IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS OF THE POINCARÉ GROUP WITH RESPECT TO THE POINCARÉ SUBSEMIGROUP, II

HITOSHI KANETA

Let $P(3)$ and $P_{+}(3)$ be the 3 -dimensional space-time Poincaré group and the Poincaré subsemigroup, that is, $P(3)=R^{3} \times{ }_{s} S U(1,1)$ and $P_{+}(3)=$ $V_{+}(3) \times_{s} S U(1,1)$ where $V_{+}(3)=\left\{x_{0}^{2}-x_{1}^{2}-x_{2}^{2} \geq 0, x_{0} \geq 0\right\}$. The multiplication is defined by the formula $(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x+g^{*-1} x^{\prime} g^{-1}, g g^{\prime}\right)$ for $x, x^{\prime} \in R^{3}$ and $g, g^{\prime} \in S U(1,1)$. Here $x=\left(x_{0}, x_{1}, x_{2}\right)$ is identified with the matrix $\left(\begin{array}{lr}x_{0} & x_{2}-i x_{1} \\ x_{2}+i x_{1} & x_{0}\end{array}\right)$.

The purpose of this paper is to give an affirmative answer to the problem if there is any irreducible unitary representation of $P(3)$ such that its restriction to the semigroup $P_{+}(3)$ is reducible. To be more precise, we shall determine all $P_{+}(3)$-invariant, closed proper subspaces for the irreducible unitary representations $\left(U^{\eta, s}, \mathfrak{S}^{\eta, \varepsilon}\right)(\eta \in R, \varepsilon=0,1 / 2)$, which are associated with the one-sheeted hyperboloid $V_{i M}(3)=\left\{y_{0}^{2}-y_{1}^{2}-y_{2}^{2}=\right.$ $\left.-M^{2}\right\}(M>0)$. As for the other irreducible unitary representations of $P(3)$ it is easy to show that they are irreducible even when they are restricted to $P_{+}(3)$ (see [5], Theorem 5). Recall that all the irreducible unitary representations of the 2 -dimensional space-time Poincaré group are irreducible even when they are restricted to the Poincare subsemigroup ([5], Theorem 1). Using, among other things, the results in § 1, we shall show in the forthcoming Part III that the irreducible unitary representations of the 4 -dimensional space-time Poincaré group whose irreducibility relative to the Poincaré subsemigroup remains unsettled in [5] are reducible as the representations of the semigroup.

The basic tools of our approach are i) the eigenfunction expansions for second order ordinary differential operators $\mathscr{L}_{k, \eta}$ (see (1.1)), which are connected with the Laplacian of $S U(1,1)$, and ii) rephrased versions of the Hilbert transform and the Frobenius method for ordinary differential

[^0]equations with a regular singularity.
This paper consists of two sections and an appendix. In § 1 we enumerate closed proper subspaces of $L^{2}(R)$ left invariant under the selfadjoint operator $\mathscr{L}_{k, \eta}$ and a semigroup $T_{t}=\exp (i t \operatorname{sh} \tau)(t \geq 0)$ of multiplication operators (Theorems 1.1-1.3). Toward the end of $\S 1$ we shall determine nontrivial sequences $\left\{D_{k}\right\}_{k \in Z+\varepsilon}(\varepsilon=0,1 / 2)$ of subspaces such that i) D_{k} is a closed, proper subspace of $L^{2}(R)$ left invariant under $\mathscr{L}_{k, \eta}$ and $T_{t}(t \geq 0)$, ii) $F_{ \pm, k, \eta} D_{k} \subset D_{k \pm 1}$, where $F_{ \pm, k, \eta}=-d / d \tau+(\pm k+1 / 2)$ th $\tau \pm$ $\eta / \operatorname{ch} \tau$ with domain $H_{2}(R)$, the Sobolev space of order 2 (Theorem 1.4). In $\S 2$ we firstly define the representation $\left(U^{\eta, \varepsilon}, \mathfrak{S}_{\varepsilon^{\eta, c}}\right)(\eta \in R, \varepsilon=0,1 / 2)$ of the group $P(3)$, and then describe all the $P_{+}(3)$-invariant, closed proper subspaces $\mathscr{D}_{ \pm}^{\eta, e}$ in $\mathscr{S}^{n, e}$ and $\mathscr{D}_{ \pm 1}^{0,0}$ in $\mathfrak{S}_{2}^{0,0}$. Namely, there are four such subspaces in $5^{0,0,0}$ in the special case $(\eta, \varepsilon)=(0,0)$. It should be noted that Corollary 2.3 plays an important role in verifying that $S U(1,1)$ leaves $\mathscr{D}_{ \pm}^{\eta, s}$ in $\mathscr{S}^{n, s}$ as well as $\mathscr{D}_{ \pm 1}^{0,0}$ in $\mathfrak{S}^{0,0}$. The appendix is devoted to a quick review of Frobenius method in our context.

The author thanks Professor Nomoto, whose comments on the first draft are highly appreciated.

Notation and terminology
Z is the set of integers and $Z_{+}=\{n \in Z ; n \geq 0\}$.
R is the set of real numbers, $R_{+}=\left\{\lambda \in R ; \lambda>0\right.$ and $R^{*}=R \backslash\{0\}$.
C is the set of complex numbers, $C^{*}=C \backslash\{0\}$ and $T=\{z \in C,|z|=1\}$.
More subsets of C is to be defined. $D_{\tau}=\{z \in C ;|\operatorname{Im} z|<\pi / 2\}, \bar{D}_{\tau}=\{z \in C$; $|\operatorname{Im} z| \leq \pi / 2\}$ and $\dot{D}_{\tau}=\bar{D}_{\tau} \backslash\{ \pm i \pi / 2\}$. An element of these three sets will be denoted by τ. Throughout the paper $\sigma=\tau-i \pi / 2$. A polynomial in $\log \sigma$ with holomorphic coefficients will be denoted by $h(\sigma, \log \sigma)$, that is, $h(\sigma$, $\log \sigma)=\sum_{n=0}^{m}(\log \sigma)^{n} h_{n}(\sigma)$, where $h_{n}(\sigma)$ are holomorphic around $\sigma=0$. For a function $f(\sigma)$ we denote by $R f(\sigma)$ the function $f(-\sigma)$. An integral $\int_{R} f(\tau) d \tau$ will be abbreviated to $\int f d \tau$ or $\langle f\rangle$. The relation $a \propto b$ for two elements a and b in a linear space means $a=c b$ for some c in C^{*}.
$M_{m, n}, m, n \in Z_{+}+1$, is the set of complex $m \times n$-matrices and $M_{n}=$ $M_{n, n}$. M_{n}^{+}(resp. M_{n}^{++}) stands for the set of non-negative (resp. positive) definite $n \times n$-matrices. I_{n} means the unit matrix in M_{n}. For a matrix $A=\left(a_{j k}\right)$ in $M_{m, n}$, we set $\bar{A}=\left(\bar{a}_{j k}\right),{ }^{t} A=$ the transpose of $A, A^{*}={ }^{t} \bar{A}$ and $A=\max _{k} \sum_{j=1}^{m}\left|a_{j k}\right|$.
$C^{r}(S)^{n}\left(r=0,1, \cdots, \infty ; n \in Z_{+}+1\right)$ for a C^{∞}-manifold S is the totality
of C^{n}-valued C^{r}-functions on $S . \quad C_{0}^{r}(S)^{n}=\left\{f \in C^{r}(S)^{n} ; f\right.$ is compactly supported\}. $\quad C_{0}(S)^{n}=C_{0}^{0}(S)^{n} . \quad H_{r}(R), r \in Z_{+}$, is the Sobolev space of order r on R. $H_{r}(R)^{n}$ means the direct sum $\sum_{j=1}^{n} \oplus H_{r}(R)$. Of course $H_{0}(R)=$ $L^{2}(R)$, the Hilbert space consisting of C-valued square integrable functions on R. Let (B, Σ) be a measurable space, where B is a Borel set of R^{n} and Σ is the set of all Borel sets in $B . L^{2}(B, \mu)$ is the usual L^{2}-space defined in terms of a measure μ on (B, Σ). Let $\rho(x)$ be a M_{m}^{++}-valued measurable functions on a Borel set B of R^{n}. Then $L^{2}(B, \rho)$ denotes the Hilbert space consisting of C^{m}-valued measurable functions f on B such that $\int_{B} f^{*}(x) \rho(x) f(x) d x$ is finite. Here $d x$ is the Lebesgue measure.

Let L be a linear operator from H_{1} to H_{2}. When both $H_{j}, 1 \leq j \leq 2$, are Hilbert spaces, L^{*} means the (formal) adjoint of L. In this paper a Hilbert space is assumed to be separable. $L H_{1}$ is the range of L, namely, $L H_{1}=\left\{L h ; h\right.$ in H_{1} belongs to the domain of $\left.L\right\}$. For a subspace H_{0} of $H_{1}, L \mid H_{0}$ denotes the restriction of L to the subspace H_{0}. Let D be a subset of a Hilbert space. Then D^{\perp} is the set of all elements which are orthogonal to D. \|\| and \langle,$\rangle denote the norm and the inner product in$ a Hilbert space $\left(C^{n}, L^{2}(B, \mu)\right.$, etc.) respectively. However, $\langle x, y\rangle=x_{0} y_{0}-$ $x_{1} y_{1}-x_{2} y_{2}$ for $x=\left(x_{0}, x_{1}, x_{2}\right), y=\left(y_{0}, y_{1}, y_{2}\right)$ in R^{3}. Recall that $\langle f\rangle$ is an abbreviation to the integral $\int_{R} f(\tau) d \tau$. A closed subspace D of a Hilbert space is said to be invariant under a selfadjoint operator L if $P_{D} L=L P_{D}$, where P_{D} denotes the orthogonal projection $H \rightarrow D$. As is well-known, D is invariant under L iff the one-parameter unitary group $\exp (i t L)$ leaves D invariant.
$T_{t}=\exp (i t \operatorname{sh} \tau)(t \geq 0)$ is a continuous semigroup in $L^{2}(R)$ such that $T_{t} f(\tau)=\exp (i t \operatorname{sh} \tau) f(\tau) . G_{\alpha}=(\alpha-i \operatorname{sh} \tau)^{-1}(\operatorname{Re} \alpha>0)$ are resolvent operators for the semigroup. By abuse of notation G_{α} also means the function $(\alpha-i \operatorname{sh} \tau)^{-1}$ of τ. Finally, f^{\prime} means the derivative for either an absolutely continuous function f on R or a holomorphic function f.
\S 1. Invariant subspaces common to $\mathscr{L}_{k, \eta}$ and $T_{t}(t \geq 0)$
The purpose of this section is to determine all closed proper subspaces in $L^{2}(R)$ which stay invariant under the selfadjoint operator $\mathscr{L}_{k, \eta}$ with domain $H_{2}(R)$ and the semigroup $T_{t}(t \geq 0)$ on $L^{2}(R)$;

$$
\begin{array}{r}
\mathscr{L}_{k, \eta}=-d^{2} / d \tau^{2}+\left(1 / 4-k^{2}+\eta^{2}+2 k \eta \operatorname{sh} \tau\right) / \mathrm{ch}^{2} \tau \tag{1.1}\\
(k \in Z / 2, \eta \in R),
\end{array}
$$

$$
\begin{equation*}
T_{t}=e^{i t \operatorname{sh} \tau} \tag{1.2}
\end{equation*}
$$

To this end, first the case $k=0$ or $1 / 2$ will be discussed. Then the general case can be dealt with by the aid of the following differential operator

$$
\begin{equation*}
F_{ \pm, k, \eta}=-d / d \tau+(\pm k+1 / 2) \text { th } \tau \pm \eta / \operatorname{ch} \tau \tag{1.3}
\end{equation*}
$$

Throughout the rest of this section the suffix η will frequently be omitted.
In case $(k, \eta)=(0, \eta)$ or $(1 / 2,0)$ clearly \mathscr{L}_{k} reduces to an operator of the following form.

$$
\begin{equation*}
\mathscr{N}_{\kappa}=-d^{2} / d \tau^{2}+\kappa / \operatorname{ch}^{2} \tau, \quad \kappa \geq 0 \tag{1.4}
\end{equation*}
$$

We shall search for closed proper invariant subspaces common to \mathscr{N}_{k} and $T_{t}(t \geq 0)$. To begin with, denote by $\Phi=\left(\phi_{1}, \phi_{2}\right)$ the solution of an ordinary differential equation $\left(\mathscr{N}_{\kappa}-\lambda\right) \Phi=0$ with initial value ${ }^{t}\left({ }^{t} \Phi,{ }^{t} \Phi^{\prime}\right)_{\tau=0}=I_{2}$, the unit matrix. Since $\kappa / \mathrm{ch}^{2} \tau$ is integrable and \mathscr{N}_{κ} is positive definite, there exists a so-called spectral density ρ on R_{+}satisfying the following conditions i) ~iii) [4].
i) ρ is an M_{2}^{++}-valued continuous function on R_{+}.
ii) The operator $\mathscr{F}: L^{2}(R) \rightarrow L^{2}\left(R_{+}, \rho\right)$ (refer to the Notation) defined by

$$
\begin{equation*}
\mathscr{F} f(\lambda)=\lim _{N \rightarrow \infty} \int_{|\tau|<N}{ }^{t} \Phi(\tau, \lambda) f(\tau) d \tau \tag{1.5}
\end{equation*}
$$

is an onto isometry, whose inverse \mathscr{F}^{-1} is given by

$$
\begin{equation*}
\mathscr{F}-1 g(\tau)=\lim _{N \rightarrow \infty} \int_{0<\lambda<N} \Phi(\tau, \lambda) \rho(\lambda) g(\lambda) d \lambda . \tag{1.6}
\end{equation*}
$$

iii) $\mathscr{F} \mathscr{N}_{\star} \mathscr{F}^{-1} g(\lambda)=\lambda g(\lambda)$ if $\lambda g(\lambda)$ lies in $L^{2}\left(R_{+}, \rho\right)$.

On the other hand the equation $\left(\mathcal{N}_{x}-\lambda\right) \zeta=0$ has a regular singularity at $\tau=i \pi / 2$, that is, $\sigma=0$. The Frobenius method yields linearly independent solutions $\zeta_{ \pm}(\tau, \lambda)$ which, being holomorphic in $\dot{D}_{\tau} \times C$, admit the following expansions around $\tau=i \pi / 2$;

$$
\begin{array}{ll}
\zeta_{ \pm}=\sigma^{\alpha}\left(\sum_{n=0}^{\infty} z_{ \pm, n} \sigma^{n}\right) & \text { if } \kappa \neq 1 / 4 \\
\zeta_{+}=\sigma^{1 / 2}\left(\sum_{n=0}^{\infty} z_{+n} \sigma^{n}\right) & \tag{1.7}\\
\zeta_{-}=\zeta_{+} \log \sigma+\sigma^{1 / 2}\left(\sum_{n=1}^{\infty} z_{-, n} \sigma^{n}\right) & \text { if } \kappa=1 / 4
\end{array}
$$

where $\alpha_{ \pm}=(1 \pm \sqrt{1-4 \kappa}) / 2$ and $z_{ \pm, 0}=1$. Set $\zeta=\left(\zeta_{-}, \zeta_{+}\right)$, and define $X(\lambda)$
$\in M_{2}$ and $s_{ \pm}(\lambda), r_{ \pm}(\lambda) \in M_{2,1}$ as follows.

$$
\zeta=\Phi X, \quad s_{ \pm}=X^{t} v_{ \pm}, \quad r_{ \pm}=\left(\begin{array}{rr}
0 & 1 \tag{1.8}\\
-1 & 0
\end{array}\right) s_{ \pm},
$$

where $v_{ \pm}={ }^{t}(1 \pm 1,1 \mp 1)$ or ${ }^{t}(0,2)$ according as $\kappa \neq 1 / 4$ or not. Now we are in a position to introduce invariant subspaces

$$
\begin{equation*}
D_{ \pm}^{\kappa}=\mathscr{F}^{-1}\left\{g \in L^{2}\left(R_{+}, \rho\right) ;{ }^{t} s_{ \pm}(\lambda) g(\lambda)=0 \text { a.e. }\right\} . \tag{1.9}
\end{equation*}
$$

Notice that $\mathscr{F} D_{ \pm}^{c}=\left\{r_{ \pm} h \in L^{2}\left(R_{+}, \rho\right) ; h \in L^{2}\left(R_{+}, r^{*} \rho r\right)\right\}$. This is because ${ }^{t} s_{ \pm} r_{ \pm}=0$.

Theorem 1.1. Let D be a closed proper subspace of $L^{2}(R)$. Then D is invariant under the selfadjoint operator $\mathscr{N}_{\varepsilon}$ and the semigroup $T_{t}=e^{i t \mathrm{sh} \tau}$ $(t \geq 0)$ iff it coincides with one of $D_{ \pm}^{x}$.

For the proof we prepare two lemmas and two propositions.
Lemma 1.1. (i) The domain $D_{\tau}=\{|\operatorname{Im} \tau|<\pi / 2\}$ is holomorphically isomorphic to a domain $\{\operatorname{Im} z \neq 0$ or $z \in(0,1)\}$ via the map $z=(1+i \operatorname{sh} \tau) / 2$.
(ii) Let $f(\tau)$ be holomorphic in \dot{D}_{τ}. Then $f(\tau) / \sqrt{z(1-z)}$ is holomorphic in $\{\operatorname{Re} z<1\}$ iff $f(\tau)$ can be expanded as $\sum_{n=0}^{\infty} c_{n} \sigma^{2 n+1}$ near $\tau=i \pi / 2$, where $\sigma=\tau-i \pi / 2$.

Proof. It is easy to see that z is a univalent function sending D_{τ} onto $\{\operatorname{Im} z \neq 0$ or $z \in(0,1)\}$. Since the derivative z^{\prime} does not vanish on D_{z}, (i) follows. To verify (ii), assume that $f(\tau) / \sqrt{\overline{z(1-z)}}$ is holomorphic in a neighborhood of $z=0$. Then $f(\tau) / \sqrt{z}$ is holomorphic too. Since \sqrt{z} is a holomorphic odd function of σ in a vicinity of $\sigma=0, f(\tau)$ has the desired expansion. Conversely, assume that f satisfies the condition. Then $F(z)$ $f(\tau) / \sqrt{z(1-z)}$ is holomorphic in $\{\operatorname{Re} z<1\} \backslash\{z \leq 0\}$. Notice that F admits an analytic continuation across the line $\{z<0\}$, for $z=(1+i \operatorname{sh} \tau) / 2$ is a local isomorphism of $C \backslash\{i \pi n / 2 ; n \in Z\}$. By the condition on f we see that $F(x+i 0)=F(x-i 0)$ for any negative $x>-\varepsilon(\varepsilon>0)$. Therefore $F(z)$ is holomorphic in $\{\operatorname{Re} z<1\} \backslash\{0\}$. Since $F(z)$ is bounded in a punctured disc $\{0<|z|<\varepsilon\}, z=0$ is a removable singularity. This completes the proof of (ii).
Q.E.D.

The next proposition is concerned with the Hilbert transform.
Proposition 1.2. (i) Assume that $F(z)$ is holomorphic in $\{\operatorname{Re} z<1\}$. If the integral $\int|F(x+i y)|^{p} d y(p>1)$ is bounded on $x<1-\varepsilon, \varepsilon>0$, then

$$
\int_{a-i \infty}^{a+i \infty} \frac{F(z)}{z-\alpha} d z=0 \quad \text { for } a<\min \{\operatorname{Re} \alpha, 1-\varepsilon\}
$$

(ii) Assume that $F(z)$ is holomorphic in a strip $1 / 2-2 \varepsilon<\operatorname{Re} z<1 / 2$ $+2 \varepsilon, \varepsilon>0$. If the integral $\int|F(x+i y)|^{2} d y$ is bounded on $[1 / 2-\varepsilon, 1 / 2+\varepsilon]$, then $F(z)$ has the following integral representation in $1 / 2-\varepsilon<\operatorname{Re} z<1 / 2$ $+\varepsilon$.

$$
F(z)=\frac{1}{2 \pi i}\left(-\int_{1 / 2-\epsilon-i \infty}^{1 / 2-\varepsilon+i \infty}+\int_{1 / 2+\varepsilon-i \infty}^{1 / 2+\varepsilon+i \infty}\right) \frac{F(\zeta)}{\zeta-z} d \zeta
$$

Proof. To prove (i), we apply a lemma [9, p. 125] to F to show that the integral in question is independent of a. On the other hand Hölder's inequality implies that the integral tends to zero as $a \rightarrow-\infty$. Now (i) follows. The statement (ii) is well-known [9, p. 130].
Q.E.D.

As to an estimate of the solution $\Phi(\tau, \lambda)$ we have the following
Lemma 1.3. Let $\Psi(\tau, \lambda) \in M_{1,2}$ be a solution of the following equation with initial value ${ }^{t}\left({ }^{t} \Psi,{ }^{t} \Psi^{\prime}\right)_{\tau=0}=I_{2}$;

$$
\left\{-d^{2} / d \tau^{2}+(a+b \operatorname{sh} \tau) / \operatorname{ch}^{2} \tau-\lambda\right\} \Psi(\tau, \lambda)=0, \quad a, b \in C
$$

Fix $\lambda_{0} \in R_{+}$. Then for any $\varepsilon>0$ there exist positive K and δ such that
i) $\left|\Psi\left(\tau, \lambda_{0}\right)\right|+\left|\Psi^{\prime}\left(\tau, \lambda_{0}\right)\right|<K \quad$ on $\bar{D}_{\tau} \cap\{|\operatorname{Re} \tau| \geq 1\}$,
ii) $|\Psi(\tau, \lambda)|+\left|\Psi^{\prime}(\tau, \lambda)\right|<K e^{\varepsilon|\tau|} \quad$ on $R \times\left\{\left|\lambda-\lambda_{0}\right|<\delta\right\}$.

Proof. We shall prove the existence of K satisfying only i), for we can argue similarly to show the existence of K and δ satisfying the condition ii). Put $S=\left(\begin{array}{cc}1 & 1 \\ \sqrt{-\lambda} & -\sqrt{\lambda}\end{array}\right)$, and define χ by the relation $\left.{ }^{t}{ }^{(} t \Psi,{ }^{t} \Psi^{\prime}\right)$ $=S\left\{\exp \left(\begin{array}{cc}\sqrt{-\lambda} & 0 \\ 0 & -\sqrt{-\lambda}\end{array}\right) \tau\right\} \chi$. Then we note that $\chi\left(\tau, \lambda_{0}\right)$ is bounded on $\bar{D}_{\tau} \cap\{|\operatorname{Re} \tau|=1\}$ and that $\chi^{\prime}=V(\tau) \chi$, where $|V(\tau)|$ is bounded by a function $v(\operatorname{Re} \tau)$ on $\bar{D}_{\tau} \cap\{|\operatorname{Re} \tau| \geq 1\}$. Here v is integrable on $I=(-\infty,-1] \cup[1, \infty)$. Consequently the integral $\int_{I}|V(\tau+i \varepsilon)| d \tau$ is bounded on $|\varepsilon| \leq \pi / 2$. Hence $\chi\left(\tau, \lambda_{0}\right)$ is bounded on $\bar{D}_{\tau} \backslash\{|\operatorname{Re} \tau|<1\}$ (see Problem 1 [1, p. 97]), from which follows that $\left|\Psi\left(\tau, \lambda_{0}\right)\right|+\left|\Psi^{\prime}\left(\tau, \lambda_{0}\right)\right|$ is bounded there.
Q.E.D.

Let δ be an atomic measure on a finite subset Λ of R such that $\delta(\{\lambda\})=1$ for each $\lambda \in \Lambda, \rho_{2}$ be an M_{2}^{++}-valued Borel measurable function on a Borel set B of R. Set $H_{p}=L^{2}(\Lambda, \delta), H_{a c}=L^{2}\left(B, \rho_{2}\right)$ and $H=H_{p} \oplus H_{a c}$. We denote by $e^{i t \lambda}, t \in R$, the one-parameter unitary group acting on H as multiplication.

Then we have
Proposition 1.4. A closed subspace D of H is invariant under the one-parameter group $e^{i t \lambda}$ iff there exist a subset Λ_{0} of Λ, disjoint Borel subsets B_{1}, B_{2} of $B\left(\Lambda_{0}\right.$ and B_{j} may be a null set) and a Borel measurable function s on B_{1} with values in $M_{2,1} \backslash\{0\}$ almost everywhere such that D coincides with

$$
\begin{align*}
& L^{2}\left(\Lambda_{0}, \delta\right) \oplus\left\{{ }^{t}\left(g_{1}, g_{2}\right) \in H_{a c} ;\left(g_{1}, g_{2}\right) s=0 \text { a.e. on } B_{1},\left(g_{1}, g_{2}\right)=0\right. \tag{1.10}\\
& \text { a.e. outside } \left.B_{1}\right\} \oplus\left\{{ }^{t}\left(g_{1}, g_{2}\right) \in H_{a c} ;\left(g_{1}, g_{2}\right)=0 \text { a.e. outside } B_{2}\right\} .
\end{align*}
$$

Proof. It suffices to show that the conditions are necessary. We regard $e^{i t \lambda}$ as a representation of R in H, and apply Theorem 8.6.6 [2] to this representation. Then there exist a subset Λ_{0} of Λ and disjoint Borel sets of B such that the representation in D is unitarily equivalent to the following representation

$$
\int_{\Lambda_{0}}^{\oplus} e^{i t \lambda} d \delta(\lambda) \oplus \int_{B_{1}}^{\oplus} e^{i t \lambda} d \lambda \oplus[2] \int_{B_{2}}^{\oplus} e^{i t \lambda} d \lambda
$$

in $\tilde{H}=L^{2}\left(\Lambda_{0}, \delta\right) \oplus L^{2}\left(B_{1}\right) \oplus[2] L^{2}\left(B_{2}\right)$. Let $U: \tilde{H} \rightarrow D$ be an onto isometry ensuring the equivalence. By Proposition 8.4.6 [2] U sends $L^{2}\left(\Lambda_{0}, \delta\right)$ in \tilde{H} onto $L^{2}\left(\Lambda_{0}, \delta\right)$ in H_{p} while $L^{2}\left(B_{1}\right) \oplus[2] L^{2}\left(B_{2}\right)$ in \tilde{H} into $H_{a c}$. Choose $f_{i} \in L^{2}\left(B_{i}\right)$, $i=1$, 2 , such that $f_{j} \neq 0$ a.e. on B_{i}, and denote by D_{1}, D_{21} and D_{22} the closed subspaces of $H_{a c}$ cyclically generated by the vectors ${ }^{t}\left(h_{1}, h_{2}\right)=$ $U\left(0, f_{1}, 0,0\right),{ }^{t}\left(h_{11}, h_{12}\right)=U\left(0,0, f_{2}, 0\right)$ and ${ }^{t}\left(h_{21}, h_{22}\right)=U\left(0,0,0, f_{2}\right)$ respectively. For the sake of simplicity assume that both B_{1} and B_{2} are non-null sets. In case either B_{1} or B_{2} is a null set, we can argue similarly. Note that $\left(h_{1}, h_{2}\right)$ and ($h_{i 1}, h_{i 2}$) do not vanish a.e. on B_{1} and B_{2} respectively. Moreover, $\operatorname{det}\left(h_{i j}\right) \neq 0$ a.e. on B_{2}, for if it happened to vanish on a set of positive measure, the representation in $D_{21} \oplus D_{22}$ contains a subrepresentation of the multiplicity one, which contradicts Theorem 8.6.6 [2]. Since the Fourier transform for $L^{1}(R)$ is injective, it is not hard to see that $D_{21} \oplus D_{22}$ constitutes the third component of (1.10). Finally $D_{1}=\left\{r h \in H_{a c} ; h \in L^{2}\left(B_{1}\right.\right.$, $\left.\left.r^{*} \rho_{2} r\right)\right\}$ coincides with the second component of (1.10) with $s=\left(\begin{array}{rl}0 & 1 \\ -1 & 0\end{array}\right)^{t}\left(h_{1}, h_{2}\right)$.
Q.E.D.

We are ready for the
Proof of Theorem 1.1. 1) We shall prove the sufficiency of the condition. To begin with, we note that $D_{ \pm}^{\text {e }}$ are closed proper subspaces variant under \mathscr{N}_{k}. Indeed $\mathscr{F} \exp \left(i t \mathscr{N}_{k}\right) \mathscr{F}^{-1}, t \in R$, is the multiplication
operator $e^{i t \lambda}$ in $L^{2}\left(R_{+}, \rho\right)$. In order to see that $T_{t}(t \geq 0)$ leaves $D_{ \pm}^{c}$ invariant, it suffices to show that the resolvent $G_{\alpha}(\operatorname{Re} \alpha>0)$ of the semigroup sends a dense subspace $\mathscr{F}^{-1}\left\{r_{ \pm} h ; h \in C_{0}\left(R_{+}\right)^{1}\right\}$ in $D_{ \pm}^{c}$ into $D_{ \pm}^{c}$, that is,

$$
\begin{equation*}
{ }^{t} s_{ \pm}(\lambda)\left[\mathscr{F} G_{\alpha} \mathscr{F}{ }^{-1} r_{ \pm} h\right](\lambda)=0, \quad h \in C_{0}\left(R_{+}\right)^{1} . \tag{1.11}
\end{equation*}
$$

To verify (1.11) we shall show that

$$
\begin{equation*}
\int{ }^{t} s_{ \pm}(\lambda)^{t} \Phi(\tau, \lambda) G_{a} \Phi(\tau, \xi) \rho(\xi) r_{ \pm}(\xi) d \tau=0 . \tag{1.12}
\end{equation*}
$$

Note that (1.11) follows from (1.12) immediately by integrating the both sides of (1.12) with respect to a signed measure $h(\xi) d \xi$ (we can safely change the order of integration on account of Lemma 1.3). To show (1.12), put, for positives λ and ξ,

$$
\begin{aligned}
& I_{\alpha, \lambda, \xi}=\int t \zeta(\tau, \lambda) G_{\alpha} \zeta(\tau, \xi) d \tau, \quad \tilde{\rho}=X^{-1} \rho^{t} X^{-1}=\left(\tilde{\rho}_{i j}\right), \\
& J_{\alpha, \lambda, \xi}=I_{\alpha, \lambda, \xi} \tilde{\rho}(\xi) .
\end{aligned}
$$

Then, using the relation $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) Y\left(\begin{array}{rl}0 & 1 \\ -1 & 0\end{array}\right)=-{ }^{t} Y^{-1} \operatorname{det} Y$, the left side of (1.12) can be written as

$$
v_{ \pm} J_{\alpha, \lambda, \xi}\left(\begin{array}{rr}
0 & 1 \tag{1.13}\\
-1 & 0
\end{array}\right) v_{ \pm} \operatorname{det} X(\xi) .
$$

See (1.8) for the definition of $v_{ \pm}, \zeta$ and X. We shall show that

$$
\begin{align*}
I_{\alpha, 2, \xi} & =\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right) \text { if } \kappa \neq 1 / 4, \quad\left(\begin{array}{cc}
* & * \\
* & 0
\end{array}\right) \text { if } \kappa=1 / 4, \tag{1.14}\\
\tilde{\rho} & =\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right) \text { if } \kappa \neq 1 / 4, \quad\left(\begin{array}{cc}
0 & \tilde{\rho}_{12} \\
\tilde{\rho}_{12} & \tilde{\rho}_{22}
\end{array}\right) \text { if } \kappa=1 / 4, \tag{1.15}
\end{align*}
$$

to the effect that $J_{\alpha, \alpha, \xi}$ is diagonal or of the form $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$ according as $\kappa \neq 1 / 4$ or not, which proves (1.12) since (1.13) turns out to vanish. To see (1.14), let R be an operator assigning a function $f(\sigma)$ to $f(-\sigma)$ and $\mathscr{N}_{\kappa}(\sigma)$ be the differential operator \mathscr{N}_{k} expressed in terms of $\sigma=\tau-i \pi / 2$. Then $R \mathscr{N}_{k}(\sigma) R=\mathscr{N}_{\kappa}(\sigma)$. This relation gives rise to a symmetry of coefficients $z_{ \pm, n}$ in (1.7). That is,

$$
\begin{equation*}
z_{ \pm, n}(-1)^{n}=z_{ \pm, n} \text { if } \kappa \neq 1 / 4, \quad z_{+, n}(-1)^{n}=z_{+, n} \text { if } \kappa=1 / 4 \tag{1.16}
\end{equation*}
$$

In particular ${ }^{t} \zeta_{ \pm} \zeta_{\mp}\left(\right.$ resp. $\left.{ }^{t} \zeta_{+} \zeta_{+}\right)$can be expanded as $\sum_{n=0}^{\infty} c_{n} \sigma^{2 n+1}$ near $\sigma=0$ in the case $\kappa \neq 1 / 4$ (resp. $\kappa=1 / 4$). Since $I_{\alpha, 2, \xi}$ is equal to

$$
\begin{equation*}
\int_{1 / 2-i \infty}^{1 / 2+i \infty} \frac{t}{} \zeta(\tau, \lambda) \zeta(\tau, \xi)\{z(1-z)\}^{-1 / 2} d z, \quad z=(1+i \operatorname{sh} \tau) / 2 \tag{1.17}
\end{equation*}
$$

(1.14) follows from Proposition 1.2 (i) in view of Lemmas 1.1 and 1.3. Finally, to see (1.15), let g belong to $C_{0}\left(R_{+}\right)^{2}$. Since αG_{α} converges to the identity operator as $\alpha \rightarrow \infty$, there is a sequence α_{n} tending to ∞ such that $\alpha_{n} \mathscr{F} G_{\alpha_{n}} \mathscr{F}^{-1} g$ converge to g a.e. In other words

$$
\begin{equation*}
\alpha_{n} \int_{R_{+}} I_{\alpha_{n}, \lambda, \xi} \tilde{\rho}(\xi)^{t} X(\xi) g(\xi) d \xi \longrightarrow{ }^{t} X(\lambda) g(\lambda) \quad \text { a.e. as } n \rightarrow \infty \tag{1.18}
\end{equation*}
$$

Set ${ }^{t} X g={ }^{t}(a, b)$. Then, if $\kappa \neq 1 / 4$, the first (resp. second) component of the left side of (1.18) does not depend on b (resp. a), while the right side of (1.18) is equal to ${ }^{t}\left(\tilde{\rho}_{22} a-\tilde{\rho}_{12} b,-\tilde{\rho}_{21} a+\tilde{\rho}_{11} b\right)$. Thus $\tilde{\rho}_{12}=\tilde{\rho}_{21}=0$ if $\kappa \neq$ $1 / 4$. Similar argument, together with the fact that ρ is diagonal, yields $\tilde{\rho}_{11}=0$ if $\kappa=1 / 4$. This completes the proof of (1.15). 2) We shall show that the condition is necessary. Applying Proposition 1.4 to the oneparameter group $e^{i t \lambda}$ on $L^{2}\left(R_{+}, \rho\right)$, we define Borel sets B_{1}, B_{2} of R_{+}and a Borel measurable function s with values in $M_{2,1} \mid\{0\}$ a.e. on B_{1}. Since the image $G_{\alpha} D$ is dense in D, $\operatorname{det}\left(\mathscr{F} G_{\alpha} f_{1}, \mathscr{F} G_{\alpha} f_{2}\right) \neq 0$ a.e. on B_{2} for some f_{1}, $f_{2} \in D$. If B_{2} is not a null set, the determinant does not vanish a.e. on R_{+}, for it is holomorphic in a neighborhood of R_{+}. Therefore, if B_{2} is not a null set, $D=L^{2}(R)$, which is a contradiction. Thus we may assume that $B_{2}=\phi$ and $B_{1}=R_{+}$on account of the analyticity of $\mathscr{F} G_{\alpha} f(\lambda), f \in D$. Set $r=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) s$. Then $\mathscr{F} D=\left\{r h \in L^{2}\left(R_{+}, \rho\right) ; h \in L^{2}\left(R_{+}, r^{*} \rho r\right)\right\}$. Consequently we can replace r and s by real analytic functions $\mathscr{F} G_{\alpha_{0}} f, f \in D \backslash\{0\}$ and $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) r$ respectively. Since $r h, h \in C_{0}\left(R_{+}\right)^{1}$, belongs to $\mathscr{F} D$, we have ${ }^{t} s(\lambda)\left[\mathscr{F} G_{\alpha} \mathscr{F}^{-1} r h\right](\lambda)=0$ on R_{+}. Letting h converge to the Dirac measure supported at $\xi \in R_{+}$, we obtain $\left\langle{ }^{t} s(\lambda) \Phi(\tau, \lambda) G_{\alpha} \Phi(\tau, \xi) \rho(\xi) r(\xi)\right\rangle=0$. Namely,

$$
{ }^{t}\left(X^{-1} s\right)(\lambda) J_{\alpha, \lambda, \xi}\left(\begin{array}{rr}
0 & 1 \tag{1.19}\\
-1 & 0
\end{array}\right)\left(X^{-1} s\right)(\xi)=0, \quad \operatorname{Re} \alpha>0
$$

Put $X^{-1} s={ }^{t}(a, b)$. Then (1.19) implies, by Proposition 1.2 (ii), that the following function of $z=(1+i \operatorname{sh} \tau) / 2$

$$
\begin{array}{ll}
\left(a \zeta_{-} \zeta_{-} \rho_{11} b-b \zeta_{+} \zeta_{+} \rho_{22} a\right) / \sqrt{z(1-z)}, & \kappa \neq 1 / 4, \\
a\left(\zeta_{-} \zeta_{-} \rho_{12}+\zeta_{-} \zeta_{+} \rho_{22}\right) a / \sqrt{z(1-z)}, & \kappa=1 / 4,
\end{array}
$$

is holomorphic at $z=0$, from which it is immediate that

$$
a(\lambda) b(\xi)=b(\lambda) a(\xi)=0 \text { for } \kappa \neq 1 / 4, \text { while } a(\lambda) a(\xi)=0 \text { for } \kappa=1 / 4
$$

Since a as well as b is real analytic, either a or b must vanish identically if $\kappa \neq 1 / 4$, and $a=0$ if $\kappa=1 / 4$. Thus there exists a Borel measurable function $c_{ \pm}$with values in C^{*} such that $s=c_{ \pm} s_{ \pm}$a.e.
Q.E.D.

We return to the study of invariant closed subspaces common to \mathscr{L}_{0} and $T_{t}(t \geq 0)$. In case $\alpha_{ \pm}=1 / 2 \pm i \eta$, denote by $\zeta_{0, \pm}, \zeta_{0}, X_{0}, s_{0, \pm}$ and $r_{0, \pm}$, respectively, $\zeta_{ \pm}, \zeta, X, s_{ \pm}$and $r_{ \pm}$in (1.8). Then we define subspaces $D_{0, \pm}^{\eta}$ of $L^{2}(R)$ by

$$
\begin{equation*}
D_{0, \pm}^{\eta}=\mathscr{F}_{0}^{-1}\left\{g \in L^{2}\left(R_{+} ; \rho_{0}\right) ;{ }^{t} s_{0, \pm}(\lambda) g(\lambda)=0 \text { a.e. }\right\}, \tag{1.20}
\end{equation*}
$$

where ρ_{0} is the spectral density for \mathscr{L}_{0} with respect to Φ_{0} and \mathscr{F}_{0} stands for the isometry associated with the eigenfunction expansion. Here, Φ_{k}, $k \in Z / 2$, is the solution of the following ordinary differential equation;

$$
\begin{equation*}
\left(\mathscr{L}_{k}-\lambda\right) \Phi_{k}(\tau, \lambda)=0, \quad{ }^{t}\left({ }^{t} \Phi_{k},{ }^{t} \Phi_{k}^{\prime}\right)_{\tau=0}=I_{2} . \tag{1.21}
\end{equation*}
$$

Thanks to Theorem $1.1 D_{0, \pm}^{\eta}$ are invariant, closed proper subspaces for \mathscr{L}_{0} and $T_{t}(t \geq 0)$, and there are no other closed proper subspaces with the invariant property.

We proceed to the study of invariant closed subspaces common to $\mathscr{L}_{1 / 2}$ and $T_{t}(t \geq 0)$.

Lemma 1.5. The selfadjoint operator $\mathscr{L}_{1 / 2, \eta}, \eta \in R$, has no eigenvalues.
Proof. Consider a selfadjoint operator $M_{1 / 2, \eta}=i\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right) d / d \tau+$ $i \eta\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) / \operatorname{ch} \tau$ with domain $H_{1}(R)^{2}\left[6\right.$, p. 287]. We note that $\left(U M_{1 / 2, \eta} U^{*}\right)^{2}$ $=\mathscr{L}_{1 / 2, \eta} \oplus \mathscr{L}_{1 / 2,-\eta}$ for a unitary matrix $U=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right) / \sqrt{2}$. This relation implies that an eigenvalue of $\mathscr{L}_{1 / 2, \pm \eta}$, if any, is equal to zero, because $\mathscr{L}_{12, \pm \eta}$ has no positive eigenvalues in virtue of Theorem 4 [4]. Now assume that f is an eigenvector corresponding to the eigenvalue zero, say, of $\mathscr{L}_{1 / 2, \eta}$. Then $\left(U M_{1 / 2, \eta} U^{*}\right)^{2}(f, 0)=0$. This contradicts the fact that $M_{1 / 2, \eta}$ has no eigenvalues by Theorem 2 [4]
Q.E.D.

Since the function $\left(1 / 4-k^{2}+\eta^{2}+2 k \eta \operatorname{sh} \tau\right) / \operatorname{ch}^{2} \tau$ is integrable, the spectral matrix for \mathscr{L}_{k} relative to Φ_{k} has an M_{2}^{++}-valued continuous density ρ_{k} on R_{+}due to Theorem 4 [4]. On account of Lemma 1.5 we can define an onto isometry $\mathscr{F}_{1 / 2}: L^{2}(R) \rightarrow L^{2}\left(R_{+}, \rho_{1 / 2}\right)$ and its inverse $\mathscr{F}_{1 / 2}^{-1}$ in a similar way as (1.5) and (1.6) respectively. To define invariant subspaces $D_{1 / 2, \pm}^{\eta}$ we first note that the equation (1.21) has a regular singularity at $\tau=i \pi / 2$, the indicial roots at which are $1 / 2 \pm(i \eta-k)$. Therefore, the equation (1.21)
for $k=1 / 2$ has linearly independent solutions $\zeta_{1 / 2, \pm}(\tau, \lambda)$ which, being holomorphic in $\dot{D}_{\tau} \times C$, admit the following expansion near $\sigma=0$.

$$
\begin{equation*}
\zeta_{k, \pm}=\sigma^{1 / 2 \pm(i \eta-k)}\left(\sum_{n=0}^{\infty} z_{k, \pm, n} \sigma^{n}\right), \quad z_{k, \pm, 0}=1 \tag{1.22}
\end{equation*}
$$

where $k=1 / 2$. It should be noted that $\left(\zeta_{1 / 2,-,}, \zeta_{1 / 2,+}\right)=\Phi_{1 / 2}$ if $\eta=0$. Let us define $X_{k}(\lambda) \in M_{2}, s_{k, \pm}(\lambda), r_{k, \pm}(\lambda) \in M_{2,1}$ in terms of Φ_{k} and $\zeta_{k, \pm}$ as in (1.8), and set, for $k=1 / 2$,

$$
\begin{equation*}
D_{k, \pm}^{n}=\mathscr{F}_{k}^{-1}\left\{g \in L^{2}\left(R_{+}, \rho_{k}\right) ;{ }^{t} s_{k, \pm}(\lambda) g(\lambda)=0 \text { a.e. }\right\} . \tag{1.23}
\end{equation*}
$$

Then, repeating the argument in the proof of Theorem 1.1, we get the next theorem.

Theorem 1.2. Let D be a closed proper subspace of $L^{2}(R)$. Then the selfadjoint operator $\mathscr{L}_{1 / 2, \eta}$ and the semigroup $T_{t}(t \geq 0)$ leave D invariant iff D coincides with one of $D_{1 / 2, \pm}^{\eta}$.

From now on we shall be concerned with a general \mathscr{L}_{k}. The following lemma shows close relations among the operators \mathscr{L}_{k} and $F_{ \pm, k}$ (see (1.3)).

Lemma 1.6. Let $F_{ \pm, k}$ and \mathscr{L}_{k} be the differential operators on $C^{\infty}(R)$.
(i) $F_{\mp, k \pm 1} F_{ \pm, k}=-\mathscr{L}_{k}-(k \pm 1 / 2)^{2}$.
(ii) $\mathscr{L}_{k \pm 1} F_{ \pm, k}=F_{ \pm, k} \mathscr{L}_{k}$.
(iii) $F_{ \pm, k}^{*}=-F_{\mp, k \pm 1}, \quad F_{ \pm, k}^{*} F_{ \pm, k}=\mathscr{L}_{k}+(k \pm 1 / 2)^{2}$.
(iv) If f satisfies $\left(\mathscr{L}_{k}-\lambda\right) f=0$, then $\left(\mathscr{L}_{k \pm 1}-\lambda\right) F_{ \pm, k} f=0$. In particular $F_{ \pm, k} \Phi_{k}=\Phi_{k \pm 1} X_{ \pm, k}$, where

$$
X_{ \pm, k}=\left(\begin{array}{cc}
\pm \eta & -1 \\
\lambda+(k \pm 1 / 2)^{2}-\eta^{2} & \pm \eta
\end{array}\right) .
$$

Proof. Simple calculation is enough to verify (i) ~(iii). The statement (iv) follows from (ii).
Q.E.D.

As to eigenfunctions for \mathscr{L}_{k} we assert
Lemma 1.7. Let $f_{ \pm k, \pm k}, k>1 / 2$, be an absolute continuous function on R such that $F_{\mp, \pm k} f_{ \pm k, \pm k}=0$. Set $f_{ \pm k \pm m, \pm k}=F_{ \pm, \pm k \pm m \mp 1} \cdots F_{ \pm, \pm k} f_{ \pm k, \pm k}, m \in Z_{+}$.
(i) $f_{ \pm k \pm m, \pm k}$ lies in $H_{2}(R)$, satisfies the equation

$$
\begin{equation*}
\left\{\mathscr{L}_{ \pm k \pm m}+(k \mp 1 / 2)^{2}\right\} f_{ \pm k \pm m, \pm k}=0 \tag{1.24}
\end{equation*}
$$

and takes the following form near $\sigma=0$.

$$
\begin{equation*}
\sigma^{1 / 2 \pm i \eta-k-m}\left(\sum_{n=0}^{\infty} z_{n} \sigma^{n}\right), \quad z_{0} \neq 0, \quad(-1)^{n} z_{n}=z_{n} \tag{1.25}
\end{equation*}
$$

(ii) $f_{ \pm k \pm n, \pm k}(\tau)$, as a function of $z=(1+i \operatorname{sh} \tau) / 2$, is bounded on $\{|z| \geq 2\}$.

Proof. The function $f_{ \pm k, \pm k}$ is clearly a constant multiple of the function $(\operatorname{ch} \tau)^{\mp k+1 / 2} \exp \left(\pm \eta \int_{0}^{\tau} 1 / \operatorname{ch} t d t\right)$ which lies in $L^{2}(R)$ as well as its derivative. By Lemma 1.6 (i) we note that $f_{ \pm k, \pm k}$ is an eigenfunction of $\mathscr{L}_{ \pm k}$ corresponding to the eigenvalue $-(k \mp 1 / 2)^{2}$. Since $1 / 2 \pm\left(i \eta-k^{\prime}\right)$ and $1 / 2 \pm$ (in $-k^{\prime}$) are indicial roots at $\sigma=0$ for the equations $F_{\mp, k^{\prime}} f=0$ and ($\mathscr{L}_{k^{\prime}}-\lambda$) $f=0$ respectively, $f_{ \pm k, \pm k}$ can be expanded as (1.25) for $m=0$. From now on only $f_{k, k}$ will be discussed. By Frobenius method, together with what we have proved, it can be easily seen that the equation (1.24) for $m=0$ has linearly independent solutions $\zeta_{ \pm}$such that

$$
\begin{equation*}
\zeta_{ \pm}=\sigma^{1 / 2 \pm(i r-k)}\left(\sum_{n=0}^{\infty} z_{ \pm, n} \sigma^{n}\right), \quad z_{ \pm, 0} \neq 0, \tag{1.26}
\end{equation*}
$$

where $\zeta_{+} \propto f_{k, k}$. Let $\mathscr{L}_{k}(\sigma)$ stand for \mathscr{L}_{k} represented in terms of the variable σ. Using the relation $R \mathscr{L}_{k}(\sigma) R=\mathscr{L}_{k}(\sigma)$, we can show that $(-1)^{n} z_{ \pm, n}$ $=z_{ \pm, n}$. It is now immediate that $(-1)^{n} z_{n}=z_{n}$ when $m=0$. This proves (i) for $m=0$. To show (i) for any m, we can proceed by induction on m, keeping in mind that $F_{+, k+m-1} \cdots F_{+, k} \zeta_{+}$takes the form $\sigma^{1 / 2+i \eta-k-m}\left(\sum_{n=0}^{\infty} z_{n} \sigma^{n}\right)$, $z_{0} \neq 0$. To prove the statement (ii) we note that the equation (1.21) can be written as

$$
\begin{equation*}
\left\{\frac{d^{2}}{d z^{2}}+\frac{2 z-1}{2\left(z^{2}-1\right)} \frac{d}{d z}+\frac{1 / 4-k^{2}+\eta^{2}-i(2 z-1)}{4\left(z^{2}-1\right)^{2}}+\frac{\lambda}{4\left(z^{2}-1\right)}\right\} \Psi_{k}=0 \tag{1.27}
\end{equation*}
$$

where $z=(1+i \operatorname{sh} \tau) / 2$ and $\Psi_{k}(z, \lambda)=\Phi_{k}(\tau, \lambda)$. The indicial equation at $z=\infty$ for the above equation is $\alpha^{2}+\lambda=0$. Since $f_{ \pm k \pm m, \pm k}$ satisfies (1.24), it assumes the form $z^{-k+1 / 2}\left(\sum_{n=0}^{\infty} y_{n} z^{-n}\right), y_{0} \neq 0$, near $z=\infty$. This is because $f_{ \pm k \pm m, \pm k}(\tau)$ in $H_{2}(R)$ tends to zero as $\tau \rightarrow \pm \infty$ (i.e. $z \rightarrow 1 / 2 \pm i \infty$). Q.E.D.

Definition. Let notation be as in Lemma 1.7. We denote by $e_{ \pm k \pm m, \pm k}$, $m \in Z_{+}$, the normalized eigenvector $f_{ \pm k \pm m, \pm k}\| \| f_{ \pm k \pm m, \pm k} \|$ of $\mathscr{L}_{ \pm k \pm m}$ corresponding to the eigenvalue - $(k \mp 1 / 2)^{2}$. Let Λ_{k} be the set of eigenvalues of \mathscr{L}_{k} and \tilde{E}_{k} be the Hilbert space $L^{2}\left(\Lambda_{k}, \delta_{k}\right)$, where δ_{k} is an atomic measure on Λ_{k} such that $\delta_{k}(\{\lambda\})=1$ for each $\lambda \in \Lambda_{k}$.

We already know that $\Lambda_{k}=\phi$ if $|k| \leq 1 / 2$. It will be proved in the following proposition that

$$
\begin{aligned}
\Lambda_{k} & =\left\{-(j+1 / 2)^{2} ; j=k, k+1, \cdots<-1 / 2\right\} \text { if } k<-1 / 2, \\
& =\left\{-(j-1 / 2)^{2} ; j=k, k-1, \cdots<1 / 2\right\} \text { if } k>1 / 2
\end{aligned}
$$

According to the eigenfunction expansion theorem for \mathscr{L}_{k} (see [1, p. 251]) we can define an onto isometry $\mathscr{F}_{k}: L^{2}(R) \rightarrow L^{2}\left(R_{+}, \rho_{k}\right) \oplus \tilde{E}_{k}$ and its inverse \mathscr{F}_{k}^{-1} as follows.

$$
\begin{gather*}
\mathscr{F}_{k} f(\lambda)=\lim _{N \rightarrow \infty} \int_{|\tau|<N}{ }^{t} \Phi_{k}(\tau, \lambda) f(\tau) d \tau \quad \text { in } L^{2}\left(R_{+}, \rho_{k}\right), \tag{1.28}\\
\mathscr{F}_{k} f(\lambda)=\left\langle e_{k, j}, f\right\rangle \text { for } \lambda=-\{j-(\operatorname{sign} k) 1 / 2\}^{2} \in \Lambda_{k} \\
\mathscr{F}_{k}^{-1} g(\tau)=\lim _{N \rightarrow \infty} \int_{0<|\tau|<N} \Phi_{k}(\tau, \lambda) \rho_{k}(\lambda) g(\lambda) d \lambda \tag{1.29}\\
\oplus \Sigma_{j} g\left(-\{j-(\operatorname{sign} k) 1 / 2\}^{2}\right) e_{k, j} .
\end{gather*}
$$

Here ρ_{k} is the spectral density for \mathscr{L}_{k} relative to Φ_{k}. The next Proposition is concerned with the spectral property of \mathscr{L}_{k}.

Proposition 1.8.
(i) The set of eigenvalues $\Lambda_{k},|k|>1 / 2$, is given as above.
(ii) $\rho_{k+1}(\lambda)=-X_{+, k}(\lambda) \rho_{k}^{t} X_{-, k+1}^{-1}(\lambda), \lambda \in R_{+}$, where $X_{ \pm, k}$ stands for the same as in Lemma 1.6.

Proof. We shall prove the assertion (i) only for $k>1 / 2$. Assume that an f in $H_{2}(R) \backslash\{0\}$ satisfies $\left(\mathscr{L}_{k}-\lambda\right) f=0$ for $k=1$ or $3 / 2$. Then $\left(\mathscr{L}_{k-1}-\lambda\right) F_{-, k} f=0$ by Lemma 1.6 (ii). Particularly $F_{-, k} f$ belongs to $H_{2}(R)$. Since \mathscr{L}_{k-1} has no eigenvalues, we conclude that $F_{-, k} f=0$. Consequently a possible eigenvalue for \mathscr{L}_{k} is $-(k-1 / 2)^{2}$ by Lemma 1.7. Conversely, the same lemma implies that $-(k-1 / 2)^{2}$ is really an eigenvalue. Recalling the well-known fact that the multiplicity of an eigenvalue for \mathscr{L}_{k} is one, (i) has been proved in this case. Working by induction on k, we can complete the proof of (i). If g belongs to $C_{0}\left(R_{+}\right)^{2}, f=\mathscr{F}_{k}^{-1} g$ lies in the domain of \mathscr{L}_{k} and tends to zero as $|\tau| \rightarrow \infty$. Integration by parts, together with Lemma 1.6 (iv), yields $\mathscr{F}_{k+1} F_{+, k} f=X_{-, k}^{*-1} g$. Therefore we can represent $F_{+, k} f$ in two ways;

$$
\int_{R_{+}} \Phi_{k+1} X_{+, k} \rho_{k} g d \lambda=\int_{R_{+}} \Phi_{k+1} \rho_{k+1} X_{-, k+1}^{*-1} g d \lambda
$$

which results in (ii), for $X_{-, k}$ is a real matrix.
Q.E.D.

We are in a position to define invariant closed subspaces $D_{k, \pm}^{n}$ in $L^{2}(R)$. Since $s_{k, \pm}$ and $r_{k, \pm}$ for $k=0,1 / 2$ are defined in connection with
$D_{k, \pm}^{\eta}, k=0,1 / 2$, the following definition makes sense.

$$
\begin{gather*}
s_{k, \pm}=X_{+, k-1} s_{k-1, \pm}, \quad r_{k, \pm}={ }^{t} X_{-, k} r_{k-1, \pm} \tag{1.30}\\
D_{k, \pm}^{\eta}=\mathscr{F}_{k}^{-1}\left\{g \in L^{2}\left(R_{+}, \rho_{k}\right) ;{ }^{t} s_{k, \pm}(\lambda) g(\lambda)=0 \text { a.e. }\right\} \oplus \mathscr{F}_{k}^{-1} \tilde{E}_{k, \pm}, \tag{1.31}
\end{gather*}
$$

where $\tilde{E}_{k, \pm}=\tilde{E}_{k}$ if $\pm k>0$, while $\{0\}$ if $\pm k<0$. The following is one of the main theorems in this section.

Theorem 1.3. Let D be a closed proper subspace of $L^{2}(R)$. Then the selfadjoint operator $\mathscr{L}_{k, \eta}$ and the semigroup $T_{t}(t \geq 0)$ leave D invariant iff D coincides with one of $D_{k, \pm}^{\eta}$.

To prove the theorem we need a lemma.
Lemma 1.9. Let λ be positive.
(i) ${ }^{t} s_{k, \pm}(\lambda) r_{k, \pm}(\lambda)=0$.
(ii) If either $\eta \in R^{*}$ or $k \in Z+1 / 2$, then

$$
\begin{aligned}
& \Phi_{k}(\tau, \lambda) s_{k, \pm}(\lambda)=O\left(\sigma^{1 / 2 \pm(-i \eta+k)}\right), \\
& \Phi_{k}(\tau, \lambda) \rho_{k}(\lambda) r_{k, \pm}(\lambda)=O\left(\sigma^{1 / 2 \pm(i \eta-k)}\right) .
\end{aligned}
$$

If $\eta=0$ and $k \in Z$, then

$$
\Phi_{k}(\tau, \lambda) s_{k, \pm}(\lambda), \Phi_{k}(\tau, \lambda) \rho_{k}(\lambda) r_{k, \pm}(\lambda)=O\left(\sigma^{1 / 2+|k|}\right)
$$

In the above $O\left(\sigma^{\alpha}\right)$ denotes a holomorphic function on \dot{D}_{τ} which assumes the form $\sigma^{\alpha}\left(\sum_{n=0}^{\infty} c_{n} \sigma^{2 n}\right), c_{0} \neq 0$, near $\sigma=0$.

Proof. The relation (i) holds for $k=0,1 / 2$. Since $X_{-, k}(\lambda) X_{+, k-1}(\lambda)=$ $-\lambda-(k-1 / 2)^{2}$, (i) follows from the definition of $s_{k, \pm}$ and $r_{k, \pm}$. As to the statement (ii) only the functions $\Phi_{k} s_{k, \pm}$ will be examined. We recall that

$$
\Phi_{k} s_{k, \pm}=2 \zeta_{k, \pm} \text { if }(k, \eta)=(0,0) \text { while } 2 \zeta_{k, \pm} \text { if } k=1 / 2 \text { or } k=0, \eta \in R^{*}
$$

Therefore (ii) is valid for $k=0,1 / 2$. Assume that (ii) holds down to $k \leq 0$. To proceed by induction on k, we note that

$$
\begin{aligned}
& F_{ \pm, k}\left(\sum_{n=0}^{\infty} c_{n} \sigma^{\alpha+2 n}\right)=\{1 / 2 \pm(-i \eta+k)-\alpha\} c_{0} \sigma^{\alpha-1}+\sum_{n=1}^{\infty} d_{n} \sigma^{\alpha+2 n-1} \\
& F_{-, k} \Phi_{k}(\tau, \lambda) s_{k, \pm}(\lambda)=-\left\{\lambda+(k-1 / 2)^{2}\right\} \Phi_{k-1}(\tau, \lambda) s_{k-1, \pm}(\lambda)
\end{aligned}
$$

Let $\Phi_{k} s_{k, \pm}$ take the form $\sum_{n=0}^{\infty} c_{n} \sigma^{\alpha+2 n}, c_{0} \neq 0$. Then it can be easily seen that if $1 / 2-(-i \eta+k)-\alpha$ vanishes, d_{n} is equal to zero unless $\operatorname{Re}(\alpha+$ $2 n-1) \geq \operatorname{Re}\{1 / 2-(k-1)+i \eta\}$. This is due to the fact that $F_{-, k} \Phi_{k} s_{k, \pm}$
is a nonzero solution of the equation $\left(\mathscr{L}_{k-1}-\lambda\right) f=0$ whose indicial roots at $\sigma=0$ are $1 / 2 \pm(k-1-i \eta)$. This proves (ii) for $k<0$. In case $k>0$, we can argue similarly, using the equality $F_{+, k} \Phi_{k} s_{k, \pm}=\Phi_{k+1} s_{k+1, \pm}$. Q.E.D.

Proof of Theorem 1.3. The proof is much like that of Theorem 1.1. We may assume that $k \neq 0,1 / 2$, and shall prove the theorem in the case $k>0$. On account of Lemmas 1.1, 1.3, 1.7 and 1.9, Proposition 1.2 (i) yields the following equalities.

$$
\begin{aligned}
& \int{ }^{t} s_{k,+}(\lambda)^{t} \Phi_{k}(\tau, \lambda) G_{\alpha} \zeta_{k}(\tau, \xi) \sigma_{k}(\xi) r_{k,+}(\xi) d \tau=0 \\
& \int{ }^{t} s_{k,+}(\lambda)^{t} \Phi_{k}(\tau, \lambda) G_{\alpha} e_{k, j}(\tau) d \tau=0 \\
& \int{ }^{t} s_{k,-}(\lambda)^{t} \Phi_{k}(\tau, \lambda) G_{\alpha} \Phi_{k}(\tau, \xi) \rho_{k}(\xi) r_{k,-}(\xi) d \tau=0 \\
& \int e_{k, j}(\tau) G_{\alpha} \Phi_{k}(\tau, \xi) \rho_{k}(\xi) r_{k,-}(\xi) d \tau=0
\end{aligned}
$$

where λ and ξ are positive. We can show, as in the proof of Theorem 1.1, that the first two and last two equalities imply the invariance of $D_{k,+}^{n}$ and $D_{k,-}^{n}$ under the semigroup $T_{t}(t \geq 0)$ respectively. Here we used the fact that $\bar{e}_{k, j}=c e_{k, j}$ for some constant $c,|c|=1$. On the other hand, \mathscr{L}_{k} clearly leaves $D_{k, \pm}^{\eta}$ invariant. Conversely, let D be a proper closed subspace with the desired invariant property. Arguing as in the proof of Theorem 1.1, we see that

$$
D=\sum_{j \in I} \oplus\left\{e_{k, j}\right\} \oplus \mathscr{F}_{k}^{-1}\left\{g \in L^{2}\left(R_{+}, \rho_{k}\right) ;{ }^{t} s(\lambda) g(\lambda)=0 \text { a.e. }\right\}
$$

for some subset I of $\{k, k-1, \cdots, 1$ or $3 / 2\}$ and a real analytic function s on R_{+}with values in $M_{2,1} \mid\{0\}$ a.e. Denote by $\zeta_{k, \pm}(\tau, \lambda)$ linearly independent solutions of the equation $\left(\mathscr{L}_{k}-\lambda\right) \zeta=0$ such that they are holomorphic in $\dot{D}_{\tau} \times C$ and have the following expansion near $\sigma=0$.

$$
\begin{aligned}
& \zeta_{k, \pm}=\sigma^{1 / 2 \pm(i \eta-k)}\left(1+\sum_{n=1}^{\infty} z_{k, \pm, 2 n} \sigma^{2 n}\right), \text { if } \eta \in R^{*} \text { or } k \in Z+1 / 2 \\
& \zeta_{k,+}=\sigma^{1 / 2+|k|}\left(1+\sum_{n=1}^{\infty} z_{k,+, 2 n} \sigma^{2 n}\right), \text { if } \eta=0 \text { and } k \in Z \\
& \zeta_{k,-}=\left(F_{+, k-1} \cdots F_{+, 0} \zeta_{0,+}\right) \log \sigma+\sigma^{1 / 2-|k|}\left(\sum_{n=0}^{\infty} z_{k,-, n} \sigma^{n}\right), z_{k, 0,-} \neq 0 .
\end{aligned}
$$

Set $\zeta_{k}=\left(\zeta_{k,-}, \zeta_{k,+}\right)$, and define X_{k} by $\zeta_{k}=\Phi_{k} X_{k}$. Then, it can be shown, as in the proof of Theorem 1.1, that the symmetric matrix $X_{k}^{-1} \rho_{k}{ }^{t} X_{k}^{-1}$ is
diagonal in the case either $\eta \in R^{*}$ or $k \in Z+1 / 2$ while the matrix assumes the form $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$ in the case $\eta=0$ and $k \in Z$. It is not hard to see that in the former case one of the components of $X_{k}^{-1} s$ must vanish identically while in the latter case the first component of $X^{-1} s$ must vanish (see the proof of Theorem 1.1). This means that there are, at most, two possibilities for s. Therefore, since $D_{k, \pm}^{n}$ possess the invariant property, there exists a C^{*}-valued measurable function c_{+}or c_{-}such that $s=c_{+} s_{k,+}$ or $c_{-} s_{k,-}$ a.e. on R_{+}. Suppose $s=c_{+} s_{k,+}$. We must show that $I=\{k, k-1, \cdots, 1$ or $3 / 2$ \}, provided $\eta \in R^{*}$ or $k+1 / 2 \in Z$ (recall that $s_{k,+}=s_{k,-}$ in the case when $\eta=0$ and $k \in Z$). On account of Lemmas 1.1, 1.3, 1.7 and 1.9, using Proposition 1.2 (ii), we can show that for any eigenvector $e_{k, j}$, there exists an $\alpha^{\prime}, \operatorname{Re} \alpha^{\prime}>0$, satisfying

$$
\left\langle e_{k, j}(\tau) G_{\alpha^{\prime}} \Phi_{k}(\tau, \xi) \rho_{k}(\xi) r_{k,+}(\xi)\right\rangle \neq 0
$$

so that $\left\langle e_{k, j}(\tau) G_{\alpha^{\prime}} \mathscr{F}_{k}^{-1} r_{k,+} h\right\rangle \neq 0$ for some $h \in C_{0}\left(R_{+}\right)^{1}$. This means $D=D_{k,+}^{\eta}$, that is, $I=\{k, k-1, \cdots, 1$ or $3 / 2\}$, for D is \mathscr{L}_{k}-invariant. Next, assume $s=c_{-} s_{k,-}$. We must show that $I=\phi$, provided $\eta \in R^{*}$ or $k \in Z+1 / 2$. To this end, we note that for any eigenvector $e_{k, j}$ and positive λ, there is an $\alpha^{\prime}, \operatorname{Re} \alpha^{\prime}>0$, such that

$$
{ }^{t} s_{k,-}(\lambda)\left\langle{ }^{t} \Phi_{k}(\tau, \lambda) G_{\alpha^{\prime}} e_{k, j}(\tau)\right\rangle \neq 0
$$

on the same basis as above. This implies that $I=\phi$, since ${ }^{t} s(\lambda)\left[\mathscr{F}_{k} G_{\alpha} f\right](\lambda)$ $=0$ a.e. for any $f \in D$. Finally, we note that for any eigenvectors $e_{k, i}$ and $e_{k, j}$, there exists an $\alpha^{\prime}, \operatorname{Re} \alpha^{\prime}>0$, such that $\left\langle e_{k, i}, G_{\alpha^{\prime}} e_{k, j}\right\rangle \neq 0$. This means $I=\phi$ or $\{k, k-1, \cdots, 1$ or $3 / 2\}$. Since $s_{k,-}=s_{k,+}$ in the case $\eta=0$ and $k \in Z$, Theorem 1.3 has been shown for $k>0$. In case $k<0$, we can argue similarly.
Q.E.D.

We set $W_{k}=L^{2}(R)$ for $k \in Z / 2$ and regard \mathscr{L}_{k} as a selfadjoint operator in W_{k} and $F_{ \pm, k}$ as an operator sending W_{k} into $W_{k \pm 1}$. It is the next theorem that will be used in $\S 2$.

Theorem 1.4. Let $\left\{D_{k}\right\}_{k \in Z+c}, \varepsilon=0,1 / 2$, be a nontrivial sequence of closed subspaces of W_{k}. Then the sequence $\left\{D_{k}\right\}$ fulfils the following two conditions iff it coincides with one of

$$
\begin{aligned}
& \left\{D_{k,-}^{n}\right\},\left\{D_{k,+}^{n}\right\} \text { if } \eta \in R^{*} \text { or } 1 / 2, \\
& \left\{D_{k, \operatorname{sign}(-k+1 / 2)}^{0}\right\},\left\{D_{k,-\}}^{0}\right\},\left\{D_{k,+}^{0}\right\} \text { and }\left\{D_{k, \operatorname{sign}(k+1 / 2)}^{0}\right\} \text { if } \eta=\varepsilon=0 .
\end{aligned}
$$

i) D_{k} is invariant under the selfadjoint operator $\mathscr{L}_{k, \eta}$ and the semigroup $T_{t}(t \geq 0)$.
ii) $F_{ \pm, k, \eta} D_{k} \subset D_{k \pm 1}$, where the domains of $F_{ \pm, k, \eta}$ are $H_{2}(R)$.

Proof. We shall first show the sufficiency of the condition. Assume that an f in $H_{2}(R)$ satisfies $\mathscr{F}_{k} f=r_{k, \pm} h, h \in L^{2}\left(R_{+}, r_{k, \pm}^{*} \rho_{k} r_{k, \pm}\right)$. Then integration by parts yields

$$
\begin{equation*}
\mathscr{F}_{k+1} F_{+, k} f=-r_{k+1, \pm} h, \mathscr{F}_{k-1} F_{-, k} f=\left\{\lambda+(k-1 / 2)^{2}\right\} r_{k-1, \pm} h . \tag{1.32}
\end{equation*}
$$

Making use of Lemma 1.6 , we can verify easily that for $k,|k|>1 / 2$,

$$
\begin{equation*}
F_{ \pm, k} e_{k, j}= \pm(\operatorname{sign} k) \sqrt{(k \pm 1 / 2)^{2}-\{j-(\operatorname{sign} k) 1 / 2\}^{2}} e_{k \pm 1, j} \tag{1.33}
\end{equation*}
$$

By (1.32) and (1.33) the sequences mentioned in the theorem satisfy the conditions i) and ii). Conversely, let $\left\{D_{k}\right\}$ be a nontrivial sequence satisfying i) and ii). In view of Theorem 1.3 and the relations (1.32) and (1.33), $\left\{D_{k}\right\}$ must coincide with one of the aforementioned sequences, provided some D_{k} is a proper subspace. Therefore it remains to show that all D_{k} are proper subspaces. To this end, suppose $D_{k}=L^{2}(R)$ for some k. Let us show that $D_{k \pm 1}=L^{2}(R)$. In fact, on account of the equality $G_{\alpha} F_{ \pm, k}=$ $F_{ \pm, k} G_{\alpha}+G_{\alpha}^{\prime}$ it is not hard to see that if an f in $\left(D_{k \pm 1}\right)^{\perp}$ is orthogonal to the image $G_{\alpha} F_{ \pm, k} C_{0}^{\infty}(R)$, then $f=0$. Assume now that $D_{k-1}=\{0\}$ and $D_{k} \neq\{0\}$ for some k. This contradicts Theorem 1.3 and (1.32). Thus each D_{k} must be proper for the sequence $\left\{D_{k}\right\}$ to be nontrivial.
Q.E.D.

Before concluding this section we shall rewrite the relation (1.32) in a more convenient manner. For this purpose, introduce Hilbert spaces $\tilde{D}_{k, \pm}^{\eta}, \hat{D}_{k, \pm}^{\eta}$ and an onto isometry $I_{ \pm, k}^{\eta, \varepsilon}: \tilde{D}_{k, \pm}^{\eta} \rightarrow \hat{D}_{k, \pm}^{\eta}, k \in Z+\varepsilon$, as follows.

$$
\begin{align*}
& \tilde{D}_{k, \pm}^{n}=\left\{r_{k, \pm} h \in L^{2}\left(R_{+}, \rho_{k}\right) ; h \in L^{2}\left(R_{+}, r_{k, \pm}^{*} \rho_{k} r_{k, \pm}\right)\right\} \oplus \tilde{E}_{k, \pm} \cdot \\
& \hat{D}_{k, \pm}^{n}=L^{2}\left(R_{+}\right) \oplus \tilde{E}_{k, \pm} . \tag{1.34}\\
& \left(I_{\#, k}^{n, c} r_{k, \pm} h\right)(\lambda)=\left\langle r_{k, \pm}(\lambda), \rho_{k}(\lambda) r_{k, \pm}(\lambda)\right\rangle^{1 / 2} h(\lambda), \quad \lambda>0, \\
& \quad I_{ \pm, k}^{n, \epsilon} \mid \tilde{E}_{k, \pm}=\text { the identity operator. }
\end{align*}
$$

Furthermore, for $F_{ \pm, k}$ with domain $H_{1}(R)$, set

$$
\begin{aligned}
& \hat{F}_{+, k, \pm}=I_{ \pm, k+1}^{\eta, e} \mathscr{F}_{k+1} F_{+, k}\left(I_{ \pm, k}^{\eta, e} \mathscr{F}_{k}\right)^{-1}, \\
& \hat{F}_{-, k, \pm}^{\prime}=I_{ \pm, k-1}^{\eta, \mathscr{F}_{k-1}} F_{-, k}\left(I_{ \pm, k}^{p, e} \mathscr{F}_{k}\right)^{-1} .
\end{aligned}
$$

Then (1.32) yields

$$
\begin{equation*}
\hat{F}_{ \pm, k, s} h(\lambda)=\mp \sqrt{\lambda+(k \pm 1 / 2)^{\frac{2}{2}}} h(\lambda), \quad h \in C_{0}\left(R_{+}\right)^{1}, \quad s=+ \text { or }-. \tag{1.35}
\end{equation*}
$$

This is because $\left\langle r_{k, \pm}(\lambda), \rho_{k}(\lambda) r_{k, \pm}(\lambda)\right\rangle=\left\{\lambda+(k-1 / 2)^{2}\right\}\left\langle r_{k-1, \pm}(\lambda), \rho_{k-1}(\lambda) r_{k-1, \pm}(\lambda)\right\rangle$ by virtue of the definition of $r_{k, \pm}$ and Proposition 1.8 (ii).

§ 2. $P_{+}(3)$-invariant subspaces for the representation ($U^{\eta, \varepsilon}, \mathscr{S}^{n, \varepsilon}$)

We begin by defining the representation $\left(U^{n, e}, \mathfrak{S e}^{n, e}\right)$ of the group $P(3)$ (see the introduction for the definition of $P(3)$) associated with the onesheeted hyperboloid $V_{i M}(3)=\left\{y_{0}^{2}-y_{1}^{2}-y_{2}^{2}=-M^{2}\right\}, M>0$, after Mackey [7]. Let G be $S U(1,1)$, and $\omega_{j}, 1 \leq j \leq 3$, be one-parameter subgroup of G;

$$
\begin{aligned}
\omega_{1}(t) & =\left(\begin{array}{cc}
\operatorname{ch} t / 2 & \operatorname{sh} t / 2 \\
\operatorname{sh} t / 2 & \operatorname{ch} t / 2
\end{array}\right), \\
\omega_{3}(t) & =\left(\begin{array}{cc}
e^{i t / 2} & 0 \\
0 & e^{-i t / 2}
\end{array}\right) .
\end{aligned}
$$

G acts on R^{3} as $y \cdot g=g^{*} y g$, where $y=\left(y_{0}, y_{1}, y_{2}\right)$ is identified with a matrix $\left(\begin{array}{cc}y_{0} & y_{2}-i y_{1} \\ y_{2}+i y_{1} & y_{0}\end{array}\right)$. It can be easily seen that the orbit of $\hat{y}=M\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is $V_{i M}(3)$ and that the isotropy group at \hat{y} is $G_{0}=\left\{ \pm \omega_{2}(t) ; t \in R\right\}$. Let $\pi_{\eta, e}, \eta \in R, \varepsilon=0,1 / 2$, be an irreducible unitary representation of G_{0} such that $\pi_{\eta, c}\left(\pm \omega_{2}(t)\right)=(\pm 1)^{26} \exp$ int. We can identify the factor space $G_{0} \backslash G$ $\simeq\left(R^{3} \times{ }_{s} G_{0}\right) \backslash\left(R^{3} \times{ }_{s} G\right)$ with $V_{i M}(3)$ via a projection p of G onto $V_{i M}(3)$ defined by $p(g)=g^{*} y g$. As is well known, the measure $d \bar{y}=d y_{1} d y_{2} / M\left|y_{0}\right|$ on $V_{i M}(3)$ is G-invariant. Let $\tilde{\mathfrak{F}}^{n, e}$ be the set of C-valued measurable functions on $P(3)$ such that

$$
f\left(\left(x^{\prime}, g_{0}\right)(x, g)\right)=e^{i\left\langle x^{\prime}, \hat{0}\right\rangle} \pi_{\eta, 8}\left(g_{0}\right) f(x, g), \quad g_{0} \in G_{0}
$$

and that $|f(x, g)|^{2}$, which is a function on $V_{i M}(3)$, is integrable relative to the measure $d \bar{y}$. Then $\tilde{\mathfrak{F}}^{n, e}$ equipped with the inner product $\langle f, h\rangle=$

$$
\left[U^{\eta, \varepsilon}(x, g) f\right]\left(x^{\prime}, g^{\prime}\right)=f\left(\left(x^{\prime}, g^{\prime}\right)(x, g)\right)
$$

It is well-known that $\left(U^{\eta, \varepsilon}, \widetilde{\mathfrak{S}}^{\eta, \varepsilon}\right)$ is an irreducible unitary representation of $P(3)$ associated with $V_{i M}(3)$ and $\pi_{n, \varepsilon}$. We prefer to realize this representation in $L^{2}\left(V_{i M}(3), d \bar{y}\right)$. For this purpose, note that a map $p\left(\omega_{1}(\tau) \omega_{3}(\theta)\right)$ of $R \times(0,2 \pi)$ into $V_{i M}(3)$ is a diffeomorphism onto an open dense set of $V_{i M}(3)$, and fix a Borel measurable section s_{e} of $V_{i M}(3)$ into G such that $s_{e} \circ p\left(\omega_{1}(\tau) \omega_{3}(\theta)\right)=\omega_{1}(\tau) \omega_{3}(\theta)$ for $(\tau, \theta) \in R \times(0,2 \pi)$. Then we can define an equivalent representation ($U^{\eta, e}, L^{2}\left(V_{i M}(3), d \bar{y}\right)$) as follows.

$$
\begin{align*}
& U^{n, e}(x, g) f(y)=e^{i\left\langle x^{\prime}, \hat{y}\right\rangle} \pi_{\eta, e}\left(g_{0}\right) f(y \cdot g), \tag{2.1}\\
& \left(0, s_{e}(y)\right)(x, g)=\left(x^{\prime}, g_{0}\right)\left(0, s_{e}(y \cdot g)\right), \quad g_{0} \in G_{0} .
\end{align*}
$$

Clearly $(\tau, \theta) \in R \times(0,2 \pi)$ is a system of coordinates on an open dense set of $V_{i m}(3)$. Simple calculation yields

$$
\left(y_{0}, y_{1}, y_{2}\right)=M(\operatorname{sh} \tau, \operatorname{ch} \tau \sin \theta, \operatorname{ch} \tau \cos \theta), \quad d \bar{y}=\operatorname{ch} \tau d \tau d \theta
$$

Therefore, by identifying $L^{2}\left(V_{i M}(3), d \bar{y}\right)$ with $\mathfrak{S}^{\eta, t}=L^{2}(R \times(0,2 \pi)$, $\operatorname{ch} \tau d \tau d \theta)$ in a trivial manner, we obtain a representation ($U^{\eta, e}, \mathfrak{S}_{2}^{\eta, \varepsilon}$) equivalent to the one ($U^{\eta, s}, \tilde{\mathfrak{F}}^{\eta, s}$) above. From now on the former realization will be discussed. By (2.1) it is easy to see that

$$
U^{\eta,,}(t, 0,0, e)=e^{i M / \operatorname{sh} \tau} .
$$

Let $\omega_{j}, 1 \leq j \leq 3$, be an infinitesimal operator of the one-parameter unitary group $U^{n, t}\left(0, \omega_{j}(t)\right)$, and put

$$
\Delta=-\omega_{1}^{2}-\omega_{2}^{2}+\omega_{3}^{2}, \quad F_{ \pm}=-\omega_{1} \mp i \omega_{2}, \quad H_{3}=i \omega_{3} .
$$

To be more precise, Δ stands for the selfadjoint extension of a symmetric operator $-\omega_{1}^{2}-\omega_{2}^{2}+\omega_{3}^{2}$ whose domain is the Gårding space, while the domains of $F_{ \pm}$are the intersection of the domains of ω_{1} and ω_{2}. Using (2.1), we can easily get expressions for the restrictions $\omega_{j} \mid C_{0}^{\infty}(R \times(0,2 \pi))$. That is,

$$
\begin{aligned}
& \omega_{1}=\cos \theta \partial_{\tau}-\operatorname{th} \tau \sin \theta \partial_{\theta}+i \eta \sin \theta / \operatorname{ch} \tau, \\
& \omega_{2}=-\sin \theta \partial_{\tau}-\operatorname{th} \tau \cos \theta \partial_{\theta}+i \eta \cos \theta / \operatorname{ch} \tau, \\
& \omega_{3}=\partial_{\theta} .
\end{aligned}
$$

In particular,

$$
F_{ \pm}=-e^{\mp i \theta}\left(\partial_{\tau} \mp \operatorname{th} \tau \partial_{\theta} \mp \eta / \operatorname{ch} \tau\right) .
$$

Put $\mathscr{W}_{k}^{r, e}=\left\{f \in \mathfrak{S}^{\eta, e} ; H_{3} f=k f\right\}, k \in Z / 2$. Then $\mathscr{S}^{\eta, s}=\sum_{k} \oplus \mathscr{W}_{k}^{n, e}$, since eigenvalues of H_{3} lie in $Z / 2$ (see Lemma 2.1). Furthermore, it is not hard to show that $\mathscr{W}_{k}^{n, t}=\{0\}, k \notin Z+\varepsilon$, and

$$
\mathscr{W}_{k}^{r, s}=\left\{f(\tau) e^{-i k \theta} ; f \in L^{2}(R, \operatorname{ch} \tau)\right\}, k \in Z+\varepsilon .
$$

Now put $W_{k}=L^{2}(R), k \in Z / 2$, and define an onto isometry $J_{k}^{n, t}: \mathscr{W}_{k}^{n, s} \rightarrow W_{k}$ by $J_{k^{n, e}}^{n,}\left(f(\tau) e^{-i k \theta}\right)=f(\tau) \sqrt{\operatorname{ch} \tau / 2 \pi}$. Then an onto isometry $J^{n, \varepsilon}: \mathscr{S}^{\eta, \varepsilon} \rightarrow W^{e}=$ $\sum_{k \in Z+\varepsilon} \oplus W_{k}$ arises naturally, namely $J^{\eta, \varepsilon}=\sum_{k \in Z+\varepsilon} \oplus J_{k}^{n, \varepsilon}$. It is immediate that

$$
\begin{equation*}
J^{\eta, e} U^{\eta, e}(t / M, 0,0, e) J^{\eta, \varepsilon-1}=e^{i t \operatorname{sh} \tau} \tag{2.2}
\end{equation*}
$$

Using the explicit forms of $\omega_{j}, 1 \leq j \leq 3$, we obtain, for $k \in Z+\varepsilon$,

$$
\begin{align*}
& \boldsymbol{J}_{k}^{n, e} \Delta J_{k}^{n, c-1}=\mathscr{L}_{k, \eta}+1 / 4, \\
& \boldsymbol{J}_{k \pm 1}^{n, t} F_{ \pm} \boldsymbol{J}_{k}^{n, c-1}=F_{ \pm, k, \eta} . \tag{2.3}
\end{align*}
$$

See (1.1) and (1.3) for the definition of $\mathscr{L}_{k, \eta}$ and $F_{ \pm, k, \eta}$ respectively. To be more precise, we can verify the equality (2.3) only on $C_{0}^{\infty}(R)$. Since $J_{k}^{n, c}\left\langle J_{k}^{n, c-1}\right.$ is selfadjoint, the first equality in (2.3) follows from Theorem 4.3 [6, p. 287]. On the other hand, the second equality is understood to hold on $H_{1}(R)$. We regard $D_{k, \pm}^{n}$ (see (1.31)) as a subspace of W_{k} and introduce closed subspaces $\mathscr{D}_{ \pm}^{n, s} \subset W^{e}, \varepsilon=0,1 / 2$, and $\mathscr{D}_{ \pm 1}^{0,0} \subset W^{0}$ as follows.

$$
\begin{align*}
& \mathscr{D}_{ \pm}^{n, \varepsilon}=\sum_{k \in Z+\varepsilon} \oplus J_{k, ~}^{\eta, \epsilon-1} D_{k, \pm}^{n}, \tag{2.4}\\
& \mathscr{D}_{ \pm 1}^{0,0}=\sum_{k \in Z} \oplus J_{k}^{0,0-1} D_{k, \operatorname{sign}(\pm k+1 / 2)}^{0} .
\end{align*}
$$

Now we are ready to state main theorems of this paper.
Theorem 2.1. Let \mathscr{D} be a closed proper subspace of $\mathfrak{S}^{n, t}$. Then \mathscr{D} is $P_{+}(3)$-invariant iff it coincides with one of $\mathscr{D}_{ \pm}^{\eta, \varepsilon}$ (and $\mathscr{D}_{ \pm 1}^{0,0}$ provided $(\eta, \varepsilon)=$ $(0,0)$).

Theorem 2.2. The representations of $S U(1,1)$ realized in $\mathscr{D}_{ \pm}^{n, s}, \mathscr{D}_{-1}^{0,0}$ and $\mathscr{D}_{1}^{0,0}$ decompose into irreducible ones, respectively, as

$$
\begin{aligned}
& \int_{R_{+}}^{\oplus} T_{(-1 / 2+i \eta, \varepsilon)} d \eta \oplus \Sigma_{-k \in Z_{+}+1+\varepsilon} \oplus T_{(k, s)}^{\mp} \\
& \int_{R_{+}}^{\oplus} T_{(-1 / 2+i \eta, 0)} d \eta \\
& \int_{R_{+}}^{\oplus} T_{(-1 / 2+i \eta, 0)} d \eta \oplus \Sigma_{-k \in Z_{+}+1} \oplus\left(T_{(k, 0)}^{-} \oplus T_{(k, 0)}^{+}\right)
\end{aligned}
$$

See the following passage for the definition of the representation $T_{(-1 / 2+i \eta, k)}$ and $T_{(k, s)}^{ \pm}$.

Remark. It is known [8] that the representation of $S U(1,1)$ in $\mathscr{S}^{n, s}$ decomposes into irreducible ones as

$$
[2] \int_{R_{+}}^{\oplus} T_{(-1 / 2+i \eta, s)} d \eta \oplus \Sigma_{-k \in Z_{++1+}} \oplus\left(T_{(k, s)}^{-} \oplus T_{(k, s)}^{+}\right)
$$

The rest of this section will be devoted to the proof of the above theorems. We begin by reviewing some properties of irreducible unitary representations of $G=S U(1,1)$. We retain the notation due to Vilenkin
[10, Chapter VI]. Thus $T_{(\ell, \varepsilon)}$ with either $(\ell, \varepsilon)=(-1 / 2+i \eta, 0), \eta \geq 0$, or $(\ell, \varepsilon)=(-1 / 2+i \eta, 1 / 2), \eta>0$, stands for a representation belonging to the continuous series, while $T_{(\ell, 0)}$ with $-1<\ell<-1 / 2$ is a representation belonging to the supplementary series. In this paper the representation $T_{(\ell, \varepsilon)}^{ \pm}$with either $(\ell, \varepsilon)=(\ell, 0),-\ell \in Z_{+}+1$, or $(\ell, \varepsilon)=(\ell, 1 / 2),-\ell \in Z_{+}$ $+1 / 2$, is said to belong to the discrete series, even though $T_{(-1 / 2,1 / 2)}^{ \pm}$is not a member of the discrete series in the sense that it is not contained in the regular representation of G as a direct sum component. Recall that $C^{\infty}(T)$ (resp. a subspace of $C^{\infty}(T)$) is dense in the representation space $H_{\ell, \epsilon}$ (resp. $H_{\ell, \ell}^{ \pm}$) of $T_{(\ell, \varepsilon)}$ (resp. $\left.T_{(\ell, \varepsilon)}^{ \pm}\right)$.

Lemma 2.1. For the irreducible unitary representation $T_{(e, \mathrm{c})}$ or $T_{(e, e)}^{ \pm}$of $G=S U(1,1)$, define operators $\omega_{j}, 1 \leq j \leq 3, F_{ \pm}, H_{3}, \Delta$ and spaces \mathscr{W}_{k}, $k \in Z / 2$, as for the representation $\left(U^{n, \varepsilon}, \mathscr{S e}^{n, \varepsilon}\right)$. Then $\mathscr{W}_{k}=\{\exp \{-i(k-\varepsilon) \theta\}\}$ if $k \in Z+\varepsilon$ and if $\exp \{-i(k-\varepsilon) \theta\}$ lies in the representation space, while $\mathscr{W}_{k}=\{0\}$ otherwise. In addition,

$$
F_{ \pm} e^{-i(k-s) \theta}=(\pm k-\ell) e^{-i(k-\varepsilon \pm 1) \theta}, \quad \Delta=-\ell(\ell+1) .
$$

Proof. The function $\exp \{-i(k-\varepsilon) \theta\}$ is known to lie in \mathscr{W}_{k}, if it belongs to the representation space. Since such functions form a complete orthogonal basis of the representation space, $\operatorname{dim} \mathscr{W}_{k} \leq 1$. Thus \mathscr{W}_{k} is obtained. The remaining part of the lemma is well-known [10, p. 299 and p. 334]. The sign of $\ell(\ell+1)$ on p . 334, however, is misprinted. Q.E.D.

A corollary of the next proposition plays an important role in our discussion.

Proposition 2.2. Let the notation be as in Lemma 2.1. Each i ω_{j}, $1 \leq j \leq 3$, restricted to the algebraic sum $\Sigma_{k \in Z / 2} \oplus \mathscr{W}_{k}$ is essentially selfadjoint in the representation space.

Proof. Let $H_{\ell, c, c}$ be the algebraic sum $\Sigma_{k} \oplus \mathscr{W}_{k}$, and denote by $\dot{\omega}_{j}$ the restriction $\omega_{j} \mid H_{\ell, \varepsilon, c}$. Set, further, $C^{\infty}=C^{\infty}(T) \cap H_{\ell,,}$, where T stands for the unit circle and $H_{\ell, s}$ is the representation space. Since a function $T_{(\ell, \varepsilon)}(g) f\left(e^{i \theta}\right)$ or $T_{(\ell,())}^{ \pm}(g) f\left(e^{i \theta}\right)$ is smooth on $G \times T$ for any $f \in C^{\infty}, C^{\infty}$ lies in the domain of ω_{j} and invariant under $T_{(\varepsilon, t)}$ or $T_{(\varepsilon, e)}^{ \pm}$. Here we used the fact that the uniform convergence in C^{∞} implies the convergence in $H_{\ell, 8}$. Let $\check{\omega}_{j}$ be the restriction $\omega_{i} \mid C^{\infty}$. We shall show that $i \AA_{j}$ is essentially selfadjoint. Evidently $i \grave{\omega}_{j}$ is symmetric, so it remains to show that the
image $\left(\omega_{j}-\alpha\right) C^{\infty}$ is dense in $H_{\ell, s}$ for any $\alpha, \operatorname{Re} \alpha \neq 0$. For this purpose, assume that an f in $H_{\ell, \varepsilon}$ is orthogonal to the image. Then, since $T_{(e, s)}(g)$ or $T_{(t, s)}^{ \pm}(g)$ leaves C^{∞} invariant, we have

$$
\left\langle T_{(\ell, e)}\left(\omega_{j}(t)\right)\left(\omega_{j}-\alpha\right) \phi, f\right\rangle=0, \quad . \quad \phi \in C^{\infty},
$$

or a similar relation for $T_{(\varepsilon, \varepsilon)}^{ \pm}$. Multiply the both sides by $e^{-a t}$, and integrate on R_{+}or $-R_{+}$according as $\operatorname{Re} \alpha$ is positive or negative. Then it follows that $\langle\phi, f\rangle=0$, which implies $f=0$, as desired. Thus $i \AA_{j}$ is essentially selfadjoint. To complete the proof, it suffices to show that the closure of $\dot{\omega}_{j}$ is an extension of $\dot{\omega}_{j}$, for $\dot{\omega}_{j} \subset \dot{\omega}_{j}$. To this end, we note first that $\dot{\omega}_{j}$ is a differential operator with smooth coefficients on T. Secondly, the partial sum of the Fourier series for any $f \in C^{\infty}$ lies in $H_{\ell, \varepsilon, c}$ and they and their derivatives uniformly converge to f and its derivative respectively. Now clearly the closure of $\dot{\omega}_{j}$ is an extension of $\dot{\omega}_{j}$.
Q.E.D.

Corollary 2.3. For the irreducible unitary representations $T_{(e, c)}$ belonging to the continuous series and $T_{(\ell, \varepsilon)}^{ \pm}$belonging to the discrete series in our sense, define ℓ^{2}-spaces $\ell_{\ell, \varepsilon}^{2}$ and $\ell_{\ell, \ell}^{2 \pm}$ as follows.

$$
\begin{aligned}
& \ell_{\ell,,}^{2}=\left\{\left(a_{k}\right)_{k \in Z+\varepsilon} ; \Sigma_{k}\left|a_{k}\right|^{2}<\infty\right\}, \\
& \ell_{\ell, \varepsilon}^{2 \pm}=\left\{\left(a_{k}\right)_{k \in Z+\epsilon, \mp k+\ell \geq 0} ; \Sigma_{k}\left|a_{k}\right|^{2}<\infty\right\} .
\end{aligned}
$$

Put $\ell_{\ell, e, c}^{2}=\left\{\left(a_{k}\right) \in \ell_{\ell, c}^{2} ; a_{k}=0,|k|>n\right.$, for some $\left.n \in Z_{+}\right\}$, and define $\ell_{\ell,,, c}^{2 \pm}$ similarly. Then operators $i \dot{\omega}_{j}, 1 \leq j \leq 2$, with domain $\ell_{\ell,, c}^{2}\left(\right.$ resp. $\left.\ell_{\ell,, c, c}^{2 \pm}\right)$ are essentially selfadjoint in $\ell_{\ell, \epsilon}^{2}$ (resp. $\ell_{\ell, \epsilon}^{2 \pm}$), where $\dot{\omega}_{j}$ are defined as follows. Let $f_{k}=\left(a_{k^{\prime}}\right)$ be an element of either $\ell_{\ell, \varepsilon}^{2}$ or $\ell_{\ell, c}^{2 \pm}$ such that $a_{k}=1$ and $a_{k^{\prime}}=0$, $k^{\prime} \neq k$, and set $\dot{F}_{ \pm}=-\dot{\omega}_{1} \mp i \dot{\omega}_{2}$. We require

$$
\begin{aligned}
\dot{F}_{ \pm} f_{k}= & \mp \sqrt{\eta^{2}+(k \pm 1 / 2)^{2}} f_{k \pm 1} & & \text { in } \ell_{-1 / 2+i \eta, \ell}^{2} \\
& \mp \sqrt{(k \mp \ell)(k \pm \ell \pm 1)} f_{k \pm 1} & & \text { in } \ell_{\ell, c}^{2+}, \\
& \pm \sqrt{(k \mp \ell)(k \pm \ell \pm 1)} f_{k \pm 1} & & \text { in } \ell_{\ell, c}^{2-} .
\end{aligned}
$$

Proof. Let the notation be as in Lemma 2.1, and set

$$
e_{k}=m_{k} \exp \{-i(k-\varepsilon) \theta\} /\|\exp \{-i(k-\varepsilon) \theta\}\| \in H_{\ell, c}, \text { where }\left|m_{k}\right|=1
$$

In case (ℓ, ε) is a parameter of the continuous series, we can choose m_{k} so that $m_{k} / m_{k-1}=-|k+\ell| /(k+\ell)$. In other cases, set $m_{k}=1$. Then it can be easily seen that the restriction of $\omega_{j}, j=1,2$, in Proposition 2.2 is unitarily equivalent to $\dot{\omega}_{j}$ in the above lemma.
Q.E.D.

The next lemma is concerned with a pair of one-parameter unitary groups.

Lemma 2.4. Let $H_{j}, j=1,2$, be Hilbert spaces, and $U_{j}(t)$ be one-parameter continuous unitary groups on H_{j} with the infinitesimal operators $\Omega_{j}=d U_{j}(t) / d t_{t=0}$. If H_{1} is a closed subspace of H_{2} and there exists an essentially selfadjoint operator $i \dot{\Omega}$ such that $\dot{\Omega} \subset \Omega_{j}, j=1,2$, then $U_{1}(t)=$ $U_{2}(t)$ on H_{1}.

Proof. Let Ω be the closure of $\dot{\Omega}$. Then $i \Omega$ is selfadjoint and clearly $\Omega \subset \Omega_{j}$. Consequently, for any $n \in Z_{+}+1$ and $h \in H_{1}$ we have

$$
\Omega\left(1-n^{-1} \Omega\right)^{-1} h=\Omega_{j}\left(1-n^{-1} \Omega_{j}\right)^{-1} h, \quad j=1,2
$$

That is, $\Omega\left(1-n^{-1} \Omega\right)^{-1}=\Omega_{j}\left(1-n^{-1} \Omega_{j}\right)^{-1}$ on H_{1}. By the representation theorem for the continuous semigroup [11, p. 248] we get

$$
(\exp t \Omega) h=\lim _{n \rightarrow \infty}\left\{\exp t \Omega\left(1-n^{-1} \Omega\right)^{-1}\right\} h=\left(\exp t \Omega_{j}\right) h, \quad h \in H_{1}
$$

Q.E.D.

We return to the representation ($\left.U^{\eta, \varepsilon}, \mathfrak{S e}^{\eta, \varepsilon}\right)$. Recall the definition of the subspaces $\tilde{D}_{k, \pm}^{n}, \hat{D}_{k, \pm}^{n}$ and the isometry $I_{ \pm, k}^{\eta, \epsilon}$ introduced in (1.34). Let us define auxilary Hilbert spaces $D_{ \pm}^{n, \varepsilon}, D_{ \pm 1}^{0,0}, \tilde{D}_{ \pm \pm}^{\eta, \varepsilon}, \tilde{D}_{ \pm 1}^{0,0}, \hat{D}_{ \pm}^{\eta, \varepsilon}$ and $\hat{D}_{ \pm 1}^{0,0}$ as follows.

$$
\begin{array}{ll}
D_{ \pm}^{n, \varepsilon}=\Sigma_{k \in Z+e} \oplus D_{k, \pm}^{n}, & D_{ \pm 1}^{0,0}=\Sigma_{k \in Z} \oplus D_{k, \operatorname{sign}(\pm k+1 / 2)}^{0}, \\
\tilde{D}_{ \pm}^{n, e}=\Sigma_{k \in Z+\varepsilon} \oplus \tilde{D}_{k, \pm}^{n}, & \tilde{D}_{ \pm 1}^{0,0}=\Sigma_{k \in Z} \oplus \tilde{D}_{k, \text { sign }(\pm k+1 / 2)}^{0}, \\
\hat{D}_{ \pm}^{n, \varepsilon}=\Sigma_{k \in Z+\varepsilon} \oplus \hat{D}_{k, \pm}^{n}, & \hat{D}_{ \pm 1}^{0,0}=\Sigma_{k \in Z} \oplus \hat{D}_{k, \text {, } \operatorname{sign}(\pm k+1 / 2)}^{0}
\end{array}
$$

In terms of the isometries $\mathscr{F}_{k}: D_{k, \pm}^{\eta} \rightarrow \tilde{D}_{k, \pm}^{\eta}$ and $I_{ \pm, k}^{\eta, e}: \tilde{D}_{k, \pm}^{\eta} \rightarrow \hat{D}_{k, \pm}^{\eta}$ we can define onto isometries $\mathscr{F}_{ \pm}^{n, \epsilon}: D_{ \pm}^{n, \varepsilon} \rightarrow \tilde{D}_{ \pm}^{n, \varepsilon}, \mathscr{F}_{ \pm 1}^{0,0}: D_{ \pm 1}^{0,0} \rightarrow \tilde{D}_{ \pm 1}^{0,0}, I_{ \pm}^{n, e}: \tilde{D}_{ \pm}^{n, \varepsilon} \rightarrow \hat{D}_{ \pm}^{n, \epsilon}$ and $I_{ \pm 1}^{0,0}: \tilde{D}_{ \pm 1}^{0,0} \rightarrow \hat{D}_{ \pm 1}^{0,0}$ in an obvious manner. Let $\hat{D}_{ \pm, c}^{n, e}$ be a dense subspace $\left\{\left(h_{k}\right) \in \hat{D}_{ \pm}^{n, \iota} ; h_{k} \in C_{0}\left(R_{+}\right) \oplus \tilde{E}_{k, \pm}, h_{k}=0\right.$ for large $\left.|k|\right\}$, and put

$$
\mathscr{D}_{ \pm, c}^{\eta, e}=\left(I_{ \pm \pm}^{\eta, e} \mathscr{F}_{ \pm}^{\eta, \varepsilon} J^{\eta, e}\right)^{-1} \hat{D}_{ \pm \pm,}^{\eta, e} .
$$

Similarly we define $\hat{D}_{ \pm 1, c}^{0,0}$ and $\mathscr{D}_{ \pm 1, c}^{0,0}$
Lemma 2.5. Let $\omega_{j}, j=1,2$, be the infinitesimal operator of $U^{\eta, \varepsilon}\left(0, \omega_{j}(t)\right)$. Then the restriction $i \omega_{j} \mid \mathscr{D}_{ \pm, c}^{n, \varepsilon}$ is essentially selfadjoint in $\mathscr{D}_{ \pm}^{\eta, \varepsilon}$. In case (ℓ, ε) $=(0,0)$, so is the restriction $i \omega_{j} \mid \mathscr{D}_{ \pm 1, c}^{0,0}$ in $\mathscr{D}_{ \pm 1}^{0,0}$.

Proof. Only the operator $i \omega_{j} \mid \mathscr{D}_{1, c}^{0,0}, 1 \leq j \leq 2$, is to be discussed. Denote it by $i \dot{\omega}_{j}$, and set $\hat{\omega}_{j}=I_{1}^{0,0} \mathscr{F}_{1}^{0,0} J^{0,0} \dot{\omega}_{j}\left(I_{1}^{0,0} \mathscr{F}_{1}^{0,0} J^{0,0}\right)^{-1}, \hat{F}_{ \pm}=-\hat{\omega}_{1} \mp i \hat{\omega}_{2}$. First,
suppose k is a negative integer, we recall the definition of $e_{k, n}$ given after Lemma 1.7. Evidently $\left\{\mathscr{F}_{k} e_{k, n} ; n=k, k+1, \cdots,-1\right\}$ is a basis of \tilde{E}_{k}. On account of (1.33) a closed subspace $\hat{E}_{n},-n \in Z_{+}+1$, of $\hat{D}_{1}^{0,0}$ spanned by $\left\{\mathscr{F}_{k} e_{k, n} ; k=n, n-1, \cdots\right\}$ is invariant under $\hat{F}_{ \pm}$. Moreover, Corollary 2.3, together with (1.33), implies that $i \hat{\omega}_{j}$ is essentially selfadjoint in \hat{E}_{n}. As one can see easily, this assertion is valid even for $n \in Z_{+}+1$. It remains, therefore, to show the essentially selfadjointness of $i \hat{\omega}_{j}$ in $\Sigma_{k \in Z} \oplus L^{2}\left(R_{+}\right)$ $\subset \hat{D}_{1}^{0,0}$. To this end, let $C_{0, c}$ be the algebraic sum $\Sigma_{k \in Z} \oplus C_{0}\left(R_{+}\right)$, and we shall prove that the image $\left(i \hat{\omega}_{j}-z\right) C_{0, c}, \operatorname{Im} z \neq 0$, is dense in $\Sigma_{k \in Z} \oplus L^{2}\left(R_{+}\right)$. If $h=\left(h_{k^{\prime}}\right)$ is an element of $C_{0, c}$ such that $h_{k^{\prime}}=0$ for $k^{\prime} \neq k$, then we have by (1.35) the following.

$$
i \hat{\omega}_{j} h(\lambda)=\left(\cdots, 0, a_{j k}(\lambda) h_{k}(\lambda), 0, b_{j k}(\lambda) h_{k}(\lambda), 0, \cdots\right)
$$

where $a_{j k}$ and $b_{j k}$ are smooth functions on R_{+}. We consider an operator $i \hat{\omega}_{j}(\lambda)$ in $\ell^{2}=\Sigma_{k \in Z} \oplus C$ with domain $\ell_{c}^{2}=\left\{\left(a_{k}\right) \in \ell^{2} ; a_{k}=0\right.$ for large $\left.|k|\right\}$ such that

$$
i \hat{\omega}_{j}(\lambda) e_{k}=\left(\cdots, 0, a_{j k}(\lambda), 0, b_{j k}(\lambda), 0, \cdots\right)
$$

for $e_{k}=(\cdots, 0,0,1,0,0, \cdots)$. It follows from (1.35) and Corollary 2.3 that $i \hat{\omega}_{j}(\lambda)$ is essentially selfadjoint. Suppose an h in $\Sigma_{k \in Z} \oplus L^{2}\left(R_{+}\right)$is orthogonal to $\left(i \hat{\omega}_{j}-z\right) C_{0, c}, \operatorname{Im} z \neq 0$. Then we obtain

$$
a_{j k}(\lambda) h_{k-1}(\lambda)-z^{*} h_{k}(\lambda)+b_{j k}(\lambda) h_{k+1}(\lambda)=0 \text { a.e. on } R_{+} .
$$

Since $i \hat{\omega}_{j}(\lambda)$ is essentially selfadjoint in $\ell^{2},\left(h_{k}(\lambda)\right)$ is a zero vector in ℓ^{2} a.e. This means $h=0$ in $\Sigma_{k \in Z} \oplus L^{2}\left(R_{+}\right)$. We have shown that $i \hat{\omega}_{j}$ is essentially selfadjoint in $\Sigma_{k \in Z} \oplus L^{2}\left(R_{+}\right)$, for it is symmetric.
Q.E.D.

We are ready for the proof of Theorems 2.1 and 2.2.
Proof of Theorem 2.1. We shall prove the sufficiency first. Set $\mathscr{D}_{k, \pm}^{n, e}$ $=\mathscr{D}_{ \pm}^{n, e} \cap \mathscr{W}_{k}^{n, e}, \mathscr{D}_{k, \pm 1}^{0,0}=\mathscr{D}_{ \pm 1}^{0,0} \cap \mathscr{W}_{k}^{0,0}$. It is evident that $U^{n, e}\left(0, \omega_{3}(t)\right)$ leaves $\mathscr{D}_{k, \pm}^{\eta, e}$ (and $\mathscr{D}_{k, \pm 1}^{0,0}$ as well, provided $(\eta, \varepsilon)=(0,0)$) invariant. By (2.2) and Theorem $1.3 U^{n, \epsilon}(t, 0,0, e), t \geq 0$, also leaves $\mathscr{D}_{ \pm}^{n, e}$ invariant. We note that $P_{+}(3)$ is topologically generated by the subsemigroup $\{(t, 0,0, e) ; t \geq 0\}$ and the subgroup $\{(0, g) ; g \in G\}$, and that so is G by one-parameter groups $\omega_{j}(t), j=2,3$. To complete the proof of sufficiency, it is enough to show that $U^{n, e}\left(0, \omega_{2}(t)\right)$ keeps $\mathscr{D}_{ \pm}^{\eta, \varepsilon}$ (and $\mathscr{D}_{ \pm 1}^{0,0}$ as well, if $(\eta, \varepsilon)=(0,0)$) invariant. But this fact is an immediate consequence of Lemmas 2.4 and 2.5. Secondly,
we shall show the necessity of the condition. Assume that \mathscr{D} is a $P_{+}(3)$ invariant closed proper subspace of $\mathfrak{S}^{\eta, e}$. Since $(t, 0,0, e) \in P(3)$ commutes with $\left(0, \omega_{3}(s)\right) \in P(3), \mathscr{D}_{k}^{\eta, \epsilon}=\mathscr{D} \cap \mathscr{W}_{k}^{\eta, \epsilon}$ is invariant under $U^{n, \epsilon}(t, 0,0, e), t \geq 0$. Moreover, \mathscr{D} being G-invariant, we have

$$
\Delta \mathscr{D}_{k}^{n, e} \subset \mathscr{D}_{k}^{n, s}, \quad F_{ \pm} \mathscr{D}_{k}^{n, s} \subset \mathscr{D}_{k \pm 1}^{n, \varepsilon}, \quad k \in Z / 2 .
$$

Thus \mathscr{D} must coincide with one of $\mathscr{D}_{ \pm}^{\eta, \varepsilon}$ (and $\mathscr{D}_{ \pm 1}^{0,0}, \operatorname{provided}(\eta, \varepsilon)=(0,0)$) in virtue of (2.2), (2.3) and Theorem 1.4.

Proof of Theorem 2.2. Let $\mathscr{D}_{k, \pm}^{\eta, e}$ and $\mathscr{D}_{k, \pm 1}^{0,0}$ be the same as in the above proof. First consider the case $\varepsilon=1 / 2$. Then $\mathscr{D}_{k, \pm}^{n, \epsilon}=\{0\}, k \in Z$ and

$$
\begin{align*}
& \operatorname{dim}\left(\mathscr{D}_{k,-}^{\eta, e} \Theta F_{+} \mathscr{D}_{k-1,-}^{\eta, e}\right)=0, \quad k \in Z_{+}+\varepsilon, \\
& \operatorname{dim}\left(\mathscr{D}_{k,-}^{\eta,-} \Theta F_{-} \mathscr{D}_{k+1,-}^{2,!}\right)=0 \quad \text { or } \quad 1 \tag{2.5}\\
& \quad \text { according as }-k=1 / 2 \text { or }-k \in Z_{+}+3 / 2 .
\end{align*}
$$

These relations imply that among the representations belonging to the discrete series only the representations $T_{(k, s)}^{+},-k \in Z_{+}+3 / 2$, are contained with multiplicity one in $\mathscr{D}_{-1, s}^{n, s}$. Since the following unitary equivalences hold

$$
(\Delta-1 / 4)\left|\mathscr{D}_{1 / 2,-}^{\eta, s} \simeq \mathscr{L}_{1 / 2, \eta}\right| D_{1 / 2,-}^{\eta} \simeq \int_{R_{+}}^{\oplus} \lambda d \lambda,
$$

the representations $T_{(-1 / 2+i \eta, \varepsilon)}, \eta>0$, are contained in $\mathscr{D}_{-}^{\eta, e}$ as

$$
\int_{R_{+}}^{\oplus} T_{(-1 / 2+i \eta, \iota)} d \eta
$$

Consequently the representation ($U^{n, e}, \mathscr{D}^{n, e}$) of G admits a decomposition as stated in Theorem 2.1. We can argue similarly for the representation of G in $\mathscr{D}_{+}^{\eta, \varepsilon}$. Secondly, assume that $\varepsilon=0$. We shall confine our discussion to the representation $\left(U^{0,0}, \mathscr{D}_{1}^{0,0}\right)$. Since $\mathscr{W}_{k}^{n, \epsilon}=\{0\}$ for $k \notin Z+\varepsilon, \mathscr{D}_{k, 1}^{0,0}$ $=\{0\}, k \in Z+1 / 2$. Moreover, $\operatorname{dim}\left(\mathscr{D}_{k, 1}^{0,0} \ominus F_{ \pm} \mathscr{D}_{k \neq 1,1}^{0,0}\right)=1$ for $k \in Z \backslash\{0\}$. This means that among the representations in the discrete series only $T_{(k, 0)}^{=}$, $-k \in Z_{+}+1$, are contained with multiplicity one in $\mathscr{D}_{1}^{0,0}$. On account of the following unitary equivalences

$$
(\Delta-1 / 4)\left|\mathscr{D}_{0,1}^{0,0} \simeq \mathscr{L}_{0,0}\right| D_{0,+}^{0} \simeq \int_{R_{+}}^{\oplus} \lambda d \lambda .
$$

We conclude that the representations $T_{(-1 / 2+i \eta, 0)}, \eta \geq 0$, are contained as

$$
\int_{R_{+}}^{\oplus} T_{(-1 / 2+i \eta, 0)} d \eta
$$

We have verified Theorem 2.2 for the representation in $\mathscr{D}_{1}^{0,0}$. Q.E.D.

Appendix

The first lemma is concerned with an n-th order equation assuming the following form.

$$
\begin{equation*}
z^{n} w^{(n)}+z^{n-1} c_{1}(z, \lambda) w^{(n-1)}+\cdots+c_{n}(z, \lambda) w=0 \tag{A.1}
\end{equation*}
$$

where $c_{j}, 1 \leq j \leq n$, are holomorphic in $\left\{|z|<\delta_{1}\right\} \times\left\{|\lambda|<\delta_{2}\right\}, c_{j}(0, \lambda)$ being constant.

Lemma A.1. (i) If the above equation has a solution of the form $z^{\alpha}(1+z h(z, \log z))$, then α is an indicial root, that is,
(A.2) $\quad(\alpha-1) \cdots(\alpha-n+1)+c_{1}(0, \lambda)(\alpha-1) \cdots(\alpha-n+2)+\cdots+c_{n}(0, \lambda)=0$.
(ii) Suppose $\alpha_{j}, 1 \leq j \leq k$, are roots of (A.2) such that $\alpha_{j}-\alpha_{j+1}$ is a positive integer and that there are no other roots in $Z_{+}+\alpha_{k}$. Assume further that $\alpha_{j}, 1 \leq j<k$, is a simple root while α_{k} is an m_{k}-ple root. Then there exists a system of solutions $w_{j}(z, \lambda), 1 \leq j \leq k+m_{k}-1$, such that w_{j}, being holomorphic in $\{0<|z|<\varepsilon$; $\arg z \neq \pi / 2\} \times\left\{|\lambda|<\delta_{2}\right\}$ for some positive ε depending on δ_{2}, takes the following form.

$$
\begin{array}{ll}
z^{\alpha_{1}}(1+z h(z)), & j=1 \\
z^{\alpha_{j}}(1+z h(z, \log z)), & 2 \leq j \leq k \\
z^{\alpha_{k}}\left((\log z)^{j-k}+z h(z, \log z)\right), & k<j<k+m_{k}
\end{array}
$$

where $h(z)$ and $h(z, \log z)$ stand for, respectively, a holomorphic function and a polynomial in $\log z$ with holomorphic coefficients.

Proof. To verify (i), it suffices to compare the coefficients of z^{α} on the both sides of (A.1). The Frobenius method yields (ii) [1, p. 133]. Indeed, put $L=z^{n} d^{n} / d z^{n}+z^{n-1} c_{1} d / d z^{n-1}+\cdots+c_{n}$, and denote by $f(\alpha)$ the polynomial on the left side of (A.2). As is well known, we can find a formal series

$$
\phi_{j}(z, \lambda, \alpha)=z^{\alpha} \sum_{p=0}^{\infty} d_{j p}(\lambda, \alpha) z^{p}, \quad d_{j 0}=\left(\alpha-\alpha_{j}\right)^{j-1}
$$

such that $L \phi_{j}=f(\alpha) z^{\alpha}\left(\alpha-\alpha_{j}\right)^{j-1}$. Take δ so small that there is no roots of $f(\alpha)$ in $\left\{\left|\alpha-\alpha_{j}\right|<\delta\right\}$ except for α_{j}. Then it can be shown that $d_{j p}(\lambda, \alpha)$ is homomorphic and $\left|d_{j p}(\lambda, \alpha)\right|<K^{2 p+1}, K>0$, in $\left\{\left|\alpha-\alpha_{j}\right|<\delta\right\} \times\left\{|\lambda|<\delta_{2}\right\}$. Setting $\alpha_{j}=\alpha_{k}$ for $j>k$, it suffices to put

$$
w_{j}(z, \lambda)=\left(\partial / \partial \alpha \alpha_{\alpha=\alpha_{j}}^{j-1} \phi_{j}(z, \lambda, \alpha), \quad 1 \leq j<k+m_{k}\right.
$$

By Osgood's lemma [3] w_{j} is holomorphic in $\{0<|z|<1 / K$; $\arg z \neq \pi / 2\}$ $\times\left\{|\lambda|<\delta_{2}\right\}$.
Q.E.D.

Next consider a differential equation

$$
\begin{equation*}
d / d z w=A(z, \lambda) w, \quad A(z, \lambda)=\sum_{m=-1}^{\infty} A_{m}(\lambda) z^{m} \tag{A.3}
\end{equation*}
$$

where $A(z, \lambda)$ is an M_{n}-valued holomorphic function on $\left\{0<|z|<\delta_{1}\right\} \times$ $\left\{|\lambda|<\delta_{2}\right\}, A_{-1}(0, \lambda)$ being constant.

Lemma A.2. (i) If the above equation has a solution of the form $z^{\alpha}(p+z h(z, \log z))$, then $\left(A_{-1}-\alpha\right) p=0$.
(ii) Assume that $\alpha_{j}, 1 \leq j \leq k$, are characteristic roots of A_{-1} such that $\alpha_{j}-\alpha_{j+1}$ is a positive integer and that there are no other characteristic roots in $Z_{+}+\alpha_{k}$. Assume further that $\alpha_{j}, 1 \leq j<k$, is a simple root. Then there exists a system of solutions $w_{j}(z, \lambda), 1 \leq j \leq k$, such that w_{j}, being holomorphic in $\{0<|z|<\varepsilon$; arg $z \neq \pi / 2\} \times\left\{|\lambda|<\delta_{2}\right\}$ for some positive $\varepsilon d e$ pending on δ_{2}, takes the following form.

$$
z^{\alpha_{1}}\left(p_{1}+z h(z)\right) \text { for } j=1, \quad z^{\alpha_{j}}\left(p_{j}+z h(z, \log z)\right) \text { for } 1<j \leq k
$$

where $\left(A_{-1}-\alpha_{j}\right) p_{j}=0$. The functions $h(z)$ and $h(z, \log z)$ stand for the same as in Lemma A.1.

Proof. Compare the coefficients of $z^{\alpha-1}$ on the both sides of (A.3). Then (i) follows. The Frobenius method yields (ii) [1, pp. 136-137]. To be more precise, let $\psi\left(z, \lambda, \alpha, s_{0}\right)$ be a formal series $\sum_{m=0}^{\infty} s_{m} z^{m+\alpha}$ such that $\psi^{\prime}-A \psi$ $=\left(\alpha-A_{-1}\right) s_{0} z^{\alpha-1}$, where ψ^{\prime} denotes the formal series $\sum_{m=0}^{\infty}(\alpha+m) z^{\alpha+m-1}$. Then each component of $s_{m}(m \geq 1)$, is a rational function of α. Let δ be small enough so that only α_{j} is a characteristic root of A_{-1} in $\left\{\left|\alpha-\alpha_{j}\right|\right.$ $<\delta\}$. When $s_{0}=p_{1}$, there exists a positive K such that $\left|s_{m}(\lambda, \alpha)\right|<K^{2 m+1}$ in $\left\{|\lambda|<\delta_{2}\right\} \times\left\{\left|\alpha-\alpha_{j}\right|<\delta\right\}$. We can set $w_{1}(z, \lambda)=\psi\left(z, \lambda, \alpha_{1}, p_{1}\right)$. When $s_{0}=\left(\alpha-\alpha_{j}\right)^{j-1} p_{j}(j>1), s_{m}(\lambda, \alpha)$ is holomorphic and $\left|s_{m}(\lambda, \alpha)\right|<K^{2 m+1}$ in $\left\{|\lambda|<\delta_{2}\right\} \times\left\{\left|\alpha-\alpha_{j}\right|<\delta\right\}$ for some positive K depending on δ_{2}. In this case, set

$$
w_{j}(z, \lambda)=(\partial / \partial \alpha)_{\alpha=\alpha_{j}}^{j-1} \psi\left(z, \lambda, \alpha, s_{0}\right), \quad j>1
$$

The desired analyticity follows from Osgood's lemma [3].
Q.E.D.

References

[1] E. A. Coddington and N. Levinson, Theory of differential equations, McGrawHill, 1955.
[2] J. Diximier, C*-algebras (English translation), North-Holland, 1977.
[3] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, 1965.
[4] S. Itatsu and H. Kaneta, Spectral matrices for first and second order self-adjoint ordinary differential operators with long range potentials, Funkcialaj Ekvacioj, 24, no. 1 (1981), 23-45.
[5] H. Kaneta, Irreducibility of some unitary representations of the Poincaré group with respect to the Poincaré subsemigroup I, Nagoya Math. J., 78 (1980), 113-136.
[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966.
[7] G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math., 55 (1952), 101-139.
[8] N. Tatsuuma, Decomposition of representations of three-dimensional Lorentz group, Proc. Japan Acad., 36 (1962), 12-14.
[9] E. C. Titchmarsh, Introduction to the theory of Fourier integral, Oxford Univ. Press, 1937.
[10] N. Vilenkin, Special functions and the theory of group representation, AMS Translation Monograph 22, 1968.
[11] K. Yosida, Functional analysis, Springer-Verlag, 1965.
Department of Mathematics
Nagoya University
Current address:
Department of Mathematics
Faculty of Education
Tokushima University

[^0]: Received November 26, 1980.

