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ADDITION THEOREM OF ABEL TYPE

FOR HYPER-LOGARΠΉMS

KAZUHIKO AOMOTO

Several kinds of generalizations of classical Abel Theorem in algebraic

curves are known, for example see [12] and [13]. It seems to the author

these are all regarded as local relations among rational differential forms.

In this article we shall try to generalize Abel Theorem for integrals of

rational forms in some specific cases where these can be described in terms

of hyper-logarithms (for the definition see [3] and [4], Theorem 2). Trigono-

metric functions have been generalized to higher dimensional cases by

L. Schlafli who has obtained a very important variational formula related to

the volume of a spherical simplex [16]. In particular, the volume V(Δ) of

a 3-dimensional double rectangular tetrahedron Δ with the dihedral angles
a, β, ΪJ τr/2, π/2, π/2 can be expressed in terms of the di-logarithm as fol-

lows : For

-uμ _ cos a cos γ — Vsin2 a sin2 γ — cos2 β
cos a cos γ + Vsin2 a sin2 γ — cos2 β

(0.1)

where ψ(x) denotes the di-logarithm

ψ(x) = - Γ ι°g(1-χldx= - [' d logχ.dlog(l - x)
Jo x Jo
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56 K. AOMOTO

(see [9], p. 13). On the other hand it is known that ψ{x) can be charac-

terized by the functional equation [17]:

(0.2) ψ(τ ^ -) = J—*—) + ψ(-^~) - Ψ(χ) - Ψ(y)
\ (1 — x)(l — y)' \ 1 — xl VI — y I

This equality comes from the co-algebra property of iterated integrals of

1-forms ωl9 ω2, -,ωm along two paths γ, yf connecting each other:

(0.3) ωΓ -ωm == | ] \ ωί ωpΛ
Jr f p=o J r J r'

ωp + l

This also corresponds to the additive property of the volume itself (see the

Remark in § 1). To generalize it, we consider the integral of a differential

form ω over a chain X:

(0.4) W(X) = f ω ,

ω being fixed and regarded as a functional of X, W(X) has the "additive

property":

(0.5) W(X U Y) + W(X ΠY)= W(X) +W(Y),

which is a so-called "content-mass" function studied in detail by H. Hadwiger

[14]. As is well-known, the additive and invariant properties of W(X) also

correspond to the cocycle condition for the cohomology of Lie groups (see

for example, [10], [19]). In this article we shall show these properties charac-

terize hyper-logarithms in the following two cases:

i) Schldfli function, the volume of a spherical simplex, which has been

discussed in [2] and

ii) hyper-logarithms associated with the configuration of hyperplanes

in the real projectίve space RPn,

(see Theorem ln and Theorem 4). This will be done in the framework of

iterated integrals of differential 1-forms due to K. T. Chen [7] and [8]. The

cases a) and c) of Theorem 2 in [4] immediately follows from the above

formulae (see [4], p. 356). The conformal case b) in [4] will be discussed

in a forth-coming paper.

Actually Theorem ln can be regarded as an analytic and spherical

version of the Hadwiger functional theorem [14], 221-222.

The author would like to acknowledge the referee's useful suggestion.
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§ 1. Addition formula of Schlafli function (orthogonal case)

Let Sl9 S2, - , Sn+1 be arbitrary hyperplanes through the origin:

fj(=Σ^=ι hvχv) = 0 in general position in Rn+1. We consider the integral

V(Δ) = ί Σ i-iy-'xtdx, Λ <i> Λdxn+1
J Δ ί = l

over the spherical simplex Δ defined by f5 ^ 0 in the unit sphere Sn. We

denote by Δiίi2...ip the facettes defined by Δ Π Six Π SH Π Π Sip. Let A

be the symmetric matrix ((α^)) i^itj^n+ί with ai3 = — cos (i,j} and au = 1.

Then V(J) is the hyper-logarithm with respect to A expressed by

Λ4 / Γ \ / F \ /T

J / / \(1.1) V(4)= Σ Σ I d ( i o V < i ί V </r

where ( ^ \ 7P = (i,, , ip) and J p t l = (i,, • , ip, ip+I, ίp+2) represent the
V p + l/

dihedral angles between Aiim..ip Π S ί p + 1 and Δilm..ip Π S i p + 2 subtended by the

(n — p) simplex Δilί2...ip, and | S n | denotes the volume of the unit sphere.

This is the simple consequence of the following formula due to L. Schlafli:

(1.2) dV(Δ) = Σ Vίό{Δ)d(ijy
l

where Vi5(Δ) denotes V(Δtj)9 [2] and [20].

Let Sl9 S2, - , Sn+U Sn+2 be arbitrary hyperplanes through the origin

in general position in Rn+\ and Δ'u l<Li^n + 2, be the 7i-simplices in St

bounded by Sx U U Sf_! U Sί+1 U U Sw+1. Then the content-mass pro-

perty of V(Δ) implies the following identity relation [6], [14]:

(1.3) Σ(-l) 1 " 1 V r (JO = 0 .

V(J) is a locally analytic function of A whose singularities are in the

loci Xix...ίp defined by det A(ίί9 , ίp) = 0, where det A(ίl9 , ip)91 ^ ΪΊ <

<i ί J <^τz + l, l < I p < ^ t t + l denote the subdeterminant with the ix th, ,

ip th lines and columns of A.

Let Ar be a symmetric matrix of order (n + 2), ((a'U3))ιύujίkn+2, with

α^ = 1. We denote by Ά!i9 1 ̂  i ^ n + 2, the sub-determinant matrix

obtained by deleting the ith line and column from A'. Then (1.3) can be

stated as

PROPOSITION 1.2. The strong additive relation
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(1.4) Σ (-1)'~' V(A$ = 0 (det ATn

ί = l

holds, where Tt denotes Diag [—1, , — 1,1, , 1] and A\ = TtA'tTt. In
ί-l

particular, the weak additive relation:

(Rl. ή) det A' = 0 ,

implies

(1.5) Σ(

We are now going to prove the converse of the preceding Proposition.
In fact we have

THEOREM ln. Let F(A) be a continuous and locally analytic function of

A in the domain X = {A e En(n+1)/2\A >̂ 0} satisfying the following condition

(HI. n): i) F(A) = 0 if det A = 0 and aίtj < 0, l^i, j ^ n + 1,

ii) symmetry property, namely F(σA) = F(A) where σ denotes an arbi-

trary permutation of the indices 1, 2, , n + 1 sαc/i ίΛαί (σ^A)^- = Aσ(i)σU).

iii) Λ̂e strong additive property (R2. n), namely

(1.4*) Σ (- ly- 'F^O = 0 mod (det A'))n/2

Then F(A) is a constant multiple of V(A) in X.

It is unknown to the author if the weak additivity implies the strong

one or not. This kind of theorem has been implicitly investigated by

W. Maier and A. Effenberger [18].

Proof of the Theorem. In view of Gauss-Bonnet theorem [2] the even

case is reduced to the odd one. So we have only to prove it in the odd

case. We shall prove the Theorem by induction with respect to n. When

n = 1, the Theorem is nothing but the well-known addition theorem of

arccos x.

1st step. LEMMA 1.1. Assume n ^ 3. Suppose that the Theorem lk

has been proved for k < n. Then the differential dF(A) can be expressed as

dF(A)=ΣVij(A) d<i,j>-

(1.6) φ«i, j), (i, 1>, <ϊ, 2>, j • • •, <i, n + V);

<j, 1>, ••• I •••, {j, n + l »

where ψ denotes a suitable locally analytic function on X.
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Proof. The function Fi5 = dF(A)/d(ijy represents a locally analytic

function of the simplex Δtj with the dihedral angles y-u]) and satisfies the

hypothesis (HI. n — 2). In fact (1.5) implies

(1.7) Σ

in other words,

(1.8) Σ Ή / A ί X - I)*"1 = 0 mod (det A0(7Z"1)/2 .
kΦiJ

By induction hypothesis, as a function of y-uj)* h j fixed, Fυ is equal to

a constant multiple of V^/A), so that there exists a function of the 2n — 1

variables <i, j>, <i, X), (j, X) for ^ € {1, 2, , i, , n + 1} — {i,j} such that

(1.9) Ftj(A) =

Because of the symmetry

(1.10) F. (1MΛ((r>A) =

we have

(1.11) p.(o.w(cKi,.7>; σ <^ >̂» ̂ O', ̂ » = <Pij«iJ>; <h x>, <j, z»

namely

which we shall denote by φ. The Lemma has been proved.

LEMMA 1.2. When n^>5, φtj is constant and does not depend on i, j .

Proof. Let i, j , k, I arbitrary different indices in {1, 2, , n + 1}. Then

(1.13) d

which implies

(1.14) φtj«i,f> <i,

in view of the equality

Consequently both sides in (1.14) depend only on ζi, k}, (i, I}, <j, k}, <y, I}.

Let ίu i2, , ίQ be different indices in {1, 2, «, n + 1}. Then (1.14) shows
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(1.16) φi(iu £5>, (il9 i6}; <z2, ι5>, </2, i 6 » =

which implies φ is constant.

ί4, ί 8 >,

COROLLARY. When n = 4, /or arbitrary different indices i, j , k, I we

have the relations:

(1.17) ^ ^ ' k>' (*' l^; (J' k>* <;*' ̂  = ^ ' ^ ' <*' ̂ ; ^ ; > Z^' ^ ' ? k^
ii) p«f, A>, <j, k); <ί, />, <y, /» = p«i, A>, <ί, />; <;, k\ <;, /»

LEMMA 1.3. Theorem 13 Λo/ds.

Proo/. We put φ(a, β, γ, π/2) = P l(α, ft y), p(α, ft π/2, π/2) = φ2(a, β),

φ(a, π/2, π/2, π/2) = φ3(a) and ^(π/2, π/2, π/2, π/2) = p4. Consider a configura-

tion of hyperplanes in S3 as in the figure which has 10 vertices a, β, γ, 5,

e, C, 37, ̂ , ,̂ Λ;, such that we have the 5 simplices Δ[ = [2, 3, 4, 5], J£ = [1? 3,

4, 5], Δi = [1, 2, 4, 5], Δi = [1, 2, 3, 5] and Δ't = [1, 2, 3, 4] and that {ε, ζ, 77, 0,

t, fc} C $ , {ft γ, ί, (9, r, Λ:} C S2, {α, r , 3, ζ, 9} 6 S8> {α, ft 5, ε, 57} e S4, {α, ft y, e, ζ}

C <S5. The system of angles subtended by each Δ\ are as follows:

<2, 4>, <2, 5>, <3, 4>, <3, 5>, <4, 5>

<4, 5>, <3, 5>, π - <3,1>, π - <4, l>, 'π

π - <1, 4>, π - <1, 5>, π - <2, 4>, π -

<1, 3>, π - <1, 5>, <2, 3>, π - <2, 5>, π

We have only to prove that (1.6) determines φ in a unique way except for

a constant multiple.



HYPER-LOGARITHMS 61

1st step. We assume <1, 5> = <2, 5> = <3, 5> = <4, 5> = π/2 so that Ar

has the following expression:

1, α12, α18, α14, 0

α21, 1, α23, α24, 0

(1.18) A

(Rl. 3) shows

(1.19) 0 = (1 - <4 -

Owing to (1.8) we have

#31) ^32) 1> ^34> "

α41, α42, α43, 1, 0

0, 0, 0, 0, 1

ί, 4» -

{Vu(Jζ)ψ3«,l, 3» - F I 4 (4

(1.20)

4» - V12(4M«1, 3>, <2, 3»

4>; <2, 3>,

, 2>, <3, 2»

1, 4>, <3, 2

, 2>, <4, 2»

f>,«l, 2>, <l, 3>, <4,

4» - V23(Jdψ2«2,1>, <3,

F23(4V1«2,1>, <2, 4>, <3,

3» - Vu{Δ'3)ψl<2,1>, <4,

VM(40?»,«2,1>, <2, 3>, <4,

2>, <4, 2» -

, 2>

, 3>

, 3>

, 4>

d<3,4> = 0 .

In view of (1.19) we can take as independent variables (1, 3), (1, 4>, (2, 3),

(2, 4) and <(3,4), so that we have

Vn(Δ'6)d(l, , 3>, <1, 4>; <2, 3>, <2, 4»

(1.21) , 3>

, 4» - , 2>, <3, 2»

Because ^ ( J ^ ^ l , 2>/3<l, 3> # 0, the local analytic function p can be ex-

pressed by means of the functions Vtj(A), φu φ2, φ3 and ψk.
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2nd step. We assume further <1, 4> = ττ/2, namely αI4 = 0. Then (1.19)

becomes

(1.22) 0 = (1 - <4)(1 - <4 - al) - (α12 - α13 α2 3)
2.

We can take <1, 2>, <1, 3>, <2, 3>, and <3, 4> as independent variables. By

(1.21) again, φx can be expressed by means of Vυ(A) and <p2, φ3, <p4.

3rd step. Let A have the form

' 1 α12 α13 0 *

#21 1 #23 0

#31 #32 1 0

L0 0 0 1.

A =

then (1.6) becomes

dF(A) = Ξ.. , 2>

(1.23)

| - P2«2,l>,<3,l»d<2,3>
Δ

because Vn(A) = Vn(A) = V23(A) = π/2. The integrability condition shows

(1.24) _ ap,«l,2>,<3,2»
1, 2>, 3>

As a consequence the left hand side is independent of <Ί, 3>. ψ2 being

symmetric, φ2((l, 3), <2, 3)) can be described as

(1.25) P 8 «l , 3>, <2, 3» = co«l, 3> + <2, 3» + cx

where φ, = coττ + cx and p 3«l, 3» = (co(ττ/2) + q) + co<l, 3>.

4th step. Let A7 have

1 α12 0 α14 0"

(1.26) A' =

a2ί 1 0 0 0

0 0 1 0 0

α 4 1 0 0 1 0

0 0 0 0 1

with the condition (Rl. 3) 1 — a\2 — a2

u = 0. By considering the solid angle

subtended by Δ'h at t (see the figure), we have
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(1.27)

(1.20) becomes

(1.28) {

where V12(4Q =

τr/2, namely

(1.29)

1, 2> + <1, 4> = <2, 4> = *

, 4» -

- VM(4OP,«1, 2» +

) = V ^ D = τ/2, and -

, 4» - Ψi}

, 2>

2»}d<l, 4> = 0

) = - F1 4(J0 = Vu(40 =

, 2» - p j = 0 .
From (1.27) we have d<l, 2>(p8«l, 4» - p 8«l, 2») = 0, which implies c0

vanishes. Theorem has been completely proved.

Remark. Let A' be the following Jacobi matrix

1 — cos<2

— cosα 1 — cosβ

(1.30) A' = - c o s β 1 -cos?-

— cos^ 1 —cos δ

— cosd 1

Then the sub-matrices A[, A'2, A'3, A[ and A'5 define 5 double rectangular

tetrahedra Δu Δ2} Δs, J4 and J5 respectively. Each volume can be described

as follows (see [9] p. 13):

(1.31)

(1.32)

(1.33)

(1.34) J = JL(a + β -
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and (1/4)V(J5) is the same as (0.1), where e~2U is defined to be

cos β cos δ — λ/sin2 β sin2 δ — cos2 γ
cos β cos δ — Vsin2 β sin2 δ — cos2 y

We assume now that the determinant of Af vanishes, namely

(Rl. 4) 0 = 1 - cos2 a - cos2 β - cos2 γ - cos2 δ

+ cos2 a - cos2 f + cos2 β cos2 5 + cos2 a cos2 δ .

Then, according to (1.5), the following equality holds:

(1.35) V(4) + V(4) = V(J2) -

We assume further that β + γ = π /2. TΛeft (Rl. 4) is equivalent to the

following:

(Rl. 4)' cos2 ί = ^ ^
cos2 a — cos2 β

Therefore e~2U, e~2^, e~2ir and e~2U all become rational functions of e2ίa

9 e2ίβ

as follows:

(1.36) e~2U = - e~2ί« = - e"2<r = e 2 ί^,

and

(1.37) e2U = e2la + g 2 ^ .
1 + e2<β.eM/i

Then (1.36) becomes

(1.38) i

4\ 2/ 2

This is equivalent to the identity (0.2).

§2. Hyper-logarithms in projective case

Let M be the complement Cn — S+ U S~ where S+ and S~ denote the
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union of hyperplanes Sj :fj = O, 1 ^ j ^ /n, and — n <I j <I 0 respectively

which are in general position. We denote Ω'(*S+) the space of rational

forms whose poles are located in S+. The following is well-known (see

[4]).

LEMMA 2.1. An arbitrary n-form 42π(*S) is rationally homologous to a

linear combination of logarithmic forms

(2.1) W . i. = dfjfii Λ Λ dfjfin, 1 ^ i, < < in ^ m .

From now on we shall assume f_n,f_(n_t), ,/0 are all real such that

the region

(2.2) / > 0 /_ > 0 / > 0

defines a fi-simplex Δ with its facettes Δjlj2...jp = SH Π Π SJ p ίl 4 — τι

^ Ji < Λ < < 7p ^ 05 0 ^ p ^ w. For each sequence of indices I =

&> * 5 in) consider the integral

the determiniants

(2.3) Φuu-u =

We denote by [al9 a29 , αw+1] and [oo, β,

respectively for fs = J^=1 ajvxv + ajOy with the conditions a)0 + 2?-i a)» = l

Then 0(i\, , in) is analytic function on the configuration space X of S,

parametrized by Plύcker coordinates [aua29 ••-,«»+!] and [oo,βj, •• ,j8J.

We have the following formula analogous to Schlafli's:

LEMMA 2.2.

(2.4) dφ(ί19.. ,in)=

. d l o g ([/, ii, , ί j/[oo, j , ix, •••<»••., i j ) .

Proo/. The integral

(2.5) φλ(iί9 - -

satisfies the following Gauss-Manin connection:
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n

(2.6) d φ λ ( i u - , ίn) = Σι Σ ( — iy*i0Φλ(h, iu • • • < » • • • , i n )

- d log ([£o, ii, , i«]/[oo, i0, ίi, O> , £ J )

(see [1] p. 60). On the other hand for any (n - l)-form ψ e Ω^^S) we have

(2.7) lim^of (dfJfi0)Λψ= [ ψ

if i0 e {— n, , — 1, 0}, equal to zero otherwise. (2.6) and (2.7) imply the

Lemma.

For — n ̂  jo < j , < < j p _ ! <: 0, 1 ̂  ix < i2 < < in_p ^ w, put

(2.8) φ(iίf - , in_p; joju - - -Jp-d = | ^ft, , in-v)
JjJθjl»jp-l

where <p(il9 - , ίn_p) denotes the form dfiχ\fH Λ Λ dfin_Jfίn_p. These are

symmetric or skew-symmetric with respect to il9 , in_p or jo,Ji, ,JP-i

respectively. Applying Lemma 2.2 repeatedly we have

LEMMA 2.3.

(2.9) dφ(iu , i»-p;jo,ji, ,JP-i)

= £ .e {_n _n+χ Σo }_ {.o _ . i } Σ V D'dlog [j,Jo, , J V I , ii, •> in-p]/

where ξ denotes an arbitrary point of X and 0 the point of X such that

Δ shrinks to a point where det [— n, — n + 1, , 1, 0] = 0 .

Combining Lemmas 2.2 and 2.3 we have the following expression by

means of hyper-logarithms:

PROPOSITION 2.

VoJu — Jn-ί)

•frfiog-—}Jo: lu'' v ̂ — —
(2.10) J o L°°,7o, iu ' - < O >*nJ

• cίlog L7o>7i? ̂ r '\ισn/'''9ιn\ . .
[<X>Jθ,Jl> ίu * <^n-i> <iσ > •> U

Jθ> 7ϊ> ' * ' > ̂ w -1> 1̂» ' ' ' > \ l gi/ * \lσ2/ ' ' ' \lon-ι) ' ' ' 9 ln\
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where (jo,ju ,Λ-i) or (σu -,σn) run over all the different sequences of

indices in {— n, — n + 1, , — 1, 0} or {1, 2, , ή\ respectively. The right

hand side represents iterated integrals in the sense of K. T. Chen (see [3]

and also [7]).

Proposition 2 shows immediately the following which can be regarded

as a generalization of Abel Theorem, in terms of hyper-logarithms instead

of logarithms:

THEOREM 2. For any ω e £?n(*S), as a function on X, the integral

(2.11) ί ω

can be described as a sum of

(2.12) (rational functions) X (hyper-logarithms at most n-th order),

whose singularities are all located in the union Y of the subsets defined by

[a,,a2, - -,an+1] = 0 and [oo, βu , j8J = 0, -n^a,<- - <an+ι<: m

and — n <L βί <• - - < βn ^ m respectively.

Proof Owing to Lemma 2.1 and Stokes formula, (2.11) turns out to

be equal to a linear combination of φ(iu , in) and integrals of rational

forms over lower dimensional simplίces. Repeating this procedure for the

latter step by step, we arrive at the Theorem.

Consider the de Rham algebra Ω(X,log(Y}) generated by dlog[i0,

h> - - -, in] for {£o> i» , in} c K = {oo, - n, - n + 1, , - 1, 0,1, , m} so

that Ωι(X, log<Y» is spanned by dlog [i0, iu , in]. All the exterior

products d log [i0, iu , in] Λ d log [j0, j ί y ,jn] are not linearly inde-

pendent, but the following relations hold: For any choice of indices a, β>

γ, d and iu , in_1 in K put

θ(a,β,r,δ; il9 •••Λ-i)

(2.13) = d l o g [«> β>i» --, in-i] Λ dlog [a, γ, iu , i n _J

+ dlog [or, r,i» •••, in^] A dlog [a, δ, il9 , i n _J

+ d log [a, δ, iu , iB-J Λ cf log [α, p, i1? , £n_J ,

then

LEMMA 2.4.

+ θ(γ, δ,a,β; iu --, in_x) - θ(δ, a, β, γ i19 , ίn_x) = 0 .
(2.14) θ(a> & r> δ; ίί9 ' " > i n ' ^ ~~ θ^9 r> δ> a ;
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Proof. Logarithmic forms of the above type are determined by their

residues. We have only to prove all the residues of the left hand side

vanish. This can be easily done.

According to Chen's formula about the differentiation of iterated inte-

grals [7] Prop. 4.1.2, (2.14) shows that the iterated integrals (2,10) depends

only on homotopy classes of paths from 0 to ζ.

Remark. (2.4) gives the fundamental relations in Ω2(X9 log <Y» with

respect to the generators dlog [iu i29 , ίn+ί]. In view of the general

principle of K(Π, 1) spaces, one may ask the following questions: Is

Ω'(X, log <(Y» isomorphic to the singular cohomology of X — Y?

Is the space X — Y K(Π91)? Does (2.14) give a fundamental system

of relations of Ω\X9 l o g < Y » with respect to dlog[iί9 ί29 •• , i n + j ? When

n = 1, it is well-known that these are true. For the more extensive treat-

ment see [15].

Let g be the holonomy Lie algebra over C generated by the symbols
uh,i2'~in+i which have the fundamental relations (integrability condition for

the connection form Σ{ii,ia,-..,<»+i}cχ "ii,<a,...,i.+idlog ih, h, , in+i])

(2.15) 0 = Σ uίlί2...ίn+1dlog [iu ί29 - , in+ί] A Σ uilί2...in+1dlog [il9 ί2, , ίn+1]

n a m e l y for different indices a, β, γ, δ, ίl9 •• , i n . 1 c l Γ

o = I Σ ^ uλail...in_l9 u β a ί l . . . i n Λ ,

(2.16) 0 = [uaβil.m.in^ + umx..,in_x + uΐail...in_v uaβiι...in_^

0 = [uaβiι...in_x, urHι...in_Ji .

Then exactly in the same way as in [3] we can conclude

THEOREM 3. The space of hyper-logarithms is isomorphic to the dual

of the enveloppίng algebra ^(g) of q.

§3. Addition formula for hyper-logarithms in projective case

The group G = GL(n + 1, R) acts on Rn as projective transformations

in such a way that logarithmic forms of the type (2.1) are transformed

into themselves. Therefore φ{iu , in) has the following properties:

(H2.1) It is invariant by G.

(H2.2) It is symmetric or skew-symmetric with respect to S_n, SLn+1, , SQ

or iί9 , in respectively.



HYPER-LOGARITHMS

Now consider the (n + 2) hyperplanes S_w_i, S_w, , So, with Sji fj

= 0, such that the region - f0 ^ 0, , - /_y+1 ^ 0, / . ^ ^ 0, •, / . ^ ^ 0

defines each simplex Δ'v with suitable orientations, and

(3.1) Σ(-i) 4 = Q.
υ = 0

Let # & , , in) be

(3.2) ί p f t , - . . , i n ) .

This is a locally analytic function of the configuration {S_n_1? , (v}9 ,

SO; 1, 2, , m} such that the obvious identity relation holds:

(H2.3) Σ \ - l ) ^ , •••,*„) = 0 .
v = 0

Now we are going to prove the converse is also true:

THEOREM 4. Let F(ξ) = F(ίu , in) be a locally analytic function on

X with singularities in Y, satisfying (H2.1)-(H2.3) such that it vanishes at

ξ = 0. Then F is equal to a constant multiple of φ(ίu , in). In other

words the function φ(ίu , in) is characterized by (H2.1)-(H2.3).

Proof. We shall prove the Theorem by induction with respect to n.

By the invariance property (H2.1) we may assume fiχ = xu >,fίn = xn so

that [j, ίj, ί2. , ίn] = αJO and ( - I) 1" 1 [oo, j , iu . . . , <£v>, . . . , ίn] = ajv. F

being a function of the configuration S, depends only on the ratios a10lajv.

We may assume aj0 = 1. When n — 0, the Theorem is trivial in view of

the definition of the logarithm. Assume n > 1. We consider the variation

of F which can be expressed as follows:
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(3.3) dF= Σ ΣF, ,d

where Fjυ is uniquely determined. ajv, 1 <L v <L n being fixed, Fjv satisfies

the assumption of the Theorem for n — 1. Therefore by induction hy-

pothesis Fjv is a constant multiple of φ(iu , <ίμ>, , in;j), namely there

exists a suitable locally analytic function ujv{aju , ajn) such that Fjv can

be expressed as

(3.4) Fjυ = UjXan, , ajn).0ft, . . . , <i.>, , ίn j) ( - 1)" .

j&y ί/ie ίntegrability condition we have for any two (jf, μ) and (£, v), j ^ A,

the following:

(3.5) dFJdakv = dFJdaj.

In the same way, according to Lemma 2.3

(3.6) d&- W & > * * *' <̂ >» * * *' i
)( ) # 1 *= 0 .

Therefore we have

(3.7) ujμ(an, , ajn) = ukv(akU , akn)

which implies that ujμ is equal to a constant independent of j and μ. The

Theorem has been completely proved.

Added in proof. In [21] is defined the di-logarighm form on the con-

figuration space. It seems still uncertain if it is related to the hyper-

logarithms discussed here.
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