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INTEGRAL REPRESENTATIONS WITH TRIVIAL

FIRST COHOMOLOGY GROUPS

SHIZUO ENDO AND TAKEHIKO MIYATA

Let Π be a finite group and denote by Mπ the class of finitely generated

Z-free Zi7-modules. In [2] we defined a certain equivalence relation on Mπ

and constructed the abelian semigroup T(Π), which was studied in [3] (see

[1] and [5], too). In this paper we will define a certain subsemigroup

f(Π) of T(Π) and using this will give a complete answer to a problem

raised by H. W. Lenstra, Jr. (for the precise statement see Theorem 2.1

in Section 2).

The contents of this paper were obtained in 1974 and briefly anounced

in [4].

Let Π be a finite group and Mπ the class of all Z/7-lattices, namely,

finitely generated Z-free Zi7-modules. We further define:

Hπ = {MeMn\H\n\ M) = 0 for every subgroup W of 77}

Hπ — H]j Π HE1

Sπ — {permutation Z77-modules}

Dπ = {direct summands of permutation Zi7-modules}.

Define M* - Homz (M, Z). If MeHjj, then Λf* e HE1.

LEMMA 1.1. For every MeMπ there exist two exact sequences

(1) 0 >N >S >M >0, NeHι

π, SeSπ

(2) 0 >M > L > T > 0, L e H\, TeSπ.

Proof. (1) is Lemma 1.1 in [3].

(2) M can be imbedded in a suitable free Z77-module F such that

F\M is Z-free. By (1) there is an exact sequence 0->Λ7Γ/->T'->F/M->0 with

Received May 26, 1980.



232 SHIZUO ENDO AND TAKEHIKO MIYATA

N' eHi and TeSπ. Taking the pullback of F->F/M we have an exact
t
T

sequence 0 -> M -> F®N' -» T -+ 0. This completes the proof.

LEMMA 1.2. Lei 770 6β a subgroup of Π. Consider an exact sequence

0 > M >N-^-+ ZΠ/Π0 © L • 0, M, N, LeMπ .

If H\Π09 M) = 0, then N has a direct sum decomposition N = iVj 0 N2

such that the restriction φ to Nι is an isomorphism onto ZΠJΠQ.

Especially E x t ^ (L, M) = 0 for Le Dπ and Me Hι

π.

Proof. Let n be a fixed element of φ-ι(JI^Π^. Then σn — n e M for

every σ e 770> i.e., σn — n, σ e Πo is a. cocycle of ΠQ with values in M. By

the assumption there is an me M such that σn — n = σm — m for all σ e

Πo. Set Nt = ZΠ-(n — m) and iV2 = φ~\L). Clearly N = Nλ@N2 and φ:

Ni -> ZΠ/ΠQ is an isomorphism.

Remark 1.3. Let p be a prime. Z p denotes the completion of Z at

p. For a p-group 77, a more precise statement than Lemma 1.2 holds.

Namely, consider an exact sequence: 0 -> M -> S > Zp77/770 0 T -> 0 with

M, α Zp/7-lattice and S, T, permutation Zp77-modules. If Hι(Π0, M) = 0,

then S has a direct sum decomposition S = Sj 0 S2 such that Si and S2

are permutation ZpZ?"-modules and φ: Sί~> ZVΠJΠQ is an isomorphism.

The proof follows from the similar argument as above, Krull-Schmidt's

theorem and the fact that ZvU\Tl' is an indecomposable Zp77-module for

an arbitrary subgroup II' of /7.

For M, N e Mπ we define M = N by the existence of two exact se-

quences :

0 >M >X >S >0

0 >N >X >T >0

with XeMπ and S, TeSπ. Lemmas 1.1 and 1.2 show that " Ξ " is an

equivalence relation on Mπ. Now we define

T(Π) = Mπl(=)

where the addition is introduced to T(Π) by the direct sum. It is easy

to check that this semigroup coincides with our old T{Π) defined in [2],

By Lemma 1.1 T(Π) is generated by H\. f(Π) is defined to be the sub-

semigroup of T(Π) which is generated by H^1 (note that this is already



INTEGRAL REPRESENTATIONS 233

generated by Hπ). We denote by Tg(Π) the set of invertible elements in

T(Π). This is clearly an abelian group and is known to be generated by

Dπ. Hence Tg(Π) is finitely generated by [3], (1.5).

§2.

The aim of this paper is to prove the following

THEOREM 2.1. Let Π be a finite group and let Πp be a Sylow p-sub-

group of 77 for each prime p. Then the following statements are equivalent:

(1) Hπ = Dπ, i.e., T(Π) is a group,

(2) Πp is cyclic for each odd prime p, and 772 is cyclic or dihedral

(including Klein's four group).

This gives a complete answer to a problem which was raised by H. W.

Lenstra, Jr.

In this section we will give an outline of the proof of the theorem

and postpone proofs of technical lemmas to later sections.

LEMMA 2.2. (1) If Hπ = Dπ, then Hu, = Dw for any subgroup W of 77.

(2) Hπ = Dπ if and only if HπP — DπP for every prime p.

Proof (1) If MeHπ,, then ZΠ ®zπ, M e Hπ = Dπ. Since M is a

direct summand of ZΠ ®zπ, M as a Z77/-module, we see that MeDπ,.

(2) If M e Hπ, then for any prime p, MeHπP. If HπP = DπP for every

prime p, then clearly MeDπ by [3], (1.4). The converse follows from (1).

By this lemma it suffices to prove the theorem for a p-group 77.

Let 77 be a finite group and let Iπ be the augmentation ideal of Z77,

i.e., IJJ — Kerε^, where επ\ ZΠ —> Z denotes the augmentation map. We

have an exact sequence

0 >IΠ®ZIΠ •Z/7<»-1> >IΠ >0, n = \Π\.

We define Lπ - (Iπ ®z Iπ)* - Hom z (Iπ ®z Iπ, Z), then [Lπ] e f(JI). It is

routine to show

LEMMA 2.3. Lπ e HE1 Π HH\ H~\Π, LΠ) ^ Z/|77| Z, 7ΪO(77? Lπ) ^ 77/[77, 77]

([77, 77] denotes the commutator subgroup of 77) and Hι(Π, Lπ) ^ 7f 2(/7, QjZ)

(the Schur multiplier of 77).

This lemma will be used in Section 3.

LEMMA 2.4. Let 77 be one of the following groups:
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(1) Z/2Z X Z/2Z X Z/2Z,

(2) the quarternίon group H2 of order 8,

(3) ZjpZ X ZjpZ, where p is an odd prime,

(4) Z/4Z X Z/2Z.

Then [Lπ] $ Tg(Π). Especially, f (77) is not a group.

This lemma will be proved in Section 3. It is easy to show the fol-

lowing

LEMMA 2.5. Let Π be a finite 2-group of order :> 8. Assume that there

exists no subgroup of 77 isomorphίc to one of the following:

(1) Z/2Z X Z/2Z X Z/2Z,

(2) the quarternίon group H2 of order 8,

(3) Z/4Z X Z/2Z,

then 77 is cyclic or dihedral.

For an odd prime p, if a p-group 77 has no subgroup isomorphic to

ZjpZ X ZjpZ, then 77 is cyclic. Hence the implication (1) => (2) in Theorem

2.1 follows from Lemmas 2.2, 2.4 and 2.5.

We denote by D2e, ί = 1, the dihedral group of order 2ί+1, i.e.,

D2e = <σ,τ\σ1' = τ2 = 1, τ'`στ = σ'1}

D2 is Klein's four group Z/2Z X Z/2Z. From now on we assume I ^ 2.

The key point in proving the implication (2) => (1) in Theorem 2.1 is that

a ZArlattice with no non-zero element fixed by (a2*'1), the center of D2h

can be completely classified locally. To state the classification explicitly

we will prepare a few more notations.

Denote by ζ a primitive 2^-th root of unity and put R£ = Z[ζ] and &t

— (ζ — 1)7?̂ . Define the action of <τ> on R£ by r(ζ) = ζ"1, i.e., identify τ

with the complex conjugation. Then ^ is the unique ambiguous prime

ideal of Rβ ramified over Z. We define Λe = ZDJiσ2^1 + 1). Then At is

isomorphic to the trivial crossed product of R£ and (τ). R£ and 0>& clearly

can be regarded as J rmodules naturally. Λ£> R£ and 0i

ι are quasipermuta-

tion modules (M e Mπ is a quasi-permutation module if there exists permu-

tation Z77-modules Su S2 such that 0 -> M-» Sx -> S2 -> 0 is exact).

LEMMA 2.6. Let M be a finitely generated Z-free Λrmodule. Then M

has the same genus as Λ{p Θ R[s) Θ @T for some r, s, t^> 0, i.e., these two

modules are locally isomorphic and hence [M] e Tg(D2().
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Using the lemma we can prove

LEMMA 2.7. f(D2e) is a group.

In [3] we proved that let 77 be a p-group with p odd prime, then T(Π)

is a group if and only if 77 is cyclic. Lemma 2.4 shows that the follow-

ing statements are equivalent for a p-group 77 with p odd prime:

( i ) 77 is cyclic,

(ii) T(Π) is a group,

(iii) T(77) is a group.

The implication (2) => (1) in Theorem 2.1 follows from this observation

and Lemmas 2.2 and 2.7.

Remark 2.8. In [3] we proved that T(Π) is a group if and only if

Uπ] £ Tg(Π). An analogous statement for T(77) can also be proved, i.e.,

7(77) is a group if and only if [Lπ] = [(Iπ Θz Iπ)*] e Tg(Π).

§3.

Proof of Lemma 2.4. Throughout this section we assume that 77 is a

p-group. It suffices to show that if [Lπ] e Tg(Π), then 77 is not isomorphic

to any group listed in Lemma 2.4. Assume that [Lπ] e Tg(Π). Since M

belongs to Dπ if and only if Zp ®z M i s a permutation Z^-module Lemma

1.1 shows that there is an exact sequence:

(3.1) 0 > Zp ®z Lπ > S, > S2 > 0

where SΊ and S2 are permutation Zp77-modules. Remark 1.3 allows us to

assume that S2 has no direct summand isomorphic to Zp77/770 for any

cyclic subgroup 770 of 77 (note that Lπ e Hΰ1 and hence 771(770, Lπ) = 0 by

periodicity). Taking a long cohomology sequence and noting Lemma 2.3,

we obtain an exact sequence:

(3.2) 0 > H-\Π, Sx) > H-\Π, S2) > Z/\Π\Z

> H-\Π, S,) > H-\Π, So) >0 .

(1) Let 77 be Z/2Z x Z/2Z X Z/2Z. In this case all cohomology

groups appearing in (3.2) are annihilated by 2. This is a contradiction.

(2) Let 77 be the quaternion group of order 8. Then 7f~2(77, S) is

annihilated by 4 and H~\Π, S) ^ H~\Π, S) = 0 for all permutation Z277-

modules S. This contradicts (3.2).

(3) Let 77 be Z/pZ X Z/pZ, where p is an odd prime. In this case we
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can put S2 = Z£\ S, = Z^m) ® T, where T is a permutation Zp77-module

having no direct summand isomorphic to Z p since a proper subgroup of

77 is cyclic. We derive another cohomology sequence from (3.1):

0 > H\Π, Zp ®z Lπ) > H°(Π, ZjT` θ T)

> H\Π, Z™) > ff (77, Zp ®z Ln) > 0 .

From this we obtain an exact sequence:

o —> (z/pzy2) —> (z/p2zym) ® H\Π, T) —> (zjp2zyn) —> z\pz—> o.

Hence n — I = m or m — n because H°(Π, T) is annihilated by p. Let

77/ ^ 1 be a cyclic subgroup of 77. From (3.1) we get an exact sequence:

0 > Z\pZ > (ZlpZ)(m) ® H\Π\ T) > (ZjpZ)w > 0 .

Hence H°(Π', T) ^ (ZlpZ)i2) if n - 1 = m or ^ Z\pZ if n = m. On the

other hand since T has no direct summand isomorphic to Zp, we see that

rankZj) H°(Π', T) is divisible by p. This is a contradiction.

(4) Let 77 be Z/4Z X Z/2Z - <σ> X <τ>. In this case (3.1) looks like

() > τ>ym) ® T

• > zp Θ (Zp77/<σ2, τ»<w/> > 0

where T = @π^ΠtW, cyclic 0V7/77')<**>).

Set 770 = <V, τ>. Then it is easy to check that

(3.4) 0 > Zp ®z LΠo > ZpΠϋl(σ2} @ Zp770/<τ> Θ ZpΠol(σ2τ) - ^ Zp > 0

is exact, where ε is the sum of augmentation maps. It is also easy to

see that

(Zp ®z Lπ) Θ F ^ (Zp ®z LΠQ) θ F2

as Zp770-modules with suitable free Zp770-modules Fl9 F2. Taking the push-

out of (3.3) and (3.4), we have

Zf θ (ZpΠ/(σ2, τ» ( w ) ®T®Fγ®Zp

(3.5) ^ zp θ (Zp77/<σ2, r » ^ ^ ®F2® ZpΠϋl(σ2)

® ZpΠol(τ} ® ZpΠϋl(σ2τ)

as Zp770-modules. Simple computations show that as a Zp770-module T has

even number of direct summands isomorphic to Zp770/<r>. This contradicts

(3.5).
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§4.

Proofs of Lemmas 2.6 and 2.7. First we consider proof of Lemma 2.6.

LEMMA 4.1. Let R he a ring and let Au A2 and X be R-modules with

the following properties:

(1) 0-+Ai->X-+Ai—>0 (i = 1, 2) are non-split exact sequences.

(2) Ext1,, (Au A,) ^ Z/2Z, Ext1,, (Au X) ^ Ext1,, (X, Aτ) = 0 i = l ,2 and

Ext1* (Al9 A2) = Ext1* (A2, A!) ^ Ext1^ (X, X) = 0.

Consider an extension

0 — > AίSl) Θ A^ 0 X ( ί ) > Y > A^ 0 A^ © X ( O > 0 ,

ίΛβΛ y is of the same type, i.e., Y = A{s^ ® A^Ί 0 X{t"\

Proof is easy.

We have the exact sequences:

Define the homomorphism φ: R£-> Λ£(τ + 1) (resp. φr: &£-> Λ£(τ + ζ)) by

φ(x) — x(τ + 1) (resp. φ'(x(ζ + 1)) = x(τ + ζ)) for any x e R£. Then φ and φf

are ^-homomorphisms. Put ω = (1 + 0(1 - 0" 1 a ^d ωr = (1 + ζ)(l - ζ"1)"1

e C/(i?̂ ) and define the homomorphism ψ: R£-> A£(τ — 1) (resp. ψ': ^ —>

J / r — ζ"1)) by ψ(x) = xω(τ — 1) (resp. ψ>'(x(ζ + 1)) = xω^r — ζ"1)) for any

x e R£. We easily show that both ψ and ψr are ^-isomorphisms. There-

fore, we have

A£(τ + l) = Λ£(τ -ί)~R£ and Λβ(τ + ζ) ^ Λ,(* - ζ`1) ^ ^

as J rmodules. Thus we get the non-split exact sequences:

where f (resp. f) is defined by f(x + yτ) = x + y (resp. /`;(x + jr) =

(x + yζ'OίC + 1)). From (4.1) we get the exact sequence:

Horn,, (Rt, A) - ^ > Horn,, (Re, Re) > Ext \ (Ri9 Re) > 0 .

Every "̂ e Hom^̂  (i? ,̂ R£) can be identified with g(l) e R£. Then we have

^ ( R £ , R £ ) = {x e R£\x = x] a n d Imf = {x + x \ x e R£}
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where x is the complex conjugation of x e Re. By a direct computation

it is seen that

Exti, (Rt, R£) = Horn,, (Ri9 R£)/Imf ~ Z/2Z .

Similarly we can show that

Ext^ (<?>„ &£) ^ Z/2Z and Ext}, (R£, &£) ^ Exti, (^, Λ<) = 0 .

This shows that R£, 0>e and Λ, satisfy the conditions in Lemma 4.1.

We localize everything at 2 and denote them by the same notations.

Let Ω£ be a maximal order in Q2Λ£ containing At and let M be a J^-lattice.

Then we can write uniquely ΩeM ~ Ω£R
{

£

n\ n ^> 0. We call n the rank of

M. We will prove the assertion by induction on n. It is noted that any

ambiguous ideal of R£ is isomorphic to R£ or @>e. If n = 1, M is isomorphic

to an ambiguous ideal of 22, and so M ~ R£ or ^V Now we assume that

n >̂ 2 and the assertion is true for N with rank JV <̂  n — 1. We can

write β,M = Lj Θ L2, where Li ^ β,J?in-1} and L2 ^ β,J?,. Put iV = Λf Π Li

and Mr = MjN. Then by the induction hypothesis we have N ^ Λ(

£

r) 0

i?is) Θ j^i 0 for some r, s, and ί. Since M ; ^ iϊ, or ^ , we have M ^ ^ r '>

Θ R[sf) Θ ^i f / ) by Lemma 4.1. This completes the proof.

Finally we shall prove Lemma 2.7. If Π is cyclic this assertion was

proved in [3]. Therefore we only need to consider the case where Π is

dihedral, i.e.,

Π = D3< = (σ,τ\σ2* = τ2 = 1 , τ~'aτ = a ' 1 ) , £ ^ 1 .

We will prove the assertion by induction on L

We first assume that ί = 1. In this case D2 is Klein's four group.

Let L e Hπ. Define the homomorphism Nσ: L-+L by Na(u) = (1 + σ)u for

uel. Then H-ι((σ)>, L) = Ker NJ(σ — ί)L = 0 and hence we have the

exact sequence

0 > (σ - ι)L > L > Im Nσ > 0 .

Since H°(Π, (σ - 1)L) - 0, we have H'ι(Π9 ΊmN,) = 0. Since ImiVσ can

be regarded as a ZΠjζσ`)-module and Z-free, we easily see that H'`iΠKσ},

Im Nσ) = 0. This shows that Im Nσ is a permutation Z77/<(7>-module. We

obtain that

(σ - ΐ)L ^ (ZΠ/(σ + 1, τ - 1))<'> 0 (Z/7/(σ + 1, στ - 1))

for some r, s, t7> 0 and therefore [((7 — 1)L] is zero in T(Π). Hence [L] =
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[(σ - Ϊ)L] = 0. This shows f (77) = 0, or Hπ = Dπ. Next assume that I

>̂ 2 and the assertion is true for D2J, j` <* £ — 1. Let L e Hm&. Then we

have the exact sequence

0 0 .

Put U = (σ2'"1 - 1)L and L" = (σ2*'1 + ΐ)L. If 777 is a subgroup of 77 -

D2, containing (σ2'"1), then H\Π\ L') = 0 hence R~\U\ L") = 0. Since L"

can be regarded as Z-free Z77/<σ2'"1>-module, we have i/-1(777<σ°J~1>, L")

= 0. Hence L" e Hπιl(o2C~ls), By Lemma 2.6 there are a permutation Z77-

module S and a Z77-lattice Γ locally isomorphic to a permutation module

such that

0 >U > S—> T >0

is exact. Taking the pushout of U —> L we get the following commutative

diagram with exact rows and columns:

0 0

V

LU

-> s

0 0

Since L" e H^-iy g Hήι and L e Hjj, we have X^L®T= SΘ L". This

shows that II' e Hι

π and hence L" e Hπ/<σ2e-iy By the induction hypothesis

L" e Dni{ai^xy £ Dπ, thus LeDπ. This completes the proof.
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