ON THE L^{p} BOUND FOR DEGENERATE ELLIPTIC OPERATORS WITH TWO VARIABLES IN THE ILL POSED PROBLEM ${ }^{1)}$

NOBUO HASESAKA and KAZUYA HAYASIDA

1. Let Ω be an open set in the upper half plane $\{y>0\}$, whose boundary is denoted by $\partial \Omega$. Let $\partial \Omega$ contain an open segment Γ lying on the x-axis.

We consider the following system of first order degenerating on $y=0$:

$$
\begin{align*}
& {\left[\partial_{y}+\left(\mu_{j}+i \kappa_{j}\right) y^{k_{j}} \partial_{x}\right] u_{j}=\sum_{k=1}^{m} b_{j k}(x, y) u_{k}^{2)} } \tag{1.1}\\
& j=1, \cdots, m,
\end{align*}
$$

where κ_{j}, μ_{j} are real constants and $b_{j k}$ are in $L^{\infty}(\Omega)$, further k_{j} are nonnegative integers. It is assumed that $\kappa_{j} \neq 0$, that is, (1.1) is elliptic except at $y=0$.

In this article we shall prove
Theorem. There are constants $C, k(0<k<1)$ and a rectangle Q in Ω, whose one side lies on Γ such that if $u_{j} \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfies (1.1) in Ω, and

$$
\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \leqq M(\leqq 1), \quad\left\|u_{j}\right\|_{L^{p}(\Gamma)} \leqq \varepsilon(\leqq M)
$$

then it follows that

$$
\begin{equation*}
\left\|u_{j}\right\|_{L^{p(Q)}} \leqq C \varepsilon^{1-k} M^{k} \tag{1.2}
\end{equation*}
$$

where $1 \leqq p \nsupseteq \infty$ and C depends only on p, while Q, k are independent of p.

The proof is given in Section 3.
We see that our theorem holds more generally for the case of κ_{j}, μ_{j}

[^0]being analytic in $\bar{\Omega}$. Its proof is tedious and essentially the same as in this article. Hence we treat only the case of constant coefficients for the sake of simplicity.

The inequality (1.2) is a kind of Hadamard's three circle theorem, which is required in the ill posed problem, that is, in the non-well posed Cauchy problem of partial differential equations (see e.g. [2]).
L.E. Payne and D. Sather [3] obtained a L^{2}-inequality of type (1.2) for Tricomi's equations arising in gas dynamics. His tool is the Jensen's inequality for convex functions. Our method is to yield Carleman's estimate with L^{p}-norm. We proceed along the work of T. Carleman [1] where it is treated for $p=1$ and non-degenerate systems.

Recently, the L^{p} approach to unique continuation is achieved by J. C. Saut and B. Scheurer [4]. They consider Schrödinger's equations and improve Hörmander's L^{2} estimates with weight.

We give an example of single equations for which our theorem is applicable. We consider the following equations with variable coefficients

$$
\begin{equation*}
\partial_{y}^{2} u+a \partial_{x} \partial_{y} u+b \partial_{x}^{2} u+B u=0 \tag{1.3}
\end{equation*}
$$

where B is an operator of first order.
Let λ_{1} and λ_{2} are the distinct roots of the quadratic equation $\lambda^{2}+a \lambda$ $+b=0$. We set $v_{1}=u_{x}$ and $v_{2}=u_{y}$. Then (1.3) becomes

$$
\partial_{y}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
u
\end{array}\right)+\left(\begin{array}{rrr}
0 & -1 & 0 \\
b & a & 0 \\
0 & 0 & i
\end{array}\right) \partial_{x}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
u
\end{array}\right)=\mathscr{B} .
$$

Here

$$
\mathscr{B}=\left(\begin{array}{c}
0 \\
-B u \\
v_{2}+i v_{1}
\end{array}\right)
$$

We write

$$
\begin{aligned}
U & =\left(\begin{array}{l}
v_{1} \\
v_{2} \\
u
\end{array}\right), \quad N=\left(\begin{array}{lll}
1 & 1 & 0 \\
\lambda_{1} & \lambda_{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad H=\left(\begin{array}{rrr}
0 & -1 & 0 \\
b & a & 0 \\
0 & 0 & i
\end{array}\right), \\
D & =\left(\begin{array}{ccc}
-\lambda_{1} & 0 & 0 \\
0 & -\lambda_{2} & 0 \\
0 & 0 & i
\end{array}\right) \text { and } V=N^{-1} U .
\end{aligned}
$$

It is obvious that $N^{-1} H N=D$ and

$$
\partial_{y} V+D \partial_{x} V=N^{-1} \mathscr{B}-N^{-1}\left(\partial_{y} N+H \partial_{x} N\right) V .
$$

Particularly, we put $\lambda_{1}=i c_{1}$ and $\lambda_{2}=i c_{2} y^{k}$, where k is a positive integer and c_{1}, c_{2} are non zero real numbers. We can then apply our theorem to (1.3).
2. We define

$$
S(x, y)=y+x^{2}-\alpha \sum_{j=1}^{m} y^{2\left(k_{j+1}\right)} .
$$

where α is a positive number depending on $\left\{\kappa_{j}\right\},\left\{\mu_{j}\right\}$ and $\left\{k_{j}\right\}$, which will be determined later (see (3.3)).

First we have
Lemma 1. There is a positive number ℓ_{0} depending on α such that for any ℓ with $0<\ell<\ell_{0}$, there exists a simple curve γ satisfying the properties:
(i) The end points of γ are $(\ell, 0)$ and $(-\ell, 0)$.
(ii) γ is contained in $\{y>0\}$ except the end points.
(iii) $S=\ell^{2}$ on γ.
(iv) The length of γ is finite, more precisely, γ is of class C^{1}.
(v) Let G_{ℓ} be the domain enclosed by γ and the segment $[-\ell, \ell]$. Then G_{ℓ} is contained in any given neighborhood of the origin for sufficiently small ℓ.
(vi) $S \leqq \ell^{2}$ in G_{ℓ}.

Proof. Since S is an even function of x, it is sufficient to consider only in $x \geqq 0$. The derivative $S_{y}\left(=\partial_{y} S\right)$ is independent of x. Hence we denote $S_{y}(x, y)$ simply by $S_{y}(y)$.

Taking ℓ_{0} suitably, we see that for any ℓ with $0<\ell<\ell_{0}$, there exists $y_{\ell}>0$ satisfying

$$
S\left(0, y_{\ell}\right)=\ell^{2}, S_{y}\left(y_{\ell}\right)>0 \quad \text { and } \quad y_{\ell} \longrightarrow 0(\ell \longrightarrow+0) .
$$

By the theorem of implicit functions there is a C^{1}-function $f_{\ell}(x)$ in a neighborhood of $x=0$ such that $f_{\ell}(0)=y_{\ell}$ and $S\left(x, f_{\ell}(x)\right)=\ell^{2}$.

We show that the existence interval of f_{ℓ} is $[0, \infty)$. In fact, if it is not, we can find $x_{0}>0$ in such a way that the existence interval of f_{ℓ} is $\left[0, x_{0}\right)$. Since $f_{\ell}^{\prime}(x)=-2 x / S_{y}\left(f_{\ell}(x)\right)$ in $\left[0, x_{0}\right)$, we see that $f_{\ell}^{\prime}(x) \leqq 0$ there. This means that f_{ε} is monotone decreasing on $\left[0, x_{0}\right)$. Hence $S_{y}\left(f_{\ell}\left(x_{0}-0\right)\right)$ >0, that is, f_{f} is prolonged over x_{0}. This is a contradiction.

We see immediately that the point $(\ell, 0)$ is on the curve $y=f_{\ell}(x)$. Let $\gamma=\left\{\left(x, f_{\ell}(x)\right) \mid 0 \leqq x \leqq \ell\right\} \cup\left\{\left(x, f_{\ell}(-x)\right) \mid-\ell \leqq x \leqq 0\right\}$. Then (i), (ii), (iii) and (iv) hold. Noting that $y_{\ell} \rightarrow 0(\ell \rightarrow+0)$ and f_{ℓ} is monotone decreasing, we see that (v) also holds. Lastly (vi) is evident by the fact that $S_{y}>0$ in a neighborhood of the origin. This completes the proof.

For any non-negative integer k we set

$$
\begin{equation*}
t=y^{k+1} /(k+1) \quad(y \geqq 0) \tag{2.1}
\end{equation*}
$$

Let D be a semidisk in the upper half plane, whose center is the origin. Let ρ be the radius of D. We denote by D^{\prime} the image of D with the mapping $(x, y) \rightarrow(x, t)$.

Lemma 2. There is a constant $C(\rho)$ such that for any $\left(x^{\prime}, t^{\prime}\right) \in D^{\prime}$, it holds

$$
\begin{equation*}
\iint_{D}\left(\left(x-x^{\prime}\right)^{2}+\left(t-t^{\prime}\right)^{2}\right)^{-1 / 2} d x d y \leqq C(\rho) \tag{2.2}
\end{equation*}
$$

where $C(\rho)$ depends only on ρ and $C(\rho) \rightarrow 0(\rho \rightarrow 0)$.
Proof. We may assume that $\rho<1 / 2$. Let us replace the integral domain D in (2.2) by the semidisk D_{1} with radius 2ρ and with center O. Then the proof is reduced to the case of $x^{\prime}=0$ without loss of generality. From (2.1) we have

$$
d y=(k+1)^{-\nu} t^{-\nu} d t \quad(\nu=k /(k+1)) .
$$

Hence (2.2) is equivalent to

$$
\begin{equation*}
\iint_{D_{1}^{\prime}} t^{-\nu}\left(x^{2}+\left(t-t^{\prime}\right)^{2}\right)^{-1 / 2} d x d t \leqq C^{\prime}(\rho) \tag{2.3}
\end{equation*}
$$

for any $\left(0, t^{\prime}\right) \in D_{1}^{\prime}$, where D_{1}^{\prime} is the image of D_{1} by (2.1).
Evidently, D_{1}^{\prime} is contained in a semidisk with radius 2ρ and with the same center. And it is easily seen that $\left(x^{2}+t^{2}\right)^{1 / 2} \leqq\left(x^{2}+\left(t-t^{\prime}\right)^{2}\right)^{1 / 2}$ for $t \leqq t^{\prime} \mid 2$, and $\left|t-t^{\prime}\right| \leqq t$ for $t \geqq t^{\prime} \mid 2$. Thus in order to prove (2.3), it is sufficient to show that

$$
\iint_{D_{2}}|t|^{-\nu}\left(x^{2}+t^{2}\right)^{-1 / 2} d x d t \leqq C^{\prime \prime}(\rho),
$$

where $C^{\prime \prime}(\rho) \rightarrow 0(\rho \rightarrow 0)$ and D_{2} is a entire disk with radius 4ρ and with center O. However this is obvious by virtue of $0<\nu<1$ and by the polar coordinates transformation. The proof is complete.

We fix an integer q with $1 \leqq q \leqq m$ and we put

$$
\begin{equation*}
t=y^{k_{q}+1} /\left(k_{q}+1\right) \tag{2.4}
\end{equation*}
$$

in place of (2.1). Let $c_{q}=\left(k_{q}+1\right)^{1 /\left(k_{q}+1\right)}$. Then S is written by

$$
S(x, y)=c_{q} t^{1 /\left(k_{q}+1\right)}+x^{2}-\alpha c_{q}^{2\left(k_{q}+1\right)} t^{2}-\alpha \sum_{j \neq q} c_{q}^{2\left(k_{j}+1\right)} t^{2\left(k_{j}+1\right) /\left(k_{q}+1\right)}
$$

For simplicity we rewrite

$$
\begin{equation*}
S(x, y)=c_{q} t^{1 /\left(k_{q}+1\right)}+x^{2}-\alpha c_{q}^{\prime} t^{2}-\alpha \sum_{j \neq q} d_{q}^{(j)} t^{2\left(k_{j}+1\right) /\left(k_{q}+1\right)} \tag{2.5}
\end{equation*}
$$

Here we note that the coefficients c_{q}, c_{q}^{\prime} and $d_{q}^{(j)}$ are positive.
Let $\alpha>0, \beta>\gamma$ and $0<\gamma \leqq 1$. We set

$$
h(t)=t^{\tau}-\alpha t^{\beta} .
$$

Then it holds
Lemma 3. There is a positive number δ depending on α, β and γ such that $h^{\prime \prime}(t) \leqq 0$ if $0<t<\delta$.

Proof. The proof is immediate from the equality

$$
h^{\prime \prime}(t)= \begin{cases}\gamma(\gamma-1) t^{r-2}\left\{1-\alpha \beta \gamma^{-1}(\beta-1)(\gamma-1)^{-1} t^{\beta-r}\right\} & (\gamma \neq 1) \\ -\alpha \beta(\beta-1) t^{\beta-2} \quad(\gamma=1)\end{cases}
$$

Now we define

$$
S_{1}(t)=c_{q} t^{1 /\left(k_{q}+1\right)}-\alpha \sum_{j \neq q} d_{q}^{(j)} t^{2\left(k_{j}+1\right) /\left(k_{q}+1\right)}
$$

From Lemma 3 we see immediately
Lemma 4. There is a positive number δ_{0} such that

$$
S_{1}^{\prime \prime}(t) \leqq 0, \quad \text { if } 0<t<\delta_{0} .
$$

We fix any t^{\prime} with $0<t^{\prime}<\delta_{0}$ and we set

$$
S_{2}(t)=S_{1}\left(t^{\prime}\right)+\left(t-t^{\prime}\right) S_{1}^{\prime}\left(t^{\prime}\right)-S_{1}(t)
$$

Then we have
Lemma 5. $\quad S_{2}(t) \geqq 0$ for $0<t<\delta_{0}$ and $S_{2}\left(t^{\prime}\right)=0$.
Proof. It is trivial that $S_{2}\left(t^{\prime}\right)=0$. We see that $S_{2}^{\prime}(t)=S_{1}^{\prime}\left(t^{\prime}\right)-S_{1}^{\prime}(t)$, $S_{2}^{\prime \prime}(t)=-S_{1}^{\prime \prime}(t) \geqq 0$ by Lemma 4 and $S_{2}^{\prime}\left(t^{\prime}\right)=0$. Accordingly, $S_{2}^{\prime}(t) \geqq 0$ for $t^{\prime} \leqq t<\delta_{0}$ and $S_{2}^{\prime}(t) \leqq 0$ for $0<t \leqq t^{\prime}$, which proves the lemma.

Lemma 6. Let $1 \leqq p<\infty, 0 \leqq \nu<1$ and let $A_{1}, A_{2}>0$. We put

$$
u(x, y)=\int_{-\infty}^{\infty}\left(\left(x-x^{\prime}\right)^{2}+y^{2}\right)^{-1 / 2} f\left(x^{\prime}\right) d x^{\prime}
$$

for any $f \in L^{p}\left(R^{1}\right)$ with supp. $f \subset\left(-A_{1}, A_{1}\right)$. Then it holds

$$
\left(\int_{0}^{1} \int_{-A_{2}}^{A_{2}}|u(x, y)|^{p} y^{-\nu} d x d y\right)^{1 / p} \leqq C\|f\|_{L^{p}\left(R^{1}\right)}
$$

where C is independent of f.
Proof. We write $A_{3}=A_{1}+A_{2}$. The proof is obtained from the following Hausdorff-Young's inequality

$$
\begin{aligned}
\int_{-A_{2}}^{A_{2}}|u(x, y)|^{p} d x & \leqq\left(\int_{-A_{3}}^{A_{3}}\left(x^{2}+y^{2}\right)^{-1 / 2} d x\right)^{p}\left(\|f\|_{L^{p}\left(R^{1}\right)}\right)^{p} \\
& \leqq C y^{(\nu-1) / 2}\left(\|f\|_{L^{p}\left(R^{1}\right)}\right)^{p} .
\end{aligned}
$$

Lemma 7. Let Γ be a curve of class C^{1} with finite length. Let G be a bounded domain in the upper half plane. Then, if $0 \leqq \nu<1$ and $1 \leqq p$ $<\infty$, we have

$$
\iint_{G}\left(\int_{\Gamma}\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right)^{-1 / 2} d s_{x, y}\right)^{p} y^{\prime-\nu} d x^{\prime} d y^{\prime}<\infty .
$$

Proof. We write $P=\left(x^{\prime}, y^{\prime}\right), Q=(x, y)$ and $\operatorname{dis}(P, \Gamma)=|P-R|(R \in \Gamma)$. First we prove

$$
\begin{equation*}
\int_{\Gamma}|P-Q|^{-\alpha} d s_{Q} \leqq C \tag{2.6}
\end{equation*}
$$

for $0<\alpha<1$. When $P \in \Gamma$, the inequality is trivial. In general, (2.6) is reduced to the case of $P \in \Gamma$, because

$$
|R-Q| \leqq|R-P|+|P-Q| \leqq 2|P-Q|
$$

From (2.6) we see

$$
\begin{aligned}
(\operatorname{dis}(P, \Gamma))^{\alpha} \int_{\Gamma}|P-Q|^{-1} d s_{Q} & =\int_{\Gamma}(\operatorname{dis}(P, \Gamma) /|P-Q|)^{\alpha}|P-Q|^{\alpha-1} d s_{Q} \\
& \leqq \int_{\Gamma}|P-Q|^{\alpha-1} d s_{Q} \leqq C_{1-\alpha}
\end{aligned}
$$

Thus it holds

$$
\int_{\Gamma}|P-Q|^{-1} d s_{Q} \leqq C_{1-\alpha}(\operatorname{dis}(P, \Gamma))^{-\alpha}
$$

Therefore it is sufficient to prove

$$
\begin{equation*}
\iint_{G}(\operatorname{dis}(P, \Gamma))^{-\alpha p} y^{\prime-\nu} d x^{\prime} d y^{\prime}<\infty \tag{2.7}
\end{equation*}
$$

We can assume that Γ is written by $y=f(x)(a \leqq x \leqq b)$, without loss of generality. And it is sufficient to consider that P is close to Γ and the x coordinate of P is in $\left[a+\varepsilon_{0}, b-\varepsilon_{0}\right]$ for some $\varepsilon_{0}>0$. Let $R=$ ($x^{\prime \prime}, y^{\prime \prime}$). Then we easily see

$$
\operatorname{dis}(P, \Gamma)=\left|x^{\prime}-x^{\prime \prime}\right|\left(1+\left(f^{\prime}\left(x^{\prime \prime}\right)\right)^{-2}\right)^{1 / 2}
$$

Let S be the point where the line being parallel to y-axis through P intersects Γ (see Figure 1). Evidently $S=\left(x^{\prime}, f\left(x^{\prime}\right)\right.$) and we have

Figure 1

$$
\begin{aligned}
|P-S| & =\left|y^{\prime}-f\left(x^{\prime}\right)\right|=\mid y^{\prime}-f\left(x^{\prime \prime}\right)-\left(x^{\prime}-x^{\prime \prime}\right) f^{\prime}(c) ; \\
& =\left|x^{\prime}-x^{\prime \prime}\right|\left|f^{\prime}\left(x^{\prime \prime}\right)^{-1}+f^{\prime}(c)\right|,
\end{aligned}
$$

where c lies between x^{\prime} and $x^{\prime \prime}$. Consequently, it holds

$$
|P-S| \leqq C \operatorname{dis}(P, \Gamma)
$$

Hence (2.7) is equivalent to

$$
\iint_{G}\left|y^{\prime}-f\left(x^{\prime}\right)\right|^{-\alpha p} y^{\prime-\nu} d x^{\prime} d y^{\prime}<\infty .
$$

This inequality is correct for sufficiently small α, because the integral

$$
\int_{0}^{1}|s-c|^{-\mu} s^{-\nu} d s \quad(0 \leqq c \leqq 1)
$$

is finite and uniformly bounded with respect to c, if $\mu+\nu<1$. This completes the proof.
3. In this section we give the proof of our theorem, following the
method of T. Carleman [1]. And in the final part of the proof we use the idea of F. John (page 559 in [2]), where the case of analytic functions with one complex variable was treated.

We may assume that the origin is in Γ. We choose a fixed ℓ such that $[-\ell, \ell] \subset \Gamma, G_{\ell} \subset \Omega$ and $\ell<\delta_{0} / 2^{3}$.

Let q be any fixed integer with $1 \leqq q \leqq m$. For simplicity we write $\kappa=\kappa_{q}, \mu=\mu_{q}, k=k_{q}$ and $u=u_{q}$. And we write

$$
\begin{equation*}
\left[\partial_{y}+(\mu+i \kappa) y^{k} \partial_{x}\right] u=f \tag{3.1}
\end{equation*}
$$

It can be assumed that $\kappa>0$, since the following argument is quite similar for the case of $\kappa<0$.

We denote by G_{ℓ}^{\prime} the image of G_{ℓ} with the transformation (2.4). Then (3.1) becomes

$$
\begin{equation*}
\left[\partial_{t}+(\mu+i \kappa) \partial_{x}\right] u=g \tag{3.2}
\end{equation*}
$$

where $g=(k+1)^{-\nu} t^{-\nu} f$ and $\nu=k /(k+1)$.
Let (x^{\prime}, t^{\prime}) be any fixed point in G_{ι}^{\prime} and let us set

$$
\xi=x-x^{\prime}-\mu\left(t-t^{\prime}\right), \quad \eta=\kappa\left(t-t^{\prime}\right) .
$$

Then we see

$$
x^{2}-\alpha c_{q}^{\prime} t^{2}=C_{0}+C_{1} \xi+C_{2} \eta+C_{3} \xi \eta+\xi^{2}+\kappa^{-2} \mu^{2} \eta^{2}-\alpha \kappa^{-2} c_{q}^{\prime} \eta^{2},
$$

where C_{j} are real constants depending on $\kappa, \mu, x^{\prime}, t^{\prime}, \alpha$ and c_{q}^{\prime}. We write

$$
\begin{aligned}
\xi^{2}+\kappa^{-2} \mu^{2} \eta^{2}-\alpha \kappa^{-2} c_{q}^{\prime} \eta^{2}= & \frac{1}{2}\left(1+\kappa^{-2}\left(\alpha c_{q}^{\prime}-\mu^{2}\right)\right)\left(\xi^{2}-\eta^{2}\right) \\
& +\frac{1}{2}\left(1+\kappa^{-2}\left(\mu^{2}-\alpha c_{q}^{\prime}\right)\right)\left(\xi^{2}+\eta^{2}\right)
\end{aligned}
$$

Here let α be such that

$$
\begin{equation*}
\max _{j}\left(\kappa_{j}^{2}+\mu_{j}^{2}\right)<\alpha c_{q}^{\prime} \tag{3.3}
\end{equation*}
$$

for any q. Then it follows

$$
\begin{aligned}
S(x, y) & =x^{2}-\alpha c_{q}^{\prime} t^{2}+S_{1}(t) \\
& =C_{0}^{\prime}+C_{1} \xi+C_{2}^{\prime} \eta+C_{3} \xi \eta+C_{4}\left(\xi^{2}-\eta^{2}\right)-C_{5}\left(\xi^{2}+\eta^{2}\right)-S_{2}(t)
\end{aligned}
$$

where $C_{5}>0$. Hence we have

$$
\begin{aligned}
S(x, y)= & \operatorname{Re}\left[C_{0}^{\prime}+\left(C_{2}^{\prime}-i C_{1}\right)(\eta+i \xi)\right. \\
& \left.-\left(C_{4}+(i / 2) C_{3}\right)(\eta+i \xi)^{2}\right]-C_{5}\left(\xi^{2}+\eta^{2}\right)-S_{2}(t) .
\end{aligned}
$$

[^1]For $\tau \geqq 0$ we set

$$
\begin{aligned}
\Phi(\eta+i \xi)= & \frac{1}{\eta+i \xi} \exp \left[-\tau\left(C_{0}^{\prime}+\left(C_{2}^{\prime}-i C_{1}\right)(\eta+i \xi)\right.\right. \\
& \left.\left.-\left(C_{4}+(i / 2) C_{3}\right)(\eta+i \xi)^{2}\right)\right]
\end{aligned}
$$

Then it is obvious that

$$
\left(\partial_{\eta}+i \partial_{\xi}\right) \Phi=0
$$

We remark that the following two equations are equivalent:

$$
\left[\partial_{t}+(\mu+i \kappa) \partial_{x}\right] Z=0, \quad\left(\partial_{\eta}+i \partial_{\xi}\right) Z=0
$$

Hence if we put $\psi\left(x, t ; x^{\prime}, t^{\prime}\right)=\Phi(\eta+i \xi) \exp (\tau S(x, y))$, we obtain

$$
\begin{equation*}
\left[\partial_{t}+(\mu+i \kappa) \hat{\partial}_{x}\right]\left(\dot{\psi} e^{-\tau s}\right)=0 \tag{3.4}
\end{equation*}
$$

Since

$$
\begin{gathered}
(\eta+i \xi) \psi\left(x, t ; x^{\prime}, t^{\prime}\right)=\exp \left(-\tau\left[C_{5}\left(\xi^{2}+\eta^{2}\right)+S_{2}(t)\right]\right) . \\
\quad \exp \left(-i \tau\left[C_{2}^{\prime} \xi-C_{1} \eta-2 C_{4} \xi \eta-\frac{1}{2} C_{3}\left(\eta^{5}-\xi^{2}\right)\right]\right),
\end{gathered}
$$

it follows from Lemma 5 that

$$
|\psi| \leqq \leqq 1 /|\eta+i \xi|, \quad \lim _{\eta+i \xi-0}(\eta+i \xi) \psi=1
$$

If we set $\varphi=u e^{-r s},\langle 3.2)$ becomes

$$
\left(\partial_{\eta}+i \partial_{\xi}\right) \varphi+\tau \varphi \cdot\left(\partial_{\eta}+i \partial_{\xi}\right) S=\kappa^{-1} g e^{-\tau S} .
$$

Let ω be a disk with center (x^{\prime}, t^{\prime}) and with sufficiently small radius. Multiplying the both sides of the above equality by ψ, we integrate it over $G_{\imath}^{\prime}-\omega$. By Green's formula and by (3.4) we get

$$
-\int_{\partial G_{t^{\prime}-\partial \omega}} \varphi \psi d \xi+i \int_{\partial G_{\ell^{\prime}-\partial \omega}} \varphi \psi d \eta=\kappa^{-1} \iint_{G_{\ell^{\prime}-\omega}} g \psi e^{-\tau s} d \xi d \eta
$$

where the boundaries are oriented to the positive direction. Letting the radius of $\omega \rightarrow 0$, we see

$$
\int_{\partial \omega} \varphi \psi(d \xi-i d \eta) \rightarrow-2 \pi \varphi\left(x^{\prime}, t^{\prime}\right)
$$

Therefore it follows that

$$
\varphi\left(x^{\prime}, t^{\prime}\right)=-\frac{1}{2 \pi}\left[\int_{L} \varphi \psi d x+\int_{\tau^{\prime}} \varphi \psi(d x-(\mu+i \kappa) d t)+\iint_{G_{t^{\prime}}} g \psi e^{-\tau s} d x d t\right]
$$

where $L=\{(x, 0)| | x \mid \leqq \ell\}$ and γ^{\prime} is the image of γ by (2.4).
Hereafter we denote simply by C the constant independent of τ and $\left\{u_{j}\right\}$. Letting t^{\prime} be the image of y^{\prime} with (2.4), we estimate the integral

$$
\iint_{G_{\ell}}\left|\varphi\left(x^{\prime}, t^{\prime}\right)\right|^{p} d x^{\prime} d y^{\prime}
$$

First we see

$$
\iint_{G_{\ell}}\left|\int_{L} \varphi \psi d x\right|^{p} d x^{\prime} d y^{\prime} \leqq C \iint_{G_{\ell}}\left(\int_{L}\left(\left(x-x^{\prime}\right)^{2}+t^{\prime 2}\right)^{-1 / 2}|\varphi(x, 0)| d x\right)^{p} \cdot t^{\prime-\nu} d x^{\prime} d t^{\prime 4}
$$

(by Lemma 6)

$$
\leqq C\left(\|\varphi(\cdot, 0)\|_{L p(L)}\right)^{p} .
$$

And in virtue of Lemma 7 we have

$$
\begin{aligned}
& \iint_{G_{\ell}}\left|\int_{r^{\prime}} \varphi \psi(d x-(\mu+i \kappa) d t)\right|^{p} d x^{\prime} d y^{\prime} \\
& \quad \leqq \iint_{G_{\ell^{\prime}}}\left(\int_{r^{\prime}}|\varphi|\left(\left(x-x^{\prime}\right)^{2}+\left(t-t^{\prime}\right)^{2}\right)^{-1 / 2} d s_{x, t}\right)^{p} \cdot t^{\prime-\nu} d x^{\prime} d t^{\prime} \\
& \quad \leqq C\left(\|\varphi\|_{L^{\infty}(r)}\right)^{p} .
\end{aligned}
$$

Finally Lemma 2 and Hausdorff-Young's inequality give

$$
\iint_{G_{\ell}}\left|\iint_{G_{\ell}^{\prime}} g \psi e^{-\tau s} d x d t\right|^{p} d x^{\prime} d y^{\prime} \leqq C(\ell)^{p}\left(\left\|f e^{-\tau s}\right\|_{L^{p}\left(G_{\ell}\right)}\right)^{p}
$$

Combining the above inequalities we obtain

$$
\|\varphi\|_{L p\left(G_{\theta}\right)} \leqq C\left(\|\varphi\|_{L p(L)}+\|\varphi\|_{L^{\infty}(\gamma)}+C(\ell)\left\|f e^{-s s}\right\|_{L L_{P}\left(G_{\theta}\right)}\right) .
$$

Setting $\varphi_{j}=u_{j} e^{-\tau S}(\tau \geqq 0)$ for each u_{j} of (1.1), we conclude that

$$
\begin{equation*}
\sum_{j=1}^{m}\left\|\varphi_{j}\right\|_{L^{p}\left(G_{\ell}\right)} \leqq C\left(\sum_{j=1}^{m}\left\|\varphi_{j}\right\|_{L^{p}(L)}+\sum_{j=1}^{m}\left\|\varphi_{j}\right\|_{L^{\infty}(\gamma)}\right) \tag{3.5}
\end{equation*}
$$

for small ℓ if necessary.
If we put $\tau=\log (M / \varepsilon)^{1 / / 2}$, it holds

$$
\left\|\varphi_{j}\right\|_{L^{\infty}(\gamma)} \leqq M \exp \left(\left(-\ell^{2}\right) \log (M / \varepsilon)^{1 / \varepsilon^{2}}\right)=\varepsilon
$$

because $S=\ell^{2}$ on γ. Since $S \geqq 0$ on $y=0$, we see that $\left\|\varphi_{j}\right\|_{L^{p(L)}} \leqq\left\|u_{j}\right\|_{L^{p(L)}}$

[^2]$\leqq \varepsilon$. Hence by virtue of (3.5) it follows that
$$
\sum_{j=1}^{m}\left\|\varphi_{j}\right\|_{L^{p}\left(G_{t}\right)} \leqq C \varepsilon
$$

Let ℓ^{\prime} be any fixed with $0<\ell^{\prime}<\ell$. It is obvious that $G_{\ell^{\prime}} \subset G_{\ell}$ and $S \leqq \ell^{\prime 2}$ in $G_{\ell^{\prime}}$. Hence we have

$$
\sum_{j=1}^{m}\left\|u_{j}\right\|_{L^{p}\left(G_{\ell^{\prime}}\right)}=\sum_{j=1}^{m}\left\|\varphi_{j} e^{\tau S}\right\|_{L^{p(}\left(G_{\epsilon^{\prime}}\right)} \leqq C \varepsilon e^{-\varepsilon^{\ell^{2}}}=C \varepsilon \exp \left(\log (M / \varepsilon)^{\epsilon^{\prime 2} / \varepsilon^{2}}\right)
$$

Therefore setting $k=\left(\ell^{\prime} \mid \ell\right)^{2}(<1)$, we obtain

$$
\sum_{j=1}^{m}\left\|u_{j}\right\|_{L^{p}\left(G_{k^{\prime}}\right)} \leqq C \varepsilon^{1-k} M^{k}
$$

This completes the proof.

References

[1] T. Carleman, Sur un probleme d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendentes, Arkiv Mat., 26B (1938), 1-9.
[2] F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585.
[3] L. E. Payne and D. Sather, On some improperly posed problems for the Chaplygin equation, J. Math. Anal. Appl., 19 (1967), 67-77.
[4] J. C. Saut and B. Scheurer, Un théorème de prolongement unique pour des opérateurs elliptiques dont les coefficients ne sont pas localement bornés, C. R. Acad. Sci. Paris, 290 (1980), 595-598.

Department of Mathematics
Faculty of Science
Kanazawa University
Kanazawa, 920 Japan

[^0]: Received March 6, 1981.

 1) This work has been supported by Grant-in-Aid for Co-operative Research A organized by the Ministry of Education, the Japanese Government.
 2) We write simply $\partial / \partial x=\partial_{x}$ and $\partial / \partial y=\partial_{y}$.
[^1]: 3) The number δ_{0} is the same as in Lemma 5.
[^2]: 4) $\nu=k /(k+1)$.
