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EXISTENCE AND BIFURCATION OF SOLUTIONS

FOR FREDHOLM OPERATORS WITH

NONLINEAR PERTURBATIONS

YASUO NIIKURA

Introduction

In this paper we shall discuss nonlinear eigenvalue problems for the

equations of the form

(1) L x + λK(x) ~ M(x, λ) = 0 , x e X 9 λ e R ,

where L is a linear operator on a real Banach space X with non-zero

kernel, K(-) is a linear or nonlinear operator on X and M( , •) is an

operator from X X R into X. Equations of the form (1) arise in various

fields of physics and engineering. For example, if L = Δ — μ9 K{x) =

f\x\k~xx and M{x,λ) — g\x\m~1x, then the equation (1) is the nonlinear

stationary equation of the Klein-Gordon type.

A solution of (1) means a pair (x, X) e X X R satisfying the equation

(1). The main purpose of this paper is to prove the existence of solutions

of (1) and to investigate the local structure of the solution sets.

An important case is the one where K(0) = 0 and M(x, X) = o(\\x\\)

uniformly in λe Λ, Λ being an interval containing zero. Clearly, (0, X),

for any λe Λ, is a solution of (1); this solution is called a trivial solution.

We are interested in determining conditions for the existence of nontrivial

solutions of (1).

We say that (0, 0) is a bifurcation point of (1) with respect to the

line of trivial solutions, if every neighbourhood of (0, 0) in X X R contains

non-trivial solutions. The bifurcation problems which are reduced to

equations of the type (1) have been discussed by many authors. For ex-

ample, Rabinowitz [7] has considered the case where L = I + K with K

being compact and linear. Ize [2] has also treated the case where L is

a Fredholm operator of index zero and K is the identity operator. They
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have shown that if the generalized kernel of L has odd dimension, then
(0, 0) is a bifurcation point. When the generalized kernel of L has even
dimension, one needs much more information on M(x, X) as well as L and
K(x) (see, Dancer [1], in which he treats the case where L is a Fredholm
operator of index zero and K is the identity operator).

Our main interest lies in the treatment of (1) in the case where K(x)
as well as M(x, X) is a nonlinear (possibly linear) operator. For the
operators L and M(x, X) we assume that L is a semi-simple Fredholm
operator of index zero and M(x, X) = M(x). First, we assume that K
and M are homogeneous operators with degree k and m, respectively,
where 0 < k < m, Km. Let P be the projection from X onto N(L) (see
§ 1). We assume that PK is non-degenerate (which is introduced by
Dancer [1]), i.e.,

PK(x) = 0 for x e N(L) implies x = 0 .

Under this assumption, it is possible to define a map Ks from the unit
sphere 8 of N(L) to S itself by Ks(x) = PK(x)l\\PK(x)\\ (xeS). Denote
the degree of mapping /: S -» S by deg /.

We can show that (0, 0) is a bifurcation point of (1) if one of the
following conditions holds:
( i ) d = dim N(L) is odd and deg Ks Φ O.*)
(ii) d is odd, PM is non-degenerate and degM^ Φ 0.
(iii) d is even, PM is non-degenerate and deg Ks Φ deg Ms.
(See Theorem 1.1 in § 1.)

Next, instead of the homogeneity condition for K and M, we assume
that

|| JΓ(*)|| = OQPIII) and \\M(x)\\ = o(\\\x\\\) , as | | |*| | | — > 0 ,

where ||| ||| denotes the graph norm of D(L). In this case, the existence
of bifurcation can be derived similarly. Furthermore, our methods de-
velopped in this paper can be applied to more general equations of the
form

(2) Lx + λK(x) - M(x) + R(x, λ) = 0,

where R(x, X) is, in a sence, a 'small' perturbation of M(x).
The contents of this paper are summarized as follows. In Section 1,

we shall give some preliminaries and an existence result (Theorem 1.1)

*} Throughout this paper, we drop conditions on deg K$ and deg Ms if d = l.
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of solution sets for (1) with homogeneous nonlinearity. Section 2 is
devoted to the proof of Theorem 1.1. The main tools used in the proof
are the implicit function theorem in a Banach space, the Lefschetz coin-
cidence formula and some theorems on degree of mappings on spheres.
In Section 3, using the technics developped in Section 2, we can show
that there exists the bifurcation for (1). Section 4 treats more general
equations of the form (2). Finally, we shall apply our results to nonlinear
elliptic partial differential equations in Section 5.

The author should like to express his gratitude to Professor Tadato
Matsuzawa for his advice and kindness.

§1. Existence results for homogeneous nonlinearity

Let X be a real Banach space with norm || ||. We consider the equa-
tions of the form

(1.1) Lx + λK{x) - M(x) = 0 ,

where λ e R, x e X, L is a linear operator and K, M are nonlinear operators
in X. Throughout this paper we put the following assumptions on L:

(a.l) L is a Fredholm operator of index zero and d = dim N(L) =
codim R(L) Φ 0, where N(L) and R(L) denote the kernel of L and
the range of L respectively.

(a.2) N(L) = N{Ln) and R(L) = R(Ln) for n = 1, 2, .

Let D(L) denote the domain of L. D(L) is a Banach space equipped with
the graph norm of L; \\\x\\\ = \\x\\ + \\Lx\\ for xeD(L). Nonlinear opera-
tors K and M satisfy the following assumptions:

(a. 3) K and M are defined on an open set U of D(L) containing the
unit sphere S of N(L). Moreover, K and M: U-+X are continu-
ously Frechet differentiable (which is denoted by K, Me Cι(U->X)).

(a.4) If x e U and a > 0, then ax e U, K(ax) = akK(x) and M(ax) =
amM(x), where k and m are real numbers such that m Φ 0,1, k.

By the assumptions (a.l) and (a.2), X can be decomposed as

X = N(L) + R(L)

(see Ize [2] and Kato [3]). The projection P:X-*N(L) is given by
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p = -A- ί ( λ - L)~ldλ'
2πι Jc

where c is a small circle around the origin in C (see Dancer [1] and

Kato [3]). Clearly, / — P is the projection from X onto R(L). The ex-

pression given above proves that P commutes with L.

By the assumptions (a.3) and (a.4), we have N(L) - {0} C D(K) Π

D(M). If

(c.l) PK(x) φθ for x e ΛΓ(L) - {0} ,

we can define a map Ks: S —> S by

Similarly, we can define M 5 : S-> S if

(c.2) PM(«) ^ 0 for X e iV(L) - {0} .

For a continuous map f:S-^S, άegf denotes the degree of /. For the

definition of the degree, we refer to Schwartz [5] and Nirenberg [4], We

shall summarize several properties of the degree in § 2.3.

We are now ready to state

THEOREM 1.1. Suppose that one of the following assumptions is

satisfied:

( i ) d = dim N(L) is odd, (c.l) holds and deg Ks Φ 0.

(ii) d is odd, (c.l) and (c.2) hold and άegKs Φ 0 or άeg Ms Φ 0.

(iii) d is even, (c.l) and (c.2) hold and deg Ks Φ άeg Ms.

Then, there exists a continuum {(x(e), λ(e)) \ 0 <̂  e <ΞJ p} of solutions of

(1.1) of the form

x(e) = e^^{y(e) + ez(e)} , y(e) C N(L), z(e) C R(L) ,

a(e) c R ,

/? > 0, ||y(e)|| = 1 and \\z(e)\\ and \a(e)\ are bounded. In particular,

under the assumption (ii) or (iii), \a(e)\ is bounded also from below.

Remark 1.1. The correspondence e —> (x(e), λ(e)) is set-valued. In

other words, (x(e), λ(e)) is a subset oΐ X X R for each 0 ^ β ^ ^

COROLLARY 1.2. In the case of (ii) or (iii) m Theorem 1.1, ί/ιe follow-

ing holds: Along the solution set obtained in Theorem 1.1,
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( i ) if m > 1 and m> k, then x~>0 as λ->0.

(ii) if m > 1 and m < k, then x~>0 as λ -+ oo.

(iii) if m < 1 cmd m > £, ί/ien Λ;->OO as ^ o o ,

(iv) if m <1 and m < k, then x -> oo as Λ -> 0.

In the case of (i) in Theorem 1.1, both (i) and (iv) hold.

Remark 1.2. Let m > 1, m > k > 0 and K(0) = M(0) = 0. Since the

curve {(0, X)\λeR} is the line of trivial solutions of (1.1), it follows from

Corollary 1.2 (i) that (0, 0) is a bifurcation point of (1.1).

§ 2. Proof of Theorem 1.1

2.1. Reduction to finite dimension.

Since X is decomposed a s l = N(L) + R(L) (see § 1), any x e X can

be written as

x = Px + (I — P)x ΞΞ x, + x2 ,

where P is the projection from X onto N(L). Note that (7 — P)L = L

and Lxj = 0. So (1.1) is equivalent to the following system:

(2.1) λPKfa + x2) - PM(xx + χ2) = 0,

(2.2) Lx2 + i(I - P)K(xt + x2) -(I- P)M{x1 + x2) = 0 .

Now we put by the use of a parameter ε >̂ 0,

χ __ £m-ka ^ Xi = εy a n ( j X 2 _ εmz ^ w h e r e

We substitute these expressions in (2.1) and (2.2) and devide them by εm.

Then, by the homogeneity of K and M ((a.4) in § 1), we obtain

aPK(y + ε^z) - PM(y + ε^'z) = 0 ,

Lz + a(I - P)K(y + εm-'z) -(I- P)M(y + εm~λz) = 0 .

By introducing a new parameter e = εm~\ it is easy to see that the above

system is equivalent to

(2.3) aPK(y + ez) - PM(y + ez) = 0 ,

(2.4) Lz + a(I - P)K(y + ez) -(I- P)M(y + ez) = 0

with

(2.5) λ = e^-k)nm-χ)a , x1 = eι/{m-^y and x2 = e

m/{m-χ)z ,

where e ^ 0 and \\y\\ = 1.
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Note that L: D(L) Π R(L)-+R(L) is an isomorphism. Then, for arbi-

trary y, a and e = 0, (2.4) has a unique solution z. We denote this solu-

tion by ho(y, a) e C\S X R). The Frechet derivative of the left-hand side

of (2.4) with respect to z at (z, y, a, e) = (ho(y, α), y, α, 0) is the isomorphism

L: D(L) Π R(L) -»R(L). We can therefore apply the implicit function

theorem for (2.4) and obtain the unique solution z for e small enough.

We denote this solution by h(y, a, e), where h(y, α, 0) = ho(y, α). Sub-

stituting this function in (2.3), we have

(2.6) aPK(y + eh(y, a, e)) - PM(y + eh(y, a, e)) = 0 .

We call (2.6) the bifurcation equation. A solution of (2.6) is an element

(y, a, e) e S X R x R. By the preceding argument, we have:

PROPOSITION 2.1. If (2.6) has a solution (y, a, e), then (1.1) has a

solution (x(y, a, e), λ(a, e)) e X X R given by

x(y9 α , β) = β1/(m-υ{^ + eh(y, α, e)} and λ(a, e) = e^-^^^a ,

where h e C\D(h) -* D(L) Π R(L)) with D(h) dSxRx R is given above.

Particularly, if (2.6) has a family of solutions {(y(e), α(e), e) \ 0 ^ e ̂  p}9

then (1.1) has a family of solutions {(x(e), ̂ (β))|0 <S e ̂  p}9 where

x(e) = x(y(e), a(e), e) and λ{e) = λ(a(e), e) .

For any bounded interval of α, we have y + eho(y, a) e U (see (a. 3)

in § 1) if we choose e small enough. Hence, K(y + ez) and M(y + ez)

are differentiable with respect to z at (ho(y, a), y, a, e) and ^-derivative of

them are sufficiently small with respect to the uniform topology of the

space of bounded linear operators from D(L) Π R(L) to R(L). Therefore,

the ^-derivative of the left-hand side of (2.4) has the inverse because it

lies sufficiently near L: D(L) Π R(L)-^R(L). Then we obtain:

ΓFor any r > 0, there exists a positive number p = p(r)

[such that h(y, α, e) can be defined in S X [ — r, r] x [—p, p] .

In other words, (2.4) has a unique solution h(y> α, e) for every (y, a, e) e

Sx [-r,r] X[-p,pl

Remark 2.1. As K and M are not defined at the origin, we can not

directly apply the implicit function theorem to (2.2) in order to solve

for x2.
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Remark 2.2. If K and M are of Cn-class (n = 1, 2, 3, •) or analytic

in £7, then h(y, a, e) is of C^-class or analytic.

2.2. A property of the bifurcation equation.

In the following, we shall obtain important properties derived from

(c.l, 2) in § 1, which are used in order to define admissible domains to

topological degree.

PROPOSITION 2.2. (1) Suppose that (c.l) holds. Then there exists a

domain D = S X (—r, r) X (—p, p) c S X Ra x Re (where p = ρ(r) depends

on r) with the properties:

1i) If (y, α, e) e D, then both K(y + eh(y, a, e)) and M(y + eh(y, a, e))

can he defined.

(ii) \\PM(y + eh(y, a, e))\\l\\PK(y + eh(y, α, e))|| < r for all (y, a, e) e D.

(2) Assume that (c.2) holds in addition to (c.l). Then (ii) is replaced

by the following stronger inequality

(iii) r/ < \\PM(y + eh(y, a, e))\\l\\PK(y + eh(y9 a, e))\\ < r for all (y, a, e)

e D, where r > r' > 0.

Proof Let (y, α, e) e S X [—r, r] X [—/o, p], where r and ô satisfy (2.7).

We shall determine r and p so that the statements of this proposition

hold. We define a function I(y, α, e) by

+ Λ(y, α, e)) - Pif(y) + e/(y, α, β) .

Then we have

I = Γ PJf,(y + ίeΛ(y, α, e))Λ Λ(y, α, β) ,
Jo

where JK"̂  is the Frechet differential of K. In fact,

PίΓ(y + eh) - PK(y) = Γ 4~PK^y + e/ι) + (x

Jo dί

= Γ PKMy + eΛ) + (l -
Jo

Since i £ e Cι(U-» K), we get J e C° if y + teΛ(y, a,e)eU for all ί e [0, 1],

which is possible by choosing p small enough. Similarly we have

PM(y + eh(y, a, e)) = PM(y) + eJ(y, a, e) ,

where Je C° is given by
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J = Γ PMx(y + teh(y, a, e)dt h(y, α, e) .
Jo

I(y,a,e) and J(y, a, e) are uniformly bounded for yeS, ae(—r,r) (with
any r > 0) and e (-> 0). Therefore, if we choose r and r' such that

r > max || PM(y) ||/min ||PK(y) || , r' < min ||PM(y) ||/max
S 5 S S

and take p small enough, we obtain

r' < \\PM(y + eh(y, a, e))\\l\\PK(y + eh(y, α, e))\\ < r

for S X (~r,r) X (σ, ̂ ). If (c.2) also holds, we can choose rf > 0 since
miny € 5 || PM(y) 11 > 0. Thus the proof is completed.

By Proposition 2.2,

(2.8) The aquation (2.6) has no solution on S X {r, — r, r', — r7} X (—p, p) .

2.3. Preliminaries on degree theory.
Let M and N be two oriented manifolds of dimension n with

boundary dM and diV respectively. For a continuous map / from
M (=M U dM) to JV (=N U îV), M such that M is compact and a
point peiV such that f(dM)$p, άeg(f,M,p) is defined and it takes a
value of integers (see Nirenberg [4] and Schwartz [5]). deg (/, M, p) is
constant if p runs over the same connected component of N — f(dM).
Therefore, if N is connected and f(3M) c 3JV, in particular, if dM = φ9

then deg (/, M,p) is independent of p e N. In this case, we define deg(/, M)
by deg (/, M, p). If f(q) = p and there exists a neighbourhood Ω of g such
that /(Ϊ2 - {#}) 0p, we define ind (/, q) by ind (/, q) = deg (/, #, p).

Let C(M -> iV) denote the set of all continuous functions from M to
N. For / and #e C(M->N) satisfying f(3M)%p and g(dM)$p, if there
exists a continuous function i^e C(M X I-> N), (I = {0 <^ t <. 1}), such that
•fΊt=o = Λ F\t=i = ^ and F(3M x 7) 0p, then we say that / is homotopic
to g with respect to (M, p) and denote by / ^ g (M, p). F is called a
homotopy function, deg ( , M, p) is constant on the same homotopy class.
If deg (/, M, p) Φ 0, then f(x) = p for some xeM.

For / and ge C(M-+N) satisfying {xedM\f(x) = g(x)} = ^, the co-
incidence index /(/, g; M, N) is defined, if M is compact, and takes a value
of integers (see Nakaoka [9], chap. 3.) If N is an open set of Rn,
I(f, g; M, N) = deg (/ - g, M, 0), where (/ - g)(x) = f(x) - g(x). If there
is no confusion, we sometimes write deg/ instead of deg (/, M) and /(/, g)
instead of /(/, g; M, N).
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For / and g e C(Sn -+Sn), where Sn denote the /i-sphere, the formula

(2.9) /(/, g) = deg / + (-1)" deg g

holds. (2.9) is proved by using the Lefschetz coincidence formula [9].
If I(f, g; M, N) φ 0, then f{x) = g(x) for some xeM.

Let Fe C(M X 7-> N) satisfy F(dM X I)$p. A solution of F(x, t) =
p is a pair (x, t) e M X 7. If degCF|ί==0, ̂ p ) =£ 0, then there exists a
connected set C of solutions such that P^C) = I, where P7 is the natural
projection from M X 7 onto 7.

2.4. Construction of the family of solutions.
Let N(L) and S be defined in § 1. Recall that d = dim iV(L) < oo.

For an orientation of N(L), we define the orientation of S X R, (R =
(— oo, oo)) so that the natural injection: (y, a) —> ay from S X (0, oo) into
N(L) does not change the orientation. We define a continuous map j : S
X R -> 2V(L) by (y, a) -> αy.

LEMMA 2.3. For g e iV(L) and c > 0 swcΛ ί/ιαί 0 < ||g|| < c,
( i ) degO\Sχ(0,c),<z) = l,
(ii) degϋ, S X (-c, 0), g) = (-1)Λ+1.

For g e N(L) and c > 0 swc/i ίΛαί ||g|| < c,
(iii) deg (/, S χ ( - c , c ) , g ) = 2 if d is odd.
(iv) deg (j, S X (—c, c), g) = 0 if d is even.

Proof, (i) is trivial by the definitions of the orientation of S X R
and of the map j . We shall prove (ii). It is easy to see that j'^q) =
% Hill), (-5, -| |g| |), where q = g/||g||. By (i), ind(j, (g, ||g||)) = 1. Let T
and T7! be the antipodal operators of S and R respectively, i.e., Ty = —y,
3/eS and Tλa = —a,aeR. It is well known that degT 7=( — l)ώ and
deg (Γ,, (-c, c)) = - 1 . Since (g, ||g||) = (Γ X T,){-q, -||g||),

ind(i,(-g, -| |g| |))-ind(;,(g,| |g| |)) ind(Tχ ^,(-5,-^11))

= ind (Γ, -g) ind (Γ,, -||g||) = (deg Γ) (deg Tx)

= (-ΐ)d+ί ,

which proves (ii). If q Φ 0, by the additivity of the degree,

deg 0", 8 X (-c, c), q) = deg ( , S X (-c, 0) U S X (0, c), g)

= deg ( , S x (-c, 0), g) + deg ( , S X (0, c), g) ,

which, together with (i) and (ii), implies (iii) and (iv). If q = 0, the con-
tinuity of the degree gives
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deg (/, S X (-c, c), 0) = lim deg (;, S X (-c, c), q) ,

from which the assertions (iii) and (iv) follow.
Let / be a continuous function from S into N(L) — {0}. We define a

continuous function id-/: S X R -> iV(L) by ( y, α) -> α/(^). Let / =
/(0/ll/(Oil for /e C(S->N(L) - {0}), so / is a function from S to S.

LEMMA 2.4. For g e N(L) and c > 0 sweΛ

( i )
(ii) deg (id-/, S X (-c, 0), g) = (-1)*+1 deg/.

For qeN(L) and c > 0 swcft ί/iαί ||g|| < cminyesll/(y)ll>
(iii) deg (id-/, S X (—c, c), g) = 2 deg f if d is odd,
(iv) deg (id'f, S X (—c, c), q) = 0 // d /s even.

Proof. Define g: S X R -> S X R by (y, o) -> (f(y), a \\f(y)\\). By using
Lemma 2.3 and the properties of the degree for Cartesian products and
compositions of maps, we have

deg (id-/, S X (0, c), q) = deg ( o g, S X (0, c), g)

= deg(/χid,Sχ(0,cO,(g,| |g| |))

= deg(/,S,g)deg(id,(0,cO,||g||)

which proves (i). We can prove similarly (ii), (iii) and (iv), so we omit
the proof.

Now we shall prove the existence of solutions of the equation (2.6).
Recall that we defined the maps Ks and Ms: S—> S in § 1.

THEOREM 2.5. Suppose that (c.l) holds and that d is odd and deg Ks.

Then the equation (2.6) has a family of solutions {(y(e), a(e), e) \ 0 ^ e

Proof Let (y, α, e) e D = S X (—r, r) X {—p, p), which is defined in
Proposition 2.2. We define Fe(y, a): S x R -> N(L) by

Fe(y, a) = aPK(y + eh(y, a, e)) - PM(y + eh(y, a, e))

(see (2.7)). Then it follows from (2.8) that
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(2.10) Fe~F0 ( S χ ( - r , r ) , 0 ) ,

where F0(y, a) = aPK(y) — PM(y) since h(y, a, 0) = 0. Similarly, the
equation

ft(y, a) = aPK(y) - (1 - t)PM(y) = 0

has no solution on S X {—r, r} for all 0 <£ ί <Ξ 1. Hence, we have

(2.11) Λ-Λ ( S χ ( - r , r ) , 0 ) .

By Lemma 2.4 (iii), for the map id PK: (y, a) -> aPK(y), we have

deg (id-PUT, S χ ( - r , r), 0) = 2 deg ifs =£ 0 .*>

Then the homotopy invariance, together with (2.10) and (2.11), implies

deg (Fe, Sx(-r, r), 0) = deg (Fo, S χ ( - r , r), 0)

= deg(Λ,Sfχ(-r,r),O)

= deg(/0,Sχ(-r,r),0)

which asserts the existence of a family of solutions {(y(e), a(e), e) | 0 ̂  e
^ <o} for (2.6).

THEOREM 2.6. Suppose that (c.l) ami (c.2) hold and that one of the
following conditions holds:
( i ) d is odd and deg Ks ψ 0 or deg Ms Φ 0.
(ii) d is even and άegKs Φ degilί^.

Then the equation (2.6) has a family of solutions {(y(e), a(e), e) \ 0 ̂  e ̂  p}.

Proof We shall calculate

I+ = deg (Fβ, S X (0, r), 0) and /_ = deg (Fβ, S X (~r, 0), 0) .

By (c.l), (c.2) and (2.8), we have

(2.12) Fe~F0 (Sχ(0,r),0) and (S X (-r, 0), 0) .

We define the map id-ifs: S X R -> iV(L) by (y, a) -> aKs(y) and the map
c M5: S X R -> iV(L) by (y, α) -> cM5(y), where c is a constant of R. Then
we have

(2.13) Fo^iά.Ks-c Ma (S X (0, r), 0) and ( S χ ( - r , 0 ) , 0 ) ,

*> If dimtf(L) = l, deg(id PK,{2/} X (-r,r),0) = 1 or - 1 for each ί/eS.
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where 0 < c < r and (iά Ks — c-Ms)(y, a) = aKs(y) — cMs(y). By using

(2.12), (2.13) and the homotopy invariance of the degree, we have

(2.14, a) I+ = deg (id K8 - c Mδ, S X (0, r), 0),

(2.14, b) /_ = deg (iά-Ks -c Ms,Sχ (-r , 0), 0) .

First, we calculate I+ by using the Lefschetz coincidence index. The

fact summarized in §2.3 yields

J+ = I(iά-K89 cMs; S x (0, r), N(L)) .

We consider id-Ks and c-Ms as the following composition of maps:

kd-Ks: (y, a) ̂ ^ i (Ks(y), a) -U aKs(y),
(2.15, a) <

(c-Ms: (y, a) - ^ > (Ms(y),c) - ^ cMs(y).

Since deg (j, S X (0, r), q) = 1 for 0 < \\q\\ < r, by Lemma 2.3 (i),

I (id-Ks,c-Ms;Sχ(0,r),N(L))

= I(KS x id, Ms xc Sx (0, r), S x (0, r ) ) .

By the product formula of the coincidence index, we have

I(KS x id, M8 xc Sx (0, r), S X (0, r))

= J(X S, Ms; S, S)I(id, c; (0, r), (0, r))

= I(KS> Ms; S, S) deg (id - c, (0, r),0)

= I(KS, Ms: S, S) .

Since dimiV(L) = d, S is regarded as S^ 1 . Therefore, by (2.9), we have

I(KS, Ms; S, S) = degKs + (-I)*-1 degMs .

Then,

(2.16) J+ = deg Ks + (-1)*-1 deg M s .

Next, we calculate

I. = J(id ϋΓ5, c Λίs; S X (-r , 0), iV(L)) .

We regard id KS and c Ms as the following composition of maps:

(2 15 b) \ i ά K s - {y> a)

1 c Ms: ( Λ a) ™sχί-c\ (TMs(y), -c)
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Similarly as above, we obtain

I(iά.KS9c.M8;Sx(-r90),N(L))

= (-iy+ίI(Ks x id, TMS x (-c); S X (-r, 0), S X (-r, 0))

= (~iy+1I(K8, TMS; S, S)I(id, (-c); (-r , 0), (~r, 0))

= (_ i )^ i deg JSΓβ + (-1)*-1 deg TdegM,

Here we used Lemma 2.3 (ii), (2.9), deg T = (—l)d and product formula.

Thus, we have

(2.17) I_ - (-1)*" (deg i ^ - deg ΛQ .

Therefore, (2.16) and (2.17), with condition (i) or (ii) of this theorem,

implies I+ Φ 0 or /_ Φ 0. We complete the proof.

Remark 2:3. If d is odd, I+ + I_ = 2 deg Ks, which is given in the

proof of Theorem 2.5. If d is even, I+ + JL = 0.

Proof of Theorem 1.1. By Theorems 2.5 and 2.6, we have a family of

solutions {(y(e), α(e), e) 10 ^ β rg p} of (2.6). So Proposition 2.1 implies the

existence of a family {(x(β), λ(e))\0 ^ e <L p} of solutions of (1.1), which is

expressed in the following form,

X(e) = e^-^{y{e) + eh{y{e\ σ(e), β)} ,

1} a n d h e Cι(S X [-r,r] X [-p,p]

Π R(L)). Furthermore, it is easy to see from Proposition 2.2 and the

construction of solutions that \a(e)\ is bounded from above in case of (i)

of Theorem 1.1 and that it is bounded also from below in case of (ii)

and (iii) of Theorem 1.1.*)

Corollary 1.2 is an immediate consequence of Theorem 1.1 by letting

§ 3. Non-homogeneous nonlinearity

We can now extend the result of Theorem 1.1 for the case of non-

homogeneous nonlinearity. In this section we suppose that the operators

*> When dim N(L) — 1, we can simplify the proof of Theorem 1. See Appendix.
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K and M satisfy the following assumptions instead of (a.3) and (a.4) in

§ 1 :

(a'.3) K and M e C1([/-*X), where U is a open set of D(L) containing

the origin.

(a'.4) \\K(x)\\ = 0(111*111) and ||M(*)|| = o(\\\x\\\) as | | |x| | | -> 0 .

Furthermore, we put the following conditions instead of (c.l) and (c.2) in

§ 1. Let V be a cone containing a neighbourhood of N(L).

(c'.l) PK(x) Φ 0 for x e N(L), 0<\\x\\^p with some p > 0 .

(c'.2) PM(x) Φ 0 for xeN(L)y 0<\\x\\£p, where <o is given in (c'.l) .

(c'.3) For x e V, ||PM(x)||/||PX(*)|| -* 0 as ||χ|| ~> 0 .

We define Ks and Ms: S-> S as follows:

JB^y) = PK(py)l\\PK(Py)\\ and M,(y) = PM(py)l\\PM{Py)\\ , y e S .

We give an analogue of Theorem 1.1.

THEOREM 3.1. Suppose that one of the following assumptions is

satisfied:

( i ) (c'.l) and (c',3) hold and d = dim N(L) is odd and degKsΦ 0.

(ii) (c'.l, 2, 3) hold and d is odd and deg Ks Φ 0 or degM 5 Φ 0.

(iii) (c'.l, 2, 3) hold and d is even and deg Ks Φ deg Ms.

Then (0, 0) e X X R is a bifurcation point of (1.1). In particular, in

case of (ii) and (iii), (0, 0) is an isolated solution in X X {0}.

Proof. We have already shown that (1.1) is equivalent to (2.1) and

(2.2) given in § 1. By the implicit function theorem, (2.2) can be solved

for x2 = u(xu λ) in a neibourhood of {xu λ) = (0, 0) in N(L) X R (use (a'.3>

and (a'.4)). Note that

Lx2 = -λ(l - P ) ^ * ! + x2) + (1

By (a'.4), we have

+ (̂1 - P) £ iα*i + sx2)ds - (1 - P)
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= -λ(l - P)K(Xl) + (1 - P)M(xλ)

= 0(1^111^11)+ 0(11^ ||).

Hence for small \λ\ and xl9 it is easy to see that

(3.1) u{xuλ) = O(\λ\\\xι ||) + o(|| * , ! ! ) .

Substituting x2 = u{xu X) in (2.1), we get the bifurcation equation

(3.2) λPK{xx + u(xu λ)) - PMix, + u(xu λ)) = 0 .

We put x, = ry with y e S in (3.1) and (3.2). Then

(3.3) λPK(ry + u(ry, X)) - PM(ry + u(ry, X)) = 0 ,

where w( , •) satisfies

(3.4) ^(ry, λ) = 0(\λ\ r) + o(r) .

Now suppose that (c'.l) and (c;.2) hold. We put λ = ag{r), where

(3.5) g(r) = max {\\PM(x)\\l\\PK(x)\\ \ \\x\\ £ r, x e V - {0}} .

Note that g(r) -> 0 as r -> 0 (by (c^S)). In the case (i), it may happen

that g(r) = 0. If so, we take as g(r) any increasing continuous function

with g(0) = 0. Then (3.3) is reduced to

(3.6) ag(r)PK(ry + u(ry, ag(r)) - PM(ry + u(ry, ag(r)) = 0 .

From (3.4),

(3.7) u(ry, ag(r)) = O(g(r)r) + o(r) = o(r) as r -> 0 .

(3.6) implies that

\a\g(r) = \\PM(ry + u(ry, ag(r))\\l\\PK(ry + u(ry, ag(r))\\ .

From this equation, by the aid of (3.5) and (3.7), we obtain the uniform

boundedness of \a\ as r—> 0. So we can choose some p > 0 such that

there is no solution (y, a) of (3.6) on S X {2, -2} for all re(0, /?). (In

addition, if (c'.2) holds, there is no solution (y, α) of (3.6) on S X {2, 0, -2.})

We define Fr(y, a) by the left-hand side of (3.6). By the argument

given above, deg (Fr, E, 0) is well defined for E = S X (-2, 2) (S X (0, 2)

and S X (—2, 0) in case that (cr.2) holds). For continuous functions h: R

-> R and /: S-+N(L), we define the map h-f:S X R-^ N(L) by (y, α) ->

h(ά)f(y)- By ^^"r, we denote the map y -> PK(ry) with y e S. Then we

obtain similarly as in the proof of Theorem 2.5 that
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Fr ~ g(r) id PKr - PMr (S X (-2, 2), 0)

~g(r) id-PKr (Sχ(-2,2),0)

-iά Ks ( S χ ( - 2 , 2 ) , 0 ) .

By Lemma 2.4 (iii) and the homotopy invariance of the degree, we have

deg(F,, S X (-2, 2), 0) = 2άegKs Φ 0 .

This proves Theorem 3.1 in the case (i).

Suppose that (c'.l, 2, 3) hold. The analoguous calculations as in the

proof of Theorem 2.6 yield

7+ΞΞdeg(Fr,Sχ(0,2),0)

= I(g(r) id-PKr, PMr; S X (0, r), N(L))

and

7_ = deg(F r ,Sχ(-2,0),0)

= I(g(r) iά PKr, PMr; S X (-2, 0), N(L))

In the cases (ii) and (iii), we have I+ Φ 0 or J_ Φ 0. Hence we can obtain

the conclusion of Theorem 3.1.

§ 4. Stability for small perturbation of nonlinearity

In this section, we consider the equations of the form

(4.1) Lx + λK(x) - M(x) + R(x, X) = 0 ,

where R(x, X) is a nonlinear operator which is small in the sense of the

assumptions given below (see (r.2) and (r.4)). The assertions in Theorem

1.1 and Theorem 3.1 are also true for the equation (4.1) with a small

perturbed nonlinear operator R(x, X).

First we shall extend the result of Theorem 1.1 for (4.1) by putting

the following assumptions on R(x, X):

(r.l) R(x, X)eCXVxI->X) with V = {ax e D(L) \x e U, a > 0} where U

is the neighbourhood of S defined in (a.3) of § 1 and I = (—ρ,p) if

(m - k)(m - 1) > 0, I = (-oo, -p) U (p, oo) if (m - k)(m - 1)< 0

with some p > 0 .
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(r.2) W^-^x, e^-w-Dj) = o(em/{m-l)) as e->0, uniformly on any
bounded set of F χ l .

THEOREM 4.1. Let R(x, X) satisfy (r.l) and (r.2). Then the statements
of Theorem 1.1 hold true with (1.1) replaced by (4.1).

Proof. We can obtain the bifurcation equation for (4.1) by the same
reduction as in §2.1 once we note that the implicit function theorem is
applicable by (r.l) and (r.2). Moreover, we can neglect the term generated
from R(x, X) in the bifurcation equation by using the homotopy invariance
of the degree and (r.2). So Theorem 5.1 follows immediately from The-
orems 2.5 and 2.6.

We can generalize Theorem 4.1 by the similar arguments as above.
We make the following assumptions on R(x, X) instead of (r.l) and (r.2):

(r.3) R(x, X)e C\W->X), where W is a neighbourhood of the origin of
D(L) X R .

( r . 4 ) R(rx, λg(r)) = o(\\M(rx)\\) f o r a n y fixed x e V and λ e [ - 2 , 2] a s r - >
0, where g(r) is the function defined by (3.5) .

THEOREM 4.2. Suppose that the assumptions of Theorem 4.1 hold. Let
R(x, X) satisfy (r.3) and (r.4). Then the statements of Theorem 3.1 hold true
with (1.1) replaced by (4.1).

Proof. The term R(x, X) can be neglected by the similar arguments
as in the proof of Theorem 4.1 by using (r.3) and (r.4). The prσof is
completed in the same way as in the proof of Theorem 3.1.

§ 5. Applications

The purpose of this section is to show how our theorems of previous
sections are applied to problems of nonlinear elliptic differential equa-
tions. In this section, let Ω be a bounded domain in Rn with smooth
boundary 3Ω. We introduce the usual Holder space Cm+a(Ω) with norm

= sup \iy«x)\ + sup i f l W ~ D>u(y)\ ( 0 < β < i) ,
\β\£m \β\=m \X — y\a

where β denotes multi-indices β = (βl9 , βn) and \β\ = βi + + βn

5.1. We consider the following nonlinear elliptic equation
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+ λf(x)\u\* - g{x)\Δu\m = 0 in

on

Ω,

dΩ,
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(5.1)

where k and m are real numbers with m Φ 0,1, k, μx is the first eigenvalue

of Δ with zero-Dirichlet condition and λ is a real parameter. It is well

known that μx is simple and the corresponding eigenfunction φί is positive

in Ω.

We want to obtain a family {(u, X)} of classical solutions and para-

meter of (5.1). Put X= {ue Ca(Ω) \ u = 0 on dΩ}, D = {ue C2+a(Ω) \ u =

Δu = 0 on dΩ}, L = Δ - μu K(u) = f\u\k and M(ύ) = g\Δu\m, where f,g

e Ca(Ω), f or g is of compact support when £ < 0 or m < 1, respectively.

Then (5.1) is formally transformed to the equation

(5.2) Lu + λK(u) - M(u) = 0 in X.

Application of Theorem 1.1 yields:

THEOREM 5.1. If f(x)φϊ+1dx Φ 0, then the equation (5.1) has a family
JΩ

of solutions {(u(e), λ(e)) e X X R\0 -^ e <L p} with some p > 0 such that

u(e) = έ""-"{φx + ez(e)} , ί z(e)φ1dx = 0 ,
J Ω

where z(e) and a(e) are bounded. In particular, if

ί g(x)φϊ+1dx Φ 0 ,
J Ω

then r2 <I \a(e)\ <̂  rx with some r2 and r2, rx > r2 > 0.

Proof. We have only to examine that all the assumptions of Theorem

1.1 are satisfied. We define D(L) = D. It is well known that L is a

Fredholm operator of index zero and dim N(L) = 1 by the assumption, so

(a.l) is satisfied. Since Δ — μx is formally self-adjoint, we have easily

N(L) = N(Ln), n = 1, 2, . Furthermore, any eigenvalue of Δ is isolated.

Thus, by Ize [2, p. 36, Theorem 5.1], we have (a.2). We define

U = {u e DI bφ1 < u < cφΐ, Vφ, < Δu < c'φl for some be > 0 and &'c' > 0} .

U is an open set of D. It is easy to see that K(-) and M( ) e CX{U-> X)

for all k, m. Let a<k\ϊθ<k<l. We note that / or g has compact

support in Ω for k < 0 or m < 1 respectively. We shall give the proof
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in case of M(u). By the mean value theorem, we have

\\g{(Δ(u + v))m — (Δu)m — m(zίu)m~1Jι;}||x

= m ίgίf (Δ(u + tv))m'ldt - (Δu)m-ι\Δυ
i Uo J x

= o(\\υ\\D) a s \\v\\D->0 .

This means that M(ύ) is Frechet differentiable. Therefore M(ύ)e C\U-+
X) for all m. Similarly we can prove K(u)e Cι(U-*X) for all k. Thus
(a.3) holds, (a.4) is trivially satisfied. Since

PK(u) = φ f f(x) I u\k φdx and PM(it) = φ f g(x) | JM| W ^dx ,
J Ω J Ω

we see that

f f(x)φk+1dx ΐ θ and ί g(x)φm+1dx Φ 0
JΩ JΩ

are equivalent to (c.l) and (c.2) respectively. Finally, since d = 1, all
the assumptions of Theorem 1.1 (i), (ii) are satisfied.

As a corollary of Theorem 5.1, we can obtain a solution curve of the
nonlinear equations of the form

fIΔu\ a (Δ - μ i ) u + λ\u\b = g(x) i n Ω ,
(5.3) <

[w = 0 on 9β ,

where α =̂ 0, — 1 and b > a, or

ί|Jw|α(J - μ,)u + \u\h = λf(x) in β ,
(5.4) <

\u = 0 on dΩ ,

where 6 ^ 0 , α + 1 and b > a. In fact, we can reduce (5.3) to (5.2) by
putting

where we assume that g(x) is of compact support if a > — 1. Similarly
we can reduce (5.4) to (5.2) by putting

L = A - μl9 K(u)= -f(x)\Δu\-a , M(ύ)= -\u\b\Δu\-a ,

where we assume that f(x) is of compact support if a > — 1. It is easy
to see that K, Me C\U-> X) by the similar argument as in the proof of
Theorem 5.1. Thus we have the following:
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COROLLARY 5.2. (5.3) has a family of solutions {(u(e), λ(e) | 0 <^ e <I p}

with

u(e) = e-1/(β+1){^ + ez(e)} , λ(e) = eb"a+1)a(e) ,

where z(e) and a(e) have all the properties expressed in Theorem 5.1.

COROLLARY 5.3. If f(x)φ(x)~a+1dx Φ 0, then (5.4) has a family of solu-

tions {(u(e), λ(e) 10 5g e <^ p) with

u(e) = e1"*-*'1^ + ez(e)} , Λ(e) = ebnb'a-l)a{e) ,

where z(e) and a(e) have all the properties expressed in Theorem 5.1.

5.2. We consider the nonlinear elliptic equation

(Δ - μo)u + λu* = /(x) |FW|4 i n ώ ,

[ = 0 on

where //0 is an eigenvalue of Δ with multiplicity d ^ 1 and / e Ca(Ω).

THEOREM 5.2. Let φ3 (j = 1, , d) be the basis of N(Δ — μ0). If

( i ) c? is odd, or

(ii) d is even and for any ueN(Δ — μ0) — {0}, ί/iere exists some φό such

that /|Fι/|4 φjdx Φ 0, ί/ien (u, X) = (0,0) is a bifurcation point of (5.5).

Proof. We define L = Δ - μ0, K(u) = u\ M(u) = f\Vu\\ X= Ca(Ω)

and D(L) = {ue C2+a(Ω) \ u = 0 on dΩ}. L satisfies (a.l) and (a.2) (see § 5.1).

The conditions (a.3) and (a.4) are easily verified by the fact that Ca(Ω)

is a Banach algebra, i.e., if f,geCa(Ω), then \\fg\\ <J ||/|| | |g||. Let ueS,

the unit sphere of N(L). We define the projection Pu by Puv = (v, u)uy

where ( , ) denotes the inner product of L\Ω). Then

PuK(u) = Pu{uz) = (u3, φ = i ί [ w4dx f̂c 0 .

Hence we have PK(u) Φ 0, which means (c.l). Moreover we have

tu + (1 - t)PK(u) ΦO for u e S, 0 ^ t ^ 1 .

Then Ks: S-+ S is homotopic to the identity I: S —> S, where i£5 is defined

by Ks(u) = PK(u)l\\PK(u)\\. Thus άegK8 = l. Since (c.2) holds by the

assumption (ii), Ms: S—> S is also well defined. It is well known that if

Ms is an even map (i.e. Ms(u) — Ms(—u)) then deg Ms is even. Then
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we have deg Ks Φ deg Ms, which means (iii) of Theorem 1.1. Therefore

the assumption (i) or (iii) of Theorem 1.1 is satisfied, which completes

the proof.

5.3. We consider the system of the nonlinear elliptic equations

(5.6)

(Δ — μo)u + λ(au + bv) + ur — v2 — 0 in Ω ,

(Δ — μo)v + λ(cu + dv) + uυ = 0 in fi,

u = v = 0 on dί2

where μ0 is a simple eigenvalue of Δ and αd — be Φ 0.

THEOREM 5.3. Let φ be the eigenfunction corresponding to μQ. If

φ*dx Φ 0, then (u, v, X) = (0, 0, 0) is a bifurcation point of (5.6).
J Ω

Proof. Put X = {C*(Ω)}\ D = {ue C2 + β(Ω) \ u = 0 on BΩ}\

-K Λ ) w i t h I ) ( L ) . f l , K=(a b ) 9Δ — μj \c d)

where ί7 = (u, υ)1. Then (5.6) can be expressed in the form (5.2). L satis-

fies (a.l) and (a.2) with dim N(L) - 2. Clearly (a.3) and (a.4) hold true.

It is easy to see that (c.l) holds and that deg Ks = ± 1 if ad — be ^ 0

respectively. We shall prove that if φ^dx Φ 0, then (c.2) holds and
JΩ

deg Ms = 2. Since PU = (u, φ)φι + (υ, φ)φ29 where φγ = (φ, 0)', ^ = (0, φ)\

If we identify U = sφ1 + ί̂ 2 with (5, ί)', then

PM: (s, tY > (g(s2 - f), gst) , g = f

Therefore we can see that the condition (iii) of Theorem 1.1 is satisfied.

This proves the theorem.

5.4. We consider the system of elliptic equations with nonhomogene-

ous nonlinear terms

UΔ - μo)u + λv + uΊ = 0 infl,

(5.7) \(Δ - μo)v + λu3 + v* = 0 infl,

= v = 0 on 3fl,
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where λ is a real parameter and μ0 is an eigenvalue of Δ with multi-
plicity d.

THEOREM 5.4. // d = dim N(Δ — μ0) is odd, then (u, υ, λ) = (0, 0, 0) is
a bifurcation point of (5.7).

Proof. We define X, D, L and £7 as in § 5.3. Further we define K(U)
= (υ, w3)' and M(U) = (-u\ -v'Y. Then (5.7) can be written in the form
(5.2). We shall prove deg Ks = — 1 and άeg Ms = 1, where the maps Ks

and Ms: S-+ S are defined as in §5.3. Since

we have deg Ks = deg A5 deg if̂ , where

(1 is the identity on N{Δ — μ0), i.e. the identity matrix of size d). Clearly
deg As — det A = — 1. We shall prove degi^ — 1. Define the map PL

by PLUf - (U\ U)U, where

(U\ U) = f {ufu + ι/υ)dx
J Ω

with U = (M, U)' and Uf - (M7, LΌ£- Since

PLK'(U) =u[ {uA + ? ; 2 ) ^ , PLKf(U) φ 0
J

for all ί7e S. Hence PK\U) Φ 0 for all UeS. Furthermore we have

tU + ( 1 - t)PK'{U) ΦO for U e S , 0 £ t £ l .

Then if̂  is homotopic to the identity I: S -+ S, which implies deg Ks = 1.
Hence deg Ks = degA^ deg if̂  = ( - l ) χ l = - l , Similarly we have
deg Ms = 1. It remains to verify the assumption (c.3). We have

\\PM(rUnΣ < cr^\\ul + r5 | |^ιi5«
ues \\PK(rU)h = \\PuK\rU)\\x

4 c ί x + r | |u | | e ί

for any U = (u, vf e S, where || ||α denotes the norm of Ca(Ω). This implies
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<c'.3). Thus all the assumptions (a.l), (a.2), (a'.3), (a'.4), (cM), (c'.2), (c'.3)

and (iii) of Theorem 3.1 are satisfied.

Appendix. We can simplify the proof of Theorem 1.1 if dim N(L) =

1. In this case, S is composed of two points, say, ±y0. Thus Equation

(2.6) (put Fe(y, a) = 0) is directly solved by the implicit function theorem

with respect to a in terms of e for each ±y0, because (dldά)F0(±y0, a) =

PK(±y0) Φ 0. Hence, Theorem 1 immediately follows from Proposition 2.1.
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