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JULIA DIRECTIONS OF ENTIRE FUNCTIONS

OF SMOOTH GROWTH

H. YOSHIDA

§ 1. Introduction

Let f(z) be entire i.e. analytic in the finite whole plane Z. The order

of f(z) is defined as

p - HE ^+(log+M(r,f))

log r

where M(r,f) = max|/(2r)|. A ray χ(θ) = {z = reίθ : 0 < r < + oo} is called
\z\=r

a Julia direction of f(z) if, in any open sector containing the ray, f(z)

takes all values of Z, with at most one finite exceptional value, infinitely

often.

We can guess that the smoothness of growth of M(r, f) causes simple

boundary behaviors of f(z). In this paper, we exemplify this fact, by

picking up two kinds of smoothness conditions.

The following problem comes into question: Let f(z) be an entire

function of order less than j and let χ(θ) be any ray. Either is χ(θ) a

Julia direction of f(z) or is f(z) convergent to oo as \z\—> + oo on some

sector containing χ(θ)? So, we shall prove in Theorem 2 that if we assume

the smoothness of growth of M(r, f): if there is a constant μ, μ < J, such

that

(A)

for some x0, x0 > 1, and r0, this fact is true. Theorem 1 is the preliminary

result for this theorem.

Further, we shall show in Theorem 3 that, under the assumption of

the stronger smoothness condition:
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42 H. YOSHIDA

(B) logM(2 r , / ) ~ logM(r,/), (r->oo)

a Julia direction χ(#) of f(z) is characterized as the ray χ(θ) for which θ

is a limit point of the set

Hence, according to Hayman [9, p. 143], it follows that all Julia directions

of entire functions f(z) satisfying the condition

logikf(r,/) = O(log2r) (r->oo)

are the directions corresponding to the limit points of the set Z(f).

Hayman [9, p. 130] remarked that any entire function satisfying (B) has

order 0. An example will be given to show that any entire function of

order 0 has not always this property.

By using this Theorem 3, we shall give an example of an entire

function f(z) for which any non-empty closed set is precisely the set of

Julia directions of f(z). This generalizes an example of Anderson and

Clunie [2].

The author wishes to acknowledge with grateful thanks the help of

Prof. W. K. Hayman.

§ 2. The boundary behaviour of entire functions

In the following, the spherical derivative of a meromorphic function

f(z) is defined by

We denote the set {z:\z — zo\<ε\zo\} by D(z0, ε) and the sector {z: \αrgz — θ\

<ε}by V(θ,e).

LEMMA 1 (Clunie and Hayman [4, p. 125]). Let f(z) be regular in

\z — 2bI < δ and satisfy \f(z)\ >̂ 1 there. If \f{z^)\ = 1 for some zx with

\zx — zo\ = δ, then for some z on the segment joining z0 to zx we have

LEMMA 2. Let f(z) be an entire function and let δ be a constant,

0 < δ < 1. If {zn}, \zn\ —> oo, is a sequence such that
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and f(z) does not converge to oo as \z\ -* + oo on ί/ιe seί lJ n D(z n , 5), ί&era

ί&ere is σ sequence {ξk}, \ξk\ -*• oo, £t e 1J»-D(««» $> satisfying

lim\ξt\-p(f(ξk))= + 00.
λ;-»oo

Proof, By the assumption, we can find a subsequence {znj of {zn}

and a sequence {ζfc}, |ζ*| -* oo, ζfc e D(2rΛJt, 3), for which

where if is a constant, K^l. Put δk = dis(S, 2BA), where >S = {2:: \f(z)\

^ K} and dis (A, B) denotes the distance between A and B. Then, we

have

( 1 ) δk^\ζk-znk\^δ\znk\ ( f e = l , 2 , 3 , . . ) .

Now, consider the function

From Lemma 1 applied to g(z), we see that there is a sequence

^ δΛ, such that

( 2 )

Since

and

| f » | ^ ( l - ί ) | z j (Λ = l,2,3, •••),

from (1), we finally get from (1) and (2) that

K} ,-fc _ i o 3

which gives us the conclusion.

LEMMA 3. Let θ, px and p2 be constants satisfying 0 <̂  θ < 2ττ, 0 < px < 1,

0 < p2 < 1 and let zu z2 be any numbers on χ(θ). If the circles D(zί9 p^
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and D(z2, p2) intersect, then the angle which is subtended at the origin by

the chord connecting the points of intersection is dependent only on t — zjzu

Px and p2.

Proof. We can see from easy calculation that (Y/X)2 is the function

dependent on t, px and ρ2, where (X, Y) denotes the coordinate of the points

of intersection of both circles.

LEMMA 4 (Lehto [11, Theorem 3]). Let f(z) be meromorphic in

R < \z\ < oo. If, for some sequence {ξk}, \ξk\ -> oo

= + oo ,

then f(z) assumes every value infinitely often with at most two exceptions

of values in the extended plane on the set {Jk D(ξk, ε) for each fixed ε > 0.

We now state and prove

THEOREM 1. Let f(z) be an entire function and χ(β) (0 <^ 6 < 2π) be a

ray on which there exist a sequence {zn}, \zn\ < |2B +i |, \zn\—> oo, and a con-

stant M, satisfying

<M

and

lim\f(zn)\ = + oo .
7l-»oo

Then, χ(θ) is a Julia direction of f(z) or f(z) is convergent to oo as \z\ ->

+ oo on some sector containing χ(θ).

Proof First of all, suppose that f(z) does not converge to oo as \z\

—> +oo in the set U π ΰ ( 0 n , ε) for any e > 0. Then, by Lemma 2, for any

ε, 0 < ε < 1, we can find a sequence {ζk}, ζk e D(znk, ε), such that

) = +oo.

Lemma 4 shows that f(z) assumes every value of Z infinitely often with

at most one exception in the set V(θ, πε) and hence χ(θ) is a Julia direc-

tion of f(z).

So, suppose that f(z) converges to oo as \z\ -> + oo in the set Un D(zn, ε)

for some ε > 0, and denote by Eu the set of these ε's. We put
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px = S U P 6 .
εGEt

If pλ > 1, we have \JnD{zn,ε) = Z for some εeEu ε > 1, and hence we
get evidently the conclusion. So, we suppose that 0 < px <L 1. Take the
sequence {z.™}, z^ eχ(θ), satisfying

I42)i = ]^l (i + έ ^ ) (Λ = I , 2 , 3 , . . ) .

By using the fact that

we repeat the same argument. If f(z) does not converge to oo as \z\ ->
+ oo in the set {JnD(z%\ε) for any ε > 0, we can also conclude that χ(θ)
is a Julia direction oΐf{z). In the case that f(z) converges to oo as \z\ ->
+ oo in the set [JnD(z®\ ε) for some ε > 0, denote by E2 the set of these
ε's and put

ρ2 = sup ε .
e6-E2

Then we can suppose that 0 < p2 <1 1. Again, take the sequence {z™}, z™
eχ(0), satisfying

|̂ f>| = | ^ Ί (1 + i pd = \zn\-a + i PiHl + i ft) (n = 1, 2, 3, . . .) .

Repeat this process over and over until we get either the conclusion that
χ(θ) is a Julia direction of f(z) or the conclusion

(3) Π ( l + i ^ ) > M + l
i = l

at some step N. In the case that (3) happens, we can easily show from
Lemma 3 that f(z) converges to oo as \z\-> +oo on the set V(θ,a) for
some a > 0.

Now, suppose that these processes are continued infinitely. Then, we
have

Since f(z) does not converge to oo as \z\ —> +oo on the set {JnD(z%\ 2-pi)
for each i satisfying pt < J, Lemma 2 gives a sequence {fi°}, I f^l-^ 0 0

(fe -> oo), &<> e Un β(4°, 2 ^), such that

))= +oo.
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From the fact Pi~+0 and Lemma 4, we can conclude that χ(θ) is a Julia

direction of f(z). Thus, we complete the proof.

To prove Theorem 2, we need the following property (Lemma 7) of

entire functions f(z) for which logM(r, f) satisfies the smoothness con-

dition (A).

LEMMA 5. Let xo> #o>l> μ, μ^ 0, r0 and i?, r0 > i?, be constants. If

h(r) is a positive, non-decreasing function defined on the interval R < r <

+ oo and satisfies the condition:

h(r)

then

7 / \

(i)
h(r)

for any x, x Ξ> x0, and

(ii) for any a, a > μ,

where

S(x0: oc,μ) =
a(xa

Q - xξ)

Proof. Take any x ^ xQ and choose an integer p such that x£ ̂  x <

x?+1 Then,

h(x - r) ^ h(x$+1 - r) ^ (xΓ1)" h(r) ^ JC? . x" Λ(r) (r ^ r 0 ).

This gives (i).

Since

h(4+1-r)^(x0ί+1 h(r)9 ( r ^ r 0 ) (ί = 0,1,2, •)

we have

U.fi _ _L1 .*&.£(*-)' = ^ :βf/,)•*« (r ̂  r0).
ff L x j J rα <=o r α
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Thus, (ii) is obtained.

LEMMA 6. (Denjoy [5] and Kjellberg [10, p. 17-18].) Let f(z) be an

entire function of order μ, 0 <L μ < J, and /(0) = 1. Then, for any a, μ <

ot<h

f . £ [logm(tj) - (cosπa)ΛogM(f9f)]~ > 1 " C " ' - l o g M ( r > / )

(0<r<+oo),

where m(t,f) = mi |/()|
\z\=t

LEMMA 7. Let f(z) be an entire function for which /(0) = 1 and

logM(r,f) satisfies the condition (A): there is constant μ} μ < J, such that

logM(xQ r,f) < fr>jΛ
log M(r,f)

for some xθ9 x0 > 1, and r0. Then, for any a, μ < a < \, there exists a con-

stant k such that for some t in any interval (r, k r) (r ̂  r0)

log m(t, f) > cos πa log M(t, f) .

Proof. First of all, we have

r" • Γ [log m(t, f) - (cos πa) • log M(t, f)] • - ^
Jx-r t

^ ra (1 - cosπα) S(x0: a, μ)-xμ

0 xμ~a'logM(r,/)

(x ^ x0, ^ ̂  ô)

from Lemma 5 in which h(r) = log M(r, /). Thus, since we see from (i)

of Lemma 5 that f(z) has at most order μ, we get

ra • [log m(t, f) - (cos πa) • log M(t, /)] - ^ -

> ( 1 - cos 7rα) Γ— - S(x0: α, /£> xix^ al log M(r, f)
La J

(x ^ x0, r ^ r0)

from Lemma 6. Here, if we take a A, k ^ x0, such that

S(x:a,μ)'Xμ

Q'kμ-a > 0,



48 H. YOSHIDA

the right-hand side of the inequality in which x is replaced with k is

always positive for all r ̂  r0 and hence the left-hand side is positive.

Thus, we obtain the conclusion.

Now, we have

THEOREM 2. Let f(z) be an entire function for which log M(r, f) satisfies

the smoothness condition (A) for some μ, x0 and r0, where μ < 1 and xQ > 1.

Then, for any ray χ(θ) (0 <L θ < 2τr), χ(θ) is a Julia direction of f(z) or f(z)

is convergent to oo as \z\-> +oo on some open sector containing χ(θ).

Proof. It is evident that we can confine ourselves to the case /(0) = 1.

If we denote by tn such a t of the interval (kn r0, kn+ί r0) (n = 0,1, 2, •)

in Lemma 7, we have

tn + i -
hn + 2. r hn .r
K ' 0 *v ' 0

kn-r0

= k2 - 1

Thus, we see that the sequence {tn-eίθ} for any fixed 0(0 ^ θ < 2π) is

a sequence satisfying the condition of Theorem 1. Theorem 1 gives the

conclusion of Theorem 2.

QUESTION 1. Is Theorem 2 true for every entire function of order

less than J without any kind of smoothness condition?

Remark 1. We note that (A) is implied by the following smooth

condition: there exist a proximate order ρ(r), p(r)->p (r-+oo) for some

p, 0 <̂  p < J, and two constants α, b such that

0 < a < lim l°sM(r,f) < m logMjrJ) <b<+oo

(see Cartwright [3] for the definition and the properties of proximate order).

Hence, for example, Theorem 2 is true for entire functions f(z) which

satisfy the condition

log M(r, f) ~ rp- logplr logfr log^r (r -» oo)

where log^r = logίlog^r) and p (0 ^ p < j), pu pz, , pp are real numbers.

Next, we shall consider Julia directions of entire functions satisfying

the smoothness condition (B).

A countable set of circles Cv in Z is said to form a slim set S, S =

{JVCV) if the sum Σvr.J}1c of the radii rv>Ίc of those circles CVt1c intersecting

the annulus {z: 2fe <: \z\ < 2fc+1} is o(2fc) (k -> oo) i.e.,
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εk->0 (*-+oo) for Σ X * = ** 2fc

(see Anderson [1]).

LEMMA 8. A slim set S has the following properties:

( i ) Each component of S that intersect the set {z: \z\ > N} for a

sufficiently large number N is contained in some annulus Rk = {z: 2k~ί <

1*1 < 2 fc+1},
(ii) Let Gk be a component of S contained in i?fc. If we denote by Θk

the angle which Gk subtends at the origin, then

θk-+0 (Λ-*oo).

Proof. Evidently, (i) is true. If we denote θVtk the angle subtended

at the origin by the circle CvΛ, we have

0k ^ Σ *,.*-i + Σ K* £ π(εk.x + 2-eJ .

Since εk -> 0 (k -> oo), (ii) follows.

LEMMA 9 (Anderson [1, Theorem 2]). Let f(z) be an entire function

for which \ogM(r,f) satisfies the condition (B). Then,

log I f(z) I ~ log M(r, f) (| z\ = r -> oo)

outside a slim set Sf.

We deduce

THEOREM 3. Let f(z) be an entire function for which log M(r, f) satisfies

the condition (B). Then, the set of ray χ(θ) for which θ is a limit point of

the set

is precisely the set of Julia directions of f{z). In fact, if θ e E(f), f(z) as-

sumes every value without exception infinitely often in any sector containing

χ(θ). Otherwise f(z) converges to oo as \z\ —>+ oo in some such sector and

so assumes no value more than a finite number of times in this sector.

Proof It is evident from Lemma 9 that f(z) converges to oo as \z\ ->

+ oo in the sector which intersects a finite number of components of the

slim set Sf.

Now, suppose that any sector containing χ(0) intersects an infinite
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number of components of Sf. Then, Lemma 8 shows that such sector

contains an infinite number of components of Sf completely. Here, we can

easily see from Lemma 9 that for any fixed M > 0, any component con-

tained inside Rk, where k is sufficiently large, contains at least one com-

ponent of FM, where Fί denotes the complement of the set {z: \f(z)\ JΞ> M).

Thus, since such sector contains an infinite number of components of F^,

Rouche's theorem gives us the conclusion of Theorem 3.

QUESTION 2. A function satisfying (B) has order 0 (see Hayman [9,

p. 130.]). As a natural generalization, we can consider the class of entire

functions of order p, 0 <̂  p < J, satisfying the condition:

r-oo χf>ΛogM(r,f) ~

for any x, 1 < x.

Is the analogie of Theorem 3 true for this wider class, or for the still

more general class satisfying the condition (A)?

The following example shows that Theorem 3 depends on the smooth-

ness of growth of M(r, /).

EXAMPLE. Let p be any positive number. Take two sequences {an},

{bn} (n = 1, 2, 3, - •) defined by

where c = [1 + \jp\ + 1, [x] is the integral part of x, and

logί+pbn - an.

We define the entire function f(z) by
0

( 4 ) /(*) =

This f(z) has the following properties:

(a) Any χ(0), \θ\ <* ττ/2, is a Julia direction of f(z), in spite of the fact

that only θ = 0 is the limit point of the set {axgzn : f(zn) = 0};

(b) logM(r,/) = O(log2+'r).

First of all, we shall show that

f(z) converges to 0 as \z\—> +00 on the set
( 5 )

U {z: \z — bn\ < cr bn) for any fixed cu 0 < cx < 1.
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π-l / ~ \au

Π (-f-)

Decompose the product (4) into four subproducts It{z) {i = 1, 2, 3, 4):

n-1 / U

£(*) = Π ( - -
k = l\ Z

( y \α?ί °° /

i - ~ ) > «*) = Π ( i -
6T O / fc-rz + l \ fc

We have to determine a upper bound of It(z) (i = 1, 2, 3, 4) for any z,

— 6»|<Ci'67t. First, we have

17,(2)1 ^ 7ff[(l + cab*]** = (1 + Clyva*b£+°™ a-*
ft l

because of the fact

(6) g α t =

and, since c > 1 + 1/p, we deduce

Next, we have

\αft n - 1 / 9 ^ \α* /O « \o(l) αn

+ i) ^ Π ί ^ 1 ) = (τ-τ-L)
= (1 + o(l))β«, (n -> oo)

since

- 1 , 2 , 3 ,
= (1 - c1)bn

For I/2), we have

\Uz)\ rg kU+

= 1 + o(l) (n -> oo)

by using the inequality

1 + x < ex (x>0)

and

( 7 ) 6W. Π ? A - 0 ( Λ - > O O ) .

Π -£
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Thus, we get

1/(2)1 £ [1 + o(l)] [(1 + oft)) cjβ (τ ι-oo),

which shows (5).

Next, we shall show that

f(z) converges to oo as \z\ —> +oo on the sequence of circles
ί o )

{z: \z — bn\ = c2-bn} for any fixed c2, c2 > 1.

Decompose the product (4) into three subproducts Jj(z) (j = 1, 2, 3):

First of all, we have

since
\z\ ^ ( c 2 - l ) - ^ ^ 2 (k = 1,2, 3, ••-,«- 1)

for sufficiently large n. Secondly, we have

l ^ Σ α f c-log(l- tt + ^
*=n+l \ 0k

^ -2-log2 (l + c2) 6ίl f;

by using the inequality

log (1 - x) ^ - 2 (log2).Λ (0 ^ x ^ 1/2)

and (7). Thus, we get

which shows (8).
Now, we can prove (a). Let θ be any fixed number satisfying \θ\ < τr/2

and denote by {zn} the point, other than the origin, where the ray χ(0)
meets the circle {z: \z — bn\ = bn). Consider the sequence of functions

fn(z)=f(\Zn\'Z+Zn)

and suppose that [fn(z)} is normal at z = 0. Then, there is a £, £ > 0,
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such that f(z) converges uniformly to some function g(z) on the sequence
of discs D(zn, δ). If we take a ct in (5) and a c2 in (8) such that

1 > Cj > 1 - 25 cos0, 1 < c2 < 1 + 2S-COS0,

then (5) and (8) show that g(z) = 0 and g(z) = oo, respectively, which is
a contradiction. Hence, we see that {fn(z)} is not normal at z = 0. Now,
Ostrowski [13, Satz 1 and p. 234] gives that χ(θ), |0|<ττ/2, is Julia direction
of f(z). It is easy to see that (±τr/2) is also a Julia direction of f(z).

Next, we shall prove (b). For any r, r Ξ> bu take an n such that
δw ^ T < bn + ί. Then, for the number n(r, 1//) of zeros of /( ε) inside the
circle {z: \z\ <L r}, we have

"(r, 4") = Σ <** = Σ « * + σn = (1 + o(l)) αre ^ (1 + o(l)).log1+"r,
\ f / A = l * = 1

from (6). Thus,

Γ . Γ J^iHΔ^dt ^ (1 + o(l)).(log1+^r). (r -> oo)

So we get

logM(r,f) = log/(- r) = Jo°° log(l + j)*»(«, y )

= r . p n«, 1//) ^ < Γjn&Λlfldt + r Γ - ^ ^ eft
Jo ί(ί+Γ> Jo ί Jr f

Remark 2. The property (5) shows that Lemma 9 holds only for the
functions having some smoothness of growth of M(r,f). From this fact,
we can see that this example also satisfies

+

log2r
by the fact of Hayman [9, p. 143].

§3. The set of Julia direction and growth of M(r9f)

It is easily observed that the set of Julia directions of a transcendental
entire function is a non-empty closed set. Polya [14] showed that for any
given non-empty closed set E, there exists an entire function f(z) of order
oo having just E as the set of Julia directions of f(z). Anderson and
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Clunie [2, Theorem 1] also gave this sort of an example in the case p = 0.

Drasin and Weitsman [6, Theorem 1 and p. 209-210] constructed an example

in the case 0 < p ^ 1/2. But their construction depends on a general

theorem of Levin [12, p. 95 and Chapter 2] and hence the condition p > 0

is essential to show that a direction is a Julia direction.

The example in the following Theorem 4 generalizes the example of

Anderson and Clunie [2] in the sense not only that it has order p = 0

but also that it has an arbitrarily given growth subject to (B).

LEMMA 10 (Valiron [15, p. 130], Edrei and Fuchs [7, Theorem 1]). Let

Λ(r) be a function

l(r) = constant + Γ ^Φ- dt, (r^rQ> 0)
Jro t

where ψ(t) is a non-negative, non-decreasing and unbounded function.

Assume further that

(9) Λ(r)^rκ

for some K and all sufficiently large r.

Then, there exists an entire function g(z) such that

log M(r, g) ~ A(r) ~ N(T, -1) (r -> oo)

where

NL i\ = r nitΛ/gy-j^^ + / i\Λ

\ g) Jo t \ g)

LEMMA 11 (Hayman [9, Theorem 6]). Let f(z) be an entire function.

Then, f(z) satisfies

(10) T(r,f)~T(2r,f)

if and only if f(z) has genus zero and further

where T(r, f) denotes the characteristic function of f(z).

Remark 3. That (B) is equivalent to (10) is easily seen from the

inequality
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T(r, f) fg log+M(r, /) ^ ξ±I- T(r, f) (0 < r < R)
R — r

(see [8, p. 18]).

THEOREM 4. Let E be any non-empty closed set on [0, 2π) and let Λ(r)

be a function given by

Λ(r) = constant + Γ ^~dt (r^ro> 0)
Jro t

where ψ(t) is a non-negative, non-decreasing and unbounded function.

Further, in the case

log2r

we assume that

(11) Λ(2r)~Λ(r) (r->oo).

Then, there exists an entire function f(z) such that

logM(r,f)~Λ(r) (r-*co)

and E is precisely the set of Julia directions of f(z).

Proof First of all we remark by an argument of Hayman [9, p. 130]

that (9) is satisfied for any positive K if (11) holds.

Now, as in Edrei and Fuchs [7] we construct the function

such that

(12) logM(r, g) ~Λ(r)~ N(Γ9 1 ) (r -> oo)

where {tj} and {q^ are the sequences chosen in [5, p. 388]. We take a

countable dense subset {θl9 θ2, θ3, } of E and put

zitu = tfiu* (k = 1, 2, 3, , q,\ j = 1, 2, 3, - •)

We define the required function /(^) by

/(*) = π "fίy
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First, in the case

we have from (11) and (12) that

log M(2r, g) ~ log M(r, g) (r -> oo).

Hence, by Lemma 11 and Remark 3,

and g(z) has genus zero. Again from Lemma 11, Remark 3, (12) and the

fact of Hayman [9, p. 133],

(13) log M(2r, f) ~ log M(r, f) ~ N(T, 1 ) = N(r, 1 ) ~ A(r) (r -> oo).

Thus, this f(z) satisfies

log M ( r , / ) - J(r) (r-»oo).

In the case

Ih5
r-oo log z r

from (12) and Hayman [9, p. 143],

*(r 7) - °K r 7))7) K 7
and hence

n(r, 1 ) = O(N(T, 1))

Thus by the same argument, this f(z) satisfies

(14) log M(2r, /) ~ log M(r, f) ~ Λ{r) (r -* oo).

Now, it is easily observed from (13) and (14) and Theorem 3 that E is

precisely the set of Julia directions of f(z).
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