1} .

These covering surfaces are said to be of classes 13 and 14, respectively.

Last case (j).

[n = 24, £ltJ = 2 for j = 1 to 12 ,

\tj = 3 for 7 .= 1 to 8, £Zti = 7 for 7 = 1 to 3 ,

O O f Ί Γ " 1 " 1 1 Ί

This covering surface is said to be of class 15.

3.2. Case (ii). The inequality (3.3) yields

(3.8) mx + m2 + 1 ^ vumk + σk , Jfe = 1, 2

From (1.1), the following possibilities occur:

(ϋ«) ^ = 2, ^ ^ 3 .
^ ^ 3, v2 ^ 3 .

Case (iiα). The inequality (3.8) implies the following five possibilities:

(k) rrii — 1 , m2 — 1 , σλ = o 2 = 0 .

(1) 7^ = 2 , m2 — 1 , cΓi = σ2 = 0 .
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(m) mι = 2 , m2 = 1 , ^ = 0 , σ2 = 1 .

<n) mλ = l r, m2 = 1 , σί = 1 , σ2 = 0 .

(o) 7Π! = 3 , ra2 = 2 , σx = <72 = 0 .

Using (2.5), (3.1) and (3.2) in each case, we have:

Case (k). (n = 3, 4,i = 4,i = 3, <τ8 = 3 ,

W
Case (1). (n = 4, £lΛ = 4,2 = 2, £2Λ = 4, σ3 = 3 ,

We*. = {1,1, 2} .

Case (m). (n = 4, 4,i = 4,2 = 2, 4,i = 3, σs = 2 ,

\τι — 4, -&lfl = #1>2

 == A 4,1 ==: &> o$ ~ £ )

Case (n). in = 3, 4,i = 2, £2ιί = 3, σ3 = 2 ,

Case (o). Γ7z = 6, 4,^ = 2 for j = 1 to 3 ,

U.i = 4,2 = 3, σz = 3, {*4}<6J,, = {1,1, 4},

ΓΛ = 6, 4,j = 2 for y = 1 to 3 ,

I4,i = 4,2 = 3, σ3 = 3, {st}ίeN3 = {1, 2, 3} ,

in = 6, 4 ? J = 2 for j = 1 to 3,

U,i = 4,2 = 3, σz = 3, {*<}«€*, = {2, 2, 2} .

These covering surfaces are said to be of classes 16 to 23, respectively.

Case (ii^). The inequality (3.8) yields σx = σ2 = 0 and m1 = m2 = 1, that

is, the case (k).

Case (iii). The inequality (3.3) yields mx = 1. Hence we have

(n = 2, 4,i = 2, σ, = 0, σ2 = 1, σ3 = 2 ,

Wie*. = {2}, {β,},e*. = {1, 1} .

This covering surface is said to be of class 24.

Case (iv). We have easily

n = l, {Sί}ieNk = {l} f o r * = 1,2, 3 .

This surface covers univalently the base domain C — Uy=i DJ a n ( i i s s a i
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to be of class 25.
Summing up the above discussion, we state the following

LEMMA 3. Let A be a triply connected domain bounded by analytic

curves {Γi}i=slt2t3 and let f be exceptionally ramified meromorphic on Δ with

three totally ramified values {wk}k=ίι2ί3 and satisfy the conditions (1), (2) and

(3).

Then, for the above domain Δf mentioned, we have:

1°) Δf is a triply connected subdomain of Δ, and the covering surface

generated by f restricted to Δf belongs to one of the 25 classes (see Table 1).

2°) / has no ramified values other than {wk}k=lt2t3 in Δ\

3°) Each component of Δ — Δf is doubly connected and its image is

contained in one of the {Dj}j=h...f(X (a <L 3).

4°) Each Dj contains one of the {wk}k=1>2^

Table 1

class\.

1

2

3

4

5

6

7

8

9

10

11

2

2

2

2

2

2

2

2

2

2

2

v2

4

4

3

3

3

3

3

3

3

3

3

^3

5

5

7

7

7

7

7

7

7

7

7

4,,

3
ίιj=2

4
£ιj=2

4
£ij=2

4
4,/=2

5
4,, =2

5
4,y=2

5

6
A,y=2

6
4j=2

6
4j=2

6
hj=2

m2

4,y

1
4,i=4

2
4,^=4

2
4j=3

3
4,;=3

3
4,y=3

3
4j=3

3
{4,i, 4,2, 4,3}

={3,3,4}

4
4j=3

4
4,y=3

4
4,, =3

4
4,y=3

4,y

1
4,i=5

1
4,i=5

1
4,i=7

1
4,i=7

1
4,i=7

1
4,i=8

1
4,i=7

1
4,i=7

1
4,i=7

1
4,i=8

1
4,1=9

n

6

8

8

9

10

10

10

12

12

12

12

<?1

{Si}ieNi

0

0

0

1
{1}

0

0

0

0

0

0

0

<*2

{Si)iQN2

2
{1,1}

0

2
{1,1}

0

1
{1}

1
{1}

0

0

0

0

0

<?3

{Si}ieNs

1
{1}

3
{1,1,1}

1
{1}

2
{1,1}

2
{1,2}

2
{1,1}

3
{1,1,1}

3
{1,1,3}

3
{1,2,2}

3
{1,1,2}

3
{1,1,1}
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class\.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2

2

2

2

2

2

2

2

2

2

2

2

2

^2

3

3

3

3

3

3

3

3

3

3

3

3

7

7

7

7

m1

hj

8
Λ,y=2

9

9
^i,j=2

12
*i,/=2

1
^i.i=3

2
hj=2

2
4L,/=2

2
Aj=2

1
4L,I=2

3
*i,/=2

3
4i,j=2

3

*w=2
1

^,i=2

0

* . /

5
*U=3

6
^2,i = 3

6
*a,j=3

8
/a,y=3

1
/i,i=3

1
^2,1=4

1
^2,1 = 3

1
^,i=3

1
^2,1 = 3

2
*a,y=3

2
4a,i=3

2
^2,y=3

0

0

h.i

2

2
^3J = 7

2
{4s,i> ̂ 3,2}

={7, 8}

3

0

0

0

0

0

0

0

0

0

0

n

16

18

18

24

3

4

4

4

3

6

6

6

2

1

{Si}ieNi

0

0

0

0

0

0

0

0

1

{1}

0

0

0

0

1
{1}

{Si}iGN2

1

{1}

0

0

0

0

0

1
{1}

1
{1}

0

0

0

0

1
{2}

1
{1}

* 3

2
{1,1}

3

{1,1,2}

3
{1,1,1}

3
{1,1,1}

3
{1,1,1}

3
{1,1,2}

2
{1,3}

2
{2,2}

2
{1,2}

3
{1,1,4}

3
{1,2,3}

3
{2,2,2}

2
{1,1}

1
{1}

§4. Key Lemma

4.1. We form a Cantor set in the usual manner. Let {ξn} be a sequence

of positive numbers satisfying 0 < ξn < 2/3, n = 1, 2, 3, . We remove

first an open interval of length (1 — &) from the interval JOιl: [— 1/2, 1/2],

so that on both sides there remains a closed interval of length ξJ2 ~ ηx.

The remained intervals are denoted by I1Λ and J l ι2. Inductively we remove

an open interval of length (1 — 2ηn) Y\n

pz\ τjp, with ηv = (l/2)fp (p = 1, 2, .),

from each In_ l f J ;, & = 1, 2, , 2n~*, so that on both sides there remains a

closed interval of length ΠP=I^P The remained intervals are denoted by
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In,2k-i and In>2k. By repeating this procedure endlessly, we obtain an infi-

nite sequence of closed intervals {In,k}n=i,2,.~, fc=i,2,...,2» The set given by

is said to be the Cantor set in the interval 7Ojl with successive ratios ξn

Set

and

where zn>k is the midpoint of InΛ. Denoting by μn — μ(Snίk) the harmonic

modulus of Sntk9 we have

(4.1) ^ ^ 2

3f,

We give Lemma 4 which will be a key of our proof of Theorem.

LEMMA 4. Let E be the Cantor set with successive ratios ξπ satisfying

the condition

lira ξ, = 0 .

Let f be an exceptionally ramified meromorphic function in the complement

Ec. Then, for a sufficiently large 7i(̂ > Lj), we have with a positive constant

M depending only on E and /,

In order to prove Lemma 4, we use Lemma 5 due to L. Carleson and

K. Matsumoto.

LEMMA 5. Let f be meromorphic in an annulus R: l<Z,\z\<L exp μ

(0 < μ < oo). If the image f(R) is contained in the open disc D(ζ0, d) with

center ζ0 and radius d (0 < d < 1/2), then by putting L — {|2| — exp μ/2] we

have with some positive constant A depending only on d

\f(L)\<AexP(-μl2),

whenever μ is sufficiently large (μ ^ μ0).
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Moreover, we can choose A with

A = O(d) as c£ -> 0

(cf. L. Sario and K. Noshiro [14], 128-129).

4.2. Proof of Lemma 4. Since / is exceptionally ramified in E% f is

normal. Hence, denoting by daEe{z) (resp. dσSntk) the element of hyperbolic

length of Ec (resp. Sntk), we have

{\f(z)|/(l + |/(*)|2)}|<fe| ^ CdσEC{z) ^ CdσSn,£z) ,

in Ec with some constant C depending only on / and E (cf. O. Lehto and

K. I. Virtanen [7]). Denote by ζ = φ (z) the conformal mapping of Sntk

onto G': 1 < |ζ| < exp μn and put g(ζ) = f(φ~%)). Both of dσSn>k(z) and

{\ff(z)\l(l + |/(2)|2)}|cί2| are conformally invariant, so that

= {Cπ/2μn\ζ\ sin

Denoting by L^k and L™k the inverse images of L'o : |ζ | = expι^0 and of

L[[ : |ζ | = exp(/in — vQ) under φ, respectively, we have

ίm

J ζeLV0

< f {Cπl2μn\ζ\ sin (JL log |ζ|))|dζ|

Similarly,

We take a fixed v0 with v0 > 32C and a sufficiently large n with

μ = max (^0, y0) (λi ̂  L2). From

Cπημn sin (JL ,0) < _ ^ L + JL < J L
\« n / y0 32 16



MEROMORPHIC FUNCTIONS 147

follow

\f(LΆ)\ <τV and |/(ia)|<-Ar.

Hence there are discs A with | A l < 1/8 such that A 3 /(L$) (i = 1, 2).

Lemma 2 implies therefore that, with the ring domain Tntk bounded by

LZ and L^,

v(w,f, Tntk) = 0 for II; e C - (A U A) ,

because if v(w, /, TUtk) I> 1 for w e C — (A U AX / is not exceptionally

ramified.

Consequently,

D1ΠD2Φφ and /(f„,*) c A U A .

Applying Lemma 5 to / in Tntk, we obtain the desired inequality

= Aev° exp ( - μJ2) = M exp ( - /^J2) ,

where M = Aevo.

§ 5. Proof of Theorem

5.1. Assuming that, for a Cantor set E satisfying our condition (1.2),

there is an exceptionally ramified meromorphic function / in E° with an

essential singularity at each point of E, we shall arrive at a contradiction.

By our previous result [5], / must have just three totally ramified values

{">i}ί = l,2,3.

Set

(5.1) δ = 7V m i n x(wk> wJ
kΦm

and

(5.2) ^ = M e x p ( - ^ / 2 ) .

By our condition (1.2), there exists a positive integer L3 such that, for n

(5.3) δn < δ

and

(5.4) δn+1 < R .



148 TOSHIKO KUROKAWA

Further, by Lemma 4, we can choose, for any n ̂  L4 = max (Ll9 L2, L3),

discs Dn>k with \Dntk\<2δn containing f(Γn,k). The union D = Dn>k U

ΰn+i)2s-iUΰn+iI2i consists of at most three, say a (l<La<^3), components,

which are covered by discs {DWk}Jmlι...tβ with D™k D DnΛ, \D™k\ = 12<5n and

\D^k\ = 12£n+1 for j Φ 1. Here we may assume that there are no ramified

values of / on dD^k. Denote by Δntk the triply connected domain bounded

by Γntk9 /'n+i.ΣΛ-i and Γn+1)2k. When the restriction of / to Δntk takes no

values outside D, then a = 1 and the image of Δntk is contained in Dfy.

In this case, we say that Δn>k is degenerate (/).

Suppose that the restriction of / to Δntk takes values outside D. Then

we see from 4°) of Lemma 3 that each component of D contains just one

of the {wt}imlt2tZ9 so that the center of D{

n% can be taken at the point wXj

e {^Jί=i,2,3, the totally ramified value contained in the corresponding com-

ponent of D. This show that {-D^AJJ-I,...,* are mutually disjoint. We choose

a triply connected subdomain Δ'n^ of An>k corresponding to Δf of Lemma 3.

It is always known that the covering surface generated by / on Δ'n,k belongs

to one of the 25 classes. Each component of ΔnΛ — Δf

nΛ is doubly connected

and its image is contained in one of the {D^k}Ja,u...ta. If the covering sur-

face is of class m, ΔnΛ and Δf

n,k are said to be of class m. Generically

these Δn<k are said to be non-degenerate (/).

Let Δn>k be non-degenerate (/). The boundary curves of Δ'n,k are

denoted by fn,fc, fn+1,2fc_! and fn+lf2fc, homotopic to Γn,k, Fn+h2k_λ and Γn+lf2fc,

respectively. Each of them is a component of the inverse image of some

3-D Ĵ. under / and said to be of z^/type (/). Assuming that γntk fn+lf2k-ι

and fn+1,2ic are positively oriented, we set for ζ o e C — Uy-i-D^L ζjGDnX

(j = 1 to α),

Sn,Jc — 2_i ^ ( f n , * i Cθ> ζj) >

α

fn + l,2k-if Cθ> ζj) {} = 0 ,2
. 7 = 1

5.2. The centers of Dfy are totally ramified values wλj e {w^isslM for

any ΔnΛ being non-degenerate (/), while D™k might contain no values

{wJi-1,2,3 for Δn>k being degenerate (/). However Dfy stay always con-

siderably near one of the {Wi}i=i>2>3.

PROPOSITION. Let Δntk be degenerate (/). Then D™k, the disc covering

f(Δn>k), is contained in one of the {D(wi9 24dw)}i=l52)3.
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Proof of Proposition. Suppose that £>£>* <£ U'-i D{ωu 24<5n) Since

\DZ\ = 12«.,

so that

f(Δnιk) C

By (5.4) and this inclusion

) β ϋ = 0,

This shows that D%l1>2k_j (j = 0,1) contain no totally ramified values

{wt}iaslt2,3 and Δn+h21c_j must be degenerate (/). Therefore

ftfn,* U ^ + 1 ) 2 f c -! U Jn+lfSfc) C D& U D^χ.2*-! U D^ l ί 2 f c ,

which imply

\f(Δn>k U Δn^2k_x U J n + l i 2 f c ) | < 12^n

By repeating this procedure, we have

|/((Γnιfc) - E)\ < 12ίn + 24(in+1 + aw+2

< 3β^κ < J min χ(iϋfc, α;J ,

where (Γn>k) denotes the domain bounded by ΓΛtk (see (5.1), (5.3), (5.4)).

We may assume that / is bounded in (Γnιk), because if necessary, we

take a certain linear transformation of / in place of /. Since E is of linear

measure zero, (JΓΛιfc) Π E must be removable for any bounded analytic func-

tion (cf. A. S. Besicovitch [1]). This contradicts our assumption that each

point of E is an essential singularity of /.

5.3. Now assume that infinitely many of Δn>lc are non-degenerate (/).

Then there are Jn,fc's being non-degenerate (/) with n >̂ L4. We take such a

fixed Δntk. Let the boundary curves fn+ltik and fn+i,2fc-i of Δ'n,k be of wvtype

(/) and of Hv-type (/), respectively. Here we may assume that sn+lf2*-i

^ sn+i,2fc and that λ 2> λ' if sn+lf2fc-i = sn+ltZk. From Table 1 we see that

sn+i,2* = 1 or 2.

The adjacent domain Δn+U2k will be either
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(A) degenerate (/)

or

(B) non-degenerate (/).

Case (A). Let Δn+lt2k be the triply connected domain bounded by fn+h2k,

Γn+2Λk-\ and Γn+2tAk. By virtue of the maximum principle, Proposition

implies

f(Δn+ί,2k)dD(wλ96δn+p),

where p = 0 or p = 1 according to f(fn+ί,2k) C 3D& or f(fn+h2k) C 32)$

(j ^ 1). We choose the component e/n+i,2fc of the inverse image f~\R{ιvλ,

24δn+2,6δn+p)) in Δn+U2k having fn+lf2fc as a boundary curve, where i?(^,

24Sw+2, 6Sn+p) = {ζ|24Sn+2 < χ(ζ, w,) < 6ίn+p}. From Lemma 2, it is easy to

see that the boundary of Jn+ί>2k outside fn+1)2k is mapped onto C(wλ, 24δn+2)

under /. We shall show that the boundary of Jn+if2k outside fn+lt2k consists

of

(Aj) one boundary curve κn+1>2k separating Γn+24fc_1 U Γn+2Λk from

ϊn+l,2k

or
(A2) two boundary curves Λ:^,^-.! and tcn+2tik separating Γn+2fik^ and

J- n+2,4k ί r O m 1 n+2f4k U fn+l,2k 9.Ώ.CI 1 n+2f4k-i U fn+l,2k9

respectively.

In fact, we assume contrary that Jn+lf2k has boundary curves βt

(i = 1, , h) other than the above, then each βt is homotopic to zero.

Set

sitj = O(κitJ; ζ0, Wj) and tt = 0(̂ 3 ;̂ ζ0, u;,)

for ζo€ C — 5 ( ^ , 245w+2), where Λ;^ and j9̂  are positively oriented. Apply-

ing the argument principle to / in Jn+ί,2k> we have

h

sn+i,2k = sn+lt2k + Σ tt i n the case

or

h
Sn+i,2* = sw+2,4fc_i + sn+2>4fc + Σ ^ i n t l χ e c a s e (A2) .

1 = 1

Since sn+1)2fc = 1 or 2, sitj ^ 1 and

<i = O ( ~ ft; w;,, ζ0) = v{wλ, f, ( - ft)) ^ i/, ̂  2 ,
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which is a contradiction.

Case (Aj). The domain Jn+U2k is doubly connected. By the Hurwitz

formula, / have no ramified values on Jn+ίf2k. Hence Jn+1,2k is conformally

equivalent to

We have

(5.5) μ(Jn+ί,2k) = μ(R*) .

As well-known, μ(Jn+ίt2k) is dominated by the harmonic modulus of the

extremal domain of Teichmύller, i.e.

(5.6)

where rx = Π P U ^ P
 a n d ri — ΪII^IVPO- ~~ 2^n+i) (cf. O. Lehto and K. I.

Virtanen [6] 55-62).

Hence, by (4.1), (5.2), (5.5) and (5.6), we have

£ log lβ(-A. + l ) = Iogl6(-A_ -

( 9 \

so

This inequality contradicts our assumption (1.2), for a sufficiently large n,

which imply that (A^ cannot occur.

Case (A2). The domain Jn+ίi2k is triply connected. In this case, sn+1>2k

= 2. From Table 1 we see that Δn,k is of classes 9, 19, 22 or 23 and λ = 3.

The domain Jn+2,4fc is degenerate (/). In fact, assume that Δn+2Λk is non-

degenerate (/). Then / takes the value wλ in the ring domain Rn+2Λk bounded

by κn+2,4k and γn+2j4k, and by virtue of the argument principle

7 £ vλ ̂  Kw,,/, i^+2|4fc) = sn+2Λk + sn+2>4k £ 5 ,

which is a contradiction. Let / be restricted to the domain Δn+ZΛk bounded
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by fcn+2)4k, Γn+3)8k_1 and Γn+3)8k and let Jn+2,ik be the component of the in-

verse image of R(wλ, 24dw+2, 24δn+ί), one of whose boundary curves is κn+2>ik.

Since sn+2Ak = 1, (A^ is only possible for Jn+2,ιk9 that is, Jn+2tik is doubly

connected. In the same way as above, we conclude that (A2) cannot occur.

In conclusion, Δn+ίι2k must be non-degenerate (/), i.e., of the case (B).

5.4. Case (B). Suppose that both of Δm>n and Δm+lj2n are non-degenerate

(/) and fm+i,2n is of w ̂ -type (/). By the argument principle

(5.7) vx ̂  v(wx,f, Rm+ly2n) = sTO+lf2n + sTO+lf2n ,

where Rm+lt2n denotes the domain bounded by.fm+lf2n and fm+lt2n The

inequality (5.7) will be useful in this paragraph.

The (B) is divided into the following four cases.

(Bi) Δn>k is of classes 1 or 2.

(B2) Δn>k is of classes 3, 4, , 22 or 23.

(B3) Δn>k is of class 24.

(B4) ΔUfk is of class 25.

Case (Bj). The adjacent domain Δn+U2k must be of classes 1, 2, 24 or

25. From Table 1 we see

sn+i,2k == 1 > sn+ί)2k = 1 o r Δ .

These equalities and (5.7) give

(5.8) vλ £ 3 .

On the other hand, since λ = 2 or 3, we have vλ — 4 or 5. This contradicts

(5.8).

Case (B2). By (5.7), we have

vλ ^ 2 + 4 = 6 ,

so that

I = 1 or 2 .

This implies that Jn>fc cannot be of classes 4, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 21, 22 and 23.

In the case λ = 1, Δnyk is of class 20 and sn+h2k — l Hence Δn+ίι2k is

of classes 4, 20 or 25.

In the case λ = 2, JTO,fc is of classes 3, 5, 18 or 19 and sn+1,2k — 1.

Hence Jn + l i 2 f c is of classes 3, 5, 6, 12, 18, 19, 24 or 25. We see that Δn+U2k
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is of class 24 in the following way. Assume that Δn+ί>2k is of classes 3,

5, 6, 12, 18, 19 or 25, then (5.7) gives 3 <L v2 and v2 <L 2, which is impossible.

In either case, at least one of {fn+Mfc-i, fn+2,ik}, say fn+2,4fc, is of w,-type

and sn+2iik = 1. Assuming that Δn+2>4k is non-degenerate (/), we are led

to a contradiction 75gy 3 <^l + 4 = 5. However Δn+2fik is not degenerate

(/). Both cases cannot occur.

Case (B3). In this case, §n+ίt2k = 1 and 2 = 3. By (5.7), we have 7 £

vz and vz <̂  5, which is impossible.

Case (B4). We have shown that no ΔUιks of other classes than 25

class appear. It follows that Δn+h2k and Δn+2Λk are also of class 25. By

(5.7) we have

2 < vλ ^ v(wλ, /, Rn+h2k) = 1 + 1 - 2

a n d

2 £ v, ^ v{wλ,, /, Rn+2,4k) = 1 + 1 = 2 ,

which contradict (1.1), because 7! Φ λ.

Thus the case (B) also cannot occur. Consequently, there exists a

positive integer N (^ L4) such that every ΔnΛ (n ^ N, k — 1, 2, , 2n) is

degenerate (/).

5.5. Finally, we take a fixed n(ϊ>N). Since Δn+VΛ is degenerate (/),

we have f(Δn+PtQ) (Z D(nlp,q. For any ze(Γn>k) — E, there is a chain of

{Δn+PfQ} connecting Δn,k to z. The diameter of the chain 5g 12 (dn + dn+1

+ "- + dn + m + -")£ 24δn, because \D™Ptq\ - 12ίn + p and δn + p+ί < ( l/2)ί n + p

(see (5.4)). Hence

fc) - E) C Z)(w;0, 243n) ,

where woef(Ank), that is,

- E)\ < 48δn < 48^

We may assume that / is bounded in (Γn>k), because if necessary, we

take a certain linear transformation of / in place of /. The Cantor set

E is of linear measure zero, so that (Γnk) Π E is removable for /. This

contradicts our assumption that each point of E is an essential singularity

off.
The proof of Theorem is thus complete.
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