INTEGRAL REPRESENTATIONS WITH TRIVIAL FIRST COHOMOLOGY GROUPS

SHIZUO ENDO and TAKEHIKO MIYATA

Let $I I$ be a finite group and denote by \boldsymbol{M}_{Π} the class of finitely generated Z-free $Z \Pi$-modules. In [2] we defined a certain equivalence relation on \boldsymbol{M}_{Π} and constructed the abelian semigroup $T(\Pi)$, which was studied in [3] (see [1] and [5], too). In this paper we will define a certain subsemigroup $\tilde{T}(\Pi)$ of $T(\Pi)$ and using this will give a complete answer to a problem raised by H. W. Lenstra, Jr. (for the precise statement see Theorem 2.1 in Section 2).

The contents of this paper were obtained in 1974 and briefly anounced in [4].

§ 1.

Let $I I$ be a finite group and \boldsymbol{M}_{Π} the class of all $\boldsymbol{Z} \Pi$-lattices, namely, finitely generated Z-free $Z \Pi$-modules. We further define:

$$
\begin{aligned}
& \boldsymbol{H}_{\Pi}^{i}=\left\{M \in \boldsymbol{M}_{\Pi} \mid H^{i}\left(\Pi^{\prime}, M\right)=0 \text { for every subgroup } \Pi^{\prime} \text { of } \Pi\right\} \\
& \tilde{\boldsymbol{H}}_{\Pi}=\boldsymbol{H}_{\Pi}^{1} \cap \boldsymbol{H}_{\Pi}^{-1} \\
& \boldsymbol{S}_{\Pi}=\{\text { permutation } \boldsymbol{Z} \Pi \text {-modules }\} \\
& \boldsymbol{D}_{\Pi}=\{\text { direct summands of permutation } Z \Pi \text {-modules }\} .
\end{aligned}
$$

Define $M^{*}=\operatorname{Hom}_{Z}(M, \boldsymbol{Z})$. If $M \in \boldsymbol{H}_{I I}^{1}$, then $M^{*} \in \boldsymbol{H}_{\Pi}^{-1}$.
Lemma 1.1. For every $M \in M_{I I}$ there exist two exact sequences
(1) $0 \longrightarrow N \longrightarrow S \longrightarrow M \longrightarrow 0, \quad N \in \boldsymbol{H}_{\Pi}^{1}, S \in \boldsymbol{S}_{\Pi}$
(2) $0 \longrightarrow M \longrightarrow L \longrightarrow T \longrightarrow 0, \quad L \in \boldsymbol{H}_{\Pi}^{1}, T \in \boldsymbol{S}_{\Pi}$.

Proof. (1) is Lemma 1.1 in [3].
(2) M can be imbedded in a suitable free $Z \Pi$-module F such that F / M is Z-free. By (1) there is an exact sequence $0 \rightarrow N^{\prime} \rightarrow T \rightarrow F / M \rightarrow 0$ with
$N^{\prime} \in \boldsymbol{H}_{I I}^{1}$ and $T \in \boldsymbol{S}_{\Pi}$. Taking the pullback of $F \rightarrow F / M$ we have an exact $\stackrel{\uparrow}{T}$
sequence $0 \rightarrow M \rightarrow F \oplus N^{\prime} \rightarrow T \rightarrow 0$. This completes the proof.
Lemma 1.2. Let Π_{0} be a subgroup of Π. Consider an exact sequence

$$
0 \longrightarrow M \longrightarrow N \xrightarrow{\phi} Z \Pi / \Pi_{0} \oplus L \longrightarrow 0, \quad M, N, L \in M_{\Pi} .
$$

If $H^{1}\left(\Pi_{0}, M\right)=0$, then N has a direct sum decomposition $N=N_{1} \oplus N_{2}$ such that the restriction ϕ to N_{1} is an isomorphism onto $Z \Pi / \Pi_{0}$.

Especially $\operatorname{Ext}_{Z_{\Pi}}^{1}(L, M)=0$ for $L \in \boldsymbol{D}_{\Pi}$ and $M \in \boldsymbol{H}_{\Pi}^{1}$.
Proof. Let n be a fixed element of $\phi^{-1}\left(\Pi_{0} / \Pi_{0}\right)$. Then $\sigma n-n \in M$ for every $\sigma \in \Pi_{0}$, i.e., $\sigma n-n, \sigma \in \Pi_{0}$ is a cocycle of Π_{0} with values in M. By the assumption there is an $m \in M$ such that $\sigma n-n=\sigma m-m$ for all $\sigma \in$ Π_{0}. Set $N_{1}=Z \Pi \cdot(n-m)$ and $N_{2}=\phi^{-1}(L)$. Clearly $N=N_{1} \oplus N_{2}$ and ϕ : $N_{1} \rightarrow Z \Pi / \Pi_{0}$ is an isomorphism.

Remark 1.3. Let p be a prime. Z_{p} denotes the completion of Z at p. For a p-group Π, a more precise statement than Lemma 1.2 holds. Namely, consider an exact sequence: $0 \rightarrow M \rightarrow S \xrightarrow{\phi} Z_{p} \Pi / \Pi_{0} \oplus T \rightarrow 0$ with M, a $Z_{p} \Pi$-lattice and S, T, permutation $Z_{p} \Pi$-modules. If $H^{1}\left(\Pi_{0}, M\right)=0$, then S has a direct sum decomposition $S=S_{1} \oplus S_{2}$ such that S_{1} and S_{2} are permutation $Z_{p} \Pi$-modules and $\phi: S_{1} \rightarrow Z_{p} \Pi / \Pi_{0}$ is an isomorphism.

The proof follows from the similar argument as above, Krull-Schmidt's theorem and the fact that $Z_{p} \Pi \mid \Pi^{\prime}$ is an indecomposable $Z_{p} \Pi$-module for an arbitrary subgroup Π^{\prime} of Π.

For $M, N \in M_{I I}$ we define $M \equiv N$ by the existence of two exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow M \longrightarrow X \longrightarrow S \longrightarrow 0 \\
& 0 \longrightarrow N \longrightarrow X \longrightarrow T \longrightarrow 0
\end{aligned}
$$

with $X \in \boldsymbol{M}_{I}$ and $S, T \in \boldsymbol{S}_{\Pi}$. Lemmas 1.1 and 1.2 show that " \equiv " is an equivalence relation on \boldsymbol{M}_{π}. Now we define

$$
T(\Pi)=M_{\Pi} /(\equiv)
$$

where the addition is introduced to $T(\Pi)$ by the direct sum. It is easy to check that this semigroup coincides with our old $T(\Pi)$ defined in [2]. By Lemma $1.1 T(\Pi)$ is generated by $\boldsymbol{H}_{\Pi}^{1} . \quad \tilde{T}(\Pi)$ is defined to be the subsemigroup of $T(I I)$ which is generated by \boldsymbol{H}_{I}^{-1} (note that this is already
generated by $\tilde{\boldsymbol{H}}_{\Pi}$). We denote by $T^{g}(\Pi)$ the set of invertible elements in $T(\Pi)$. This is clearly an abelian group and is known to be generated by \boldsymbol{D}_{Π}. Hence $T^{g}(I I)$ is finitely generated by [3], (1.5).

§ 2.

The aim of this paper is to prove the following
Theorem 2.1. Let Π be a finite group and let Π^{p} be a Sylow p-subgroup of Π for each prime p. Then the following statements are equivalent:
(1) $\tilde{H}_{I}=D_{I}$, i.e., $\tilde{T}(\Pi)$ is a group,
(2) Π^{p} is cyclic for each odd prime p, and Π^{2} is cyclic or dihedral (including Klein's four group).

This gives a complete answer to a problem which was raised by H. W. Lenstra, Jr.

In this section we will give an outline of the proof of the theorem and postpone proofs of technical lemmas to later sections.

Lemma 2.2. (1) If $\tilde{\boldsymbol{H}}_{\Pi}=D_{\Pi}$, then $\tilde{\boldsymbol{H}}_{\Pi^{\prime}}=D_{\Pi^{\prime}}$ for any subgroup Π^{\prime} of Π.
(2) $\quad \tilde{\boldsymbol{H}}_{I I}=D_{\Pi}$ if and only if $\tilde{\boldsymbol{H}}_{\Pi^{p}}=D_{\Pi^{p}}$ for every prime p.

Proof. (1) If $M \in \tilde{\boldsymbol{H}}_{\Pi^{\prime}}$, then $\boldsymbol{Z} \Pi \otimes_{Z_{\Pi}}, M \in \tilde{\boldsymbol{H}}_{\Pi}=\boldsymbol{D}_{\Pi}$. Since M is a direct summand of $\boldsymbol{Z} \Pi \otimes_{Z \Pi^{\prime}} M$ as a $\boldsymbol{Z} \Pi^{\prime}$-module, we see that $M \in \boldsymbol{D}_{I^{\prime}}$.
(2) If $M \in \tilde{\boldsymbol{H}}_{\Pi}$, then for any prime $p, M \in \tilde{\boldsymbol{H}}_{\pi^{p}}$. If $\tilde{\boldsymbol{H}}_{\Pi^{p}}=D_{\Pi^{p}}$ for every prime p, then clearly $M \in \boldsymbol{D}_{\Pi}$ by [3], (1.4). The converse follows from (1).

By this lemma it suffices to prove the theorem for a p-group Π.
Let Π be a finite group and let I_{I} be the augmentation ideal of $Z \Pi$, i.e., $I_{\Pi}=\operatorname{Ker} \varepsilon_{\Pi}$, where $\varepsilon_{\Pi}: Z \Pi \rightarrow Z$ denotes the augmentation map. We have an exact sequence

$$
0 \longrightarrow I_{I I} \otimes_{Z} I_{I I} \longrightarrow Z \Pi I^{(n-1)} \longrightarrow I_{I} \longrightarrow 0, \quad n=|\Pi|
$$

We define $L_{\Pi}=\left(I_{\Pi} \otimes_{Z} I_{\Pi}\right)^{*}=\operatorname{Hom}_{Z}\left(I_{\Pi} \otimes_{Z} I_{\Pi}, Z\right)$, then $\left[L_{\Pi}\right] \in \tilde{T}(\Pi)$. It is routine to show

Lemma 2.3. $L_{\Pi} \in \boldsymbol{H}_{\Pi}^{-1} \cap \boldsymbol{H}_{\Pi}^{-3}, H^{-2}\left(\Pi, L_{\Pi}\right) \cong \boldsymbol{Z}| | \Pi \mid \boldsymbol{Z}, \hat{H}^{0}\left(\Pi, L_{\Pi}\right) \cong \Pi /[\Pi, \Pi]$ ([$\Pi, \Pi]$ denotes the commutator subgroup of Π) and $H^{1}\left(\Pi, L_{\Pi}\right) \cong H^{2}(\Pi, \boldsymbol{Q} \mid Z)$ (the Schur multiplier of Π).

This lemma will be used in Section 3.
Lemma 2.4. Let Π be one of the following groups:
(1) $Z / 2 Z \times Z / 2 Z \times Z / 2 Z$,
(2) the quarternion group H_{2} of order 8 ,
(3) $\boldsymbol{Z}|p \boldsymbol{Z} \times \boldsymbol{Z}| p \boldsymbol{Z}$, where p is an odd prime,
(4) $Z / 4 Z \times Z / 2 Z$.

Then $\left[L_{\Pi}\right] \oplus T^{g}(\Pi)$. Especially, $\tilde{T}(\Pi)$ is not a group.
This lemma will be proved in Section 3. It is easy to show the following

Lemma 2.5. Let Π be a finite 2 -group of order $\geqq 8$. Assume that there exists no subgroup of Π isomorphic to one of the following:
(1) $Z / 2 Z \times Z / 2 Z \times Z / 2 Z$,
(2) the quarternion group H_{2} of order 8 ,
(3) $\boldsymbol{Z} / 4 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$,
then II is cyclic or dihedral.
For an odd prime p, if a p-group Π has no subgroup isomorphic to $\boldsymbol{Z}|p \boldsymbol{Z} \times \boldsymbol{Z}| p \boldsymbol{Z}$, then Π is cyclic. Hence the implication (1) \Rightarrow (2) in Theorem 2.1 follows from Lemmas 2.2, 2.4 and 2.5.

We denote by $D_{2^{\ell}}, \ell=1$, the dihedral group of order $2^{\ell+1}$, i.e.,

$$
D_{2^{\ell}}=\left\langle\sigma, \tau \mid \sigma^{2^{\ell}}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle
$$

D_{2} is Klein's four group $Z / 2 Z \times Z / 2 Z$. From now on we assume $\ell \geqq 2$. The key point in proving the implication (2) \Rightarrow (1) in Theorem 2.1 is that a $Z D_{2 c}$-lattice with no non-zero element fixed by $\left\langle\sigma^{2 \theta-1}\right\rangle$, the center of D_{2}, can be completely classified locally. To state the classification explicitly we will prepare a few more notations.

Denote by ζ a primitive 2^{ℓ}-th root of unity and put $R_{\ell}=Z[\zeta]$ and \mathscr{P}_{ℓ} $=(\zeta-1) R_{6}$. Define the action of $\langle\tau\rangle$ on R_{ℓ} by $\tau(\zeta)=\zeta^{-1}$, i.e., identify τ with the complex conjugation. Then \mathscr{P}_{ℓ} is the unique ambiguous prime ideal of R_{ℓ} ramified over Z. We define $\Lambda_{\ell}=Z D_{2^{\ell}} /\left(\sigma^{2^{\ell-1}}+1\right)$. Then Λ_{ℓ} is isomorphic to the trivial crossed product of R_{ℓ} and $\langle\tau\rangle . \quad R_{\ell}$ and \mathscr{P}_{ℓ} clearly can be regarded as Λ_{ℓ}-modules naturally. Λ_{ℓ}, R_{ℓ} and \mathscr{P}_{ℓ} are quasipermutation modules ($M \in M_{I}$ is a quasi-permutation module if there exists permutation $Z \Pi$-modules S_{1}, S_{2} such that $0 \rightarrow M \rightarrow S_{1} \rightarrow S_{2} \rightarrow 0$ is exact).

Lemma 2.6. Let M be a finitely generated Z-free Λ_{ℓ}-module. Then M has the same genus as $\Lambda_{\ell}^{(r)} \oplus R_{\ell}^{(s)} \oplus \mathscr{P}_{\ell}^{(t)}$ for some $r, s, t \geqq 0$, i.e., these two modules are locally isomorphic and hence $[M] \in T^{g}\left(D_{2^{2}}\right)$.

Using the lemma we can prove
Lemma 2.7. $\tilde{T}\left(D_{2^{2}}\right)$ is a group.
In [3] we proved that let Π be a p-group with p odd prime, then $T(\Pi)$ is a group if and only if Π is cyclic. Lemma 2.4 shows that the following statements are equivalent for a p-group Π with p odd prime:
(i) Π is cyclic,
(ii) $T(\Pi)$ is a group,
(iii) $\tilde{T}(I I)$ is a group.

The implication (2) \Rightarrow (1) in Theorem 2.1 follows from this observation and Lemmas 2.2 and 2.7.

Remark 2.8. In [3] we proved that $T(\Pi)$ is a group if and only if $\left[I_{I}^{*}\right] \in T^{g}(\Pi)$. An analogous statement for $\tilde{T}(\Pi)$ can also be proved, i.e., $\tilde{T}(\Pi)$ is a group if and only if $\left[L_{\Pi}\right]=\left[\left(I_{\Pi} \otimes_{Z} I_{\Pi}\right)^{*}\right] \in T^{g}(\Pi)$.

§ 3.

Proof of Lemma 2.4. Throughout this section we assume that Π is a p-group. It suffices to show that if $\left[L_{\Pi}\right] \in T^{g}(\Pi)$, then Π is not isomorphic to any group listed in Lemma 2.4. Assume that $\left[L_{\Pi}\right] \in T^{g}(\Pi)$. Since M belongs to $D_{I I}$ if and only if $Z_{p} \otimes_{Z} M$ is a permutation Z_{p}-module Lemma 1.1 shows that there is an exact sequence:

$$
\begin{equation*}
0 \longrightarrow Z_{p} \otimes_{Z} L_{I I} \longrightarrow S_{1} \longrightarrow S_{2} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

where S_{1} and S_{2} are permutation $Z_{p} \Pi$-modules. Remark 1.3 allows us to assume that S_{2} has no direct summand isomorphic to $Z_{p} \Pi / \Pi_{0}$ for any cyclic subgroup Π_{0} of Π (note that $L_{\Pi} \in \boldsymbol{H}_{\Pi}^{-1}$ and hence $H^{1}\left(\Pi_{0}, L_{\Pi}\right)=0$ by periodicity). Taking a long cohomology sequence and noting Lemma 2.3, we obtain an exact sequence:

$$
\begin{align*}
0 \longrightarrow H^{-3}\left(\Pi, S_{1}\right) \longrightarrow & H^{-3}\left(\Pi, S_{2}\right) \longrightarrow Z \| \Pi \mid Z \tag{3.2}\\
& \longrightarrow H^{-2}\left(\Pi, S_{1}\right) \longrightarrow H^{-2}\left(\Pi, S_{2}\right) \longrightarrow 0 .
\end{align*}
$$

(1) Let $I I$ be $Z / 2 Z \times Z / 2 Z \times Z / 2 Z$. In this case all cohomology groups appearing in (3.2) are annihilated by 2 . This is a contradiction.
(2) Let Π be the quaternion group of order 8 . Then $H^{-2}(\Pi, S)$ is annihilated by 4 and $H^{-3}(\Pi, S) \cong H^{-1}(\Pi, S)=0$ for all permutation $Z_{2} \Pi$ modules S. This contradicts (3.2).
(3) Let $I I$ be $\boldsymbol{Z} / p \boldsymbol{Z} \times \boldsymbol{Z} / p \boldsymbol{Z}$, where p is an odd prime. In this case we
can put $S_{2}=\boldsymbol{Z}_{p}^{(n)}, S_{1}=\boldsymbol{Z}_{p}^{(m)} \oplus T$, where T is a permutation $Z_{p} \Pi$-module having no direct summand isomorphic to \boldsymbol{Z}_{p} since a proper subgroup of Π is cyclic. We derive another cohomology sequence from (3.1):

$$
\begin{aligned}
0 \longrightarrow \hat{H}^{0}\left(\Pi, Z_{p} \otimes_{Z} L_{\Pi}\right) & \longrightarrow \hat{H}^{0}\left(\Pi, \boldsymbol{Z}_{p}^{(m)} \oplus T\right) \\
& \longrightarrow \hat{H}^{0}\left(\Pi, \boldsymbol{Z}_{p}^{(n)}\right) \longrightarrow H^{1}\left(\Pi, \boldsymbol{Z}_{p} \otimes_{Z} L_{\Pi}\right) \longrightarrow 0 .
\end{aligned}
$$

From this we obtain an exact sequence:

$$
0 \longrightarrow(\boldsymbol{Z} \mid p \boldsymbol{Z})^{(2)} \longrightarrow\left(\boldsymbol{Z} / p^{2} \boldsymbol{Z}\right)^{(n)} \oplus \hat{H}^{0}(\Pi, \boldsymbol{T}) \longrightarrow\left(\boldsymbol{Z} / p^{2} \boldsymbol{Z}\right)^{(n)} \longrightarrow \boldsymbol{Z} / p \boldsymbol{Z} \longrightarrow 0
$$

Hence $n-1=m$ or $m=n$ because $\hat{H}^{o}(\Pi, T)$ is annihilated by p. Let $\Pi^{\prime} \neq 1$ be a cyclic subgroup of Π. From (3.1) we get an exact sequence:

$$
0 \longrightarrow \boldsymbol{Z} \mid p \boldsymbol{Z} \longrightarrow(\boldsymbol{Z} \mid p \boldsymbol{Z})^{(m)} \oplus \hat{H}^{0}\left(\Pi^{\prime}, \boldsymbol{T}\right) \longrightarrow(\boldsymbol{Z} / p \boldsymbol{Z})^{(n)} \longrightarrow 0 .
$$

Hence $\hat{H}^{\circ}\left(\Pi^{\prime}, T\right) \cong(\boldsymbol{Z} / p \boldsymbol{Z})^{(2)}$ if $n-1=m$ or $\cong \boldsymbol{Z} / p \boldsymbol{Z}$ if $n=m$. On the other hand since T has no direct summand isomorphic to Z_{p}, we see that $\operatorname{rank}_{Z_{p}} \hat{H}^{0}\left(\Pi^{\prime}, T\right)$ is divisible by p. This is a contradiction.
(4) Let Π be $\boldsymbol{Z} / 4 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}=\langle\sigma\rangle \times\langle\tau\rangle$. In this case (3.1) looks like

$$
\begin{align*}
0 \longrightarrow Z_{p} \otimes_{Z} L_{\Pi} \longrightarrow Z_{p}^{(e)} \oplus & \left(Z_{p} \Pi /\left\langle\sigma^{2}, \tau\right\rangle\right)^{(m)} \oplus T \tag{3.3}\\
& \longrightarrow Z_{p}^{\left(e^{\prime}\right)} \oplus\left(Z_{p} \Pi \mid\left\langle\sigma^{2}, \tau\right\rangle\right)^{\left(m^{\prime}\right)} \longrightarrow 0
\end{align*}
$$

where $T=\oplus_{\Pi^{\prime} \leqq \Pi, \Pi^{\prime}: \text { cyclic }}\left(Z_{p} \Pi / \Pi^{\prime}\right)^{\left(n \Pi^{\prime}\right)}$.
Set $\Pi_{0}=\left\langle\sigma^{2}, \tau\right\rangle$. Then it is easy to check that

$$
\begin{equation*}
0 \longrightarrow Z_{p} \otimes_{Z} L_{\Pi_{0}} \longrightarrow Z_{p} \Pi_{0}\left|\left\langle\sigma^{2}\right\rangle \oplus Z_{p} \Pi_{0}\right|\langle\tau\rangle \oplus Z_{p} \Pi_{0} \mid\left\langle\sigma^{2} \tau\right\rangle \xrightarrow{\varepsilon} Z_{p} \longrightarrow 0 \tag{3.4}
\end{equation*}
$$

is exact, where ε is the sum of augmentation maps. It is also easy to see that

$$
\left(Z_{p} \otimes_{Z} L_{\Pi}\right) \oplus F_{1} \cong\left(Z_{p} \otimes_{Z} L_{\Pi_{0}}\right) \oplus F_{2}
$$

as $\boldsymbol{Z}_{p} \Pi_{0}$-modules with suitable free $\boldsymbol{Z}_{p} \Pi_{0}$-modules F_{1}, F_{2}. Taking the pushout of (3.3) and (3.4), we have

$$
\begin{align*}
Z_{p}^{(e)} & \oplus\left(Z_{p} \Pi \mid\left\langle\sigma^{2}, \tau\right\rangle\right)^{(m)} \oplus T \oplus F_{1} \oplus Z_{p} \\
& \cong \boldsymbol{Z}_{p}^{\left(p^{\prime}\right)} \oplus\left(Z_{p} \Pi \mid\left\langle\sigma^{2}, \tau\right\rangle\right)^{\left(m^{\prime}\right)} \oplus F_{2} \oplus Z_{p} \Pi_{0} \mid\left\langle\sigma^{2}\right\rangle \tag{3.5}
\end{align*}
$$

$$
\oplus Z_{p} \Pi_{0}\left|\langle\tau\rangle \oplus Z_{p} \Pi_{0}\right|\left\langle\sigma^{2} \tau\right\rangle
$$

as $Z_{p} \Pi_{0}$-modules. Simple computations show that as a $Z_{p} \Pi_{0}$-module T has even number of direct summands isomorphic to $Z_{p} \Pi_{0} /\langle\tau\rangle$. This contradicts (3.5).
§ 4.
Proofs of Lemmas 2.6 and 2.7. First we consider proof of Lemma 2.6.
Lemma 4.1. Let R be a ring and let A_{1}, A_{2} and X be R-modules with the following properties:
(1) $0 \rightarrow A_{i} \rightarrow X \rightarrow A_{i} \rightarrow 0(i=1,2)$ are non-split exact sequences.
(2) $\operatorname{Ext}_{R}^{1}\left(A_{i}, A_{i}\right) \cong Z / 2 Z, \operatorname{Ext}_{R}^{1}\left(A_{i}, X\right) \cong \operatorname{Ext}_{R}^{1}\left(X, A_{i}\right)=0 i=1,2$ and $\operatorname{Ext}_{R}^{1}\left(A_{1}, A_{2}\right) \cong \operatorname{Ext}_{R}^{1}\left(A_{2}, A_{1}\right) \cong \operatorname{Ext}_{R}^{1}(X, X)=0$.

Consider an extension

$$
0 \longrightarrow A_{1}^{\left(s_{1}\right)} \oplus A_{2}^{\left(s_{2}\right)} \oplus X^{(t)} \longrightarrow Y \longrightarrow A_{1}^{\left(s_{1}^{\prime}\right)} \oplus A_{2}^{\left(s_{2}^{\prime}\right)} \oplus X^{\left(t^{\prime}\right)} \longrightarrow 0
$$

then Y is of the same type, i.e., $Y=A_{1}^{\left(s_{1}^{\prime \prime}\right)} \oplus A_{2}^{\left(s_{2}^{\prime \prime}\right)} \oplus X^{\left(t^{\prime \prime}\right)}$.
Proof is easy.
We have the exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow \Lambda_{\ell}(\tau-1) \longrightarrow \Lambda_{\ell} \longrightarrow \Lambda_{\ell}(\tau+1) \longrightarrow 0 \\
& 0 \longrightarrow \Lambda_{\ell}\left(\tau-\zeta^{-1}\right) \longrightarrow \Lambda_{\ell} \longrightarrow \Lambda_{\ell}(\tau+\zeta) \longrightarrow 0 .
\end{aligned}
$$

Define the homomorphism $\phi: R_{\ell} \rightarrow \Lambda_{\ell}(\tau+1)$ (resp. $\phi^{\prime}: \mathscr{P}_{\ell} \rightarrow \Lambda_{\ell}(\tau+\zeta)$) by $\phi(x)=x(\tau+1)\left(\right.$ resp. $\left.\phi^{\prime}(x(\zeta+1))=x(\tau+\zeta)\right)$ for any $x \in R_{\ell}$. Then ϕ and ϕ^{\prime} are Λ_{ℓ}-homomorphisms. Put $\omega=(1+\zeta)(1-\zeta)^{-1}$ and $\omega^{\prime}=(1+\zeta)\left(1-\zeta^{-1}\right)^{-1}$ $\in U\left(R_{\ell}\right)$ and define the homomorphism $\psi: R_{\ell} \rightarrow \Lambda_{\ell}(\tau-1)$ (resp. $\psi^{\prime}: \mathscr{P}_{\ell} \rightarrow$ $\Lambda_{\ell}\left(\tau-\zeta^{-1}\right)$) by $\psi(x)=x \omega(\tau-1)\left(\right.$ resp. $\left.\psi^{\prime}(x(\zeta+1))=x \omega^{\prime}\left(\tau-\zeta^{-1}\right)\right)$ for any $x \in R_{\ell}$. We easily show that both ψ and ψ^{\prime} are Λ_{ℓ}-isomorphisms. Therefore, we have

$$
\Lambda_{\ell}(\tau+1) \cong \Lambda_{\ell}(\tau-1) \cong R_{\ell} \quad \text { and } \quad \Lambda_{\ell}(\tau+\zeta) \cong \Lambda_{\ell}\left(\tau-\zeta^{-1}\right) \cong \mathscr{P}_{\ell}
$$

as Λ_{ℓ}-modules. Thus we get the non-split exact sequences:

$$
\begin{align*}
& 0 \longrightarrow R_{\ell} \longrightarrow \Lambda_{\iota} \xrightarrow{\stackrel{f}{\longrightarrow}} R_{\ell} \longrightarrow 0 \tag{4.1}\\
& 0 \longrightarrow \mathscr{P}_{\ell} \longrightarrow \Lambda_{\iota} \xrightarrow{f^{\prime}} \mathscr{P}_{\ell} \longrightarrow 0
\end{align*}
$$

where f (resp. f^{\prime}) is defined by $f(x+y \tau)=x+y$ (resp. $f^{\prime}(x+y \tau)=$ $\left.\left(x+y \zeta^{-1}\right)(\zeta+1)\right)$. From (4.1) we get the exact sequence:

$$
\operatorname{Hom}_{\Lambda_{\ell}}\left(R_{\ell}, \Lambda_{\ell}\right) \xrightarrow{\tilde{f}} \operatorname{Hom}_{\Lambda_{\ell}}\left(R_{\ell}, R_{\ell}\right) \longrightarrow \operatorname{Ext}_{\Lambda_{\ell}}^{1}\left(R_{\ell}, R_{\ell}\right) \longrightarrow 0 .
$$

Every $g \in \operatorname{Hom}_{A_{\ell}}\left(R_{\ell}, R_{\ell}\right)$ can be identified with $g(1) \in R_{\ell}$. Then we have

$$
\operatorname{Hom}_{A_{\ell}}\left(R_{\ell}, R_{\ell}\right)=\left\{x \in R_{\ell} \mid \bar{x}=x\right\} \quad \text { and } \quad \operatorname{Im} \tilde{f}=\left\{x+\bar{x} \mid x \in R_{\ell}\right\}
$$

where \bar{x} is the complex conjugation of $x \in R_{\ell}$. By a direct computation it is seen that

$$
\operatorname{Ext}_{\Lambda_{\ell}}^{1}\left(R_{\ell}, R_{\ell}\right) \cong \operatorname{Hom}_{\Lambda_{\ell}}\left(R_{\ell}, R_{\ell}\right) / \operatorname{Im} \tilde{f} \cong Z / 2 Z
$$

Similarly we can show that

$$
\operatorname{Ext}_{\Lambda_{\ell}}^{1}\left(\mathscr{P}_{\ell}, \mathscr{P}_{\ell}\right) \cong Z / 2 \boldsymbol{Z} \text { and } \operatorname{Ext}_{A_{\ell}}^{1}\left(R_{\ell}, \mathscr{P}_{\ell}\right) \cong \operatorname{Ext}_{\Lambda_{\ell}}^{1}\left(\mathscr{P}_{\ell}, R_{\ell}\right)=0
$$

This shows that $R_{\ell}, \mathscr{P}_{\ell}$ and Λ_{ℓ} satisfy the conditions in Lemma 4.1.
We localize everything at 2 and denote them by the same notations. Let Ω_{ℓ} be a maximal order in $Q_{2} \Lambda_{\ell}$ containing Λ_{ℓ} and let M be a Λ_{ℓ}-lattice. Then we can write uniquely $\Omega_{\ell} M \cong \Omega_{\ell} R_{\ell}^{(n)}, n \geqq 0$. We call n the rank of M. We will prove the assertion by induction on n. It is noted that any ambiguous ideal of R_{ℓ} is isomorphic to R_{ℓ} or \mathscr{P}_{ℓ}. If $n=1, M$ is isomorphic to an ambiguous ideal of R_{ℓ} and so $M \cong R_{\ell}$ or \mathscr{P}_{ℓ}. Now we assume that $n \geqq 2$ and the assertion is true for N with rank $N \leqq n-1$. We can write $\Omega_{\ell} M=L_{1} \oplus L_{2}$, where $L_{1} \cong \Omega_{\ell} R_{\ell}^{(n-1)}$ and $L_{2} \cong \Omega_{\ell} R_{\ell}$. Put $N=M \cap L_{1}$ and $M^{\prime}=M / N$. Then by the induction hypothesis we have $N \cong \Lambda_{\ell}^{(r)} \oplus$ $R_{\ell}^{(s)} \oplus \mathscr{P}_{\ell}^{(t)}$ for some r, s, and t. Since $M^{\prime} \cong R_{\ell}$ or \mathscr{P}_{ℓ}, we have $M \cong \Lambda_{\ell}^{\left(r^{\prime}\right)}$ $\oplus R_{\ell}^{\left(s^{\prime}\right)} \oplus \mathscr{P}_{\ell}^{\left(t^{\prime}\right)}$ by Lemma 4.1. This completes the proof.

Finally we shall prove Lemma 2.7. If Π is cyclic this assertion was proved in [3]. Therefore we only need to consider the case where Π is dihedral, i.e.,

$$
\Pi=D_{2^{\ell}}=\left\langle\sigma, \tau \mid \sigma^{2^{\ell}}=\tau^{2}=1, \tau^{-1} \sigma \tau=\sigma^{-1}\right\rangle, \quad \ell \geqq 1 .
$$

We will prove the assertion by induction on ℓ.
We first assume that $\ell=1$. In this case D_{2} is Klein's four group. Let $L \in \tilde{\boldsymbol{H}}_{I}$. Define the homomorphism $N_{\sigma}: L \rightarrow L$ by $N_{\sigma}(u)=(1+\sigma) u$ for $u \in L$. Then $H^{-1}(\langle\sigma\rangle, L)=\operatorname{Ker} N_{\sigma} /(\sigma-1) L=0$ and hence we have the exact sequence

$$
0 \longrightarrow(\sigma-1) L \longrightarrow L \longrightarrow \operatorname{Im} N_{\sigma} \longrightarrow 0 .
$$

Since $\hat{H}^{0}(\Pi,(\sigma-1) L)=0$, we have $H^{-1}\left(\Pi, \operatorname{Im} N_{\sigma}\right)=0$. Since $\operatorname{Im} N_{\sigma}$ can be regarded as a $Z \Pi \mid\langle\sigma\rangle$-module and Z-free, we easily see that $H^{-1}(\Pi \mid\langle\sigma\rangle$, $\left.\operatorname{Im} N_{\sigma}\right)=0$. This shows that $\operatorname{Im} N_{\sigma}$ is a permutation $Z \Pi \mid\langle\sigma\rangle$-module. We obtain that

$$
(\sigma-1) L \cong(Z \Pi /(\sigma+1, \tau-1))^{(r)} \oplus(Z \Pi /(\sigma+1, \sigma \tau-1))^{(s)} \oplus(Z \Pi /(\sigma+1))^{(t)}
$$

for some $r, s, t \geqq 0$ and therefore $[(\sigma-1) L]$ is zero in $T(\Pi)$. Hence $[L]=$
$[(\sigma-1) L]=0$. This shows $\tilde{T}(\Pi)=0$, or $\tilde{\boldsymbol{H}}_{I I}=\boldsymbol{D}_{I}$. Next assume that ℓ $\geqq 2$ and the assertion is true for $D_{2^{j}}, j \leqq \ell-1$. Let $L \in \tilde{\boldsymbol{H}}_{D 2^{2} \text {. }}$. Then we have the exact sequence

$$
0 \longrightarrow\left(\sigma^{0-1}-1\right) L \longrightarrow L \longrightarrow\left(\sigma^{2 t-1}+1\right) L \longrightarrow 0 .
$$

Put $L^{\prime}=\left(\sigma^{2^{6-1}}-1\right) L$ and $L^{\prime \prime}=\left(\sigma^{2^{t-1}}+1\right) L$. If Π^{\prime} is a subgroup of $\Pi=$ $D_{2^{\ell}}$ containing $\left\langle\sigma^{2 t-1}\right\rangle$, then $\hat{H}^{0}\left(\Pi^{\prime}, L^{\prime}\right)=0$ hence $H^{-1}\left(\Pi^{\prime}, L^{\prime \prime}\right)=0$. Since $L^{\prime \prime}$ can be regarded as Z-free $Z \Pi \mid\left\langle\sigma^{2^{6-1}}\right\rangle$-module, we have $H^{-1}\left(\Pi^{\prime} \mid\left\langle\sigma^{2^{8-1}}\right\rangle, L^{\prime \prime}\right)$ $=0$. Hence $L^{\prime \prime} \in \boldsymbol{H}_{\Pi}^{-1} \mid\left\langle\sigma^{z^{\sigma-1}}\right\rangle$. By Lemma 2.6 there are a permutation $Z \Pi$ module S and a $Z \Pi$-lattice T locally isomorphic to a permutation module such that

$$
0 \longrightarrow L^{\prime} \longrightarrow S \longrightarrow T \longrightarrow 0
$$

is exact. Taking the pushout of $L^{\prime} \rightarrow L$ we get the following commutative diagram with exact rows and columns:

Since $L^{\prime \prime} \in \boldsymbol{H}_{I /\left\langle\left\langle 2^{2} \tau^{t-1}\right\rangle\right.}^{-1} \cong \boldsymbol{H}_{\Pi}^{-1}$ and $L \in \boldsymbol{H}_{I I}^{1}$, we have $X \cong L \oplus T \cong S \oplus L^{\prime \prime}$. This shows that $L^{\prime \prime} \in \boldsymbol{H}_{\Pi}^{1}$ and hence $L^{\prime \prime} \in \tilde{\boldsymbol{H}}_{\Pi /\left\langle 2^{2}{ }^{2}-1\right.}$. By the induction hypothesis $L^{\prime \prime} \in \boldsymbol{D}_{\Pi /\left\langle\sigma^{2-1}\right\rangle} \subseteq D_{I I}$, thus $L \in \boldsymbol{D}_{\Pi}$. This completes the proof.

References

[1] J.-L. Colliot-Thélène et J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Sup., 10 (1977), 175-230.
[2] S. Endo and T. Miyata, Quasi-permutation modules over finite groups, J. Math. Soc. Japan, 25 (1973), 397-421: II, ibid., 26 (1974), 698-713.
[3] -, On a classification of the function fields of algebraic tori, Nagoya Math. J., 56 (1975), 85-104; Corrigendum, ibid., 79 (1980), 187-190.
[4] ——, On integral representations of finite groups, Sugaku, 27 (1975), 232-240 (Japanese).
[5] V. E. Voskresenskiǐ, Stable equivalence of algebraic tori, Izv. Akad. Nauk SSSR, 38 (1974), 3-10.

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya-ku, Tokyo, Japan
Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka-shi, Japan

