INDEPENDENCE OF THE INCREMENTS OF GAUSSIAN RANDOM FIELDS

KAZUYUKI INOUE and AKIO NODA

§1. Introduction

Let $\boldsymbol{X}=\left\{X(A) ; A \in \boldsymbol{R}^{n}\right\}$ be a mean zero Gaussian random field ($n \geqslant 2$). We call X Euclidean if the probability law of the increments $X(A)-X(B)$ is invariant under the Euclidean motions. For such an \boldsymbol{X}, the variance of $X(A)-X(B)$ can be expressed in the form $r(|A-B|)$ with a function $r(t)$ on $[0, \infty)$ and the Euclidean distance $|A-B|$.

We are interested in the dependence property of a Euclidean random field \boldsymbol{X} and after P. Lévy [2] we introduce a set $\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)$ for a pair of points $P_{1}, P_{2} \in \boldsymbol{R}^{n}$:

$$
\mathscr{F}_{x}\left(P_{1} \mid P_{2}\right)=\left\{A \in \boldsymbol{R}^{n} ; E\left[\left(X(A)-X\left(P_{2}\right)\right)\left(X\left(P_{1}\right)-X\left(P_{2}\right)\right)\right]=0\right\} .
$$

The set $\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)$, we expect, would characterize the Euclidean random field \boldsymbol{X}. This is the case for a Lévy's Brownian motion \boldsymbol{X}_{1}, where $r(t)=t$. Indeed, $\mathscr{F}_{X_{1}}\left(P_{1} \mid P_{2}\right)$ becomes the half-line emanating from P_{2}, i.e.,

$$
\mathscr{F}_{X_{1}}\left(P_{1} \mid P_{2}\right)=\left\{A \in \boldsymbol{R}^{n} ;\left|A-P_{1}\right|=\left|A-P_{2}\right|+\left|P_{1}-P_{2}\right|\right\},
$$

and the equality

$$
\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)=\mathscr{F}_{X_{1}}\left(P_{1} \mid P_{2}\right), \quad P_{1}, P_{2} \in \boldsymbol{R}^{n},
$$

implies that \boldsymbol{X} has independent increments on any line in \boldsymbol{R}^{n} and therefore that X is a Lévy's Brownian motion X_{1} under the normalizing condition $r(1)=1$. There are however some cases where the set $\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)$ is not rich enough to characterize \boldsymbol{X}; for example we have $\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)=\left\{P_{2}\right\}$ when $r(t)$ is strictly concave on $(0, \infty)$. So we introduce in this paper a partition $\left\{\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right) ; q \in \boldsymbol{R}\right\}$ satisfying the following property: The increments $X(A)-X(B)$ and $X\left(P_{1}\right)-X\left(P_{2}\right)$ are mutually independent if and only if A and B belong to the same set $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)$ for some q. Our partition

[^0]describes much finer structure of \boldsymbol{X} than $\left\{\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)\right\}$ and has a relation $\mathscr{C}_{X}\left(P_{1}, P_{2} ; 1\right)=\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)$. For a Lévy's Brownian motion X_{1}, the set $\mathscr{C}_{X_{1}}\left(P_{1}, P_{2} ; q\right)$ with $0<|q|<1$ coincides with a sheet of the hyperboloid of two sheets of revolution with foci P_{1} and P_{2} :
$$
\mathscr{C}_{X_{1}}\left(P_{1}, P_{2} ; q\right)=\left\{A \in \boldsymbol{R}^{n} ;\left|A-P_{1}\right|=\left|A-P_{2}\right|+q\left|P_{1}-P_{2}\right|\right\} .
$$

We now raise the following question: From the equality

$$
\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)=\mathscr{C}_{X_{1}}\left(P_{1}, P_{2} ; q\right) \quad \text { for any } P_{1}, P_{2} \in \boldsymbol{R}^{n}
$$

can one conclude that \boldsymbol{X} with $r(1)=1$ is a Lévy's Brownian motion \boldsymbol{X}_{1} ? Contrary to the above mentioned case $q=1$, i.e., of $\mathscr{F}_{x_{1}}\left(P_{1} \mid P_{2}\right)$, this question is not easily answered. In addition, we shall be concerned with not only a Lévy's Brownian motion but also more general Euclidean random field \boldsymbol{X}, and we consider the following

Problem 1. For some fixed $q \in \boldsymbol{R}$, does a family of the sets $\left\{\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)\right.$; $\left.P_{1}, P_{2} \in \boldsymbol{R}^{n}\right\}$ characterize the Euclidean random field \boldsymbol{X} ?

The second problem we consider is concerned with projective invariance, which characterizes \boldsymbol{X}_{α} with $r(t)=t^{\alpha}(0<\alpha \leqslant 2)$ ([3]). It is easily seen that the projective invariance of \boldsymbol{X}_{α} is inherited by $\mathscr{F}_{X_{\alpha}}\left(P_{1} \mid P_{2}\right)$ as follows: For any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$, the relation

$$
\mathscr{F}_{X_{\alpha}}\left(T P_{1} \mid T P_{2}\right)=T \mathscr{F}_{X_{\alpha}}\left(P_{1} \mid P_{2}\right)
$$

holds for each Euclidean motion, inversion with center P_{2} and similar transformation T on \boldsymbol{R}^{n}. We are naturally led to the converse problem:

Problem 2. Does the relation

$$
\mathscr{F}_{X}\left(T P_{1} \mid T P_{2}\right)=T \mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)
$$

imply that the Euclidean random field \boldsymbol{X} is an \boldsymbol{X}_{α} ?
The purpose of this paper is to give partial answers to these problems. In fact, we shall solve the Problem 1 for some class of Euclidean random fields \boldsymbol{X}, in particular, for \boldsymbol{X}_{α} with $0<\alpha \leqslant 2$ (Theorems 2 and 3). We shall also show that the Problem 2 can be solved under some condition on \boldsymbol{X} (Theorem 4).

We now give a summary of subsequent sections. Section 2 contains definitions and discussions of a general Gaussian random field \boldsymbol{X}. We define the maximal conjugate set $\mathscr{F}_{x}(A \mid \mathscr{E})$ for any non-empty subset \mathscr{E} of \boldsymbol{R}^{n} (Definition 1) and then introduce the set $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)$ (Definition 2)
which plays an important role in our investigations.
In Section 3 we begin with a description of a Euclidean random field \boldsymbol{X} in terms of $\mathscr{C}_{\boldsymbol{X}}\left(P_{1}, P_{2} ; 0\right)$; namely, a Gaussian random field \boldsymbol{X} is Euclidean if and only if the relation

$$
\mathscr{C}_{X}\left(P_{1}, P_{2} ; 0\right) \supset\left\{A \in \boldsymbol{R}^{n} ;\left|A-P_{1}\right|=\left|A-P_{2}\right|\right\}
$$

holds for any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$ (Theorem 1).
We are mainly concerned with Euclidean random fields $\boldsymbol{X}_{\boldsymbol{r}}$ on \boldsymbol{R}^{n}, which correspond to $r(t)$ expressed in the form

$$
r(t)=c t^{2}+\int_{0}^{\infty}\left(1-e^{-t^{2} u}\right) u^{-1} d \gamma(u)
$$

with $r(1)=1$, where $c \geqslant 0$ and γ is a measure on $(0, \infty)$ such that $\int_{0}^{\infty}(1+u)^{-1} d \gamma(u)<\infty([4])$. For such an X_{r} we find a parametrization of $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ by a subset $T_{r}\left(\left|P_{1}-P_{2}\right| ; q\right)$ of $[0, \infty)$; for $a=\left|P_{1}-P_{2}\right|>0$,

$$
T_{r}(a ; q)=\{t \geqslant 0 ; r(|t-a|) \leqslant r(t)+q r(a) \leqslant r(t+a)\} .
$$

The explicit form of $T_{r}(a ; q)$ is given for some classes of $r(t)$ (Propositions $3 \mathrm{~A} \sim 3 \mathrm{E}$). An important example of $r(t)$ is

$$
r(t)=\int_{0}^{2} t^{\alpha} d \lambda(\alpha)
$$

with a probability measure λ on (0,2].
In Section 4 we consider the Problem 1 for \boldsymbol{X}_{r} and $q \neq 0$ in a slightly general setting:

Problem 1'. Suppose that, for some Euclidean random field $\boldsymbol{X}_{r_{1}}$ on \boldsymbol{R}^{n} and some $q_{1} \in \boldsymbol{R}$, the relation

$$
\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) \subset \mathscr{C}_{X_{r_{1}}}\left(P_{1}, P_{2} ; q_{1}\right)
$$

holds for any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$. Then is it true that $r_{1}(t)=r(t)$?
This problem changes into the uniqueness problem of the solution $f(x)=x$ of the modified Cauchy's functional equation ([1]) with $f(1)=1$ (Lemma 1):

$$
f(q x+y)=q_{1} f(x)+f(y)
$$

for $x \in r((0, \infty))$ and $y \in r\left(T_{r}\left(r^{-1}(x) ; q\right)\right)$. Here we put $r(F)=\{r(t) ; t \in F\}$ for a subset F of $[0, \infty)$ and $r^{-1}(t)$ is the inverse function of $r(t)$ strictly
increasing. We can solve this equation for the above mentioned classes of \boldsymbol{X}_{r} by using the properties of $T_{r}(a ; q)$ (Theorems 2 and 3). In particular, we note that the Problem 1^{\prime} is completely answered for $\boldsymbol{X}_{\alpha}(0<\alpha \leqslant 2)$.

The final section contains the solution of the Problem 2 for \boldsymbol{X}_{r} under the condition that $T_{r}\left(a_{0} ; 1\right) \supset\left[0, a_{0}\right]$ for some $a_{0}>0$ (Theorem 4).

Acknowledgement. It is our pleasure to express our sincere gratitude to Professors T. Hida and I. Kubo for their kind advice.
§ 2. The sets $\mathscr{F}_{X}(A \mid \mathscr{E})$ and $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)$
Let $X=\left\{X(A) ; A \in \boldsymbol{R}^{n}\right\}(n \geqslant 2)$ be a Gaussian random field such that $X(A)-X(B)$ has mean zero and variance $r(A, B)$. Then the covariance of the increments $X(A)-X(P)$ and $X(B)-X(P)$ is

$$
\begin{equation*}
E[(X(A)-X(P))(X(B)-X(P))]=\{r(A, P)+r(B, P)-r(A, B)\} / 2 \tag{1}
\end{equation*}
$$

We see that $r(A, B)$ must satisfy the following conditions:

$$
\left\{\begin{array}{l}
r(A, B)=r(B, A), \quad r(A, A)=0, \quad r(A, B) \geqslant 0 \quad \text { and } \tag{2}\\
\sum_{2, j=1}^{N} a_{i} a_{j} r\left(A_{i}, A_{j}\right) \leqslant 0 \quad \text { for any } A_{i} \in \boldsymbol{R}^{n} \quad \text { and for any } a_{i} \in \boldsymbol{R} \\
\text { such that } \sum_{i=1}^{N} a_{i}=0 \quad(1 \leqslant i \leqslant N<\infty) .
\end{array}\right.
$$

We assume that $r(A, B)$ is jointly continuous and not identically zero.
We now introduce a decomposition of $X(A)$ for any non-empty subset \mathscr{E} of \boldsymbol{R}^{n} :

$$
\begin{equation*}
X(A)=\mu(A \mid \mathscr{E})+\sigma(A \mid \mathscr{E}) \xi(A \mid \mathscr{E}) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu(A \mid \mathscr{E})=E[X(A) \mid X(P) ; P \in \mathscr{E}] \\
& \sigma^{2}(A \mid \mathscr{E})=E\left[(X(A)-\mu(A \mid \mathscr{E}))^{2}\right]
\end{aligned}
$$

and

$$
\xi(A \mid \mathscr{E})=\left\{\begin{array}{cl}
(X(A)-\mu(A \mid \mathscr{E})) / \sigma(A \mid \mathscr{E}) & \text { if } \sigma(A \mid \mathscr{E})>0 \\
0 & \text { if } \sigma(A \mid \mathscr{E})=0
\end{array}\right.
$$

Since \boldsymbol{X} is Gaussian, we see that the random variable $\xi(A \mid \mathscr{E})$ is independent of $\{X(P) ; P \in \mathscr{E}\}$. The decomposition (3) is called the canonical form of $X(A)$ ([2]). Explicit forms of $\mu(A \mid \mathscr{E})$ and $\sigma(A \mid \mathscr{E})$ are easily given for the case $\mathscr{E}=\left\{P_{1}, P_{2}\right\}$. First suppose that $r\left(P_{1}, P_{2}\right)>0$. Then

$$
\begin{equation*}
\mu\left(A \mid P_{1},{ }^{?} P_{2}\right)=(1-q) 2^{-1} X\left(P_{1}\right)+(1+q) 2^{-1} X\left(P_{2}\right)^{\top} \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
\sigma^{2}\left(A \mid P_{1},{ }^{2} P_{2}\right)= & (1-q) 2^{-1} r\left(A, P_{1}\right)+(1+q) 2^{-1} r\left(A, P_{2}\right) \tag{5}\\
& -\left(1-q^{2}\right) 4^{-1} r\left(P_{1}, P_{2}\right)
\end{align*}
$$

where the coefficient q is given by

$$
\begin{equation*}
q=\left(r\left(A, P_{1}\right)-r\left(A, P_{2}\right)\right) / r\left(P_{1}, P_{2}\right) \tag{6}
\end{equation*}
$$

When $r\left(P_{1}, P_{2}\right)=0$, we have $\mu\left(A \mid P_{1}, P_{2}\right)=X\left(P_{1}\right)=X\left(P_{2}\right)$ and the equality (4) holds for any $q \in \boldsymbol{R}$.

The correlation function of $\xi(A \mid \mathscr{E})$ is denoted by

$$
\begin{equation*}
\rho_{X}(A, B \mid \mathscr{E})=E[\xi(A \mid \mathscr{E}) \xi(B \mid \mathscr{E})], \tag{7}
\end{equation*}
$$

and is called the conditional correlation function relative to \mathscr{E}. After P . Lévy [2] we give the following

Definition 1. For any $A \in \boldsymbol{R}^{n}$ and any non-empty subset \mathscr{E} of \boldsymbol{R}^{n},

$$
\begin{equation*}
\mathscr{F}_{X}(A \mid \mathscr{E})=\left\{B \in \boldsymbol{R}^{n} ; \rho_{X}(A, B \mid \mathscr{E})=0\right\} . \tag{8}
\end{equation*}
$$

Two points A and B such that $\rho_{X}(A, B \mid \mathscr{E})=0$ are said to be conjugate relative to \mathscr{E}, and $\mathscr{F}_{X}(A \mid \mathscr{E})$ is called the maximal conjugate set of A relative to $\mathscr{E}([2])$. The set $\mathscr{F}_{X}(A \mid \mathscr{E})$ contains a point $B \in \boldsymbol{R}^{n}$ such that $\sigma(B \mid \mathscr{E})=0$, so that $\mathscr{F}_{X}(A \mid \mathscr{E}) \supset \overline{\mathscr{E}}, \overline{\mathscr{E}}$ being the closure of \mathscr{E}. If, in particular, $\sigma(A \mid \mathscr{E})$ $=0$, we have $\mathscr{F}_{x}(A \mid \mathscr{E})=\boldsymbol{R}^{n}$.

Proposition 1. The set $\mathscr{F}_{x}(A \mid \mathscr{E})$ is a maximal closed set \mathscr{V} such that $u(A \mid \mathscr{V})=\mu(A \mid \mathscr{E})$ and $\mathscr{V} \cap \mathscr{E} \neq \phi$. We also have

$$
\begin{equation*}
\mathscr{F}_{X}(A \mid \mathscr{E})=\left\{B \in \boldsymbol{R}^{n} ; \mu(B \mid \mathscr{E} \cup\{A\})=\mu(B \mid \mathscr{E})\right\} \tag{9}
\end{equation*}
$$

Proof. Set $V=\left\{\mathscr{V} \subset \boldsymbol{R}^{n} ; \mu(A \mid \mathscr{V})=\mu(A \mid \mathscr{E})\right.$ and $\left.\mathscr{V} \cap \mathscr{E} \neq \phi\right\}$. Then the first assertion is proved by the following facts:
(i) $\overline{\mathscr{V}} \in V$ when $\mathscr{V} \in V$; (ii) $\mathscr{F}_{x}(A \mid \mathscr{E}) \in V$; (iii) $\mathscr{V}_{1} \cup \mathscr{V}_{2} \in V$ when $\mathscr{V}_{1}, \mathscr{V}_{2} \in \boldsymbol{V}$; (iv) $\mathscr{V} \subset \mathscr{F}_{X}(A \mid \mathscr{E})$ when $\mathscr{V} \in \boldsymbol{V}$.
The equality (9) is easily proved by taking the following formula into account:

$$
\mu(B \mid \mathscr{E} \cup\{A\})=\mu(B \mid \mathscr{E})+\rho_{X}(A, B \mid \mathscr{E}) \sigma(B \mid \mathscr{E}) \xi(A \mid \mathscr{E}) .
$$

The proof is thus completed.
For the case $\mathscr{E}=\left\{P_{2}\right\}$, we see by (9) that

$$
\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)=\left\{A \in \boldsymbol{R}^{n} ; \mu\left(A \mid P_{1}, P_{2}\right)=X\left(P_{2}\right)\right\}
$$

hence the equalities (4) and (6) give the following:

$$
\begin{equation*}
\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)=\left\{A \in \boldsymbol{R}^{n} ; r\left(A, P_{1}\right)=r\left(A, P_{2}\right)+r\left(P_{1}, P_{2}\right)\right\} . \tag{10}
\end{equation*}
$$

As will be shown in Theorem 2, there are some cases where $\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)$ is rich enough to characterize \boldsymbol{X}. But it may happen that $\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)=$ $\left\{P_{2}\right\}$ (see Proposition 3C). Hence in order to characterize X even in such a case, it is necessary to introduce other kinds of subsets of the parameter space \boldsymbol{R}^{n}. Inspired by (4), we give the following

Definition 2. For any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$ and any $q \in \boldsymbol{R}$,

$$
\begin{align*}
& \mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)=\left\{A \in \boldsymbol{R}^{n} ; \mu\left(A \mid P_{1}, P_{2}\right)=(1-q) 2^{-1} X\left(P_{1}\right)\right. \tag{11}\\
&\left.+(1+q) 2^{-1} X\left(P_{2}\right)\right\}
\end{align*}
$$

This set can be expressed as follows:

$$
\begin{equation*}
\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)=\left\{A \in \boldsymbol{R}^{n} ; r\left(A, P_{1}\right)=r\left(A, P_{2}\right)+q r\left(P_{1}, P_{2}\right)\right\} . \tag{12}
\end{equation*}
$$

We note the following simple facts:
(i) $\bigcup_{q \in R} \mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)=\boldsymbol{R}^{n}$;
(ii) $\mathscr{C}_{X}\left(P_{1}, P_{2} ; 1\right)=\mathscr{F}_{X}\left(P_{1} \mid P_{2}\right)$;
(iii) $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)=\mathscr{C}_{X}\left(P_{2}, P_{1} ;-q\right)$.

An interesting property of the set $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)$ is illustrated by the following

Proposition 2. The increments $X(A)-X(B)$ and $X\left(P_{1}\right)-X\left(P_{2}\right)$ are mutually independent if and only if A and B belong to the same set $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)$ for some $q \in \boldsymbol{R}$.

Proof. Since \boldsymbol{X} is Gaussian, the increments $X(A)-X(B)$ and $X\left(P_{1}\right)$ $-X\left(P_{2}\right)$ are mutually independent if and only if

$$
E\left[(X(A)-X(B))\left(X\left(P_{1}\right)-X\left(P_{2}\right)\right)\right]=0
$$

This is rephrased by the equation

$$
r\left(A, P_{1}\right)-r\left(A, P_{2}\right)=r\left(B, P_{1}\right)-r\left(B, P_{2}\right)
$$

which is equivalent, by (12), to the assertion that A and B belong to $\mathscr{C}_{X}\left(P_{1}, P_{2} ; q\right)$ for some $q \in \boldsymbol{R}$. The proof is thus completed.

§3. The set $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ for a Euclidean random field X_{r}

In this section we first give a description of a Euclidean random field
\boldsymbol{X} in terms of $\mathscr{C}_{X}\left(P_{1}, P_{2} ; 0\right)$, and then introduce a class \boldsymbol{S}_{∞} of functions $r(t)$ by using Schoenberg's theorem ([4]), and further investigate the set $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ for such an $r(t) \in \boldsymbol{S}_{\infty}$.

Suppose that the probability law of a Gaussian random field X is invariant under each Euclidean motion T on \boldsymbol{R}^{n}, that is,

$$
\begin{equation*}
\rho_{X}(T A, T B \mid T \mathscr{E})=\rho_{X}(A, B \mid \mathscr{E}) \tag{13}
\end{equation*}
$$

for any $A, B \in \boldsymbol{R}^{n}$ and any $\mathscr{E} \subset \boldsymbol{R}^{n}$. Then the variance $r(A, B)$ of $X(A)-$ $X(B)$ can be expressed in the form $r(A, B)=r(|A-B|)$ with a continuous function $r(t)$ on $[0, \infty)$. Such a Gaussian random field is called Euclidean. The Euclidean random field corresponding to $r(t)$ is denoted by \boldsymbol{X}_{r}.

Theorem 1. A Gaussian random field \boldsymbol{X} is Euclidean if and only if the relation

$$
\begin{equation*}
\mathscr{C}_{X}\left(P_{1}, P_{2} ; 0\right) \supset\left\{A \in \boldsymbol{R}^{n} ;\left|A-P_{1}\right|=\left|A-P_{2}\right|\right\} \tag{14}
\end{equation*}
$$

holds for any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$.
Proof. Since "only if" part is clear by (12), we shall prove "if" part. If $\left|A-P_{1}\right|=\left|A-P_{2}\right|$, then we have $r\left(A, P_{1}\right)=r\left(A, P_{2}\right)$. With this we must show that $r(A, B)=r\left(A^{\prime}, B^{\prime}\right)$ for any $A, B, A^{\prime}, B^{\prime} \in \boldsymbol{R}^{n}$ such that $|A-B|=\left|A^{\prime}-B^{\prime}\right|$. Putting $|A-B|=d$, we can find a finite number of points $P_{1}, P_{2}, \cdots, P_{N}$ such that $\left|A-P_{1}\right|=\left|P_{1}-P_{2}\right|=\cdots=\left|P_{N}-A^{\prime}\right|$ $=d$. Then we have

$$
r(A, B)=r\left(A, P_{1}\right)=r\left(P_{1}, P_{2}\right)=\cdots=r\left(P_{N}, A^{\prime}\right)=r\left(A^{\prime}, B^{\prime}\right)
$$

which completes the proof.
Two Euclidean random fields $\boldsymbol{X}_{r_{1}}$ and $\boldsymbol{X}_{r_{2}}$ on \boldsymbol{R}^{n} linked by $r_{1}(t)=$ (const.) $r_{2}(t)$ have the same probabilistic structure:

$$
\begin{aligned}
& \rho_{X_{r_{1}}}(A, B \mid \mathscr{E})=\rho_{X_{r_{2}}}(A, B \mid \mathscr{E}), \mathscr{F}_{X_{r_{1}}}(A \mid \mathscr{E})=\mathscr{F}_{X_{r_{2}}}(A \mid \mathscr{E}) \text { and } \\
& \qquad \mathscr{C}_{X_{r_{1}}}\left(P_{1}, P_{2} ; q\right)=\mathscr{C}_{X_{r_{2}}}\left(P_{1}, P_{2} ; q\right)
\end{aligned}
$$

for any $A, B, P_{1}, P_{2} \in \boldsymbol{R}^{n}$, any $\mathscr{E} \subset \boldsymbol{R}^{n}$ and any $q \in \boldsymbol{R}$.
As is easily seen, $r(t)$ never vanishes for $t>0$, so we shall impose the normalizing condition $r(1)=1$ in what follows.

We denote by \boldsymbol{S}_{n} the class of functions $r(t)$ associated with Euclidean random fields \boldsymbol{X}_{r} on \boldsymbol{R}^{n}. It is a well-known result (see, for example, [6]) that $r(t) \in \boldsymbol{S}_{n}$ has the following representation:

$$
\begin{equation*}
r(t)=c_{n} t^{2}+\int_{0}^{\infty}\left\{1-Y_{n}(t u)\right\} d L_{n}(u) \tag{15}
\end{equation*}
$$

where $c_{n} \geqq 0, \quad Y_{n}(t)=\Gamma(n / 2)(2 / t)^{(n-2) / 2} J_{(n-2) / 2}(t)$ with the Bessel function $J_{(n-2) / 2}(t)$ of order $(n-2) / 2$ and where L_{n} is a measure on $(0, \infty)$ such that $\int_{0}^{\infty} u^{2}\left(1+u^{2}\right)^{-1} d L_{n}(u)<\infty$. Noting that $\boldsymbol{S}_{n} \supset \boldsymbol{S}_{n+1}$, I. J. Schoenberg [4] investigated the class $\boldsymbol{S}_{\infty}=\bigcap_{n \geqslant 2} \boldsymbol{S}_{n}$; namely, he proved that $r(t) \in \boldsymbol{S}_{\infty}$ is uniquely expressed in the following form:

$$
\begin{equation*}
r(t)=c t^{2}+\int_{0}^{\infty}\left\{1-e^{-t^{2} u}\right\} u^{-1} d \gamma(u) \tag{16}
\end{equation*}
$$

where $c \geqslant 0$ and γ is a measure on $(0, \infty)$ such that $\int_{0}^{\infty}(1+u)^{-1} d \gamma(u)<\infty$. The important subclass L_{∞} of S_{∞} is defined as the set of functions $r(t)=$ $\int_{0}^{2} t^{\alpha} d \lambda(\alpha)$ with probability measures λ on (0,2]. We note that $r(t) \in \boldsymbol{S}_{\infty}$ is strictly increasing since

$$
r^{\prime}(t)=2 t\left\{c+\int_{0}^{\infty} e^{-t^{2} u} d \gamma(u)\right\}>0 \quad \text { for } t>0
$$

and hence the inclusion relation (14) becomes the equality

$$
\begin{equation*}
\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; 0\right)=\left\{A \in \boldsymbol{R}^{n} ;\left|A-P_{1}\right|=\left|A-P_{2}\right|\right\} \tag{17}
\end{equation*}
$$

We also note that $r(t) \in \boldsymbol{S}_{\infty}$ can be extended analytically to the function $r(z)$ on the complex domain $\{z \in C ;|\arg z|<\pi / 4\}$ ([5]). In the sequel we shall consider the set $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ only for $q>0$ and $r(t) \in \boldsymbol{S}_{\infty}$, because $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ;-q\right)$ is the mirror image of $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ with respect to the hyperplane (17).

Now we shall illustrate the relation between the sets $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ and $T_{r}\left(\left|P_{1}-P_{2}\right| ; q\right)$ which will be defined below by (18). Let \boldsymbol{H} be an arbitrary two-dimensional half-plane in \boldsymbol{R}^{n} such that P_{1} and P_{2} belong to the boundary-line of \boldsymbol{H}. We can give a natural parametrization to the set $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) \cap \boldsymbol{H}$ in the following way. For any $A \in \mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) \cap \boldsymbol{H}$, put $\left|P_{1}-P_{2}\right|=a$ and $\left|A-P_{2}\right|=t$. Since $r(t)$ is strictly increasing, we have

$$
r(|t-a|) \leqslant r\left(\left|A-P_{1}\right|\right) \leqslant r(t+a)
$$

Hence by (12),

$$
r(|t-a|) \leqslant r(t)+q r(a) \leqslant r(t+a)
$$

Define the following subset of $[0, \infty)$ for each $a>0$:

$$
\begin{equation*}
T_{r}(a ; q)=\{t \geqslant 0 ; r(|t-a|) \leq r(t)+q r(a) \leqslant r(t+a)\} \tag{18}
\end{equation*}
$$

Then we see that for each $t \in T_{r}\left(\left|P_{1}-P_{2}\right| ; q\right)$ there exists uniquely a point $A(t) \in \mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) \cap \boldsymbol{H}$ such that $\left|A(t)-P_{2}\right|=t$.

In the rest of this section we devote ourselves to the investigation of $T_{r}(a ; q)$. First we see that

$$
\{t \geqslant 0 ; r(|t-a|) \leqslant r(t)+q r(a)\}= \begin{cases}{[D(a ; q), \infty)} & \text { if } 0<q<1 \\ {[0, \infty)} & \text { if } q \geqslant 1\end{cases}
$$

where $D(a ; q)$ is the unique solution on $(0, a / 2)$ of the equation $r(a-t)$ $=r(t)+q r(a)$. Thus, putting

$$
F_{r}(t ; a, q)=r(t+a)-r(t)-q r(a),
$$

we have

$$
T_{r}(a ; q)= \begin{cases}\left\{t \geqslant D(a ; q) ; F_{r}(t ; a, q) \geqslant 0\right\} & \text { if } 0<q<1 \tag{19}\\ \left\{t \geqslant 0 ; F_{r}(t ; a, q) \geqslant 0\right\} & \text { if } q \geqslant 1\end{cases}
$$

We shall give further consideration on the following classes of $r(t)$ $\in \boldsymbol{S}_{\infty}$:
A. $r(t)=t$, which corresponds to a Lévy's Brownian motion X_{1};
B. $r(t)$ is strictly convex on $(0, \infty)$;
C. $r(t)$ is strictly concave on $(0, \infty)$;
D. $r(t)$ is strictly convex on $\left(0, t_{0}\right)$ and strictly concave on $\left(t_{0}, \infty\right)$ for some $t_{0}\left(0<t_{0}<\infty\right)$.
E. $r(t)$ is strictly concave on $\left(0, t_{0}\right)$ and strictly convex on $\left(t_{0}, \infty\right)$ for some $t_{0}\left(0<t_{0}<\infty\right)$.

We see that $r(t)=\int_{0}^{2} t^{\alpha} d \lambda(\alpha) \in L_{\infty}$ lies in \mathbf{A}, \mathbf{B} and \mathbf{C} when the probability measure λ is concentrated on $\{1\}$, $[1,2]$ and (0,1] respectively; otherwise $r(t) \in \boldsymbol{L}_{\infty}$ is always in \mathbf{E}. Examples of $r(t)$ in \mathbf{D} :
(i) $r(t)=\left(1-e^{-u t^{2}}\right) /\left(1-e^{-u}\right)(u>0)$;
(ii) $r(t)=\{2 t /(t+1)\}^{\alpha}(1<\alpha \leqslant 2)$;
(iii) $r(t)=\log \left(1+t^{2}\right) / \log 2$.

Note that $r(t)=\{2 t /(t+1)\}^{\alpha}$ with $0<\alpha \leqslant 1$ belongs to the class \boldsymbol{C}.
Proposition 3A. For $r(t)=t$, we have

$$
T_{r}(a ; q)=\left\{\begin{array}{cl}
{[(1-q) a / 2, \infty)} & \text { if } 0<q \leqslant 1 \tag{20}\\
\phi & \text { if } q>1
\end{array}\right.
$$

Proof is elementary, so is omitted.
For $r(t)$ in $\mathbf{B} \sim \mathbf{E}$, we shall introduce some notations. The limits $\lim _{t \rightarrow 0} r^{\prime}(t)$ and $\lim _{t \rightarrow \infty} r^{\prime}(t)$ exist in $[0, \infty]$, and are denoted by $r^{\prime}(0+)$ and $r^{\prime}(\infty)$, respectively. We denote by $C(a ; q)$ the unique solution on $(0, \infty)$ of the equation $F_{r}(t ; a, q)=0$ when a solution exists. We set

$$
\begin{aligned}
h(a ; q) & \equiv \lim _{t \rightarrow \infty} F_{r}(t ; a, q)=\lim _{t \rightarrow \infty} \int_{0}^{a}\left\{r^{\prime}(t+s)-q r^{\prime}(s)\right\} d s \\
& =r^{\prime}(\infty) a-q r(a) .
\end{aligned}
$$

Of course $h(a ; q) \equiv \infty$ when $r^{\prime}(\infty)=\infty$.
Proposition 3B. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ is strictly convex on $(0, \infty)$. Then we have

$$
T_{r}(a ; q)= \begin{cases}{[D(a ; q), \infty)} & \text { if } 0<q<1 \tag{21}\\ {[0, \infty)} & \text { if } q=1, \\ {[C(a ; q), \infty)} & \text { if } q>1 \text { and } 0<a<a^{*}(q) \\ \phi & \text { if } q>1 \text { and } a \geqslant a^{*}(q)\end{cases}
$$

where $a^{*}(q)=\sup \{a \geqslant 0 ; h(a ; q) \geqslant 0\}$. Moreover, for $q>1$, we have $a^{*}(q)$ $=\infty$ if and only if $r^{\prime}(\infty)=\infty$. In this case there exists an increasing continuous function $\phi_{q}(a)$ on $(0, \infty)$ such that $C(a ; q)<\phi_{q}(a)$ for any $a>0$.

Proposition 3C. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ is strictly concave on $(0, \infty)$. Then we have

$$
T_{r}(a ; q)= \begin{cases}{[D(a ; q), C(a ; q)]} & \text { if } 0<q<1 \text { and } 0<a<a_{*}(q), \tag{22}\\ {[D(a ; q), \infty)} & \text { if } 0<q<1 \text { and } a \geqslant a_{*}(q) \\ \{0\} & \text { if } q=1, \\ \phi & \text { if } q>1,\end{cases}
$$

where $a_{*}(q)=\sup \{a \geqslant 0 ; h(a ; q) \leqslant 0\}$. Moreover, for $0<q<1$, there exists an increasing continuous function $\psi_{q}(a)$ on $(0, \infty)$ such that $D(a ; q)<\psi_{q}(a)$ $<C(a ; q)$ for $0<a<a_{*}(q)$ and $D(a ; q)<\psi_{q}(a)$ for $a \geqslant a_{*}(q)$.

These two propositions can be proved in a similar manner, so we give only the proof of Proposition 3B.

The proof of Proposition 3B. Since $r^{\prime}(t)$ is strictly increasing, we have $(d / d t) F_{r}(t ; a, q)>0$. Noting that $F_{r}(0 ; a, q)=(1-q) r(a)$, we easily obtain (21) for $0<q \leqslant 1$.

Now consider the case $q>1$. We devide the proof into two parts: (i) $r^{\prime}(\infty)<\infty$ and (ii) $r^{\prime}(\infty)=\infty$. First consider (i). We see that ($\left.d / d a\right) h(a ; q)$ is positive on $(0, b)$ while negative on (b, ∞), where $b=\inf \left\{a>0 ; q r^{\prime}(a)\right.$ $\left.>r^{\prime}(\infty)\right\}$. Noting that the limit

$$
\lim _{a \rightarrow \infty} h(a ; q) / a=r^{\prime}(\infty)-\lim _{a \rightarrow \infty} \frac{q}{a} \int_{0}^{a} r^{\prime}(s) d s=(1-q) r^{\prime}(\infty)
$$

is negative, we see that $a^{*}(q)$ is finite and have

$$
h(a ; q) \begin{cases}>0 & \text { if } 0<a<a^{*}(q) \\ \leqslant 0 & \text { if } a \geqslant a^{*}(q)\end{cases}
$$

If $h(a ; q)>0$, the solution $C(a ; q)$ of the equation $F_{r}(t ; a, q)=0$ exists and $T_{r}(a ; q)=[C(a ; q), \infty)$ holds. While, if $h(a ; q) \leqslant 0$, then $T_{r}(a ; q)=\phi$. Thus (21) has been proved in the case (i).

Next consider (ii). It follows from $h(a ; q)=\infty$ that $a^{*}(q)=\infty$ and $T_{r}(a ; q)=[C(a ; q), \infty)$ for any $a>0$. The function $\phi_{q}(a)=r^{\prime-1}\left(q r^{\prime}(a)\right)$ satisfies the inequality $C(a ; q)<\phi_{q}(a)$ for any $a>0$, because

$$
F_{r}\left(\phi_{q}(a) ; a, q\right)>a\left\{r^{\prime}\left(\phi_{q}(a)\right)-q r^{\prime}(a)\right\}=0 .
$$

We note that $\phi_{q}(a)$ is increasing and continuous, and that $\phi_{q}(0+)=0$ if and only if $r^{\prime}(0+)=0$. Thus all the assertions have been proved.

As for $r(t)$ in \mathbf{D} or \mathbf{E}, we are interested only in the case $q=1$.
Proposition 3D. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ is strictly convex on ($0, t_{0}$) and strictly concave on $\left(t_{0}, \infty\right)$ for some $t_{0}\left(0<t_{0}<\infty\right)$. Then we have

$$
T_{r}(a ; 1)= \begin{cases}{[0, \infty)} & \text { if } 0<a \leqslant a_{*} \tag{23}\\ {[0, C(a ; 1)]} & \text { if } a_{*}<a<a_{1} \\ \{0\} & \text { if } a \geqslant a_{1}\end{cases}
$$

where $a_{*}=\inf \{a>0 ; h(a ; 1) \leqslant 0\} \quad$ and $a_{1}=\sup \left\{a>t_{0} ; r^{\prime}(a)>r^{\prime}(0+)\right\}$. Moreover, if $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$, then there exists a decreasing continuous function $\tau(a)$ on $(0, \infty)$ such that $0<\tau(a)<C(a ; 1)$ for $a>a_{*}$.

Proposition 3E. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ is strictly concave on $\left(0, t_{0}\right)$ and strictly convex on $\left(t_{0}, \infty\right)$ for some $t_{0}\left(0<t_{0}<\infty\right)$. Then we have

$$
T_{r}(a ; 1)= \begin{cases}\{0\} & \text { if } 0<a \leqslant a^{*} \tag{24}\\ \{0\} \cup[C(a ; 1), \infty) & \text { if } a^{*}<a<a_{2} \\ {[0, \infty)} & \text { if } a \geqslant a_{2}\end{cases}
$$

where $a^{*}=\inf \{a>0 ; h(a ; 1) \geqslant 0\}$ and $a_{2}=\sup \left\{a>t_{0} ; r^{\prime}(a)<r^{\prime}(0+)\right\}$. Moreover, $a^{*}=0$ if and only if $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$. In case $r^{\prime}(0+)=r^{\prime}(\infty)$, there exists $a_{0} \in\left(t_{0}, \infty\right)$ such that $C(a ; 1) \leqslant a_{0}$ for $a \geqslant a_{0}$.

The above two propositions can be proved in a similar manner, so we give only the proof of Proposition 3E.

The Proof of Proposition 3E. When $a \geqslant a_{2}\left(a_{2}<\infty\right)$, we easily see that $(d / d t) F_{r}(t ; a, 1)>0$ for any $t>0$. From this we have $T_{r}(a ; 1)=[0, \infty)$, which implies that $a^{*}<a_{2}$. On the other hand, when $a<a_{2},(d / d t) F_{r}(t ; a, 1)$ is negative for $0<t<t_{a}$ while positive for $t>t_{a}$, where $t_{a} \in\left(0, t_{0}\right)$ is the unique solution of the equation $r^{\prime}(t+a)=r^{\prime}(t)$. Therefore, if $h(a ; 1)>0$, the solution $C(a ; 1)$ of the equation $F_{r}(t ; a, 1)=0$ exists and $T_{r}(a ; 1)=\{0\}$ $\cup[C(a ; 1), \infty)$ holds. While, if $h(a ; 1) \leqslant 0$, then $T_{r}(a ; 1)=\{0\}$. We are now in a position to see that

$$
h(a ; 1) \begin{cases}\leqslant 0 & \text { if } 0<a \leqslant a^{*}, \\ >0 & \text { if } a>a^{*} .\end{cases}
$$

For $(d / d a) h(a ; 1)$ is negative on $(0, b)$ while positive on (b, ∞), where $b=$ $\inf \left\{a \in\left(0, t_{0}\right) ; r^{\prime}(a)<r^{\prime}(\infty)\right\}<a^{*}$. Thus we have proved (24).

We now proceed to the proof of the second part. We first note that $a^{*}=0$ if and only if $b=0$, which is equivalent to the condition $r^{\prime}(0+)$ $\leqslant r^{\prime}(\infty)$. In case $r^{\prime}(0+)=r^{\prime}(\infty)$ (i.e., $a^{*}=0$ and $a_{2}=\infty$), we can choose $a_{0} \in\left(t_{0}, \infty\right)$ such that $r\left(2 a_{0}\right) \geqslant 2 r\left(a_{0}\right)$, because $g(a)=r(2 a)-2 r(a)$ is strictly increasing on (t_{0}, ∞) and the limit

$$
\lim _{a \rightarrow \infty} g(a)=\lim _{a \rightarrow \infty} \int_{0}^{a}\left\{r^{\prime}(s+a)-r^{\prime}(s)\right\} d s=\int_{0}^{\infty}\left\{r^{\prime}(\infty)-r^{\prime}(s)\right\} d s
$$

is positive. It is easily verified that $F_{r}\left(a_{0} ; a, 1\right) \geqslant 0$ for $a \geqslant a_{0}$, which implies that $C(a ; 1) \leqslant a_{0}$ for $a \geqslant a_{0}$. Thus the proof is completed.

§4. Characterization of X_{r} by means of $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$

In this section we consider the Problem 1 concerning the characterization of a Euclidean random field \boldsymbol{X}_{r} on \boldsymbol{R}^{n} by means of $\mathscr{C}_{\boldsymbol{X}_{r}}\left(P_{1}, P_{2} ; q\right)$. First we note that the family $\left\{\mathscr{C}_{\boldsymbol{X}_{r}}\left(P_{1}, P_{2} ; q\right) ; P_{1}, P_{2} \in \boldsymbol{R}^{n}, q \in \boldsymbol{R}\right\}$ uniquely determines the probability law of \boldsymbol{X}_{r}. That is, if functions $r(t), r_{1}(t) \in \boldsymbol{S}_{n}$ satisfy the equality

$$
\begin{equation*}
\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)=\mathscr{C}_{X_{r_{1}}}\left(P_{1}, P_{2} ; q\right) \tag{25}
\end{equation*}
$$

for any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$ and any $q \in \boldsymbol{R}$, then we have $r(t)=r_{1}(t)$. This is easily
verified by noting that (25) is equivalent to the following:

$$
\begin{align*}
& \left\{r\left(\left|A-P_{1}\right|\right)-r\left(\left|A-P_{2}\right|\right)\right\} / r\left(\left|P_{1}-P_{2}\right|\right) \tag{26}\\
& \quad=\left\{r_{1}\left(\left|A-P_{1}\right|\right)-r_{1}\left(\left|A-P_{2}\right|\right)\right\} / r_{1}\left(\left|P_{1}-P_{2}\right|\right)
\end{align*}
$$

for any $A, P_{1}, P_{2} \in \boldsymbol{R}^{n}$.
Our conjecture is that the family $\left\{\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) ; P_{1}, P_{2} \in \boldsymbol{R}^{n}\right\}$ with some fixed $q>0$ would suffice for the characterization of \boldsymbol{X}_{r}.

Problem 1'. Let $r(t) \in \boldsymbol{S}_{\infty}, q>0$ and $n \geqslant 2$ be fixed. Suppose that $r_{1}(t) \in \boldsymbol{S}_{n}$ and $q_{1} \in \boldsymbol{R}$ satisfy the relation

$$
\begin{equation*}
\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) \subset \mathscr{C}_{X_{r_{1}}}\left(P_{1}, P_{2} ; q_{1}\right) \tag{27}
\end{equation*}
$$

for any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$. Then is it true that $r_{1}(t)=r(t)$ and $q_{1}=q$?
Proposition 2 tells us the following: For any $A, B \in \mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ the increments $X(A)-X(B)$ and $X\left(P_{1}\right)-X\left(P_{2}\right)$, viewed as the differences of members of \boldsymbol{X}_{r}, are mutually independent. By the relation (27), this property is still true even if those increments are viewed as the differences of members of $\boldsymbol{X}_{r_{1}}$. Therefore, if the Problem 1^{\prime} is affirmative, the parameter set of the form $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ is thought of as a characteristic of a Gaussian random field, so far as the independence property of the increments is concerned. We shall solve this problem for the classes $\mathbf{A} \sim \mathbf{E}$ of $r(t) \in \boldsymbol{S}_{\infty}$ by using the properties of $T_{r}(a ; q)$.

We deduce a functional equation for $f(x)=r_{1}\left(r^{-1}(x)\right)$ from the relation (27). For each $t \in T_{r}\left(\left|P_{1}-P_{2}\right| ; q\right)$, there exists a point $A(t) \in \mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)$ such that $\left|A(t)-P_{2}\right|=t$. By (12), we see that

$$
r\left(\left|A(t)-P_{1}\right|\right)=r(t)+q r\left(\left|P_{1}-P_{2}\right|\right) .
$$

Since the point $A(t)$ belongs also to $\mathscr{C}_{X_{r_{1}}}\left(P_{1}, P_{2} ; q_{1}\right)$, the equality

$$
r_{1}\left(\left|A(t)-P_{1}\right|\right)=r_{1}(t)+q_{1} r_{1}\left(\left|P_{1}-P_{2}\right|\right)
$$

holds. From these equations, putting $x=r\left(\left|P_{1}-P_{2}\right|\right)$ and $y=r(t)$, we obtain

$$
\begin{equation*}
f(q x+y)=q_{1} f(x)+f(y) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
x \in r((0, \infty)), \quad y \in r\left(T_{r}\left(r^{-1}(x) ; q\right)\right) . \tag{29}
\end{equation*}
$$

What has been discussed can be summarized as

Lemma 1. Suppose that the relation (27) holds for any $P_{1}, P_{2} \in \boldsymbol{R}^{n}$. Then the continuous function $f(x)=r_{1}\left(r^{-1}(x)\right)$ satisfies the functional equation (28).

Since the equality $q_{1}=q$ easily follows from $r_{1}(t)=r(t)$, our goal is to prove that $f(x)=x$ is the unique solution of (28) with $f(1)=1$.
(a) The case $q=1$. In this case the Problem 1^{\prime} becomes somewhat simple; the relation (27) implies that $q_{1}=1$. We thus have Cauchy's functional equation:

$$
\begin{gather*}
f(x+y)=f(x)+f(y), \tag{28}\\
x \in r((0, \infty)), \quad y \in r\left(T_{r}\left(r^{-1}(x) ; 1\right)\right) . \tag{29}
\end{gather*}
$$

When $r(t)$ is strictly concave (i.e., in the class \mathbf{C}), $\mathscr{F}_{X_{r}}\left(P_{1} \mid P_{2}\right)=\left\{P_{2}\right\}$ holds, so that we cannot obtain $r_{1}(t)=r(t)$. On the other hand, when $r(t)$ is strictly convex (in B) or $r(t)=t$ (in A), Cauchy's functional equation (28) holds for any $x, y \geqslant 0$. Then it is a classical result that $f(x)=x$ is the unique solution with $f(1)=1$ ([1]). Furthermore we shall show that this is true also for $r(t)$ in \mathbf{D} or \mathbf{E} under the condition $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$, by using the theorem of J. Aczél (p. 46 in [1]).

First, let $r(t) \in \boldsymbol{S}_{\infty}$ be in \mathbf{D} with the condition $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$. Then we see by Proposition 3D that the domain (29) includes the following set:

$$
\begin{equation*}
D_{\mathscr{\varphi}}=\{(x, y) ; 0<x<\beta, 0<y \leqslant \Phi(x), x+y<\beta\} \tag{30}
\end{equation*}
$$

with the decreasing continuous function $\Phi(x)=r\left(\tau\left(r^{-1}(x)\right)\right)$ on $(0, \beta)$, where $\beta=r(\infty) \in(1, \infty]$ and where $\tau(a)$ is the function on $(0, \infty)$ in Proposition 3D. When $\beta<\infty$, we may assume that $\Phi(x)<\beta-x$ without loss of generality.

Lemma 2. Suppose that a continuous function $f(x)$ with $f(1)=1$ satisfies Cauchy's functional equation (28) ${ }_{1}$ for any $(x, y) \in D_{\oplus}$ with a decreasing continuous function $\Phi(x)$ on $(0, \beta)$ such that $0<\Phi(x)<\beta-x(1<\beta \leqslant \infty)$. Then we have $f(x)=x$.

Proof. Take x_{0} such that $\Phi\left(x_{0}\right)=x_{0}$. Then, $\left(0, x_{\mathrm{r}}\right] \times\left(0, x_{0}\right] \subset D_{\Phi}$, which means that (28) holds for any $x, y \in\left[0, x_{0}\right]$. Hence by Aczél's theorem, we have $f(x)=c x$ on $\left[0, x_{0}\right]$ with some constant c. When $x>x_{0}$, it follows from (28) ${ }_{1}$ that

$$
\{f(x+y)-f(x)\} / y=f(y) / y=c \quad \text { for } 0<y<\Phi(x),
$$

so that the right derivative of f at $x \in\left(x_{0}, \beta\right)$ exists and is equal to the constant c. From this we obtain $f(x)=c x$ on $[0, \beta)$, and $c=1$ since $f(1)$ $=1$. The proof is thus completed.

Next, let $r(t) \in \boldsymbol{S}_{\infty}$ be in \mathbf{E} with the condition $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$. Then we see by Proposition 3E that the domain (29) includes the following set:

$$
\begin{equation*}
D^{\psi}=\{(x, y) ; 0<x<\infty, \Psi(x) \leqslant y<\infty\}, \tag{31}
\end{equation*}
$$

where $\Psi(x)$ is the nonnegative continuous function defined by

$$
\Psi(x)= \begin{cases}r\left(C\left(r^{-1}(x) ; 1\right)\right) & \text { for } 0<x<r\left(a_{2}\right) \\ 0 & \text { for } x \geqslant r\left(a_{2}\right)\end{cases}
$$

and satisfies the property that there exists $x_{0} \in(0, \infty)$ such that $\Psi(x) \leqslant x_{0}$ for $x \geqslant x_{0}$.

Lemma 3. Suppose that a continuous function $f(x)$ with $f(1)=1$ satisfies Cauchy's functional equation (28) for any $(x, y) \in D^{w}$ with a nonnegative continuous function $\Psi(x)$ on $(0, \infty)$ satisfying the property that there exists $x_{0} \in(0, \infty)$ such that $\left[x_{0}, \infty\right) \times\left[x_{0}, \infty\right) \subset D^{w}$. Then we have $f(x)=x$.

This is a simple consequence of Aczél's theorem, so we omit the proof. Thus we have proved the following

Theorem 2. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ satisfies one of the following four conditions:
(i) $r(t)=t$;
(ii) $r(t)$ is strictly convex on $(0, \infty)$;
(iii) $r(t)$ is strictly convex on $\left(0, t_{0}\right)$, strictly concave on $\left(t_{0}, \infty\right)$ for some $t_{0}\left(0<t_{0}<\infty\right)$ and $r^{\prime}(0+) \leqslant r^{\prime}(\infty) ;$
(iv) $r(t)$ is strictly concave on $\left(0, t_{0}\right)$, strictly convex on $\left(t_{0}, \infty\right)$ for some $t_{0}\left(0<t_{0}<\infty\right)$ and $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$.
Then, $r_{1}(t) \in \boldsymbol{S}_{n}$ satisfies the relation

$$
\mathscr{F}_{X_{r}}\left(P_{1} \mid P_{2}\right) \subset \mathscr{F}_{x_{r_{1}}}\left(P_{1} \mid P_{2}\right) \quad \text { for any } P_{1}, P_{2} \in \boldsymbol{R}^{n}
$$

if and only if $r_{1}(t)=r(t)$.
In the above cases (iii) and (iv), we have assumed, for convenience, that $r^{\prime}(0+) \leqslant r^{\prime}(\infty)$. Without this assumption, difficulties arise, for one thing the equality $\mathscr{F}_{X_{r}}\left(P_{1} \mid P_{2}\right)=\left\{P_{2}\right\}$ holds for $\left|P_{1}-P_{2}\right| \geqslant a_{1}$ in the case (iii) (see Proposition 3D) and for $\left|P_{1}-P_{2}\right| \leqslant a^{*}$ in the case (iv) (Proposition 3 E).
(b) The cases $0<q<1$ or $q>1$. When $r(t)$ is strictly concave (in C) or $r(t)=t$ (in A), we have $\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right)=\phi$ for $q>1$, so the answer to the Problem 1^{\prime} is obviously "No". But we have an affirmative answer in the following four cases:
$\left\{\begin{aligned} & \text { (i) } 0<q<1 \text { and } r(t)=t ; \\ & \text { (ii) } 0<q<1 \text { and } r(t) \text { is strictly convex on }(0, \infty) ; \\ & \text { (iii) } 0<q<1 \text { and } r(t) \text { is strictly concave on }(0, \infty) \\ & \text { with } r(\infty)=\infty ; \\ & \text { (iv) } q>1 \text { and } r(t) \text { is strictly convex on }(0, \infty) \text { with } r^{\prime}(0+)=0 \\ & \text { and } r^{\prime}(\infty)=\infty .\end{aligned}\right.$

In these cases, we see by Propositions $3 \mathrm{~A}, 3 \mathrm{~B}$ and 3 C that in the interior of the domain (29) there exists an increasing continuous curve $\Gamma: y=\phi(x), 0<x<\infty$, with $\phi(0+)=0$. Therefore, under the restriction that $r_{1}(t) \in \boldsymbol{S}_{n}$ is twice differentiable, we can easily verify that $f(x)=x$ is the unique solution of (28) with $f(1)=1$. Thus we have obtained the following

Theorem 3. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ and $q>0$ satisfy one of the four conditions in (32). Then, a twice differentiable function $r_{1}(t) \in \boldsymbol{S}_{n}$ and $q_{1} \in \boldsymbol{R}$ satisfy the relation

$$
\mathscr{C}_{X_{r}}\left(P_{1}, P_{2} ; q\right) \subset \mathscr{C}_{X_{r_{1}}}\left(P_{1}, P_{2} ; q_{1}\right) \quad \text { for any } P_{1}, P_{2} \in \boldsymbol{R}^{n}
$$

if and only if $r_{1}(t)=r(t)$ and $q_{1}=q$.
Remark 1. We see by Theorems 2 and 3 that the answer to the Problem 1^{\prime} for $r(t)=t^{\alpha}(0<\alpha \leqslant 2)$ is "Yes" in the following cases: (i) $0<$ $q<1$ and $0<\alpha \leqslant 2$; (ii) $q=1$ and $1 \leqslant \alpha \leqslant 2$; (iii) $q>1$ and $1<\alpha \leqslant 2$. In the other cases, the answer is "No".

Remark 2. Theorem 3 holds even in the case where a parameter $q_{1} \in$ \boldsymbol{R} depends on $P_{1}, P_{2} \in \boldsymbol{R}^{n}$.

§5. The projective invariance of $\mathscr{F}_{X_{\alpha}}\left(\boldsymbol{P}_{1} \mid \boldsymbol{P}_{2}\right)$

In this section we consider the Problem 2 mentioned in $\S 1$. The probability law of \boldsymbol{X}_{α} is invariant under each Euclidean motion, similar transformation and inversion T on \boldsymbol{R}^{n}, that is, the equality

$$
\begin{equation*}
\rho_{X_{\alpha}}(T A, T B \mid T \mathscr{E})=\rho_{X_{\alpha}}(A, B \mid \mathscr{E}) \tag{33}
\end{equation*}
$$

holds for any $A, B \in \boldsymbol{R}^{n}$ and any $\mathscr{E} \subset \boldsymbol{R}^{n}$. Here we take an inversion T with center in \mathscr{E}, that is, for some $a>0$ and some $P \in \mathscr{E}$,

$$
\left\{\begin{array}{ll}
T A=a^{2}(A-P)|A-P|^{-2}+P \\
T P=P
\end{array} \quad \text { if } A \neq P,\right.
$$

The property (33) is the characteristic property of \boldsymbol{X}_{α} called projective invariance ([3]). It easily follows from (33) that

$$
\begin{equation*}
\mathscr{F}_{X_{\alpha}}(T A \mid T \mathscr{E})=T \mathscr{F}_{X_{\alpha}}(A \mid \mathscr{E}) \quad \text { for any } A \in \boldsymbol{R}^{n} \text { and any } \mathscr{E} \subset \boldsymbol{R}^{n} \tag{34}
\end{equation*}
$$

Now we wish to show that there is no other \boldsymbol{X}_{r} with the above property (34). Namely, we are ready to discuss

Problem 2. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ satisfies the equality

$$
\begin{equation*}
\mathscr{F}_{X_{r}}\left(T P_{1} \mid T P_{2}\right)=T \mathscr{F}_{X_{r}}\left(P_{1} \mid P_{2}\right) \quad \text { for any } P_{1}, P_{2} \in \boldsymbol{R}^{n} \tag{35}
\end{equation*}
$$

where a transformation T on \boldsymbol{R}^{n} runs over all similar transformations and inversions with center P_{2}. Then is it true that $r(t)=t^{\alpha}$?

We can solve this problem under the following condition:
(36) There exists $\mathrm{a}_{0}>0$ such that $r(t)+r\left(a_{0}\right) \leqslant r\left(t+a_{0}\right) \quad$ for $0 \leqslant t \leqslant a_{0}$, which means that $T_{r}\left(a_{0} ; 1\right) \supset\left[0, a_{0}\right]$. It follows from (35) that $T_{r}(a ; 1)=$ $\left\{a t / a_{0} ; t \in T_{r}\left(a_{0} ; 1\right)\right\}, a>0$, and that the set $T_{r}(a ; 1) \backslash\{0\}, a>0$, is invariant under the inversion $t^{*}=a^{2} / t$ on ($0, \infty$). By using the condition (36), we have $T_{r}(a ; 1)=[0, \infty)$ for any $a>0$.

Theorem 4. Suppose that $r(t) \in \boldsymbol{S}_{\infty}$ satisfies the condition (36). Then the equality (35) holds for any similar transformation and inversion with center P_{2} if and only if $r(t)=t^{\alpha}(1 \leqslant \alpha \leqslant 2)$.

Proof. It suffices to prove "only if" part. From the equality (35) for any similar transformation T on \boldsymbol{R}^{n}, we obtain the equation

$$
\begin{equation*}
r\left(k r^{-1}(r(t)+1)\right)=r(k t)+r(k) \tag{37}
\end{equation*}
$$

for any $k>0$ and any $t \in T_{r}(1 ; 1)=[0, \infty)$. With this we show the following equation for any natural number m :

$$
\begin{equation*}
r\left(k r^{-1}(m)\right)=m r(k) \quad \text { for any } k>0 \tag{38}
\end{equation*}
$$

This equation clearly holds for $m=1$. Suppose the equation (38) holds for m. Then, putting $t=r^{-1}(m)$ in (37), we see that

$$
r\left(k r^{-1}(m+1)\right)=r\left(k r^{-1}(m)\right)+r(k)=(m+1) r(k) .
$$

By induction on m, the equation (38) holds for all m.
If we set $r(k)=a$ in (38), then we have $r^{-1}(m a)=r^{-1}(m) r^{-1}(a)$. It easily follows that $r^{-1}(p a)=r^{-1}(p) r^{-1}(a)$ for any rational number p and any $a>0$. Since $r^{-1}(t)$ is continuous, we obtain

$$
r^{-1}(a b)=r^{-1}(a) r^{-1}(b) \quad \text { for any } a, b \geqslant 0
$$

which implies that $r^{-1}(t)=t^{1 / \alpha}$ for some $\alpha>0$. Thus, excluding the case $0<\alpha<1$ because of (36), we have $r(t)=t^{\alpha}$ with $1 \leqslant \alpha \leqslant 2$. The proof is completed.

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.
[2] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1965.
[3] A. Noda, Gaussian random fields with projective invariance, Nagoya Math. J., 59 (1975), 65-76.
[4] I. J. Schoenberg, Metric spaces and completely monotone functions, Annals of Math., 39 (1938), 811-841.
[5] D. Widder, The Laplace Transform, Princeton, New Jersey, 1946.
[6] A. M. Yaglom, Some classes of random fields in n-dimensional space related to stationary random processes, Theory Prob. Appl., 2 (1957), 273-320 (English translation).

Department of Mathematics
Shinshu University
Department of Mathematics
Aichi University of Education

[^0]: Received July 18, 1980.

