N. Hasesaka and K. Hayasida Nagoya Math. J. Vol. 87 (1982), 261-271

ON THE L^p BOUND FOR DEGENERATE ELLIPTIC OPERATORS WITH TWO VARIABLES IN THE ILL POSED PROBLEM¹⁾

NOBUO HASESAKA AND KAZUYA HAYASIDA

1. Let Ω be an open set in the upper half plane $\{y > 0\}$, whose boundary is denoted by $\partial \Omega$. Let $\partial \Omega$ contain an open segment Γ lying on the x-axis.

We consider the following system of first order degenerating on y = 0:

(1.1)
$$[\partial_y + (\mu_j + i\kappa_j)y^{k_j}\partial_x]u_j = \sum_{k=1}^m b_{jk}(x, y)u_k^{(2)},$$

$$j = 1, \dots, m,$$

where κ_j , μ_j are real constants and b_{jk} are in $L^{\infty}(\Omega)$, further k_j are non-negative integers. It is assumed that $\kappa_j \neq 0$, that is, (1.1) is elliptic except at y = 0.

In this article we shall prove

Theorem. There are constants C, k (0 < k < 1) and a rectangle Q in Ω , whose one side lies on Γ such that if $u_j \in C^1(\Omega) \cap C^0(\overline{\Omega})$ satisfies (1.1) in Ω , and

$$||u_j||_{L^{\infty}(\mathcal{Q})} \leq M \leq 1$$
, $||u_j||_{L^p(\Gamma)} \leq \varepsilon \leq M$,

then it follows that

$$||u_j||_{L^{p}(Q)} \leq C \varepsilon^{1-k} M^k,$$

where $1 \leq p \leq \infty$ and C depends only on p, while Q, k are independent of p.

The proof is given in Section 3.

We see that our theorem holds more generally for the case of κ_j , μ_j

Received March 6, 1981.

¹⁾ This work has been supported by Grant-in-Aid for Co-operative Research A organized by the Ministry of Education, the Japanese Government.

²⁾ We write simply $\partial/\partial x = \partial_x$ and $\partial/\partial y = \partial_y$.

being analytic in $\overline{\Omega}$. Its proof is tedious and essentially the same as in this article. Hence we treat only the case of constant coefficients for the sake of simplicity.

The inequality (1.2) is a kind of Hadamard's three circle theorem, which is required in the ill posed problem, that is, in the non-well posed Cauchy problem of partial differential equations (see e.g. [2]).

L.E. Payne and D. Sather [3] obtained a L^2 -inequality of type (1.2) for Tricomi's equations arising in gas dynamics. His tool is the Jensen's inequality for convex functions. Our method is to yield Carleman's estimate with L^p -norm. We proceed along the work of T. Carleman [1] where it is treated for p=1 and non-degenerate systems.

Recently, the L^p approach to unique continuation is achieved by J. C. Saut and B. Scheurer [4]. They consider Schrödinger's equations and improve Hörmander's L^2 estimates with weight.

We give an example of single equations for which our theorem is applicable. We consider the following equations with variable coefficients

$$\partial_y^2 u + a \partial_x \partial_y u + b \partial_x^2 u + B u = 0,$$

where B is an operator of first order.

Let λ_1 and λ_2 are the distinct roots of the quadratic equation $\lambda^2 + a\lambda + b = 0$. We set $v_1 = u_x$ and $v_2 = u_y$. Then (1.3) becomes

$$\partial_v egin{pmatrix} v_1 \ v_2 \ u \end{pmatrix} + egin{pmatrix} 0 & -1 & 0 \ b & a & 0 \ 0 & 0 & i \end{pmatrix} \partial_x egin{pmatrix} v_1 \ v_2 \ u \end{pmatrix} = \mathscr{B} \ .$$

Here

$$\mathscr{B} = \begin{pmatrix} 0 \\ -Bu \\ v_2 + iv_1 \end{pmatrix}.$$

We write

$$U = egin{pmatrix} v_1 \ v_2 \ u \end{pmatrix}, \quad N = egin{pmatrix} 1 & 1 & 0 \ \lambda_1 & \lambda_2 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad H = egin{pmatrix} 0 & -1 & 0 \ b & a & 0 \ 0 & 0 & i \end{pmatrix},$$
 $D = egin{pmatrix} -\lambda_1 & 0 & 0 \ 0 & -\lambda_2 & 0 \ 0 & 0 & i \end{pmatrix} \;\; ext{and} \;\; V = N^{-1}U \,.$

It is obvious that $N^{-1}HN = D$ and

$$\partial_y V + D\partial_x V = N^{-1} \mathscr{B} - N^{-1} (\partial_y N + H\partial_x N) V.$$

Particularly, we put $\lambda_1 = ic_1$ and $\lambda_2 = ic_2y^k$, where k is a positive integer and c_1 , c_2 are non zero real numbers. We can then apply our theorem to (1.3).

2. We define

$$S(x, y) = y + x^2 - \alpha \sum_{j=1}^m y^{2(k_{j+1})}$$
.

where α is a positive number depending on $\{\kappa_j\}$, $\{\mu_j\}$ and $\{k_j\}$, which will be determined later (see (3.3)).

First we have

Lemma 1. There is a positive number ℓ_0 depending on α such that for any ℓ with $0 < \ell < \ell_0$, there exists a simple curve γ satisfying the properties:

- (i) The end points of γ are $(\ell, 0)$ and $(-\ell, 0)$.
- (ii) γ is contained in $\{y > 0\}$ except the end points.
- (iii) $S = \ell^2$ on γ .
- (iv) The length of γ is finite, more precisely, γ is of class C^1 .
- (v) Let G_{ℓ} be the domain enclosed by γ and the segment $[-\ell, \ell]$. Then G_{ℓ} is contained in any given neighborhood of the origin for sufficiently small ℓ .
 - (vi) $S \leq \ell^2$ in G_{ℓ} .

Proof. Since S is an even function of x, it is sufficient to consider only in $x \ge 0$. The derivative $S_v(x, y)$ is independent of x. Hence we denote $S_v(x, y)$ simply by $S_v(y)$.

Taking ℓ_0 suitably, we see that for any ℓ with $0 < \ell < \ell_0$, there exists $y_{\ell} > 0$ satisfying

$$S(0, y_{\ell}) = \ell^2$$
, $S_{2}(y_{\ell}) > 0$ and $y_{\ell} \longrightarrow 0$ $(\ell \longrightarrow +0)$.

By the theorem of implicit functions there is a C^1 -function $f_{\ell}(x)$ in a neighborhood of x = 0 such that $f_{\ell}(0) = y_{\ell}$ and $S(x, f_{\ell}(x)) = \ell^2$.

We show that the existence interval of f_{ℓ} is $[0, \infty)$. In fact, if it is not, we can find $x_0 > 0$ in such a way that the existence interval of f_{ℓ} is $[0, x_0)$. Since $f'_{\ell}(x) = -2x/S_{\nu}(f_{\ell}(x))$ in $[0, x_0)$, we see that $f'_{\ell}(x) \leq 0$ there. This means that f_{ℓ} is monotone decreasing on $[0, x_0)$. Hence $S_{\nu}(f_{\ell}(x_0 - 0)) > 0$, that is, f_{ℓ} is prolonged over x_0 . This is a contradiction.

We see immediately that the point $(\ell,0)$ is on the curve $y=f_{\ell}(x)$. Let $\gamma=\{(x,f_{\ell}(x))|0\leq x\leq \ell\}\cup\{(x,f_{\ell}(-x))|-\ell\leq x\leq 0\}$. Then (i), (ii), (iii) and (iv) hold. Noting that $y_{\ell}\to 0$ $(\ell\to +0)$ and f_{ℓ} is monotone decreasing, we see that (v) also holds. Lastly (vi) is evident by the fact that $S_{\nu}>0$ in a neighborhood of the origin. This completes the proof.

For any non-negative integer k we set

$$(2.1) t = y^{k+1}/(k+1) (y \ge 0).$$

Let D be a semidisk in the upper half plane, whose center is the origin. Let ρ be the radius of D. We denote by D' the image of D with the mapping $(x, y) \to (x, t)$.

Lemma 2. There is a constant $C(\rho)$ such that for any $(x', t') \in D'$, it holds

(2.2)
$$\iint_{\mathcal{D}} ((x-x')^2 + (t-t')^2)^{-1/2} dx dy \leq C(\rho),$$

where $C(\rho)$ depends only on ρ and $C(\rho) \to 0$ $(\rho \to 0)$.

Proof. We may assume that $\rho < 1/2$. Let us replace the integral domain D in (2.2) by the semidisk D_1 with radius 2ρ and with center O. Then the proof is reduced to the case of x' = 0 without loss of generality. From (2.1) we have

$$dy = (k+1)^{-\nu}t^{-\nu}dt \quad (\nu = k/(k+1)).$$

Hence (2.2) is equivalent to

(2.3)
$$\iint_{D_{t'}} t^{-\nu} (x^2 + (t - t')^2)^{-1/2} \, dx dt \le C'(\rho)$$

for any $(0, t') \in D'_1$, where D'_1 is the image of D_1 by (2.1).

Evidently, D_1' is contained in a semidisk with radius 2ρ and with the same center. And it is easily seen that $(x^2 + t^2)^{1/2} \le (x^2 + (t - t')^2)^{1/2}$ for $t \le t'/2$, and $|t - t'| \le t$ for $t \ge t'/2$. Thus in order to prove (2.3), it is sufficient to show that

$$\iint_{D_2} |t|^{-\nu} (x^2 + t^2)^{-1/2} \, dx dt \leq C''(\rho) \,,$$

where $C''(\rho) \to 0$ $(\rho \to 0)$ and D_2 is a entire disk with radius 4ρ and with center O. However this is obvious by virtue of $0 < \nu < 1$ and by the polar coordinates transformation. The proof is complete.

We fix an integer q with $1 \le q \le m$ and we put

$$(2.4) t = y^{k_q+1}/(k_q+1)$$

in place of (2.1). Let $c_q=(k_q+1)^{\scriptscriptstyle 1/(k_q+1)}.$ Then S is written by

$$S(x,y) = c_q t^{1/(k_q+1)} + x^2 - \alpha c_q^{2(k_q+1)} t^2 - \alpha \sum_{j \neq q} c_q^{2(k_f+1)} t^{2(k_f+1)/(k_q+1)}$$
 .

For simplicity we rewrite

$$(2.5) S(x,y) = c_q t^{1/(k_q+1)} + x^2 - \alpha c_q' t^2 - \alpha \sum_{j \neq q} d_q^{(j)} t^{2(k_j+1)/(k_q+1)}.$$

Here we note that the coefficients c_q , c'_q and $d_q^{(j)}$ are positive.

Let $\alpha > 0$, $\beta > \gamma$ and $0 < \gamma \le 1$. We set

$$h(t)=t^{r}-\alpha t^{\beta}.$$

Then it holds

Lemma 3. There is a positive number δ depending on α , β and γ such that $h''(t) \leq 0$ if $0 < t < \delta$.

Proof. The proof is immediate from the equality

$$h''(t) = egin{cases} \gamma'(\gamma-1)t^{\gamma-2}\{1-lphaeta\gamma^{-1}(eta-1)(\gamma-1)^{-1}t^{eta-\gamma}\} & (\gamma
eq 1) \ -lphaeta(eta-1)t^{eta-2} & (\gamma = 1) \ . \end{cases}$$

Now we define

$$S_{1}(t) = c_{q} t^{1/(k_{q}+1)} - \alpha \sum_{i \leq q} d_{q}^{(j)} t^{2(k_{j}+1)/(k_{q}+1)}$$
.

From Lemma 3 we see immediately

Lemma 4. There is a positive number δ_0 such that

$$S_1''(t) \leq 0$$
, if $0 < t < \delta_0$.

We fix any t' with $0 < t' < \delta_0$ and we set

$$S_{0}(t) = S_{1}(t') + (t - t')S'_{1}(t') - S_{1}(t)$$
.

Then we have

LEMMA 5.
$$S_2(t) \ge 0$$
 for $0 < t < \delta_0$ and $S_2(t') = 0$.

Proof. It is trivial that $S_2(t')=0$. We see that $S_2'(t)=S_1'(t')-S_1'(t)$, $S_2''(t)=-S_1''(t)\geq 0$ by Lemma 4 and $S_2'(t')=0$. Accordingly, $S_2'(t)\geq 0$ for $t'\leq t<\delta_0$ and $S_2'(t)\leq 0$ for $0< t\leq t'$, which proves the lemma.

LEMMA 6. Let $1 \le p < \infty$, $0 \le \nu < 1$ and let $A_1, A_2 > 0$. We put

$$u(x, y) = \int_{-\infty}^{\infty} ((x - x')^2 + y^2)^{-1/2} f(x') dx'$$

for any $f \in L^p(\mathbb{R}^1)$ with supp. $f \subset (-A_1, A_1)$. Then it holds

$$\left(\int_0^1 \int_{-A_2}^{A_2} |u(x,y)|^p y^{-\nu} \, dx dy\right)^{1/p} \leqq C \|f\|_{L^p(R^1)} ,$$

where C is independent of f.

Proof. We write $A_3 = A_1 + A_2$. The proof is obtained from the following Hausdorff-Young's inequality

$$\int_{-A_2}^{A_2} |u(x,y)|^p dx \le \left(\int_{-A_3}^{A_3} (x^2 + y^2)^{-1/2} dx\right)^p (||f||_{L^p(R^1)})^p \\ \le C y^{(\nu-1)/2} (||f||_{L^p(R^1)})^p.$$

Lemma 7. Let Γ be a curve of class C^1 with finite length. Let G be a bounded domain in the upper half plane. Then, if $0 \le \nu < 1$ and $1 \le p < \infty$, we have

$$\iint_G \! \! \left(\int_\Gamma ((x-x')^2 + (y-y')^2)^{-1/2} \, ds_{x,y})^p \, y'^{-\nu} dx' dy' < \infty \, .
ight.$$

Proof. We write P=(x',y'), Q=(x,y) and dis $(P,\Gamma)=|P-R|(R\in\Gamma)$. First we prove

$$(2.6) \qquad \qquad \int_{\Gamma} |P - Q|^{-\alpha} \, ds_Q \le C$$

for $0 < \alpha < 1$. When $P \in \Gamma$, the inequality is trivial. In general, (2.6) is reduced to the case of $P \in \Gamma$, because

$$|R - Q| \le |R - P| + |P - Q| \le 2|P - Q|$$
.

From (2.6) we see

$$egin{align} (\operatorname{dis}(P,arGamma))^lpha \int_arGamma |P-Q|^{-1}\,ds_Q &= \int_arGamma (\operatorname{dis}(P,arGamma)/|P-Q|)^lpha |P-Q|^{lpha-1}\,ds_Q \ &\leq \int_arGamma |P-Q|^{lpha-1}\,ds_Q \leq C_{1-lpha}\,. \end{split}$$

Thus it holds

$$\int_{\Gamma} |P-Q|^{-1} ds_Q \leq C_{1-\alpha} (\operatorname{dis}(P,\Gamma))^{-\alpha}.$$

Therefore it is sufficient to prove

$$(2.7) \qquad \qquad \iint_{G} (\operatorname{dis}(P, \Gamma))^{-\alpha p} \, y'^{-\nu} \, dx' dy' < \infty .$$

We can assume that Γ is written by y = f(x) ($a \le x \le b$), without loss of generality. And it is sufficient to consider that P is close to Γ and the x coordinate of P is in $[a + \varepsilon_0, b - \varepsilon_0]$ for some $\varepsilon_0 > 0$. Let R = (x'', y''). Then we easily see

$$\operatorname{dis}(P,\Gamma) = |x' - x''| (1 + (f'(x''))^{-2})^{1/2}.$$

Let S be the point where the line being parallel to y-axis through P intersects Γ (see Figure 1). Evidently S = (x', f(x')) and we have

Figure 1

$$|P - S| = |y' - f(x')| = |y' - f(x'') - (x' - x'')f'(c)|$$

= |x' - x''||f'(x'')^{-1} + f'(c)|,

where c lies between x' and x''. Consequently, it holds

$$|P - S| \leq C \operatorname{dis}(P, \Gamma)$$
.

Hence (2.7) is equivalent to

$$\iint_{C} |y'-f(x')|^{-\alpha p} y'^{-\nu} dx' dy' < \infty.$$

This inequality is correct for sufficiently small α , because the integral

$$\int_{0}^{1} |s - c|^{-\mu} s^{-\nu} ds \quad (0 \le c \le 1)$$

is finite and uniformly bounded with respect to c, if $\mu + \nu < 1$. This completes the proof.

3. In this section we give the proof of our theorem, following the

method of T. Carleman [1]. And in the final part of the proof we use the idea of F. John (page 559 in [2]), where the case of analytic functions with one complex variable was treated.

We may assume that the origin is in Γ . We choose a fixed ℓ such that $[-\ell,\ell] \subset \Gamma$, $G_{\ell} \subset \Omega$ and $\ell < \delta_0/2^{s_0}$.

Let q be any fixed integer with $1 \le q \le m$. For simplicity we write $\kappa = \kappa_q$, $\mu = \mu_q$, $k = k_q$ and $u = u_q$. And we write

$$[\partial_{\nu} + (\mu + i\kappa)y^{k}\partial_{x}]u = f.$$

It can be assumed that $\kappa > 0$, since the following argument is quite similar for the case of $\kappa < 0$.

We denote by G'_{ℓ} the image of G_{ℓ} with the transformation (2.4). Then (3.1) becomes

$$[\partial_t + (\mu + i\kappa)\partial_x]u = g,$$

where $g = (k + 1)^{-\nu} t^{-\nu} f$ and $\nu = k/(k + 1)$.

Let (x', t') be any fixed point in G'_{ℓ} and let us set

$$\xi = x - x' - \mu(t - t'), \qquad \eta = \kappa(t - t').$$

Then we see

$$x^2 - \alpha c_0' t^2 = C_0 + C_1 \xi + C_2 \eta + C_3 \xi \eta + \xi^2 + \kappa^{-2} \mu^2 \eta^2 - \alpha \kappa^{-2} c_0' \eta^2$$

where C_j are real constants depending on κ , μ , x', t', α and c_q' . We write

$$egin{aligned} \xi^2 + \kappa^{-2} \mu^2 \eta^2 - lpha \kappa^{-2} c_q' \eta^2 &= rac{1}{2} (1 + \kappa^{-2} (lpha c_q' - \mu^2)) (\xi^2 - \eta^2) \ &+ rac{1}{2} (1 + \kappa^{-2} (\mu^2 - lpha c_q')) (\xi^2 + \eta^2) \,. \end{aligned}$$

Here let α be such that

$$\max_{i} (\kappa_{j}^{2} + \mu_{j}^{2}) < \alpha c_{q}^{\prime}$$

for any q. Then it follows

$$S(x, y) = x^2 - \alpha c'_q t^2 + S_1(t)$$

= $C'_0 + C_1 \xi + C'_2 \eta + C_3 \xi \eta + C_4 (\xi^2 - \eta^2) - C_5 (\xi^2 + \eta^2) - S_2(t)$,

where $C_5 > 0$. Hence we have

$$egin{aligned} S(x,y) &= Re[C_0' + (C_2' - iC_1)(\eta + i\xi) \ &- (C_4 + (i/2)C_3)(\eta + i\xi)^2] - C_5(\xi^2 + \eta^2) - S_2(t) \,. \end{aligned}$$

³⁾ The number δ_0 is the same as in Lemma 5.

For $\tau \geq 0$ we set

Then it is obvious that

$$(\partial_{\eta}+i\partial_{\xi})\Phi=0.$$

We remark that the following two equations are equivalent:

$$[\partial_t + (\mu + i\kappa)\partial_x]Z = 0$$
, $(\partial_n + i\partial_{\varepsilon})Z = 0$.

Hence if we put $\psi(x, t; x', t') = \Phi(\eta + i\xi) \exp(\tau S(x, y))$, we obtain

Since

$$egin{align} (\eta + i \xi) \psi(x,t;x',t') &= \exp(- au[C_5(\xi^2 + \eta^2) + S_2(t)]) \cdot \ &\exp(-i au[C_2' \xi - C_1 \eta - 2 C_4 \xi \eta - rac{1}{2} C_3(\eta^2 - \xi^2)]) \,, \end{aligned}$$

it follows from Lemma 5 that

$$|\psi| \leqq 1/|\eta + i\xi| \,, \quad \lim_{\eta + i\xi = 0} (\eta + i\xi)\psi = 1 \,.$$

If we set $\varphi = ue^{-\gamma s}$, (3.2) becomes

$$(\partial_n + i\partial_{\varepsilon})\varphi + \tau\varphi \cdot (\partial_n + i\partial_{\varepsilon})S = \kappa^{-1} g e^{-\tau S}$$
.

Let ω be a disk with center (x', t') and with sufficiently small radius. Multiplying the both sides of the above equality by ψ , we integrate it over $G'_{\ell} - \omega$. By Green's formula and by (3.4) we get

$$-\int_{\partial G_{\ell'}-\partial\omega}arphi\psi d\xi+i\int_{\partial G_{\ell'}-\partial\omega}arphi\psi d\eta=\kappa^{-1}\iint_{G_{\ell'}-\omega}g\psi e^{-\imath\delta}\,d\xi d\eta\,,$$

where the boundaries are oriented to the positive direction. Letting the radius of $\omega \to 0$, we see

$$\int_{\mathbb{R}^n} \varphi \psi(d\xi - id\eta) \to -2\pi \varphi(x', t').$$

Therefore it follows that

$$\varphi(x',t') = -\frac{1}{2\pi} \left[\int_L \varphi \psi \, dx + \int_{I'} \varphi \psi (dx - (\mu + i\kappa) dt) + \iint_{G_{L'}} g \psi e^{-\varepsilon s} \, dx dt \right],$$

where $L = \{(x, 0) | |x| \le \ell\}$ and γ' is the image of γ by (2.4).

Hereafter we denote simply by C the constant independent of τ and $\{u_i\}$. Letting t' be the image of y' with (2.4), we estimate the integral

$$\iint_{G_s} |\varphi(x',t')|^p dx'dy'.$$

First we see

(by Lemma 6)

$$\leq C(\|\varphi(\cdot,0)\|_{L^p(L)})^p$$
.

And in virtue of Lemma 7 we have

$$egin{aligned} &\iint_{G_{m{t}}} \left| \int_{m{t}'} arphi \psi(dx - (\mu + i\kappa) dt)
ight|^p dx' dy' \ & \leq \iint_{G_{m{t}'}} \left(\int_{m{t}'} |arphi| ((x - x')^2 + (t - t')^2)^{-1/2} ds_{x,t}
ight)^p \cdot t'^{-
u} dx' dt' \ & \leq C (\|arphi\|_{L^{\infty}(m{t})})^p \ . \end{aligned}$$

Finally Lemma 2 and Hausdorff-Young's inequality give

$$\iint_{G_{\ell}} \left| \iint_{G_{\ell}'} g \psi e^{-\tau S} \, dx dt \right|^p dx' dy' \leq C(\ell)^p (\|fe^{-\tau S}\|_{L^p(G_{\ell})})^p \, .$$

Combining the above inequalities we obtain

$$\|\varphi\|_{L^p(G_\ell)} \le C(\|\varphi\|_{L^p(L)} + \|\varphi\|_{L^\infty(\gamma)} + C(\ell)\|fe^{-\tau S}\|_{L^p(G_\ell)}).$$

Setting $\varphi_j = u_j e^{-\tau S}$ ($\tau \ge 0$) for each u_j of (1.1), we conclude that

for small ℓ if necessary.

If we put $\tau = \log (M/\varepsilon)^{1/\ell^2}$, it holds

$$\|arphi_j\|_{L^\infty(\gamma)} \leqq M \exp((-\ell^2) \log{(M/arepsilon)^{1/\ell^2}}) = arepsilon$$
 ,

because $S = \ell^2$ on γ . Since $S \ge 0$ on y = 0, we see that $\|\varphi_j\|_{L^p(L)} \le \|u_j\|_{L^p(L)}$

 $\leq \varepsilon$. Hence by virtue of (3.5) it follows that

$$\sum_{j=1}^m \|\varphi_j\|_{L^{p}(G_{\ell})} \leq C \varepsilon.$$

Let ℓ' be any fixed with $0<\ell'<\ell$. It is obvious that $G_{\ell'}\subset G_{\ell}$ and $S\le \ell'^2$ in $G_{\ell'}$. Hence we have

$$\textstyle\sum_{j=1}^m \|u_j\|_{L^p(G_{\ell'})} = \sum_{j=1}^m \|\varphi_j\,e^{\tau S}\|_{L^p(G_{\ell'})} \leqq C\varepsilon e^{\tau \ell'^2} = C\varepsilon \exp(\log(M/\varepsilon)^{\ell'^2/\ell^2}).$$

Therefore setting $k = (\ell'/\ell)^2$ (< 1), we obtain

$$\sum_{j=1}^m \|u_j\|_{L^{p}(G_{\ell'})} \leq C \varepsilon^{1-k} M^k.$$

This completes the proof.

REFERENCES

- [1] T. Carleman, Sur un probleme d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendentes, Arkiv Mat., 26B (1938), 1-9.
- [2] F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585.
- [3] L. E. Payne and D. Sather, On some improperly posed problems for the Chaplygin equation, J. Math. Anal. Appl., 19 (1967), 67-77.
- [4] J. C. Saut and B. Scheurer, Un théorème de prolongement unique pour des opérateurs elliptiques dont les coefficients ne sont pas localement bornés, C. R. Acad. Sci. Paris, 290 (1980), 595-598.

Department of Mathematics Faculty of Science Kanazawa University Kanazawa, 920 Japan