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A NEW CHARACTERIZATION OF

THE BRUHAT DECOMPOSITION

YOSHIFUMI KATO

§ 0. Introduction

By an algebraic homogeneous space, we mean the factor space X =
G/P, where G is a simply-connected, complex, semi-simple Lie group and
P is a parabolic subgroup of G. Many typical manifolds such as the
protective spaces and the Grassmann varieties belong to this class of mani-
folds. For instance, the Grassmann variety G(k, ή) can be expressed as
SL(n + 1, C)/P, where P is a maximal parabolic subgroup of SL(n + 1, C)
leaving a suitable k + 1 dimensional subspace invariant. In this paper,
we devote ourselves to study the Bruhat decomposition of an algebraic
homogeneous space X = G\P. For that purpose, in the first place, we
construct a holomorphic vector field VH on X for an element H of the
positive Weyl chamber as follows

(VHf)(g) =
e^O

where geX and / is a local function around g. Then the vector field Vπ

vanishes only at the isolated points and in fact at the quotient set W1 =
W/Wu which is naturally embedded into X= G/P as the set of all fixed
points of the left T action. Here W and Wi are the Weyl groups as-
sociated to G and P respectively. And there is a nice coordinate neigh-
borhood (ΪΌN*, φ'1 O ψ"1

 O ftr1) around each ft) e W1 such that;
1) The set ft)iV* is a T invariant Zariski open set. Let ft)0 be the

element of W whose length ί(tΌ0) is maximal among all. Then the set
ΪΌ0N* coincides with the cell of maximal dimension appeared in the Bruhat
decomposition of X.

2) The set ΪΌN* is mapped by φ'1 oψ"1 oft)-1 onto the Lie algebra n*
of the Lie group N* and hence we can write as
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φ-1 o ψ-* o tΌ-\tυn*) = Σ z£ton*)Xa .

3) With respect to the local coordinate {za(ϊΌiϊ*)}aeMn*)9 the vector field

VH can be written explicitly as follows

From the above expression of VH on ΪΌN*, any flow P(ί), parametrized by

teC, of V* on ΪΌN* can be written as za(P(t)) = c β e M l f f ) ί , c f feC, for « e

Every algebraic homogeneous space X has the distinguished cellular

decomposition X = Utoeτrχ ̂  parametrized by W1, which is called the Bruhat

one of X. We recall the definition precisely in section 2. The new point

of view in this note is to understand that any Bruhat cell X^ to e W\

consists of some flows P(t) of VH. We embed the space X into a certain

projective space PN and construct a vector field V£ on PN whose restric-

tion to X coincides with the vector field VH. And we indentify the flow

P(t) as that of V£ lying entirely on X and investigate the behavior of it.

As a result we obtain a rule to seek for the limit points limt_±oo P(t).

And we show that to compactify X^ to Xm it is enough to attach such

limit points l i m ^ ^ P(t) successively. The set Xto is a subvariety of X and

is called the generalized Schubert variety. The family of subvarieties Xto,

ft) 6 W\ has a lot of important meanings for the geometry of X = G/P.

For instance, the homology classes of {JζJ ΪΌ e W1 form the free Z-basis

of the integral homology group H*(X, Z) of X. In case X = Gr (k, n), the

classical Schubert calculus is to study the ring structure of H*(X, Z) by

using the basis.

Further we give the following results in Theorem 4.9 and Theorem 4.12.

1) We give a new geometrical meaning to the reflections Sa, ae Δ.

2) We obtain a simple necessary sufficient condition to determine the

Bruhat ordering < on W\

3) From 1) and 2), we clarify what Bruhat cells of lower dimension

should be attached to the boundary of Xto of the appointed direction to

compactify Xto.

It seems interesting to study the singularities of XΛ as a sequel of

this note. And we also wish to clarify the relations between our results

and the representation theory of nilpotent Lie algebras.

This paper is divided into four parts.
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1. Semisimple Lie algebras.

2. Bruhat decomposition of G/P.

3. Vector field VH.

4. Proof of our theorems.

The author wishes to express his thanks to Profs. H. Morikawa, K.

Aomoto and H. Umemura for their valuable suggestions.

§ 1. Semisimple Lie algebras

First we fix the terminology and recall the fundamental facts of semi-

simple Lie algebras.

Let g be a complex semisimple Lie algebra. We choose a real Lie

subalgebra t of g which satisfies;

1) g = t + it is a direct sum,

2) the Killing form ( , ) is negative definite on t.

We fix the above chosen algebra t later and call it a compact form of g.

Let q = it. Then q is a real subspace of g and the Killing form ( , ) is

positive definite there. We introduce a ^-operation, which is conjugate

linear, as follows

(u + iυ)* = u — iυ , u,veq.

From the definition, *2 is the identity operation of g. We denote

{X, Y} = (X, y * ) , X, Ye Q ,

then the form { , } becomes a positive definite hermitian form on g. For

any vector subspace α of g, we set

α° = {Xe g|(X, Y) = 0 for any Ye α}

= {Xe β|{X, y*} - 0 for any Ye a} .

Let b be a Borel subalgebra of g and fix it once and for all. Put ζ

= b Π 6*. Then ζ is a Cartan subalgebra of g. The rank I of g is, by

definition, the dimension of ϊ). Let ζΛ be the real part of 5 with respect

to the ^-operation. We denote by %R the dual vector space of §Λ. The

root system Δ of ϊ> in g is contained in %R. The set Δ is divided into two

classes, positive roots J + and negative roots J_ with respect to b;

1) Δ = Δ+ U Δ.y disjoint union,

2) Δ. = -Δ+.

3) if a, β e Δ+ (respectively J_) and a + β e Δ then a + β e Δ+{Δ_).

Each connected component of the set
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{Heΐ)R\a(H)φ0 for aeΔ+}

is called a Weyl chamber. The following set

(1.1) YR = {H e 5ΛI a(H) > 0 for a e Δ+}

is, by definition, the positive Weyl chamber. Then conversely for any

He §R, we have

Δ+ = {aeΔ\a(H)>0} .

We denote by 77 = {au , α j the set of all simple roots with respect to

Δ+ and take the set as the basis of ΐ)R. We can write any root φeΔ as

φ = Σ n

αi(Φ)αi where nα.(φ) are non negative or non positive integers ac-

cording to φe Δ+ or Δ_.

We decompose the algebra g into root spaces;

(1.2) g = ζ + Σ+ gα + ^Σ g ^

where

6 = 5 + α Σ g.

For any or e J, dim gα = 1 and from the definition of gα, it follows

We can choose the elements Hα e ϊ), Xα e gβ, X_α e g_α for α e Δ+ in the way

1 if α = -β

0 if α Φ — β ,

and consequently

Since the elements ίfα, α e J + , are uniquely determined if we put

(1.3) (a, β) = (Ha, Hβ) , cc,βeΔ+9

we can define a positive definite symmetric bilinear form ( , ) on ζΛ .

Let ββ] denote the set of all parabolic subalgebras which contain 6.

For each p e [ψ], we know the following decomposition of g. See [6],

THEOREM 1.1. Let p e [ψ]. We put n = p°. Then n is the maximal
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nilpotent ideal of p and also the set of all nilpotent elements in the radical

of p. If we put gt = p Π p* then g is decomposed into;

(1.4) β = ** + fli + n ,

where

P = 9i + n .

Moreover gj Z/es in, ί/ie normalίzers of both n and n*, i.e., [g1? n] C n ancί

[&, n*] c n*.

For any vector space α which is invariant by the adjoint representa-

tion of ϊ), we define the subset J(α) c J as follows

L [#, X] = α(fl)Z for some OφXea
(1.5) J(α) = \ί)RBaφ0l ' " '

[ and any Hey

Since we have p z> b Z) ϊj, we can see p as soon as we know Δ(p) or in

fact Δ{p) Π i . . The following theorem is also in [6].

THEOREM 1.2. 1) ϊTiere existe α one-to-one mapping, p -> /7(p), from

$3] oTiίo ί/ιe seί of all subset of Π.

2) The subset Π(p) of Π satisfies

Δ{p) n Δ_ = {̂  e J_ I nβ<(^) = 0 /or αZZ α < e 77(p)} .

Since there are / elements in Π, the number of $5] is exactly 2\

The Lie algebras g1? n and n* are all invariant by the adjoint action of 5.

And we have;

(1.6) Δ(Ql) = {φeΔ\nai(φ) = 0 for a, e 77ft))} ,

(1.7) J(n) = {φ e Δ+ \ nai(φ) > 0 for at e 77ft))} ,

(1.8) J(n*) = -Δ(n) .

§2. Bruhat decomposition of GjP

We use the notations in § 1., i.e., g denotes a semisimple Lie algebra,

6 a Borel subalgebra, ϊj c b a Cartan subalgebra, , etc.

Let G be a simply-connected Lie group whose Lie algebra is g. Let

B be the Borel subgroup of G whose Lie algebra is 6. Let T be the

maximal torus with Lie algebra ή. We denote by P the parabolic sub-

group corresponding to p e $3]. Then we have G ZD P Z) BZ) T. We call

the factor space X = GjP an algebraic homogeneous space. The space X
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is a compact kahler manifold and in fact is a projective algebraic mani-

fold. We recall how to embed the space X = G/P into a projective space

in section 4.

Let Gl9 N and iV* be the Lie subgroups of G whose Lie algebras are

Q19 n and n* respectively. Then the group P is the semidirect product of

d and N9 i.e.;

(2.1) P=Gί N9

(2.2) G1 Γ\N={I}9

(2.3) N is normal in P .

And the groups P and iV* satisfy

(2.4) P Π iV* = {/} .

See [11].

We denote by N(T) the normalizer of T in G. We call the group

W = iV(T)/Γ the Weyl group of G with respect to T. We define a sub-

group WΊ of W and the quotient W1 in the following

Wx = iV(Γ) Π P/Γ,

Fj = N(T)/N(T) Π P .

The group N(T) acts on T, ΐj and J and the formulae

ΪΌ - exp H' it)"1 = exp (Ad (to)fl) , (Ad (to)*a)(fi) = a (Ad (

for It) e N(T)9 He§, ae d, are valid. But the actions of ΪΌ e T are all trivial

so we can regard as the group W = N(T)/T acts on ϊ7, ζ and Δ. For

simplicity, we use the same letter ΪΌ for ΪΌ9 Ad (ίυ) and Ad (ΪΌ)*. The action

of W on J can be naturally extended on %R and then any element of W

acts as an orthogonal transformation with respect to the norm ( ,) intro-

duced in section 1. For any aeΔ, we define the reflection Sa;

(2.5) Sa(φ) = ψfSa(φ) φ ψ f a 9 φe%R>{a, a)

then Sa belongs to W. Further the Weyl group W is generated by the

reflections Sao at e Π, and the subgroup Wt is generated by the reflections

Saj9 ajβΠ — Π(p). The length £(ΪΌ) of ΪΌ e W is the number of reflections

appeared in the reduced expressions of ΪΌ by using the reflections Sβ<> at

eΠ.
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Remark 2.1. By virtue of (1.8), the group Wx keeps the set J(n*) in-

variant.

Remark 2.2. We fix some representatives {ϊυu , tυk} of W1 in N(T).

Here k — *W\ And we sometimes equate the representatives with those

of Wι = W/W1 in W and further with the set W1 itself.

Every semisimple Lie group G admits the following double coset de-

composition and there are three ways to describe;

(2.6) G = U NΪΌP = U MΪΌP = (J PtoP ,

where M is the maximal nilpotent Lie group of B and ΪΌ runs over all

the above chosen representatives. Let Xk0 = NϊυP/P be the image of NΪΌP

in X Then Xto is a cell and the dimension of Xto is represented in terms

of the length £(ΪΌ) of ίυ. Confer [1] or Proposition 4.1 in this paper.

From (2.6) Xto can be considered as the N, M or P orbit of tϋ in X Then

the space X is decomposed into;

(2.7) X=\JwiXm

and we call this decomposition the Bruhat one of X The topological

closure Xto of XM that is also the Zariski closure, is a subvariety of X and

is called a generalized Schubert variety. As a fundamental character, the

homology classes of {X^eWi form the free Z-basis of the integral homology

group H*(X, Z) of X

In the set W\ we can introduce a partial ordering < , called the

Bruhat ordering;

(2.8) ϊΌt < ϊυ2 if and only if Xtol C X^

for ΪΌX, ίt)2e W\ By using this ordering, we can write;

(2.9) Xn= U^X*

Namely, to take the closure Xto of Xm it suffices that we attach suitable

Bruhat cells of lower dimension to the boundary of X^ successively.

Though this ordering is relatively easily defined, it is not easy to judge

the order of arbitrarily given two elements ΪΌ19 iυ2 6 W\ Hence we wish

to restate the ordering in another easily understandable words. And

further we wish to make the geometrical meanings of the ordering clear.

Roughly speaking, for that purpose there exist two ways until now, firstly
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the way to compare the reduced expressions of ft) e W1 by using the re-

flections Sβi9 at e Π, and secondly the way to compare the inclusion rela-

tion among Verma modules M(ΪΌA) associated to ΪΌ e W1. Here A is the

highest weight which determines the embedding of X into the protective

space PN(V). See [3].

But as will be shown in section 4, we take a different approach. We

first show that any Bruhat cell can be written as the union of suitable

flows P(t) of the vector field VH on X. The vector field VH is defined in

the next section. We investigate the behavior of the flows and show what

Bruhat cells of lower dimension should be attached to the boundary of

the Bruhat cell X^ of the appointed direction for the compactification of

Xto We give a simple necessary-sufficient condition to determine the

ordering < in Theorem 4.12 and ties the two ways stated above in some

sence.

H§ 3. Vector field VH

We first prove the following proposition.

PROPOSITION 3.1. Let us act the maximal torus T on X = G/P. Then

the quotient set W1 = W/Wι = N(T)IN(T) Π P is naturally realized as the

set of all T fixed points in X.

Proof. An element g e X is fixed by the action of T if and only if

g~ιTg C P where g is a representative of g in G. The group g^Tg is

also a maximal torus of G contained in P and hence we have

for some peP. See [9]. This means gp e N(T). Hence g defines a coset

gp in W\ If g and gf define the same coset in W\ we can write gp =

g'p'p" for some p,p'eP and p" e N(T) Π P. So we have g = gf in X.

If we take any element ΪΌ e N(T), the coset corresponding to tΰ is fδ e W\

So the mapping is onto. The proof is completed.

Let us consider the following diagram

(3.1)

G

N* —
Φ

exp Z —

GIP

U

U N* —
Φ

-> exp Z —

G/P

W ft)ΐV*

φ

~> ft) exp Z
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We take the elements Xa9 a e J(n*), chosen in section 1, as the basis of

n* and write an element Z of n* as Z = Σ«ê (π*) zaXa. Since the Lie

algebra n* is nilpotent, we have log (exp Z) = Z and hence the mapping

φ is one-to-one and onto. Since iV* f] P = {I}, the mapping ψ is also

one-to-one. See (2.4). The left multiplication by ΪΌ is clearly one-to-one.

Hence we can take the pair (toJV*, φ~ι oψ"1 oftr1) as a coordinate neigh-

borhood around ΪΌ e W1 and then {^α(tυn*)}α6J(π*) becomes the local co-

ordinate.

Remark 3.2. Let ϊυ0 be the element of W whose length S(ΪΌ0) is

maximal among all. Then since tr>0~Wtr>0 = N*, ΪΌ0N* = NΪΌ0P/P = Xto0. So

the set ΪΌ0N* is the Bruhat cell of maximal dimension and is a Zariski

open set.

We sum up our assertions.

THEOREM 3.3. The quotient set W1 = WjWλ can be naturally embedded

into X = G/P as the set of all T-fixed points and the pair (toiV*, φ'1 o ψ-1 o

ftr1) is a coordinate neighborhood around ΪΌ e W1. The sets ΪΌN*, ΪΌ e W1,

are all T invariant Zariski open sets. In fact if we multiply exp He T from

the left side on ΪΌN*, the local coordinate {za(ϊΌn^)}aeΔin*) changes to {e(wa)(H)

•^(im*)}^^*). Further the space X is completely covered with the family

of the open sets {ft>JV*}toeτΓi, i.e., X = Ume^i ϊoN*.

Proof. The first and second sentences have been proved. Since for
exp Z e iV* we have

expHϊΌ expZ P = ΪΌΪΌ'1 exp H-ΪΌ expZ-ΪΌ'1 exp(—H)ϊΌ-P

= ΪΌ exp (ΪΌ-\H)) exp Zexp (-itr'

= ΪΌ exp (Ad (exp (Yo~l{H)))Z)-P

= ΪΌ exp (Exp (ad {ΪΌ~\H)))Z) P

and

Exp (ad (ϊΌ-'iH))). Zen* ,

so

(φ-1 o ψ-1 o ΪΌ-1) (exp H' ΪΌ exp Z) = log (ΪΌ~'ΪΌ exp (Exp (ad {ΪΌ~\H))) Z))

= Ex

If we write Z = Σ«eAn*) «̂X> w e have
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Σ
Δ(*

αG4(n*)

= Σ , «Otr'(fl)M.
— V (\Λ

and hence

Exp (ad (tυ-\H))) Z = Σ e(»a)^zaXa .

To prove X = U»ein toiV*, we need the following fact. See [8].

FACT. If Y is a compact kahler manifold and ϋP(Y, C) = 0, then a

complex connected solvable Lie group S acting holomorphically on Y

always has a fixed point inside any analytic subvariety that S leaves

invariant.

The space X satisfies these assumptions and we can take T as S. Let

us apply this fact to our case. Since ίυiV* is a T invariant Zariski open

set, the complement X' = X — Uioewi &N* becomes a T invariant sub-

variety. Hence if Xf is not empty, it must have a fixed point of T. But

the set W\ which is the set of all T fixed points, is of course outside X'.

This is a contradiction.

For any Ye g, we can define a holomorphic vector field Vγ by oper-

ating Y infinitesimally on X;

(3.2) (Vrf)(g) = lim

where geX and / is a local function around g. In particular for an ele-

ment H e ζ, VH can be written as follows

(3.3) Vff= Σ (Ka)(H)zal^
«6J(n*) dZa

on ΪΌN* by using the local coordinate {za(ϊυΠ^)}a€Mn*y This claim is obvi-
ous from Theorem 3.3. If we choose H from the Weyl chambers, we have
0 Φ (ΪΌO)(H) e R9 for to eW\ ae J(π*). Hence the set of all points where

VH vanishes agrees with W1 and VH vanishes with first order there.

Hereafter we further assume that H belongs to the positive Weyl chamber

ζj. Then for aeJ, we note that aed+ if and only if a(H) > 0.
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From the expression (3.3) of VH9 if we use the local coordinate

{za(ton*)}aejnn*> o n ^ N * , a n Y fl°w P(0> parametrized by teC, of VH can be

written;

&aeC , for a e J(n*) .(3.4) za{P(t)) =

Let us introduce some notations.

d+(n*,to) = {aeΔ(n*)\tυaeΔ+} ,

Δ_(n*, to) = {α: e J(n*) | toα e J_} ,

J(n*, to, P(ί)) = {αe J(n*)|cj =̂ 0} ,

J+(n*, tυ, P(0) = ^+(n*, to) Π 4(n*, tυ,

= {αe J(n*)|c5 9̂  0, ϊυaeΔ+} ,

= J.(n*, to) Π J(n*, to, P(ί)),

where P(ί) is the flow of VH on toϊV* as above.

We divide the flow P(t) of VH on toΛΓ* into three types;

1) J_(n*, to, P(ί)) = φ, i.e., a flow starting from to.

2) J+(n*, to, P(t)) = ^, i.e., a flow arriving at to.

3) the others.

1)

2)

3)

Fig. 1

For instance, let us choose a flow P(t) of type 2). Then if we fix the



142 YOSHIFUMI KATO

imaginary part of t and approach the real part of t to +00, we obtain

lim^+oβ P(t) = to.

% 4. Proof of our theorems

Let VH be the same as in section 3. Then since J(n*) c J_, we have

a(H) < 0 for a e J(n*). We further assume that H satisfies

(toctiXH) Φ (toaj)(H) if a, φ a5 in J(n*)

for each toeW1.

We denote

(4.1)

and

(4.2)

W(p) = {to e W11 the number of J+(n*, to) is p}

XL = {tυϊϊ* e tυiV* | «.(tυn*) = 0 for β e J_(n*, to)} .

Fig. 2. p = 2.

From the definition of Λ+(n*, to), the set X^ can be considered as the union

of all flows of VH which start from to. And if to e W^p), XL is biholo-

morphic to Cp.

PROPOSITION 4.1. The space X is decomposed into the disjoint union

of the cells XL, to e W1. And this decomposition is identical to the Bruhat

decomposition of X.

Proof We choose xeX. If x is fixed by the infinitesimal action of

H, it belongs to W1. Hence x = to e XL for some to e W\ Conversely if x

is not fixed, there is the unique flow P(t) of VH which passes through x

and the starting point lim^.,*, P(t) is fixed by the infinitesimal action of

H. We give the precise proof of the existence of the limit points

lim^±oo P(t) in Remark 4.6 later. If we denote to = lim,_>_<,, P(t), x belongs

to XL. To prove the equivalence of two decompositions, it suffices to show

Xto ID XL for each toeW1. We use the second description of the Bruhat
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cell, i.e., X* = MϊυP/P = Mfo. See (2.6). Since M is the maximal nil-

potent Lie group contained in B, the Lie algebra m of M is written as

πt = Σ α € z f + £«. Then we have

x» n n)iv* = Mfo n tυϊv*

= ϊυtΌ-'Mtυ Π ΪΌN* D toOtrWto) Π A/'* .

Since the Lie algebra of ΪΌ^MΪΌ Π iV* is

1 Σ β^) n ( Σ 8.) = ( Σ a.-,) n ( Σ β.)

= Σ fl« >
€ J ( * )

(Ί iV* coincides with Z^. Hence we have X^ ZD X^ and complete

the proof.

To investigate the behavior of the flow P(t) of VH9 let us embed the

space X into a certain projective space. See [10]. Let A be an integral

dominant weight such that (A, at) = 0 for at e Π — Π(p) and (A, a3) > 0 for

a5 e Π(p). We denote by (φ9 V) the irreducible representation of G with

the highest weight A and by (Λ) the set of all weights of the represen-

tation. Here we count the weights with multiplicities. So even if the

letters of weights are different as γ and δ, it does not necessarily mean

that they are different as weights. The Weyl group W acts on the space

%R as the orthogonal transformations and the subgroup Wλ is realized as

the isotropy subgroup of W at A;

W; = {tυe W\toΛ = A} .

We call such a weight as ΪΌA, ΪΌ e W, extremal and denote

(4.3) (A)e = {ΪΌA I ΪΌ e W} c (A) .

By virtue of the irreducibility of the representation, the multiplicity of

ΪΌA is one. There is a one-to-one correspondence;

W1 —
(4.4) Φ ω

We decompose the vector space V into the weight spaces and write

in the following;

(4.5) V = Σ Vr .
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From the remark stated above, dim Vr = 1 for all γ e (A). We choose a
nonzero element Yr e Vγ as the base of Vr By virtue of the choice of Λ,
the space VA of the highest weight is invariant by P and conversely any
element of G which keeps VΛ invariant belongs to P. Hence the restric-
tion (φ\P, VΛ) of the representation (φ, V) is a representation of P of one
dimension. We write £(p) = φ\P(p), peP. Then dl\ = A. The represen-
tation (£, VΛ) induces a homogeneous line bundle L on X = GjP and the
space V is concretely realized as the vector space H°(X, L) of all global
sections of L. Every section ψ e H°(X, L) can be considered as a function
on G satisfying

for ge G and pe P. The representation φ of G on V = i/°(X, L) is as

follows

for ψ 6 fl°(X, L)

For simplicity, we omit the letter φ later and write in the way

φ(g)-Y=g-Y

for ge G, YeV. We offer the embedding theorem. See [10].

THEOREM 4.2. Let c be the projection of G onto the G-orbit of YΛ e VΛ.
Since P leaves the space VΛ invariant, the mapping c can be projected to c;

(4.6)

c:X= GIP PN(V) = r / -

Then all the mappings above are G-equivariant. And the horizontal map-
ping i embeds the space X into PN(V).

By considering the mapping

Φ Φ
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we obtain the homogeneous coordinate [xr]r€<Λ> of PN(V). We abbreviate
Yδ to δ. As usual, we define affine open sets

U7 = {[xδ]ePN(V)\xrφ0}, γe(Λ}9

and denote by yδ = xδ/xrf δ e {A) — γ, the inhomogeneous coordinate on Ur.
If we denote

S = {[xr] e PN(V) I [xr] is fixed by the left action of T}

then it is decomposed into

S = U Sr , disjoint union ,
re<Λ>

where

Sr = {[sj e P*(F)|x, = 0 for any δ e {Ay such that δ Φ γ as weights} .

For an element ΪΌ e N(T), we have

= (ϊυ£)(f)tΌYA , f o r t e T ,

so ίυYΛ belongs to V^A. Hence the projected element tΰ e W1 = N(T)/N(T)
Π Pc=—>X is mapped to ΪΌYΛ= Y*>A = ϊυΛe (A)e by i. In other words,

the correspondence (4.4) coincides with c \ W1. The embedded manifold c(X)
intersects with S only at the points (Λ}e. Because if ι(X) has a common
point x with S outside (Λ}e, the inverse image r^x) e X must be fixed by
the T action. But this case can not occur.

EXAMPLE 4.3. Let X — G(k, n) be the Grassmann variety. We can
write X as follows

X=SL(n+l,C)IP,

where

P= \AeSL(n+ 1, C)A = r. (fc + 1) X (/e + 1) matrix) .
)0

The manifold X has the well known extension of vector bundles;

0 > U >Xχ E >Q >0

where U is the universal bundle and Q is the quotient bundle. The
bundle U is induced by the representation
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φ:P >GL(k+ 1,C)
α> α>

A > A, .

In this case, we can take L = det U'1 = det Q and V = H°(X, L) and then
we obtain the usual Plύcker embedding;

X<=—>PN(V),

where N = (% + j) - 1. Since the Weyl group W of SL(n + 1, C) is iso-

morphic to @n+i, the permutation group of n + 1 elements, and the sub-
group Wt is isomorphic to @fc+1 X ©n_fc, we have

the number of W1 =
(k+ 1)1 (n- k)\ \k+ 1

= dim F .

Hence (Λ}e = (Λ), i.e., the weights of (φ, V) are all extremal. If we take

as the basis of V, we obtain the usual Plύcker coordinate [xh)ĵ e<^>e of

PN(V).

We impose one more condition on the selection of H;
δ(H) Φ γ(H) for γ, δ e (A} such that γ Φ δ as the elements of %R.

Remark 4.4. We note that the conditions imposed on the choise of
H are all open.

Let us lift the T action on X to PN(V) and construct a vector field
V£ Since

lim *ryr) " (Σr e<Λ>

Σ
re<Λ>

we have a vector field Vjj on F such that

Because the coefficients of d/dxr, γ e </ί), in Vέ are all linear functions,
the vector field V£ can be descended to PN{V). By using the inhomoge-
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neous coordinate {yδ}δe<Ay-r

 o n ^ P w e c a n write the descended vector field
VH as follows

(4.7) V4 = Σ (S(H) - γ(H))ysJ- = Σ (fi - γ)(H)ys

 d

dy,

In general, there are multiplicities in weights so the zero set of V£ is not

necessarily isolated and in fact coincides with S. Every flow P(t) of V£

on Ur can be expressed as follows

(4.8) yδ(P(t)) = cδe^H)t , cδ e C , for δ e <Λ> - γ .

PROPOSITION 4.5. 1) For α ^ /ΐou; P(Z) o/ V£, the limit points

lim£_±00 P(ί) ejcisί and belong to the zero set S of V£

2) There is a flow of V£ which starts from γ and arrives at δ if and

only if it is satisfied that (δ — γ)(H) > 0.

Proof To prove 1), we can assume that a part of the flow P(t) lies

on Uγ for some γ e <Λ>. Then P(t) is written as (4.8) there. If the

maximal value m of {(δ — γ)(H) \ cδ Φ 0} is positive, we set

M={δe(Λ}\(δ - γ)(H) = m, cδ Φ 0}

Then by using the homogeneous coordinate [xr]r6<^>, we have

\ί->+oo / [0 i f T

if τ = δi e M

M .

From Remark 4.4., we have δλ — γ = δ2 — γ = ••• — δk — γ and hence δt

= . . . = f̂c as an element of %R. So the limit point lim^+oo P(t) exists

and belongs to Sδl c S. In case m < 0, the limit point lim^+0O P(t) also

exists and belongs to Sr Similarly we can prove the existence of

+oo P(t). If we consider the flow P%t) such that

for τ e <yl> — γ, we can prove 2). We omit the detailed proof.

Remark 4.6. If we embed the space X into PN(V), we can consider

that the vector field VH is the restriction of V£ to X. Then the flow

P(t) of VH is that of V£ lying entirely on X. Hence the limit points

lim^±oo P(t) always exist and belong to (Λ}e.
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In the following discussions, we consider the space X as the T in-

variant submanifold of PN(V). Let us compare the expressions of Vj} and

VH around to A = c(to). By using the coordinate {yδ}δe<Λy-^Λ9 we have

(4.9) V4= Σ (δ-toA)(H)yδ

d

ay,

On the other hand, since the space X is nonsingular around to A = t(to),

we add some local functions {Wi}ie/ to {zα}αeMn*) and make them a local

coordinate in some neighborhood U of to A = c(to). We can assume that

the functions {u^ίeI satisfy;

1) i n U={xeU\uί(x) = 0, iel}

2) With respect to the local coordinate {zα, Ui}αeA<in*hίeI, it is satisfied

(4.10) V£= Σ {(h

where fa(zβ; u3) and gi(zβ; uό) are the functions of higher terms dϋi<ifa{zβ\ 0)

= §ί(zβ; 0) = 0, ae J(n*), i e I. If we compare (4.9) and (4.10), we have

Let us consider a flow P«(£) with special direction of VH on toiV*

such that

where C a c « ^ 0 . In other words, J(n*, ίϋ, P«(ί)) = α- If ft>aed+ then

P«(0 starts from ID. Conversely if ίΌαeJ_, P«(0 arrives at to.

PROPOSITION 4.7. Lei P«(ί) 6e the flow of VH on ΪΌN* as above. We

assume tυaeJ+ and put ϊυ' = lim^+oo P«(f) e W1. If we write the flow by

using the local coordinate \Zβ(to'n*)}pejli1ι*) around to', it follows

β a \θ otherwise.

Namely the flows P*(t) and Ff(t) agree with each other on toN* Π to'N*.

Proof To avoid confusion, we write the local coordinate {^(ton*)}^€j<n )
as {zp}βej(n*> and the local coordinate fo(to'rc*)}jej(n«) a s {zβtedw W e

choose a point P«(O> 0 Φ t0 e C, on the flow and put zβ(P*(t0)) = zβt0, β e

J(n*), and z'β(P*(Q) = z'β>0, β e J(n»). Then both {^ - zβf0}βeJm and {^ -
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ββ(n*) are local coordinates around P*(£o) If we compare the expres-

sions of the flow Pa(t) by using the two local coordinate, we have

= Σ d,ιn{dl
71 = 0

_ Y 1 A' pn(iΌ«)(H)t
— Z-Λ aβ,nV

n = 0

and hence

(4.12) z'β(P»(t)) = Σ df

β[ne
n^wt for 0 e J(n*) .

71 = 0

On the other hand, any flow P(t) of VH on ft)W* must be written as

follows

(4.13) z'β(P(t)) = tfe^nw , < e C , for β e Δ(n*) .

Hence if we compare the coefficients of t in (4.12) and (4.13), we have

From Remark 4.4., this means

as an element of %R. We note that if a e Δ and cα e Δ then c = ± 1 . So

if c£' ^ 0 then (ΣτT=o nd"tn)ltf = ± 1 and ft/jS = ±lϋα. Further since the

flow Pα(ί) arrives at to', we have ft/β == —ϊυa and /3 = — \Όf~ιVoa. We com-

plete the proof.

Remark 4.8. From the above proposition, it is easily shown that the

flow Pa(t) does not lie on any open set ft/W*, ft)" e W1, except ft)iV* and

ft)W*.

THEOREM 4.9. Let P«(t) be the flow as (4.11) and assume ϊΌaeΔ+, i.e.,

lim^.oo P"(t) = ft). We consider the space X as the T invariant submanί-

fold of PN(V) and identify the point ft) e W1 and ΪΌΛ e (Λ)e. Then the fol-

lowing three conditions are all equivalent;

1) lim^+ββ Pϊ(ί) = Xo'A e (Λ)e,

2) lυ'Λ ~ΪΌΛ= -g ϊvae %R,

where
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(a, a)

3) to^StoJo' e Wi.

Proof. If we change the local coordinate from {za; u^aeΔ{n*)ΛeI to

{yδ}δe<A>-toA around C()PO) = to A then we have the convergence power series

oo

(4.14)
__ y ^/ gn(ϊoa)(H)t

71 = 0

for δ e {A} — to A. But any flow P(t) of V£ on Um must be written as

(4.8). So if we compare the coefficients of t in (4.8) and (4.14), we have

bδ(δ - tυA)(H) = ( f ]

And from Remark 4.4, we have

bδ(δ - ΪΌA) = (Σ nd'βλ(ϊoa)
\n=0 /

as an element of f)Λ.

The limit point limί_»+oo P«(t) is determined by comparing the magnitude

of the values {(δ — ΪΌA)(H) \ bδ Φ 0}. And from Remark 4.6, there must

exist at least one element ϊo'A e (A)e — to A such that b^Λ ψ 0. Then we

have

bvjfyo'A - toA) =

and hence

tofA — ΪΌA = ctva ,

where

( oo \ /

Σ nd^A/brtΛ
71 = 0 / /

Fortunately this condition determines the value c uniquely as

(a, a)

and consequently the extremal weight tofA is also uniquely determined. If
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(Λ,a)
cφ -g= -2

(a, a)

we have three distinct extremal weights A, ΪΌ^ΪΌ'A = A + ca and SaA = A

— ga lying on a straight line. But since the elements of the Weyl group

W act on %R as orthogonal transformations with respect to the norm ( , )

determined by the Killing form, the points A, ΪΌ'WA and SaA also lie on

the hypersphere of radius \A\ = (A,A)ί/2. This is a contradiction. Hence

we have

(a, a)

and then ftrWΛ = A — ga = SαΛ. Since Wx is the isotropy subgroup of

W at Λ, we have Saft)
-1ft)' = ft^tυS^ftrW = ft^SLft)' e Wi. We complete

the proof.

Remark 4.10. In the case X = G/B, we have Wi = {1}. So the con-

dition 3) means Stoαft)' = ft).

Remark 4.11. If we change the representatives ft), ft)' of ίΰ, ίϋ' e VF1 =

i to ΪΌΪΌ19 ΪΌ'ΪΌΊ respectively, where ΪΌ19 XO[ e Wu we have

and hence

We note that from Remark 2.1., tof^ belongs to J(n*).

THEOREM 4.12. For an element ΪΌ' e W\ the following are equivalent:

1) Xto/ is contained in XM i.e., ft)' < ft),

2) ft)7 belongs to XM

3) TΛere βxisί ίw o series ft) = ft)0, ft)1? , ft)fc = ft)' e W1 and a09 au

α:fc_i6Zί(n*)

ϊΌi1SΪOiatϊΌi+1 e Wx and ft)^ 6 J + , 0 < i < k — 1 .

Proof, 1) =Φ 2) is obvious. 2) =̂> 1). If ft)' belongs to Xm since Xto is

N invariant, X^ = ΛΓfδ' c Xto. Hence we have Xto, c Xto. 3) =̂> 2). By

virtue of Theorem 4.9., we have

ft), = lim P%(t) e Xto0 and ft)2 = lim P5(ί) e X^ C Xto0 .
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Eepeating this procedure we can show tofc = to' e Xto. Let us prove the

converse 2) => 3) by induction on the dimension of Xto. If dim X^ = 0, it

is obvious. Hence we assume that if dim X^ = n — 1, the assertion has

been already proved. Put dim Xto = n and choose an element to' e W1 which

belongs to Xto. If dim Xw g n — 1, we select X^ such that ΊC* C Xto» c

Xto and dim X^ = n — 1. From the induction there exist two series to"

= too, to1? , tofc_i = ί D ' e f and αr0, #i, , ak-2 e J(n*) such that

^ Γ ^ α i ^ t + i € W i a n d &><<*, e J + , 0 < i < ^ ~ 2 .

So it is sufficient to show that if dimXιβ/,= rc — 1 and X^ c Xto, there

exists an element α e J(n*) such that

^"'SLαto' e W; and ^ e J + .

We denote

U* = {xe ΪΌ'N* I ̂ (x) = 0 for any a e Λ+(n*, to7)} .

Namely, U& is the union of all flows of VH which arrives at tor. Then

Utf is invariant by the action of T and dim U& = dim X — dim X* =

dim n* — (n — 1). From the definition of Lζ,, we have to7 = Xto, Π U& Q

X* Π U& and dimXtt, Π 17̂  = 1. So there exists an element x such that

ΪΌ' ^ xe^ 0 Uw. By virtue of T invariantness of the both sets Xto and

J7to/, the flow P(£) of V^ which passes through x lies entirely on Xto Π Ĉ ,/.

And from the definition of Uw, limt_+Oo P(ί) == to7. If lim^.^ P{t) = to" ^ to

then we have Xto, Q X#> Q Xto. This contradicts to our assumption. So

lim^-co P(t) = to. The flow P(t) starts from to so J_(n*, to, P(ί)) = φ. We

denote

From the T invariantness of X^ and U&, the set TP is contained in Xto

Π J7Λ/. If the number of J+(n*, to, P(ί)) is greater than two, from Theorem

3.3., dim T> P ^ 2. This is a contradiction. Hence there exists an element

αeJ(n*) such that a — Λ+(n*, to, P(t)) and then the flow P{t) coincides

with the distinguished flow P*(ί). By virtue of Theorem 4.9., we complete

the proof.

Remark 4.13. From Remark 4.11 the condition 3) is independent of

the choice of the representatives of W1 in W.

EXAMPLE 4.14. Let P 3 = SL(4, C)\P, where
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P = e SL(4, C)

The Weyl group W of SL(4, C) is isomorphic to ©4 and the subgroup Wt

is isomorphic to {1} X ©3. Hence we have W1 = {ίυ0, \ΌU ΪΌ2, to3}. We can

assume to4 e Wx{i), 0 < i < 3. We obtain the following figure.

Fig. 3
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