Vol. 86 (1982), 229-248

MODULAR REPRESENTATIONS OF ABELIAN GROUPS WITH REGULAR RINGS OF INVARIANTS

HARUHISA NAKAJIMA

§ 1. Introduction

Let k be a field of characteristic p and G a finite subgroup of $G L(V)$ where V is a finite dimensional vector space over k. Then G acts naturally on the symmetric algebra $k[V]$ of V. We denote by $k[V]^{G}$ the subring of $k[V]$ consisting of all invariant polynomials under this action of G. The following theorem is well known.

Theorem 1.1 (Chevalley-Serre, cf. [1, 2, 3]). Assume that $p=0$ or $(|G|, p)=1$. Then $k[V]^{G}$ is a polynomial ring if and only if G is generated by pseudo-reflections in $G L(V)$.

Now we suppose that $|G|$ is divisible by the characteristic $p(>0)$. Serre gave a necessary condition for $k[V]^{a}$ to be a polynomial ring as follows.

Theorem 1.2 (Serre, cf. [1, 3]). If $k[V]^{a}$ is a polynomial ring, then G is generated by pseudo-reflections in $G L(V)$.

But the ring $k[V]^{G}$ of invariants is not always a polynomial ring, when G is generated by pseudo-reflections in $G L(V)$ (cf. [1, 3]).

In this paper we shall completely determine abelian groups G such that $\boldsymbol{F}_{p}[V]^{G}$ are polynomial rings (\boldsymbol{F}_{p} is the field of p elements). Our main result is

Theorem 1.3. Let V be a vector space over \boldsymbol{F}_{p} and G an abelian group generated by pseudo-reflections in $G L(V)$. Let G_{p} denote the p-part of G and assume that $G_{p} \neq\{1\}$. Then the following statements on G are equivalent:
(1) $\boldsymbol{F}_{p}[V]^{G}$ is a polynomial ring.
(2) The natural $\boldsymbol{F}_{p} G_{p}$-module V defines a couple $\left(V, G_{p}\right)$ which decomposes to one dimensional subcouples (for definitions, see § 2).

Received June 19, 1980.

The computation of invariants of elementary abelian p-groups G plays an essential role in the proof of this theorem. Therefore we need to study the structure of $\boldsymbol{F}_{p} G$-modules V such that $\boldsymbol{F}_{p}[V]^{G}$ are polynomial rings under some additional hypothesis (see § 3). In §4 our main result shall be reduced to (3.2).

Hereafter k stands for the prime field of characteristic $p>0$ and without specifying we assume that all vector spaces are defined over k.

§ 2. Preliminaries

An element σ of $G L(V)$ is said to be a pseudo-reflection if $\operatorname{dim}(1-\sigma) V$ $\leqq 1$. We say that a graded ring $R=\oplus_{n \geqq 0} R_{n}$ is defined over a field K, when $R_{0}=K$ and R is a finitely generated K-algebra. It is well known that R is a polynomial ring over K if R is regular at the homogeneous maximal ideal $\oplus_{n>0} R_{n}$. For a subset A of a ring $R,\langle A\rangle_{R}$ denotes the ideal of R generated by A. To simplify our notation we put $\langle A\rangle=\langle A\rangle_{k[v]}$ if A is a subset of the fixed k-space V (for a subset B of a group, $\langle B\rangle$ means the subgroup generated by B).

Proposition 2.1. Let G be an abelian group generated by pseudoreflections in $G L(V)$ and let G_{p} denote the p-part of G. Then $k[V]^{G}$ is a polynomial ring if and only if $k[V]^{G_{p}}$ is a polynomial ring.

Proof. Let \bar{k} be the algebraic closure of k and let $G_{p^{\prime}}$ be the p^{\prime}-part of G. Since G is an abelian group generated by pseudo-reflections in $G L\left(\bar{k} \otimes_{k} V\right)$, we can immediately find a $\bar{k} G_{p}$-submodule V_{p} and a $\bar{k} G_{p^{\prime}}$ submodule $V_{p^{\prime}}$ such that $V_{p} \cong\left(\bar{k} \otimes_{k} V\right)^{G_{p^{\prime}}}, V_{p^{\prime}} \subseteq\left(\bar{k} \otimes_{k} V\right)^{G_{p}}$ and $\bar{k} \otimes_{k} V=$ $V_{p} \oplus V_{p^{\prime}}$. Therefore

$$
\bar{k} \otimes_{k} k[V]^{G} \cong \bar{k}\left[\bar{k} \otimes_{k} V\right]^{G} \cong \bar{k}\left[V_{p}\right]^{G_{p}} \otimes_{\bar{k}} \bar{k}\left[V_{p^{\prime}}\right]^{G_{p^{\prime}}}
$$

and $\bar{k}\left[V_{p^{\prime}}\right]^{G_{p^{\prime}}}$ is a polynomial ring. The assertion follows from these facts, because $k[V]^{G}$ and $\bar{k}\left[V_{p}\right]^{\sigma_{p}}$ are graded algebras defined over fields.

Proposition 2.2. If G is an abelian p-group generated by pseudoreflections in $G L(V)$, then V / V^{a} is a trivial $k G$-module (i.e. G acts trivially on $\left.V / V^{G}\right)$.

Proof. Let $\sigma \in G-\{1\}$ be a pseudo-reflection and choose $Z \in V$ to satisfy $(1-\sigma) V=k Z$. Clearly it suffices to prove that $Z \in V^{G}$. Since G
is abelian, $\tau(k Z)=(1-\sigma) \tau(V)=k Z$ for any element τ of G. Hence the map $\chi: G \rightarrow k^{*}$ defined by

$$
\tau \longmapsto \frac{\tau^{-1}(Z)}{Z}
$$

is a group homomorphism, where k^{*} is the unit group of k. But we have $\operatorname{Hom}\left(G, k^{*}\right)=\{1\}$, as G is a p-group. This implies that $Z \in V^{G}$.
(V, G), which is called a couple, stands for a pair of a group G and a G-faithful $k G$-module V such that V / V^{G} is a nonzero trivial $k G$-module (in this case G is an elementary abelian p-group). The dimension of (V, G) is defined to be $\operatorname{dim} V / V^{G}$. We say (U, H) is a subcouple of (V, G) if H is a subgroup of G and U is a $k H$-submodule of V. Let us associate (V, G) with the subspace

$$
\mathscr{A}(V, G)=\sum_{\sigma \in G}(1-\sigma) V
$$

of V^{G} and the subring $\mathscr{2}(V, G)$ which is the image of the canonical ring homomorphism

$$
k[V]^{G} /\left\langle V^{G}\right\rangle^{G} \longrightarrow k\left[V / V^{G}\right] .
$$

Lemma 2.3. For any couple (V, G) the k-algebra $2(V, G)$ is a polynomial ring.

Proof. Putting

$$
R=\bar{k}\left[\bar{k} \otimes_{k} V\right]^{G} /\left(\left\langle\bar{k} \otimes_{k} V^{G}\right\rangle_{k\left[\left[\bar{k} \otimes_{k} V\right]\right.}\right)^{G},
$$

we see that

$$
R \cong \bar{k} \otimes_{k} \mathscr{2}(V, G)
$$

as graded algebras defined over \bar{k}. Let $\mathfrak{M}_{i}(i=1,2)$ be maximal ideals of $\bar{k}\left[\bar{k} \otimes_{k} V\right]$ which contain the ideal $\left\langle\bar{k} \otimes_{k} V^{G}\right\rangle_{\bar{k}\left[\bar{k} \otimes_{k} V\right] \cdot}$. Then, by the definition of a couple, we can select a coordinate transform

$$
\rho: \bar{k}\left[\bar{k} \otimes_{k} V\right] \longrightarrow \bar{k}\left[\bar{k} \otimes_{k} V\right]
$$

sending \mathfrak{M}_{1} to \mathfrak{M}_{2} which commutes with the action of G. The contractions of $\mathfrak{M}_{i}(i=1,2)$ to $\bar{k}\left[\bar{k} \otimes_{k} V\right]^{G}$ define maximal ideals \mathfrak{R}_{i} of R respectively and the transform φ induces $R_{\Re_{1}} \leftrightharpoons R_{\Re_{2}}$. Hence we conclude that R is regular, because it is an affine domain. From this $\mathscr{2}(V, G)$ is a polynomial ring.

We say that (V, G) decomposes to subcouples $\left(V_{i}, G_{i}\right)(1 \leqq i \leqq m)$ if $G=\oplus_{1 \leqq i \leqq m} G_{i}, V^{G} \subseteq V_{i} \subseteq V^{G_{j}}$ for all $1 \leqq i, j \leqq m$ with $i \neq j$ and

$$
V / V^{G}\left(=\sum_{1 \leqq i \leqq m} V_{i} / V^{a}\right)=\underset{1 \leqq i \leqq m}{\oplus} V_{i} / V^{a}
$$

The set consisting of these subcouples is called a decomposition of (V, G). Further (V, G) is defined to be decomposable, when it has a decomposition $\left\{\left(V_{i}, G_{i}\right): 1 \leqq i \leqq m\right\}$ with $m \geqq 2$.

Proposition 2.4. Let (V, G) be a couple which decomposes to subcouples $\left(V_{i}, G_{i}\right)(1 \leqq i \leqq m)$. Then the following conditions are equivalent:
(1) $k[V]^{G}$ is a polynomial ring.
(2) $k\left[V_{i}\right]^{G_{i}}(1 \leqq i \leqq m)$ are polynomial rings.

Proof. Suppose that $k[V]^{G}$ is a polynomial ring. Since $k[V]^{G}$ contains $k\left[V_{i}\right]^{G_{i}}$, the canonical $k G_{i}$-epimorphism $V \rightarrow V_{i}$ induces a graded epimorphism

$$
\psi_{i}: k[V]^{G} \longrightarrow k\left[V_{i}\right]^{\sigma_{i}} .
$$

Clearly $V^{G}=V_{i}^{G_{i}}$ and $\psi_{i}\left(\left\langle V^{G}\right\rangle^{G}\right)=\left(\left\langle V^{G}\right\rangle_{k\left[V_{i}\right]}\right)^{G_{i}}$. Hence $\left\langle V^{G}\right\rangle^{G}=\left\langle V^{G}\right\rangle_{k[V]^{G}}$ implies

$$
\left(\left\langle V_{i}^{G_{i}}\right\rangle_{k[V i]}\right)^{G_{i}}=\left\langle V_{i}^{G_{i}}\right\rangle_{k[V i]_{i}}^{\sigma_{i}} .
$$

By (2.3) we see that $\mathscr{2}\left(V_{i}, G_{i}\right)$ are polynomial rings and therefore $k\left[V_{i}\right]^{G_{i}}$ ($1 \leqq i \leqq m$) are also polynomial rings. Conversely we assume the condition (2). Denote by n_{i} the dimension of $\left(V_{i}, G_{i}\right)(1 \leqq i \leqq m)$ and let $f_{i j}\left(1 \leqq j \leqq n_{i}\right)$ be homogeneous polynomials in $k\left[V_{i}\right]$ such that $k\left[V_{i}\right]^{a_{i}}=k\left[V_{i}^{G_{i}}\right]\left[f_{i 1}, \cdots, f_{i n_{i}}\right]$ $(1 \leqq i \leqq m)$. Then it follows easily that $k[V]^{G}=k\left[V^{G}\right]\left[f_{i j}: 1 \leqq i \leqq m\right.$, $\left.1 \leqq j \leqq n_{i}\right]$.

For a one dimensional couple ($V^{a} \oplus k X, G$) we call

$$
F(X)=\prod_{\sigma \in G} \sigma(X)
$$

the canonical $\left(V^{G} \oplus k X, G\right)$-invariant on $X . \quad F(X)$ satisfies the identity

$$
F\left(Y_{1}+Y_{2}\right)=F\left(Y_{1}\right)+F\left(Y_{2}\right) .
$$

Clearly we must have $k\left[V^{G} \oplus k X\right]^{G}=k\left[V^{G}\right][F(X)]$ and hence
Corollary 2.5. If a couple (V, G) decomposes to one dimensional subcouples, then $k[V]^{G}$ is a polynomial ring.

Proposition 2.6. Let G be a subgroup of $G L(V)$ and let H be the
inertia group of a prime ideal \mathfrak{P} of $k[V]$ under the natural action of G. If $k[V]^{a}$ is a polynomial ring, then $k[V]^{H}$ is also a polynomial ring.

This proposition is almost evident.
Lemma 2.7. Let (V, G) be a couple with $\operatorname{dim} V^{G}=1$ and suppose that $\left\{X_{i}: 0 \leqq i \leqq m\right\}$ is a k-basis of V with $V^{G}=k X_{0}$. Further, for non-negative integers $t(i)(1 \leqq i \leqq m)$, let R be the graded polynomial subalgebra $k\left[X_{0}\right.$, $\left.X_{1}^{p^{t(1)}}, \cdots, X_{m}^{p^{t(m)}}\right]$ of $k[V]$. Then R^{a} is a polynomial ring and we can effectively determine a regular system of homogeneous parameters of R^{G}.

Proof. We prove this by induction on $|G|$ and may assume that

$$
\begin{aligned}
t(1) & =\cdots<\cdots=t\left(m_{i-1}\right)<t\left(m_{i-1}+1\right) \\
& =t\left(m_{i-1}+2\right) \cdots=t\left(m_{i}\right)<\cdots<\cdots=t\left(m_{n}\right)
\end{aligned}
$$

where m_{n} is equal to m. Let us put

$$
U_{i}=\bigoplus_{0 \leqq j \leqq m_{1}} k X_{j}^{\left.p t m_{i}\right)}
$$

and

$$
U_{i}^{\prime}=U_{i} \oplus \oplus_{m_{i-1}<j \leqq m_{i}} k X_{j}^{p t\left(m_{i}\right)}
$$

respectively and moreover define G_{1} to be the stabilizer of G at U_{1}. Then there is a subgroup G_{2} such that $G=G_{1} \oplus G_{2}$. Because U_{i} is a G_{2}-faithful $k G_{2}$-module with $\left(G_{2}-1\right) U_{i}=k X_{0}^{p t\left(m_{i}\right)}$, we deduce that the natural short exact sequence

$$
0 \longrightarrow U_{i} \longrightarrow U_{i}^{\prime} \longrightarrow \oplus_{m_{i-1}<j \leqq m_{i}} k X_{j}^{p^{t\left(m_{i} i\right.}} \bmod U_{i} \longrightarrow 0
$$

of $k G$-modules is G_{2}-split. Therefore we may suppose that $X_{j}^{p^{t\left(m_{i}\right)}}(2 \leqq i \leqq n$; $m_{i-1}<j \leqq m_{i}$) are invariants of G_{2}. On the other hand we can effectively determine homogeneous polynomials $f_{i}\left(1 \leqq i \leqq m_{1}\right)$ which satisfy $k\left[U_{1}\right]^{G_{2}}$ $=k\left[X_{0}^{p^{t\left(c m_{1}\right)}}, f_{1}, \cdots, f_{m_{1}}\right]$. Hence it follows that $R^{G}=S^{G_{1}}\left[f_{1}, \cdots, f_{m_{1}}\right]$ where $S=k\left[X_{0}\right]\left[X_{j}^{p^{t\left(m_{i}\right.}}: 2 \leqq i \leqq n, m_{i-1}<j \leqq m_{i}\right]$. Then the assertion is shown from the induction hypothesis.

When W is a $k H$-submodule of U for a subgroup H of $G L(U)$, we denote by $H(W)$ the kernel of the canonical homomorphism $H \rightarrow G L(U / W)$.

Proposition 2.8. Let (V, G) be a couple such that $k[V]^{c}$ is a polynomial ring. Then we can effectively determine a regular system of homogeneous parameters of $\mathscr{2}(V, G)$.

Proof. Let

$$
0=W_{0} \subseteq W_{1} \subseteq \cdots \cong W_{a}=V^{G}
$$

be an ascending chain of subspaces with $\operatorname{dim} W_{i} / W_{i-1}=1$. Put $R_{0}=k[V]$ and define

$$
R_{i}=R_{i-1}^{G_{i}} / W_{i} R_{i-1}^{G_{i}} \quad(1 \leqq i \leqq d)
$$

inductively where G_{i} denotes $G\left(W_{i}\right)$. Then obviously the natural map

$$
\mathscr{2}(V, G) \longrightarrow R_{d}
$$

is an isomorphism, because, by (2.6), $k[V]^{\sigma_{i}}(1 \leqq i \leqq d)$ are polynomial rings. Hence this proposition follows from (2.7).

Lemma 2.9. Let (V, G) be a one dimensional couple and suppose that $\left\{X, T_{1}, \cdots, T_{a}\right\}$ is a k-basis of V with $V^{G}=\oplus_{1 \leq i \leq d} k T_{i}$. Further let $F(X)$ denote the canonical (V, G)-invariant on X. If $\oplus_{i \neq 1} k T_{i} \nsupseteq \mathscr{A}(V, G)$ and $\oplus_{i \neq 2} k T_{i} \supseteqq \mathscr{A}(V, G)$, then we have $F\left(T_{1}\right) \in\left\langle T_{2}, T_{3}, \cdots, T_{d}\right\rangle$ and

$$
F(X) \equiv X^{p^{u}}-T_{1}^{\left.p^{u-p^{u-1}} X^{p^{u-1}} \bmod \left\langle T_{3}, T_{4}, \cdots, T_{d}\right\rangle .\right\} .}
$$

where $p^{u}=|G|$.
Proof. Choose a k-basis $\left\{Z_{j}: 1 \leqq j \leqq u\right\}$ of $\mathscr{A}(V, G)$ such that $Z_{1} \equiv$ $T_{1} \bmod \oplus_{i \neq 1} k T_{i}$ and $\oplus_{i \neq 1} k T_{i} \supseteq\left\{Z_{2}, Z_{3}, \cdots, Z_{u}\right\}$. Putting $F_{1}(X)=X^{p}-Z_{u}^{p-1} X$, we inductively define

$$
F_{i+1}(X)=F_{i}(X)^{p}-F_{i}\left(Z_{u-i}\right)^{p-1} F_{i}(X) \quad(i<u) .
$$

Then there exist elements $\sigma_{i}(1 \leqq i \leqq u)$ in G which satisfy $\left(\sigma_{i}-1\right) X=Z_{i}$ and therefore we must have $F(X)=F_{u}(X)$. From this we deduce that

$$
\begin{aligned}
F\left(T_{1}\right) & =F_{u-1}\left(T_{1}\right)^{p}-F_{u-1}\left(Z_{1}\right)^{p-1} F_{u-1}\left(T_{1}\right) \\
& \equiv 0 \bmod \left\langle T_{2}, T_{3}, \cdots, T_{d}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
F(X) & =F_{u-1}(X)^{p}-F_{u-1}\left(Z_{1}\right)^{p-1} F_{u-1}(X) \\
& \equiv X^{p^{u}}-T_{1}^{p^{u}-p^{u-1}} X^{p^{u-1}} \bmod \left\langle T_{3}, T_{4}, \cdots, T_{a}\right\rangle,
\end{aligned}
$$

since $Z_{1} \equiv T_{1} \bmod \oplus_{3 \leqq i \leqq d} k T_{i}$ and $F_{u-1}(X) \equiv X^{p u-1} \bmod \left\langle T_{3}, T_{4}, \cdots, T_{d}\right\rangle$.
Let $\mathscr{D}=\left\{\left(V^{G} \oplus W_{i}, G_{i}\right): 1 \leqq i \leqq m\right\}$ be a decomposition of (V, G) and put $\operatorname{supp}_{\mathscr{g}} L=\left\{i_{0}: V^{G} \oplus \oplus_{i \neq i_{0}} W_{i} \nsupseteq L\right\}$ for a subset L of V. Let us consider an element θ of $G L(V)$ with the property that $V^{\langle\theta\rangle} \supseteq V^{\theta}$. We say θ is
\mathscr{D}-admissible if G contains some subgroups $G_{i}^{\prime}(1 \leqq i \leqq m)$ which give another decomposition $\mathscr{D}^{\prime}=\left\{\left(V^{a} \oplus \theta\left(W_{i}\right), G_{i}^{\prime}\right): 1 \leqq i \leqq m\right\}$ of (V, G). In the case of $\operatorname{dim} W_{i}=1$ the transform θ is characterized by

Proposition 2.10. If $W_{i}=k X_{i}(1 \leqq i \leqq m)$ then the following conditions are equivalent:
(1) θ is \mathscr{D}-admissible.
(2) There is a permutation π on $\{1,2, \cdots, m\}$ such that $\left|G_{i}\right|=\left|G_{\pi(i)}\right|$, $\mathscr{A}\left(V^{G} \oplus W_{\pi(i)}, G_{\pi(i)}\right) \supseteq \mathscr{A}\left(V^{G} \oplus W_{j}, G_{j}\right)\left(j \in \operatorname{supp}_{\mathscr{\vartheta}} \theta\left(W_{i}\right)\right)$ and $\pi(i) \in \operatorname{supp}_{\mathscr{\theta}} \theta\left(W_{i}\right)$ for $1 \leqq i \leqq m$.

Proof. Suppose that the condition (2) is satisfied and let $G_{i_{0}}^{\prime}$ be

$$
\left\{\tau \in G L(V): V^{\langle\tau\rangle} \supseteqq V^{G} \oplus \oplus \oplus \nmid \neq i_{0}\left(W_{i}\right) \text { and } \mathscr{A}\left(V^{G} \oplus W_{\pi\left(i_{0}\right)}, G_{\pi\left(i_{0}\right)}\right) \supseteqq(1-\tau) V\right\}
$$

for $1 \leqq i_{0} \leqq m$. Furthermore set

$$
J=\left\{i: \mathscr{A}\left(V^{G} \oplus W_{i}, G_{i}\right) \supseteqq \mathscr{A}\left(V^{G} \oplus W_{\pi\left(i_{0}\right)}, G_{\pi\left(i_{0}\right)}\right)\right\}
$$

and

$$
J^{\prime}=\left\{i: \mathscr{A}\left(V^{G} \oplus W_{i}, G_{i}\right)=\mathscr{A}\left(V^{G} \oplus W_{\pi\left(i_{0}\right)}, G_{\pi\left(i_{0}\right)}\right)\right\}
$$

Since $G_{i_{0}}^{\prime} \neq\{1\}$, we pick up any element σ from $G_{i_{0}}^{\prime}-\{1\}$. Then, for each $j \in J$, we can choose $\tau_{j} \in G_{j}$ with $\left(1-\tau_{j}\right) V=(1-\sigma) V$. Clearly there are integers $0 \leqq \mu(j)<p\left(j \in J^{\prime}\right)$ such that

$$
\left(1-\prod_{j \in J^{\prime}} \tau_{j}^{\mu(j)}\right) \theta\left(X_{i}\right)=(1-\sigma) \theta\left(X_{i}\right)
$$

for $\pi(i) \in J^{\prime}$. Further let us define integers $0 \leqq \mu(j)<p\left(j \in J-J^{\prime}\right)$ to satisfy

$$
\prod_{j \in J} \tau_{j}^{\mu_{j}^{(j)} \theta\left(X_{i}\right)=\theta\left(X_{i}\right) \quad\left(\pi(i) \in J-J^{\prime}\right)}
$$

Consequently we see that

$$
\left(1-\prod_{j \in J} \tau_{j}^{\mu(j)}\right) \theta\left(X_{i}\right)=(1-\sigma) \theta\left(X_{i}\right) \quad(1 \leqq i \leqq m)
$$

which yields

$$
\sigma=\prod_{j \in J} \tau_{j}^{\mu(j)}
$$

Thus the couple (V, G) decomposes to ($\left.V^{a} \oplus \theta\left(W_{i}\right), G_{i}^{\prime}\right)(1 \leqq i \leqq m$) since $G \supseteqq G_{i}^{\prime}$ and $\left|G_{i}\right|=\left|G_{i}^{\prime}\right|(1 \leqq i \leqq m)$.

Conversely assume that (V, G) has another decomposition $\mathscr{D}^{\prime}=\left\{\left(V^{G} \oplus\right.\right.$ $\left.\left.\theta\left(W_{i}\right), G_{i}^{\prime}\right): 1 \leqq i \leqq m\right\}$ and let $f_{i}\left(\theta\left(X_{i}\right)\right)$ be the canonical $\left(V^{a} \oplus \theta\left(W_{i}\right), G_{i}^{\prime}\right)$ invariant on $\theta\left(X_{i}\right)$. If

$$
\theta\left(X_{i}\right)=\sum_{1 \leqq j \leqq m} a_{i j} X_{j}
$$

for some $a_{i j} \in k$, we have

$$
f_{i}\left(\theta\left(X_{i}\right)\right)=\sum_{1 \leq j \leq m} a_{i j} f_{i}\left(X_{j}\right)
$$

Select a subgroup $H_{i j}$ of $G L\left(V^{a} \oplus W_{j}\right)$ such that $k\left[V^{a} \oplus W_{j}\right]^{H_{i j}}=$ $k\left[V^{G}\right]\left[f_{i}\left(X_{j}\right)\right]$. Then the natural $k H_{i j}$-module $V^{G} \oplus W_{j}$ defines a couple which satisfies that $\mathscr{A}\left(V^{G} \oplus W_{j}, H_{i j}\right)=\mathscr{A}\left(V^{a} \oplus \theta\left(X_{i}\right), G_{i}^{\prime}\right)$. On the other hand $f_{i}\left(\theta\left(X_{i}\right)\right)$ can be expressed as

$$
f_{i}\left(\theta\left(X_{i}\right)\right)=\sum_{1 \leqq j \leqq m} a_{i j} h_{i j}+g_{i}
$$

for $g_{i} \in\left\langle V^{G}\right\rangle_{k[V]^{G}}$ and $h_{i j} \in k\left[V^{G} \oplus W_{j}\right]^{\sigma_{j}}$ where each $h_{i j}$ is monic as a polynomial of X_{j}. Therefore the canonical $\left(V^{a} \oplus W_{j}, G_{j}\right)$-invariant $F_{j}\left(X_{j}\right)$ on X_{j} divides $f_{i}\left(X_{j}\right)$ in $k\left[V^{a} \oplus W_{j}\right]\left(j \in \operatorname{supp}_{9} \theta\left(X_{i}\right)\right)$. From this we must have $\mathscr{A}\left(V^{G} \oplus \theta\left(W_{i}\right), G_{i}^{\prime}\right) \supseteqq \mathscr{A}\left(V^{G} \oplus W_{j}, G_{j}\right)\left(j \in \operatorname{supp}_{9} \theta\left(X_{i}\right)\right)$ for $1 \leqq i \leqq m$. The remainder of (2) follows directly from the equality

$$
k\left[V^{G}\right]\left[F_{1}\left(X_{1}\right), \cdots, F_{m}\left(X_{m}\right)\right]=k\left[V^{G}\right]\left[f_{1}\left(\theta\left(X_{1}\right)\right), \cdots, f_{m}\left(\theta\left(X_{m}\right)\right)\right]
$$

We say that (V, G) is homogeneous when $2(V, G)$ is homogeneous concerning the natural graduation induced from that of $k[V]$ (i.e. $\mathscr{Q}(V, G)$ is generated by some homogeneous part as a k-algebra). A couple (V, G) is defined to be quasi-homogeneous if there is a subspace W of V^{G} with $\operatorname{codim}_{V^{G}} W=1$ such that $G(W)=\{1\}$ or $(V, G(W))$ is a homogeneous subcouple which satisfies $\operatorname{dim}(V, G)=\operatorname{dim}(V, G(W))$.

§ 3. Computation of invariants

Let $\left(V^{G} \oplus k X_{i}, H_{i}\right)(1 \leqq i \leqq m)$ be subcouples of (V, G) with

$$
\operatorname{dim}\left(V^{G}+\sum_{1 \leqq i \leqq m} k X_{i}\right)=m+\operatorname{dim} V^{G}
$$

such that $V^{H_{j}} \ni X_{i}(i \neq j)$ and $G(W)=\oplus_{1 \leqq i \leqq m} H_{i}$ for a subspace W of V^{G} with $\operatorname{codim}_{V G} W=1$. We define Z, T_{i} and W_{j} to satisfy $V^{G}=W \oplus k Z, W$ $=\oplus_{1 \leqq i \leqq d} k T_{i}$ and $k X_{j}=W_{j}(1 \leqq j \leqq m)$ respectively. $\quad F_{i}=F_{i}\left(X_{i}\right)$ denotes the canonical ($V^{a} \oplus W_{i}, H_{i}$)-invariant on X_{i}. For any n and $c=\left(c_{1}, \cdots, c_{n}\right)$ $\in \mathbf{Z}^{n}$, let $\|c\|$ denote the sum $\sum_{1 \leqq i \leqq n} c_{i}$ and $\left\{e_{i}: 1 \leqq i \leqq n\right\}$ be the standard
basis of \boldsymbol{Z}^{n} (\boldsymbol{Z} is the set of all integers). Further we suppose that there are pseudo-reflections $\sigma_{j} \in G-G(W)(1 \leqq j \leqq m)$ with $\left[\lambda_{i j}\right] \in G L_{m}(k)$ where

$$
\lambda_{i j}=\frac{\left(\sigma_{j}-1\right) X_{i} \bmod W}{Z \bmod W}
$$

Lemma 3.1. Let R be a subalgebra of $k[V]^{G}$ which contains $k\left[V^{G}\right]$: Assume that $F_{1}^{c_{1}} F_{2}^{c_{2}} \cdots F_{m}^{c_{m}}\left(0 \leqq c_{i}<p\right)$ are linearly independent over R and let g_{1} be an element of the R-module

$$
\bigoplus_{c \in \Gamma} R F_{1}^{c_{1}} F_{2}^{c_{2}} \cdots F_{m}^{c_{m}}
$$

where $\Gamma=\left\{c=\left(c_{1}, \cdots, c_{m}\right) \in \mathbf{Z}^{m}: 0 \leqq c_{i}<p\right.$ and $\left.\|c\|>1\right\}$. Then $g_{1}=0$ if $g_{1}+g_{2} \in k[V]^{a}$ for a polynomial $g_{2} \in k[V]$ with $\left(\sigma_{j}-1\right) g_{2} \in R(1 \leqq j \leqq m)$.

Proof. For $\gamma=\left(\gamma_{1}, \cdots, \gamma_{m}\right) \in \mathbf{Z}^{m}$ with $0 \leqq \gamma_{i}<p$ let

$$
\Psi_{r}: \oplus_{0 \leq c_{i}<p} R F_{1}^{c_{1}} F_{2}^{c_{2}} \cdots F_{m}^{c_{m}} \longrightarrow R F_{1}^{r_{1}} F_{2}^{\gamma_{2}} \cdots F_{m}^{\gamma_{m}}
$$

denote the canonical projection. Choose an element $\xi=\left(\xi_{1}, \cdots, \xi_{m}\right) \in \Gamma$ such that $\Psi_{\gamma}\left(g_{1}\right)=0$ at each $\gamma \in \Gamma$ with $\|\gamma\|>\|\xi\|$. We may assume that $\xi_{1}>0$. Besides we define $\eta=\left(\eta_{1}, \cdots, \eta_{m}\right)$ as $\xi-e_{1}$ and put $\partial_{i} \eta=\eta+e_{i}$ $(1 \leqq i \leqq m)$. Then clearly

$$
\Psi_{\eta}\left(\left(\sigma_{j}-1\right) g_{1}\right)=\Psi_{\eta}\left(\left(1-\sigma_{j}\right) g_{2}\right)=0
$$

because $\left(\sigma_{j}-1\right) g_{2} \in R$ and $\eta \neq 0$. Further, as

$$
\left(\sigma_{j}-1\right) F_{i}\left(X_{i}\right)=F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) \in k\left[V^{c}\right]
$$

and $k[V]^{G} \supseteqq R$, we have

$$
\begin{aligned}
(0=) \Psi_{\eta}\left(\left(\sigma_{j}-1\right) g_{1}\right) & =\sum_{\| \forall r \in \Gamma} \Psi_{\eta}\left(\left(\sigma_{j}-1\right) \Psi_{r}\left(g_{1}\right)\right) \\
& =\sum_{1 \leq i \leq m i n} \Psi_{\eta}\left(\left(\sigma_{j}-1\right) \Psi_{\partial_{i \eta}}\left(g_{1}\right)\right) \\
& =\sum_{\eta_{i}<p-1}\left(\eta_{i}+1\right) F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) \Psi_{\partial_{i \eta}}\left(g_{j}\right) F_{i}\left(X_{i}\right)^{-1}
\end{aligned}
$$

for all $1 \leqq j \leqq m$. On the other hand the polynomials

$$
F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right)-\lambda_{i j} F_{i}(Z) \quad(1 \leqq i, j \leqq m)
$$

are contained in $k[W]$ and hence the terms of $\Psi_{\eta}\left(\left(\sigma_{j}-1\right) g_{1}\right)$ with variables Z, T_{i}, X_{j} whose degrees are maximal on Z are also terms of

$$
\sum_{\eta_{i}<p-1} \lambda_{i j}\left(\eta_{i}+1\right) F_{i}(Z) \Psi_{\partial_{i \eta}}\left(g_{1}\right) F_{i}\left(X_{i}\right)^{-1}
$$

where $X_{j}(j>m)$ are defined such that $\left\{Z, T_{i}, X_{j}\right\}$ is a k-basis of V. This implies that

$$
\Psi_{\partial_{17}}\left(g_{1}\right)\left(=\Psi_{\xi}\left(g_{1}\right)\right)=0
$$

Now let us study a decomposition of (V, G) in the case where $m \geqq 2$, $V=V^{a} \oplus \oplus_{1 \leqq i \leqq m} W_{i}, G(W)=\oplus_{1 \leqq i \leqq m} H_{i}$ and $\left|H_{i}\right|=p^{t}(1 \leqq i \leqq m$) (observe that (V, G) is quasi-homogeneous). The rest of this section is devoted to the proof of the following proposition.

Proposition 3.2. If $k[V]^{G}$ is a polynomial ring, then (V, G) is decomposable.
$I_{s}(1 \leqq s \leqq \nu)$ stand for equivalence classes of $I=\{1,2, \cdots, m\}$ with respect to the relation \sim induced by $i \sim j$ when $\mathscr{A}\left(V^{G} \oplus W_{i}, H_{i}\right)=\mathscr{A}\left(V^{G} \oplus\right.$ W_{j}, H_{j}). For each I_{s} there is a subset J_{s} of I with $\left|I_{s}\right|=\left|J_{s}\right|$ such that the submatrix $\left[\lambda_{i j}\right]_{(i, j) \in I_{s} \times J_{s}}(1 \leqq s \leqq \nu)$ is non-singular $\left(J_{s}(1 \leqq s \leqq \nu)\right.$ are not always disjoint). We may assume that $\left[\lambda_{i j}\right]_{(i, j) \in I_{s} \times J_{s}}(1 \leqq s \leqq \nu)$ are monomial matrices, replacing a decomposition of (V, H) consisting of one dimensional subcouples by the use of an admissible transform.

Moreover suppose that $k[V]^{G}$ is a polynomial ring over k. Since

$$
\mathscr{2}(V, G) \underset{\text { can }}{\simeq}\left(k[V]^{G(W)} /\langle W\rangle^{G(W)}\right)^{G / G(W)} / Z\left(k[V]^{G(W)} /\langle W\rangle^{G(W)}\right)^{G / G(W)}
$$

we have $k[V]^{a}=k\left[V^{G}\right]\left[f_{1}, \cdots, f_{m}\right]$ for homogeneous polynomials $f_{i} \in k[V]$ with $f_{i} \equiv F_{i}^{p} \bmod \left\langle V^{G}\right\rangle^{G(W)}$. Then it follows from (3.1) that

$$
f_{i}=F_{i}^{p}+\sum_{1 \leqq j \leqq m} F_{j} h_{i j} \quad(1 \leqq i \leqq m)
$$

where $h_{i j}$ are homogeneous in $k\left[V^{a}\right]$.
We wish to claim $h_{i j}=0(i \neq j)$ and show this only for the case of $i=1$. Suppose that $T_{i}(1 \leqq i \leqq t)$ span the subspace $\mathscr{A}\left(V^{\sigma} \oplus W_{1}, H_{1}\right)$ of V^{G} and set

$$
Z_{j}=Z+\sum_{1 \leqq u \leqq d} b_{j u} T_{u} \in\left(\sigma_{j}-1\right) V
$$

where $b_{j u} \in k$. For $c=\left(c_{1}, \cdots, c_{d}\right) \in N^{d}$ and $g \in k\left[V^{g}\right]_{\left(p^{t+1}\right)}, \Phi_{c}(g) \in k$ is defined to be the coefficient of

$$
T_{1}^{c_{1}} T_{2}^{c_{2}} \cdots T_{d}^{c_{d}} Z^{p+1-\|c\|}
$$

in g which is regarded as a polynomial of $T_{i}(1 \leqq i \leqq d)$ and $Z(N$ is the set of all non-negative integers). Especially we denote by $a_{i}(c)$ the value $\Phi_{c}\left(Z^{p t} h_{1 i}\right)$.

Lemma 3.3. Let c be an element of \boldsymbol{N}^{d} such that $\|c\|<p^{t}$. Then we have

$$
a_{i}(c)=\left\{\begin{aligned}
-1 & \text { if } i=1 \text { and } c=0 \\
0 & \text { otherwise. }
\end{aligned}\right.
$$

Proof. Suppose that an element $c \in \boldsymbol{N}^{d}$ satisfies $\|c\|<p^{t}$. Then

$$
\Phi_{c}\left(F_{1}(Z)^{p}\right)= \begin{cases}1 & (c=0) \\ 0 & (c \neq 0),\end{cases}
$$

since $p^{t+1}-\|c\|>p^{t}$ and

$$
F_{1}(Z)=Z^{p^{t}}+\sum_{1 \leqq i \leqq t} F_{1 i} Z^{p^{t-i}}
$$

for $F_{1 i} \in k[W]$. On the other hand we have

$$
\begin{aligned}
(0=) \Phi_{c}\left(\left(\sigma_{j}-1\right) f_{1}\right)= & \Phi_{c}\left(F_{1}\left(\left(\sigma_{j}-1\right) X_{1}\right)^{p}\right)+\sum_{1 \leqq i \leqq m} \Phi_{c}\left(F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) h_{1 i}\right) \\
= & \lambda_{1 j} \Phi_{c}\left(F_{1}(Z)^{p}+\sum_{1 \leqq u \leqq d} b_{j u} F_{1}\left(T_{u}\right)^{p}\right) \\
& +\sum_{1 \leqq i \leqq m} \lambda_{i j}\left\{\Phi_{c}\left(F_{i}(Z) h_{1 i}\right)+\sum_{1 \leqq u \leqq d} b_{j u} \Phi_{c}\left(F_{i}\left(T_{u}\right) h_{1 u}\right)\right\} \\
= & \lambda_{1 j} \Phi_{c}\left(F_{1}(Z)^{p}\right)+\sum_{1 \leqq i \leqq m} \lambda_{i j} \Phi_{c}\left(F_{i}(Z) h_{1 i}\right) .
\end{aligned}
$$

Therefore this system is reduced to

$$
\sum_{1 \leqq i \leqq m} \lambda_{i j}\left\{a_{i}(c)+\sum_{\substack{c^{\prime} \in \in N \\
0<\left\|c^{\prime}\right\|\| \| c \|}} \alpha\left(c^{\prime}\right) a_{i}\left(c^{\prime}\right)\right\}=\left\{\begin{array}{cc}
-\lambda_{1 j} & (c=0) \\
0 & (c \neq 0)
\end{array}\right.
$$

where $\alpha\left(c^{\prime}\right) \in k$. The assertion follows from the last equations, because the matrix [$\lambda_{i j}$] is non-singular.

Lemma 3.4. Let L be the subset of

$$
\{\underbrace{\{0\} \times \cdots \times\{0\}}_{t \text { times }} \times N^{d-t}
$$

consisting of all non-zero elements c such that

$$
\|c\|=\omega_{0} p^{t}+\sum_{1 \leqq i \leq t} \omega_{i}\left(p^{t}-p^{i-1}\right)
$$

for $\omega_{i} \in \mathbf{Z}$ with $\omega_{i} \leqq 0(0 \leqq i \leqq t-1)$ and $0<\omega_{t}<p$. If $c \in L$ then $a_{j}(c)$ $=0(1 \leqq j \leqq m)$.

Proof. Let $c=\left(c_{1}, \cdots, c_{d}\right)$ be an element of L such that $a_{j}\left(c^{\prime}\right)=0$
$\left(1 \leqq j \leqq m\right.$) for all $c^{\prime} \in L$ with $\|c\|>\left\|c^{\prime}\right\|$. Obviously the equalities $\Phi_{c}\left(F_{1}\left(\left(1-\sigma_{j}\right) X_{1}\right)^{p}\right)=0$ and $\Phi_{c}\left(F_{1}(Z) h_{11}\right)=a_{1}(c)$ follow from $p^{t+1}>\|c\|$ and $\left(c_{1}, \cdots, c_{t}\right)=0$. Further we can show that

$$
\Phi_{c}\left(F_{i}(Z) h_{1 i}\right)-a_{i}(c)=\beta_{i}(0) a_{i}(0)+\underset{\substack{\left.c_{c} \sum_{\in}^{\prime} \in \\\left\|c^{\prime}\right\|\right\rangle c^{\prime} \|}}{ } \beta_{i}\left(c^{\prime}\right) a_{i}\left(c^{\prime}\right) \quad(1<i \leqq m)
$$

for some $\beta_{i}(0), \beta_{i}\left(c^{\prime}\right) \in k$, because

$$
F_{i}(Z)=Z^{p t}+\sum_{1 \leqq j \leqq t} F_{i j} Z^{p^{t-j}}
$$

where $F_{i j}$ are homogeneous polynomials in $k[W]$. According to (3.3) $a_{i}(0)$ $=0(1<i \leqq m)$ and therefore we must have

$$
\Phi_{c}\left(\left(F_{i}(Z)+\sum_{1 \leqq u \leqq d} b_{j u} F_{i}\left(T_{u}\right)\right) h_{1 i}\right)=a_{i}(c)
$$

because $\|c\| \neq p^{t}$. Now the system

$$
\Phi_{c}\left(F_{1}\left(\left(1-\sigma_{j}\right) X_{1}\right)^{p}\right)=\sum_{1 \leqq i \leqq m} \Phi_{c}\left(F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) h_{1 i}\right)
$$

can be expressed as

$$
\sum_{1 \leqq i \leqq m} \lambda_{i j} a_{i}(c)=0 \quad(1 \leqq j \leqq m)
$$

which imply that $a_{i}(c)=0(1 \leqq i \leqq m)$.
Lemma 3.5. If $d>t, I_{s_{0}} \ni 1$ and $I \neq I_{s_{0}}$, then $a_{i}\left(p^{t} e_{j}\right)=0(t+1 \leqq j \leqq d)$ for each $i \in I-I_{s_{0}}$.

Proof. Put $\zeta_{v}=\left\{v p^{t}-(v-1) p^{t-1}\right\} e_{t+1} \in \mathbf{Z}^{d}(1 \leqq v \leqq p)$ and let $a_{i}\left(\zeta_{p}\right)$ $=0(1 \leqq i \leqq m)$. Since $\Phi_{\zeta_{v}}\left(F_{i}\left(T_{u}\right) h_{1 i}\right)=0$ for $u \neq t+1$, by (2.9) we obtain

$$
\begin{aligned}
\Phi_{\zeta_{v}}\left(\sum_{1 \leqq i \leqq m} F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) h_{1 i}\right)= & \sum_{1 \leqq i \leqq m} \lambda_{i j} \Phi_{\zeta_{v}}\left(F_{i}(Z) h_{1 i}\right) \\
& +\sum_{i \in I} \lambda_{i j} b_{j t+1} \Phi_{\zeta_{v}}\left(F_{i}\left(T_{t+1}\right) h_{1 i}\right) \\
= & \sum_{i \in I} \lambda_{i j}\left\{a_{i}\left(\zeta_{v}\right)+b_{j t+1} a_{i}\left((v-1)\left(p^{t}-p^{t-1}\right) e_{t+1}\right)\right\} \\
& +\sum_{i \in I-i} \lambda_{i j}\left\{a_{i}\left(\zeta_{v}\right)-a_{i}\left(\zeta_{v-1}\right)\right\}
\end{aligned}
$$

where $\tilde{I}=\left\{i: \oplus_{u \neq t+1} k T_{u} \supseteq \mathcal{A}\left(V^{a} \oplus W_{i}, H_{i}\right)\right\}$. But it follows from (3.4) that

$$
a_{i}\left((v-1)\left(p^{t}-p^{t-1}\right) e_{t+1}\right)=0 \quad(2 \leqq v \leqq p)
$$

Thus for $2 \leqq v \leqq p$ and $1 \leqq j \leqq m$ we must have

$$
\begin{aligned}
(0=) \Phi_{\zeta_{v}}\left(F_{1}\left(\left(1-\sigma_{j}\right) X_{1}\right)^{p}\right) & =\Phi_{\zeta_{v}}\left(\sum_{1 \leqq i \leq m} F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) h_{1 i}\right) \\
& =\sum_{i \in \bar{I}} \lambda_{i j} a_{i}\left(\zeta_{v}\right)+\sum_{i \in I-\overline{1}} \lambda_{i j}\left\{a_{i}\left(\zeta_{v}\right)-a_{i}\left(\zeta_{v-1}\right)\right\}
\end{aligned}
$$

which shows $a_{i}\left(p^{t} e_{t+1}\right)=0$ for $i \in I-\tilde{I}$. Further let i_{0} be an element of $\left(I-I_{s_{0}}\right) \cap \tilde{I}$ if it is non-empty. We may suppose $\oplus_{u \neq t+2} k T_{u} \nsupseteq \mathcal{A}\left(V^{a} \oplus W_{i_{0}}\right.$, $\left.H_{i_{0}}\right)$ and set $\zeta_{v}^{\prime}=p^{t} e_{t+1}+(v-1)\left(p^{t}-p^{t-1}\right) e_{t+2}(1 \leqq v \leqq p)$. Clearly

$$
\Phi_{t_{i}}\left(\sum_{1 \leq i \leqq m} F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) h_{1 i}\right)=\sum_{1 \leq i \leqq m} \lambda_{i j}\left\{\Phi_{\zeta_{i}^{\prime}}\left(F_{i}(Z) h_{1 i}\right)+\sum_{u=t+1, t+2} b_{j u} \Phi_{\zeta_{i}^{\prime}}\left(F_{i}\left(T_{u}\right) h_{1 i}\right)\right\}
$$

for $2 \leqq v \leqq p$. On the other hand (2.9) implies

$$
\Phi_{\zeta_{0}^{\prime}}\left(F_{i_{0}}(Z) h_{1 i_{0}}\right)=a_{i_{0}}\left(\zeta_{v}^{\prime}\right)-a_{i_{0}}\left(\zeta_{v-1}^{\prime}\right) \quad(2 \leqq v \leqq p)
$$

because $\Phi_{t_{i}}\left(F_{i}\left(T_{u}\right) h_{1 i}\right)(u=t+1, t+2)$ are linear combinations of $a_{i}(c)$ such that $c=\left(0, \cdots, 0, c_{t+1}, \cdots, c_{d}\right)$ and $\|c\|=(v-1)\left(p^{t}-p^{t-1}\right)$. But we see

$$
\begin{aligned}
\Phi_{\zeta^{\prime}}\left(\sum_{1 \leqq \supseteq \leqq m} F_{i}\left(\left(\sigma_{j}-1\right) X_{i}\right) h_{1 i}\right)=\Phi_{r_{i}}\left(F_{1}\left(\left(1-\sigma_{j}\right) X_{1}\right)^{p}\right) & =0 \\
& (2 \leqq v \leqq p ; 1 \leqq j \leqq m)
\end{aligned}
$$

and hence this system requires

$$
a_{i_{0}}\left(p^{t} e_{t+1}\right)=a_{i_{0}}\left(\zeta_{1}^{\prime}\right)=\cdots=a_{i_{0}}\left(\zeta_{p}^{\prime}\right)=0 .
$$

The remainder can be proved in the same way.
Now let s_{0} be an integer such that $I_{s_{0}} \ni 1$ and put $\tau_{j}=\sigma_{j} \sigma_{j_{0}}^{n_{j}}(1 \leqq j \leqq m)$ where $j_{0} \in J_{s_{0}}$ and $n_{j} \in \boldsymbol{N}$ satisfy $\lambda_{1 j_{0}} \neq 0$ and $n_{j} \lambda_{1 j_{0}}=-\lambda_{1 j}$ respectively. According to (3.3)

$$
\Phi_{p^{t_{e}}}\left(F_{u}\left(\left(\sigma_{j}-1\right) X_{u}\right) h_{1 u}\right)=\lambda_{u j} \Phi_{p t_{e_{i}}}\left(F_{u}\left(Z+\sum_{1 \leqq v \leqq d} b_{j v} T_{v}\right) h_{1 u}\right)=\lambda_{u j} a_{u}\left(p^{t} e_{i}\right)
$$

for $2 \leqq u \leqq m$, and therefore if $t+1 \leqq i \leqq d$ we deduce from (3.5) that

$$
\begin{aligned}
& (0=) \Phi_{p t_{e_{i}}}\left(F_{1}\left(\left(1-\sigma_{j}\right) X_{1}\right)^{p}\right)=\sum_{1 \leq u \leq m} \Phi_{p^{t_{e}}}\left(F_{u}\left(\left(\sigma_{j}-1\right) X_{u}\right) h_{1 u}\right) \\
& \quad=\lambda_{1 j}\left\{a_{1}\left(p^{t} e_{i}\right)+b_{j i} a_{1}(0)\right\}+\sum_{u \in I_{s_{0}-\{1\}}} \lambda_{u j} a_{u}\left(p^{t} e_{i}\right) .
\end{aligned}
$$

Since $\left[\lambda_{u v}\right]_{(u, v) \in I_{s_{0} \times J_{s_{0}}}}$ is a monomial matrix, these equations imply

$$
a_{j}\left(p^{t} e_{i}\right)=0 \quad(t+1 \leqq i \leqq d ; 2 \leqq j \leqq m)
$$

So we have

$$
a_{1}\left(p^{t} e_{i}\right)=-b_{j i} a_{1}(0)=b_{j i} \quad(t+1 \leqq i \leqq d)
$$

for $1 \leqq j \leqq m$ with $\lambda_{1 j} \neq 0$, and then it follows from the definition of τ_{j} that $\left(\tau_{j}-1\right) X_{1} \in \oplus_{1 \leqq i \leqq t} k T_{i}(1 \leqq j \leqq m)$. By the identities $F_{1}\left(T_{i}\right)=0(1 \leqq i \leqq t)$ we can see

$$
\begin{aligned}
\tau_{j}\left(f_{1}\right) & =\tau_{j}\left(F_{1}\right)^{p}+\sum_{1 \leqq i \leqq m} \tau_{j}\left(F_{i}\right) h_{1 i} \\
& =F_{1}^{p}+F_{1} h_{11}+\sum_{2 \leqq i \leqq m} \tau_{j}\left(F_{i}\right) h_{1 i} .
\end{aligned}
$$

Consequently we obtain

$$
(0=)\left(\tau_{j}-1\right) f_{1}=\sum_{2 \leqq i \leqq m}\left(c_{i j} F_{i}(Z)+g_{i j}\right) h_{1 i}
$$

for some homogeneous polynomials $g_{i j}$ in $k[W]$ where

$$
c_{i j}=\frac{\left(\tau_{j}-1\right) X_{i} \bmod W}{Z \bmod W}
$$

Then, because $F_{i}(Z) \equiv Z^{p^{t}} \bmod \langle W\rangle$, this system requires $h_{1 i}=0(2 \leqq i \leqq m)$.
For $i \neq j$ we conclude that $h_{i j}=0$. Hence G contains subgroups $G_{i}(i=1,2)$ which satisfy $k[V]^{G_{1}}=k\left[V^{\epsilon}\right]\left[f_{1}, X_{2}, X_{3}, \cdots, X_{m}\right]$ and $k[V]^{a_{2}}=$ $k\left[V^{G}\right]\left[X_{1}, f_{2}, f_{3}, \cdots, f_{m}\right]$. The couple (V, G) has a decomposition $\left\{\left(V^{a} \oplus k X_{1}\right.\right.$, $\left.\left.G_{1}\right),\left(V^{G} \oplus \oplus_{2 \leqq i \leqq m} k X_{i}, G_{2}\right)\right\}$. We have just completed the proof of (3.2).

§4. Proof of Theorem 1.3

We begin with
Proposition 4.1. Let (V, G) be a quasi-homogeneous couple with $\operatorname{dim}(V, G) \geqq 2$. Suppose that $(V, G(W))$ decomposes to one dimensional subcouples for any proper subspace W of V^{G} with $G(W) \neq\{1\}$. If $k[V]^{G}$ is a polynomial ring, then (V, G) is decomposable.

Proof. Since (V, G) is quasi-homogeneous, there is a subspace W of V^{G} with $\operatorname{codim}_{V^{G}} W=1$ such that $G(W)=\{1\}$ or ($V, G(W)$) is a homogeneous subcouple which satisfies $\operatorname{dim}(V, G(W))=\operatorname{dim}(V, G)=m$. Clearly (V, G) is decomposable if $G(W)$ is trivial. Hence we suppose that ($V, G(W)$) decomposes to one dimensional subcouples ($V^{G} \oplus W_{i}, H_{i}$) $(1 \leqq i \leqq m$) with $\left|H_{i}\right|=p^{t}$. Denote by X_{i} a generator of W_{i} and let r be the rank of the matrix $\left[\left(\sigma_{j}-1\right) X_{i} \bmod W\right]_{(i, j)}$ where σ_{j} runs through all pseudo-reflections in $G-G(W)$. In the case of $r=m$ we have already shown that (V, G) is decomposable. We may assume that $r<m$ and that the submatrix $\left[\left(\sigma_{j}-1\right) X_{i} \bmod W\right]_{1 \leqq i, j \leqq r}$ is non-singular.

Let $F_{i}\left(X_{i}\right)$ be the canonical $\left(V^{G} \oplus W_{i}, H_{i}\right)$-invariant on X_{i}. Further
choose Z_{j} from V with $\left(1-\sigma_{j}\right) V=k Z_{j}$ and put $b_{i j}=Z_{j}^{-1}\left(\sigma_{j}-1\right) X_{i}$. Since $\mathscr{2}(V, G(W))$ is homogeneous, by (2.8) we see $\mathscr{2}(V, G)=k\left[\bar{X}_{1}^{p+1}, \cdots, \bar{X}_{r}^{p+1}\right.$, $\left.g_{r+1}, \cdots, g_{m}\right]$ where $\bar{X}_{i}=X_{i} \bmod V^{G}$ and $g_{j}(r+1 \leqq j \leqq m)$ are expressed as

$$
g_{j}=\bar{X}_{j}^{p^{t}}+\sum_{1 \leqq r \leqq r} a_{i j} \bar{X}_{\imath}^{p t}
$$

for some $a_{i j} \in k$. From this the polynomials

$$
F_{j}\left(X_{j}\right)+\sum_{1 \leqq \imath \leqq r} a_{i j} F_{i}\left(X_{i}\right) \quad(r+1 \leqq j \leqq m)
$$

belong to a regular system of homogeneous parameters of $k[V]^{G}$. Thus, for $r+1 \leqq j \leqq m$ and $1 \leqq u \leqq r$, we have

$$
\begin{aligned}
-b_{j u} F_{j}\left(Z_{u}\right) & =\left(1-\sigma_{u}\right) F_{j}\left(X_{j}\right) \\
& =\sum_{1 \leqq i \leqq r} a_{i j}\left(\sigma_{u}-1\right) F_{i}\left(X_{i}\right) \\
& =\sum_{1 \leqq \leqq \leqq r} b_{i u} a_{i j} F_{i}\left(Z_{u}\right),
\end{aligned}
$$

which implies that if $a_{i j} \neq 0$

$$
F_{i}(Z)=F_{j}(Z) \quad(1 \leqq i \leqq r ; r+1 \leqq j \leqq m)
$$

where Z denotes a variable. Obviously this requires $\mathscr{A}\left(V^{H} \oplus W_{i}, H_{i}\right)=$ $\mathscr{A}\left(V^{H} \oplus W_{j}, H_{j}\right)$. Define $\theta \in G L(V)$ to satisfy that

$$
\theta\left(X_{j}\right)=X_{j}+\sum_{1 \leqq i \leqq r} a_{i j} X_{i} \quad(r+1 \leqq j \leqq m)
$$

and $V^{\langle\theta\rangle} \supseteqq\left\{X_{i}: 1 \leqq i \leqq r\right\} \cup V^{G}$. According to (2.10) θ is a $\left\{\left(V^{G} \oplus W_{i}, H_{i}\right)\right.$: $1 \leqq i \leqq m\}$-admissible transform and (V, H) decomposes to subcouples $\left(V^{G} \oplus \theta\left(W_{i}\right), H_{i}^{\prime}\right)(1 \leqq i \leqq m)$ for some subgroups H_{i}^{\prime} of H. Then (V, G) decomposes to $\left(V^{G} \oplus \oplus_{r+1 \leq j \leq m} \theta\left(W_{j}\right), \oplus_{r+1 \leq j \leq m} H_{j}^{\prime}\right)$ and $\left(V^{G} \oplus \oplus_{1 \leq j \leq r} \theta\left(W_{j}\right), L\right)$ where L is the stabilizer of G at $\oplus_{r+1 \leqq j \leqq m} \theta\left(W_{j}\right)$.
(4.2) Let $A_{i}=K\left[f_{i 1}, f_{i 2}, \cdots, f_{i n}\right](i=1,2)$ be graded polynomial algebras with $\operatorname{dim} A_{i}=n$ over a field K where $f_{i j}$ are homogeneous in A_{i}. Suppose that A_{1} is contained in A_{2} as a graded subalgebra. Then $A_{1}=$ A_{2} if and only if

$$
\prod_{1 \leqq j \leq n} \operatorname{deg} f_{1 j}=\prod_{1 \leq j \leq n} \operatorname{deg} f_{2 j}
$$

$q(R)$ denotes the quotient field of an integral domain R.
Lemma 4.3. For any couple (V, G) we have the following inequality;

$$
\left[q\left(k\left[V / V^{a}\right]\right): q(\mathscr{2}(V, G))\right] \geqq|G|
$$

and if the equality holds then $k[V]^{G}$ is a polynomial ring.
Proof. We prove this by induction on $|G|$. Let W be a subspace of V^{G} such that $\operatorname{codim}_{V G} W=1$ and $W \nsupseteq \mathscr{A}(V, G)$. Then $H=G(W)$ is a proper subgroup of G. By the induction hypothesis we have

$$
\left[q(k[V] /\langle W\rangle): q\left(k[V]^{H} /\langle W\rangle^{H}\right)\right] \geqq|H|
$$

and if the equality holds $k[V]^{H}$ is a polynomial ring. Putting

$$
S=\left(\bar{k}\left[\bar{k} \otimes_{k} V\right]^{H} /\left(\left\langle\bar{k} \otimes_{k} W\right\rangle_{\bar{k}\left[\bar{k} \otimes_{k} V\right]}\right)^{H}\right)^{G / H},
$$

as in the proof of (2.3), we can show that $S_{\mathfrak{M}_{1}} \cong S_{\mathfrak{N}_{2}}$ for any maximal ideals $\mathfrak{M}_{i}(i=1,2)$ of S which contain the minimal prime ideal $\left(\left(\left\langle\bar{k} \otimes_{k}\right.\right.\right.$ $\left.\left.\left.V^{G}\right\rangle_{\bar{k}\left[\bar{k} \otimes_{k} V\right]}\right)^{H} /\left(\left\langle\bar{k} \otimes_{k} W\right\rangle_{\bar{k}\left[\bar{k} \otimes_{k} V\right]}\right)^{H}\right)^{G / H}$. On the other hand it follows easily from (2.3) that S is normal and hence S is a polynomial ring over \bar{k}. Since

$$
\bar{k} \otimes_{k}\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H} \cong S
$$

as graded algebras defined over $\bar{k},\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H}$ is also a polynomial ring. Clearly $2(V, G)$ can be embedded in $\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H} /\left(\left\langle V^{G}\right\rangle^{H} /\langle W\rangle^{H}\right)^{G / H}$ and so we have

$$
\left[q\left(k\left[V / V^{c}\right]\right): q(2(V, G))\right] \geqq|G| .
$$

Now suppose that the equality of (4.3) holds and then we deduce from this

$$
\left[q(k[V] /\langle W\rangle): q\left(k[V]^{H} /\langle W\rangle^{H}\right)\right]=|H| .
$$

Therefore $k[V]^{H}$ is a polynomial ring. Moreover by the equality of (4.3) and (2.3) we see that the canonical map

$$
\mathscr{2}(V, G) \longrightarrow\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H} /\left(\left\langle V^{G}\right\rangle^{H} /\langle W\rangle^{H}\right)^{G / H}
$$

is an isomorphism and that there is an ($n+1$)-dimensional graded polynomial subalgebra $k\left[f_{1}, f_{2}, \cdots, f_{n+1}\right]$ of $k[V]^{G} /\langle W\rangle^{G}$ with

$$
\prod_{1 \leqq i \leq n+1} \operatorname{deg} f_{i}=|G|
$$

Here n denotes the dimension of (V, G) and $f_{i}(1 \leqq i \leqq n+1)$ are homogeneous elements in $k[V] /\langle W\rangle$. Then, by (4.2), we must have $\left.\left(k[V]^{H} /\langle W\rangle^{H}\right]\right)^{G / H}$ $=k[V]^{G} \mid\langle W\rangle^{G}$, because $\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H}$ is a polynomial ring which contains $k[V]^{a} \mid\langle W\rangle^{a}$ as a graded subalgebra.

Further if $\operatorname{dim} W \geqq 2$ let W^{\prime} be a subspace of W with $\operatorname{codim}_{W} W^{\prime}=1$ and put $H^{\prime}=G\left(W^{\prime}\right)\left(=H\left(W^{\prime}\right)\right)$. Since $k[V]^{H}$ is a polynomial ring, by (2.6) $k[V]^{H^{\prime}}$ is also a polynomial ring. Therefore we get the commutative diagram

of $k G / H$-modules with exact rows. From $\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H}=k[V]^{G} \mid\langle W\rangle^{G}$ the sequence

$$
\left(k[V]^{H} /\left\langle W^{\prime}\right\rangle^{H}\right)^{G / H} \longrightarrow\left(k[V]^{H} /\langle W\rangle^{H}\right)^{G / H} \longrightarrow 0
$$

is exact. Then $\left(k[V]^{H^{\prime}} \mid\left\langle W^{\prime}\right\rangle^{H^{\prime}}\right)^{G / H^{\prime}}$ is a polynomial ring which contains $k[V]^{G} \mid\left\langle W^{\prime}\right\rangle^{G}$, because $\left(\langle W\rangle^{H^{\prime}} \mid\left\langle W^{\prime}\right\rangle^{H^{\prime}}\right)^{G / H^{\prime}}$ is principal. Hence we deduce similarly from the equality of (4.3) and (2.3) that $k[V]^{G} /\left\langle W^{\prime}\right\rangle^{G}=$ $\left(k[V]^{H^{\prime}} \mid\left\langle W^{\prime}\right\rangle^{H^{\prime}}\right)^{G / H^{\prime}}$.

If necessary we can continue this procedure. Consequently $k[V]^{G} /\langle\tilde{W}\rangle^{G}$ is a polynomial ring for a one dimensional subspace \tilde{W} of V^{G}. The assertion follows immediately from this.

By the use of (4.1) we establish
Theorem 4.4. Let (V, G) be an indecomposable couple. Then $k[V]^{a}$ is a polynomial ring if and only if $\operatorname{dim}(V, G)=1$.

Proof. It suffices to prove the "only if" part. Let \mathscr{C} denote the set of all indecomposable couples $\left(V_{0}, G_{0}\right)$ with $\operatorname{dim}\left(V_{0}, G_{0}\right) \geqq 2$ such that $k\left[V_{0}\right]^{\sigma_{0}}$ are polynomial rings. Assume that \mathscr{C} is non-empty and choose an element (V, G) from \mathscr{C} which is minimal with respect to the lexicographical preorder of \mathscr{C} defined by the value $\left(\operatorname{dim}\left(V_{0}, G_{0}\right), \operatorname{dim} V_{0}\right)$ for $\left(V_{0}, G_{0}\right) \in \mathscr{C}$. From (4.1) the couple (V, G) is not quasi-homogeneous. Let W be a subspace of V^{G} with $\operatorname{codim}_{V^{G}} W=1$ and put $H=G(W)$ and $u=\operatorname{dim} V^{H} / V^{G}$ respectively. Then the $k H$-module V defines a couple (V, H) and by (2.6) $k[V]^{H}$ is a polynomial ring. Obviously V is decomposable as a $k H$-module, and hence (V, H) decomposes to one dimensional subcouples $\left(V^{H} \oplus W_{i}, H_{i}\right)(u+1$ $\leqq i \leqq m$) where $m=\operatorname{dim}(V, G)$, since (V, G) is minimal in \mathscr{C}. If (V, H) is not homogeneous, we may suppose that

$$
\left|H_{u+1}\right| \leqq \cdots \leqq\left|H_{v}\right|<\left|H_{v+1}\right|=\cdots=\left|H_{m}\right|
$$

for some $v<m$. Otherwise set $v=u$ (it should be noted that $u>0$ in this case).

Let $U=V^{H} \oplus \oplus_{u+1 \leq i \leq v} W_{i}$ (the empty direct sum is regarded as $\{0\}$) and denote by G^{\prime} the stabilizer of G at U. We can choose homogeneous polynomials $f_{i} \in k[V](1 \leqq i \leqq m)$ such that $f_{i} \in k[U](1 \leqq i \leqq v)$ and $k[V]^{G}$ $=k\left[V^{G}\right]\left[f_{1}, \cdots, f_{m}\right]$, calculating a regular system of parameters of $\mathscr{2}(V, G)$ through $k[V]^{H} /\langle W\rangle^{H}$ as in the proof of (2.7). Because $k[V]^{G}$ is contained in $k[U]\left[f_{v+1}, \cdots, f_{m}\right]$, there is a subgroup \tilde{G} of G with $k[V]^{\tilde{G}}=k[U]\left[f_{v+1}, \cdots\right.$, $\left.f_{m}\right]$. Clearly $\tilde{G}=G^{\prime}$ and the $k G^{\prime}$-module V is decomposable. Therefore, from the minimality of (V, G), the couple $\left(V, G^{\prime}\right)$ decomposes to one dimensional subcouples ($\left.V^{\sigma^{\prime}} \oplus W_{i}^{\prime}, G_{i}^{\prime}\right)(v+1 \leqq i \leqq m$).

We have

$$
\left[q\left(k\left[U / V^{a}\right]\right): q\left(\mathscr{Q}\left(U, G / G^{\prime}\right)\right)\right]=\left|G / G^{\prime}\right|
$$

since $f_{i} \in k[U]^{G / G^{\prime}}(1 \leqq i \leqq v)$ and G / G^{\prime} acts faithfully on U. By (4.3) $k[U]^{G / G^{\prime}}$ is a polynomial ring and so ($U, G / G^{\prime}$) decomposes to one dimensional subcouples $\left(U^{G / G^{\prime}} \oplus W_{i}^{\prime}, G_{i}^{\prime}\right)(1 \leqq i \leqq v)$. It should be noted that $V^{G^{\prime}}$ $=U$ and $U^{G / \sigma^{\prime}}=V^{G}$.

Let $X_{i}(1 \leqq i \leqq m)$ denote a generator of W_{i}^{\prime} and put $\bar{G}=G / G^{\prime}$ and $p^{r}=\left[\bar{G}: \oplus_{u+1 \leq i \leq v} H_{i}\right]$ respectively. Because $k[U]^{\bar{a}}=k\left[V^{G}\right]\left[f_{1}, \cdots, f_{v}\right]$ by (4.2), we deduce from the computation of $\mathscr{2}(V, G)$ (cf. (2.7)) that there exist pseudo-reflections $\sigma_{i}(1 \leqq i \leqq r)$ in $G-H$ such that the column vectors $\left[\left(\sigma_{j}-1\right) X_{i} \bmod W\right]_{1 \leqq i \leqq v}(1 \leqq j \leqq r)$ are linearly independent. Then $\bar{G}(W)$ $\cap \oplus_{1 \leqq i \leqq r}\left\langle\sigma_{i} \bmod G^{\prime}\right\rangle=\{1\}$ and hence we see that $\bar{G}(W)=\oplus_{u+1 \leqq i \leqq v} H_{i}$. Putting

$$
H_{i}^{\prime}= \begin{cases}G_{i}^{\prime} \cap \underset{u+1 \leqq j \leqq v}{\oplus} H_{j} & (1 \leqq i \leqq v) \\ G_{i}^{\prime} \cap H & (v+1 \leqq i \leqq m),\end{cases}
$$

we obtain another decomposition

$$
\left\{\left(V^{H} \oplus W_{i}^{\prime}, H_{i}^{\prime}\right): 1 \leqq i \leqq m \text { with } H_{i}^{\prime} \neq\{1\}\right\}
$$

of (V, H). Since $\left\{i: H_{i}^{\prime}=\{1\}\right\} \subseteq\{1,2, \cdots, v\}$, it may be assumed that H_{i}^{\prime} $=\{1\}(1 \leqq i \leqq u)$.

Let $F_{i}\left(X_{i}\right)=X_{i}(1 \leqq i \leqq u)$ and for $u+1 \leqq i \leqq m$ (resp. $1 \leqq i \leqq m$) let $F_{i}\left(X_{i}\right)$ (resp. $g_{i}\left(X_{i}\right)$) be the canonical $\left(V^{H} \oplus W_{i}^{\prime}, H_{i}^{\prime}\right)$-invariant (resp. ($V^{G} \oplus W_{i}^{\prime}, G_{i}^{\prime}$-invariant) on X. Assume that $G_{i_{0}}^{\prime}=H_{i_{0}}^{\prime}$ for some $u+1 \leqq$ $i_{0} \leqq v$. Then (V, G) decomposes to ($V^{a} \oplus W_{i_{0}}^{\prime}, H_{i_{0}}^{\prime}$) and $\left(V^{G} \oplus \oplus_{i \neq i_{0}} W_{i}^{\prime}, L\right.$) where L is the stabilizer of G at $W_{i_{0}}^{\prime}$, and hence we must have $\left|G_{i}^{\prime}\right| H_{i}^{\prime} \mid$
$=p$ for all $u+1 \leqq i \leqq v$. Because $k[V]^{G}$ is contained in

$$
k\left[V^{G} \oplus \underset{\substack{i \neq j \\ 1 \leqslant i v v}}{\oplus} W_{i}^{\prime}\right]\left[g_{s}, f_{v+1}, \cdots, f_{m}\right],
$$

there are pseudo-reflections $\tau_{j}(1 \leqq j \leqq v)$ in $G-H$ which satisfy the following condition; for $1 \leqq i \leqq v V^{\left\langle{ }_{\tau j}\right\rangle} \supseteq W_{i}^{\prime}$ if and only if $i \neq j$. We may suppose that $V^{\left\langle_{i}\right\rangle} \supseteqq W_{j}^{\prime}(1 \leqq i \leqq u ; v+1 \leqq j \leqq m)$ and $\mathscr{A}\left(V^{H} \oplus W_{j}^{\prime}, H_{j}^{\prime}\right) \nsupseteq$ $\mathscr{A}\left(V^{H} \oplus W_{i}^{\prime}, H_{i}^{\prime}\right)(u+1 \leqq i \leqq v ; v+1 \leqq j \leqq m)$, applying a $\left\{\left(V^{H} \oplus W_{i}^{\prime}, H_{i}^{\prime}\right)\right.$: $u+1 \leqq i \leqq m\}$-admissible transform on V.

Clearly we may assume that $\operatorname{deg} f_{i}=\operatorname{deg} g_{i}(v+1 \leqq i \leqq m)$ and

$$
\operatorname{deg} f_{v+1}=\operatorname{deg} f_{v+2}=\cdots=\operatorname{deg} f_{y}<\operatorname{deg} f_{y+1}=\cdots=\operatorname{deg} f_{m}
$$

for some y with $v+1 \leqq y \leqq m$. Further $f_{i}-g_{i}(v+1 \leqq i \leqq y)$ can be regarded as a polynomial h_{i} in $k[U]$, replacing f_{i} with linear combinations of them. We deduce from (3.1) that

$$
h_{i}=\sum_{1 \leqq j \leqq v} F_{j} h_{i j}(v+1 \leqq i \leqq y)
$$

for some homogeneous polynomials $h_{i j}$ in $k\left[V^{G}\right]$, since $\left(\tau_{j}-1\right) g_{i} \in k\left[V^{G}\right]$ ($v+1 \leqq i \leqq y ; 1 \leqq j \leqq v$) and

Assume that $h_{i_{0} j_{0}} \neq 0$ and let $Z_{j_{0}}$ be an element of V with $\left(1-\tau_{j_{0}}\right) V$ $=k Z_{j_{0}}$. Then it follows from $\tau_{j_{0}}\left(f_{i_{0}}\right)=f_{i_{0}}$ that

$$
k^{*} h_{i_{0} j_{0}} F_{j_{0}}\left(Z_{j_{0}}\right) \ni \frac{\left(1-\tau_{j_{0}}\right) X_{i_{0}}}{Z_{i_{0}}} g_{i_{0}}\left(Z_{j_{0}}\right) .
$$

So we have $u+1 \leqq j_{0} \leqq v$ and $\mathscr{A}\left(V^{H} \oplus W_{i_{0}}^{\prime}, H_{i_{0}}^{\prime}\right) \nsupseteq \mathscr{A}\left(V^{H} \oplus W_{j_{0}}^{\prime}, H_{j_{0}}^{\prime}\right)$. Moreover we find a pseudo-reflection σ in $G_{i_{0}}^{\prime}-H_{i_{0}}^{\prime}$ because $F_{i_{0}}=g_{i_{0}}$ requires $\mathscr{A}\left(V^{H} \oplus W_{i_{0}}^{\prime}, H_{i_{0}}^{\prime}\right) \supseteqq \mathscr{A}\left(V^{H} \oplus W_{j_{0}}^{\prime}, H_{j_{0}}^{\prime}\right)$, and choose $Z_{\sigma} \in V$ such that $(1-\sigma) V$ $=k Z_{\sigma}$ and $Z_{j_{0}} \equiv Z_{\sigma} \bmod W$. Let $\left\{T_{i}: 1 \leqq i \leqq t\right\}$ be a k-basis of $\mathscr{A}\left(V^{H} \oplus W_{i_{0}}^{\prime}, H_{i_{0}}^{\prime}\right)$ and select $T_{j} \in V(t+1 \leqq j \leqq d)$ to satisfy $W=\oplus_{1 \leqq i \leqq d} k T_{i}$ and $\oplus_{1 \leqq i \leqq d-1} k T_{i}$ $\nsupseteq \mathscr{A}\left(V^{H} \oplus W_{j_{0}}^{\prime}, H_{j_{0}}^{\prime}\right)$. Express $Z_{j_{0}}$ as

$$
Z_{j_{0}}=Z+\sum_{1 \leqq i \leqq d} a_{i} T_{i}
$$

for $a_{i} \in k(1 \leqq i \leqq d)$ and set $R=k\left[T_{1}, \cdots, T_{d-1}, Z\right]$. If $a_{d}=0$, by (2.9) we have $\left(1-\tau_{j_{0}}\right) F_{j_{0}} \oplus R$ and $g_{i_{0}}\left(Z_{j_{0}}\right) \in R$. This implies that $a_{d} \neq 0$. Since $g_{i_{0}}\left(Z_{\sigma}\right)=g_{i_{0}}\left(Z_{j}\right)=0(1 \leqq j \leqq t)$, we see

$$
g_{i_{0}}\left(Z_{j_{0}}\right)=\sum_{t+1 \leq j \leq d} a_{j} g_{i_{0}}\left(T_{j}\right) .
$$

Then $g_{i_{0}}\left(Z_{j_{0}}\right)$ is a monic polynomial of T_{d} in $R\left[T_{a}\right]$, but from (2.9) the leading coefficient of $F_{j_{0}}\left(Z_{j_{0}}\right)$ as a polynomial of T_{a} is a non-unit in R, which is a contradiction. Therefore we must have $f_{i}=g_{i}(v+1 \leqq i \leqq y)$.

In the case of $y=m$ it follows that $k[V]^{G}=k\left[V^{G}\right]\left[g_{1}, \cdots, g_{m}\right]$ and this requires that (V, G) is decomposable. Hence we obtain $y<m$. Because $G_{i}^{\prime}=H_{i}^{\prime}(v+1 \leqq i \leqq y)$, the couple (V, G) decomposes to $\left(V^{G} \oplus \oplus_{v+1 \leq i \leq y} W_{i}^{\prime}\right.$, $\oplus_{v+1 \leqq i \leqq y} H_{i}^{\prime}$) and ($V^{G} \oplus \oplus_{1 \leqq i \leq v} W_{i}^{\prime} \oplus \oplus_{y+1 \leqq i \leq m} W_{i}^{\prime}, K$) where K denotes the stabilizer of G at the set $\oplus_{v+1 \leqq i \leq y} W_{i}^{\prime}$. This conflicts with the selection of (V, G). Thus the proof is completed.

Now (1.3) can be reduced to (4.4) by (2.1), (2.2) and (2.4).

References

[1] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6, Hermann, Paris, 1968.
[2] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782.
[3] J.-P. Serre, Groupes finis d'automorphismes d'anneaux locaux réguliers, Colloq. d'Alg. E.N.S., (1967).

Keio University
Present Address:
Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya-ku, Tokyo 158, Japan

