ON SOME DIMENSION FORMULA FOR AUTOMORPHIC FORMS OF WEIGHT ONE I

TOYOKAZU HIRAMATSU

§ 0. Introduction

Let Γ be a fuchsian group of the first kind not containing the element $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$. We shall denote by d_{0} the number of linearly independent automorphic forms of weight 1 for Γ. It would be interesting to have a certain formula for d_{0}. But, Hejhal said in his Lecture Notes 548, it is impossible to calculate d_{0} using only the basic algebraic properties of Γ. On the other hand, Serre has given such a formula of d_{0} recently in a paper delivered at the Durham symposium ([7]). His formula is closely connected with 2-dimensional Galois representations.

The purpose of this note is to give some formula of the number d_{0} for the case of compact type, by making use of the Selberg trace formula ([6]). Our result is expressed by Theorem C (§ 2). It seems likely that the similar result holds for discontinuous groups of finite type ([2]).

I would like to express my deep indebtedness to Professor H. Shimizu who, during the preparation of this note, contributed many useful ideas. I would also like to thank Professor D. Zagier for several stimulating conversations in Bonn.

§ 1. The Selberg eigenspace $\mathfrak{M}(k, \lambda)$

Let

$$
S=\{z=x+i y / x, y \text { real and } y>0\}
$$

denote the complex upper half-plane and let $G=S L(2, R)$ be the real special linear group of the second degree. Consider direct products

$$
\begin{aligned}
& \tilde{S}=S \times T \\
& \tilde{G}=G \times T
\end{aligned}
$$

Received February 28, 1980.
where T denotes the real torus, and let an element (g, α) of \tilde{G} operate on \tilde{S} as follows:

$$
\tilde{S} \ni(z, \phi) \xrightarrow{(g, \alpha)}(z, \phi)(g, \alpha)=\left(\frac{a z+b}{c z+d}, \phi+\arg (c z+d)-\alpha\right) \in \tilde{S},
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$. The operation of \tilde{G} on \tilde{S} is transitive. \tilde{S} is a weakly symmetric Riemannian space with the \tilde{G}-invariant metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}+\left(d \phi-\frac{d x}{2 y}\right)^{2}
$$

and with the isometry μ defined by

$$
\mu(z, \phi)=(-\bar{z},-\phi)
$$

The \tilde{G}-invariant measure $d(z, \phi)$ associated to the \tilde{G}-invariant metric is given by

$$
d(z, \phi) \equiv d(x, y, \phi)=\frac{d x \wedge d y \wedge d \phi}{y^{2}}
$$

The ring $\Re(\tilde{S})$ of \tilde{G}-invariant differential operators on \tilde{S} is generated by

$$
\frac{\partial}{\partial \phi}
$$

and

$$
\Delta^{(\tilde{s})} \equiv \tilde{\Delta}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{5}{4} \frac{\partial^{2}}{\partial \phi^{2}}+y \frac{\partial}{\partial \phi}-\frac{\partial}{\partial x},
$$

where \tilde{J} is the Laplace operator of \tilde{S}.
Let Γ be a discrete subgroup of G not containing the element $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ and suppose that $\Gamma \backslash G$ is compact.

By the correspondence

$$
G \ni g \leftrightarrow(g, 0) \in \tilde{G}=G \times T
$$

we identify the group G with a subgroup $G \times\{0\}$ of \tilde{G}, and so the subgroup Γ identify with a subgroup $\Gamma \times\{0\}$ of $\tilde{G}^{1)}$.

For an element $(g, \alpha) \in G$, we define a mapping $T_{(g, a)}$ of $C^{\circ}(\tilde{S})$ into itself by

1) Therefore if $\Gamma \backslash G$ is compact, so is $\Gamma \backslash \tilde{G}$.

$$
\left(T_{(g, \alpha)} f\right)(z, \phi)=f\left((z, \phi)\left(g,{ }_{\alpha}^{,} \alpha\right)\right),
$$

where $f(z, \phi) \in C^{\infty}(\tilde{S}) . \quad(g, \alpha) \rightarrow T_{(g, \alpha)}$ is a representation $\overline{\mathcal{L}} \tilde{G}$. For an element $g \in G$ we put $T_{(g, 0)}=T_{g}$. Then we have

$$
\left(T_{g} f\right)(z, \phi)=f\left(\frac{a z+b}{c z+d}, \phi+\arg (c z+d)\right)
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Denote by $C^{\infty}(\Gamma \backslash \tilde{S})$ the set of all C^{∞}-class functions on \tilde{S} invariant under Γ :

$$
C^{\infty}(\Gamma \backslash \tilde{S})=\left\{f(z, \phi) \in C^{\infty}(\tilde{S}) / T_{g} f=f \text { for all } g \in \Gamma\right\} ;
$$

and now consider the following simultaneous eigenvalue problem in $C^{\infty}(\Gamma \backslash \tilde{S})$:
(A)

$$
\left\{\begin{array}{l}
f \in C^{\infty}(\Gamma \backslash \tilde{S}), \tag{1}\\
\frac{\partial}{\partial \phi} f=-i k f, \\
\tilde{\Delta} f=\lambda f
\end{array}\right.
$$

We denote by $\mathfrak{M}_{\Gamma}(k, \lambda)=\mathfrak{M}(k, \lambda)$ the set of all functions satisfying the above condition (A). It is well known that every eigenspace $\mathfrak{M}(k, \lambda)$ is finite dimensional and orthogonal to each other, and also the eigenspaces span together the Hilbert space $L^{2}(\Gamma \backslash \tilde{S})$ with norm

$$
\|f\|^{2}=\frac{1}{2 \pi} \int_{\Gamma \backslash \bar{s}}|f|^{2} d(z, \phi)
$$

We put $\lambda=(k, \lambda)$. For every invariant integral operator with a kernel function $k\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)$ on (k, λ), we have

$$
\begin{equation*}
\int_{\tilde{S}} k\left(z, \phi ; z^{\prime}, \phi^{\prime}\right) f\left(z^{\prime}, \phi^{\prime}\right) d\left(z^{\prime}, \phi^{\prime}\right)=h(\lambda) f(z, \phi), \tag{4}
\end{equation*}
$$

for $f \in \mathfrak{M}(k, \lambda)$.
It is to be noted that $h(\lambda)$ does not depend on f so long as f is in $\mathfrak{M}(k, \lambda)$. We also know that there is a basis $\left\{f^{(n)}\right\}_{n=1}^{\infty}$ of the space $L^{2}(\tilde{S} / \Gamma)$ under the condition that each $f^{(n)}$ satisfies (2) and (3) in (A). Then we put $\lambda^{(n)}=(k, \lambda)$ for such a spectrum (k, λ).

We now obtain the following Selberg trace formula for $L^{2}(\Gamma \backslash \tilde{S})$:

$$
\begin{equation*}
\sum_{n=1}^{\infty} h\left(\lambda^{(n)}\right)=\sum_{M \in \Gamma} \int_{\tilde{D}} k(z, \phi ; M(z, \phi)) d(z, \phi), \tag{5}
\end{equation*}
$$

where \tilde{D} denotes a compact fundamental domain of Γ in \tilde{S} and $k(z, \phi$; $\left.z^{\prime}, \phi^{\prime}\right)$ is a point-pair invariant kernel of (a)-(b) type in the sense of Selberg such that the series on the left-hand side of (5) is absolutely convergent ([4], [6]). Denote by $\Gamma(M)$ the centralizer of M in Γ, and put $\tilde{D}_{M}=\Gamma(M) \backslash \tilde{S}$. Then it is easy to see that

$$
\begin{equation*}
\sum_{M \in \Gamma} \int_{\tilde{D}} k(z, \phi ; M(z, \phi)) d(z, \phi)=\sum_{\ell} \int_{\tilde{D}_{M_{\ell}}} k\left(z, \phi ; M_{\ell}(z, \phi)\right) d(z, \phi), \tag{6}
\end{equation*}
$$

where the sum over $\left\{M_{\ell}\right\}$ is taken over the distinct conjugacy classes of Γ.

We shall denote by $\mathbb{S}_{1}(\Gamma)$ the linear space of all holomorphic automorphic forms of weight 1 for the above fuchsian group Γ and put

$$
d_{0}=\operatorname{dim} \widetilde{\Im}_{1}(\Gamma)
$$

Then the following equality comes from [1]:

$$
d_{0}=\operatorname{dim} \mathfrak{M}\left(1,-\frac{3}{2}\right) .
$$

§2. A formula for \boldsymbol{d}_{0}

We consider an invariant integral operator on the Selberg eigenspace $\mathfrak{M}(k, \lambda)$ defined by a point-pair invariant kernel

$$
\omega_{s}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\left|\frac{\left(y y^{\prime}\right)^{1 / 2}}{\left(z-\bar{z}^{\prime}\right) / 2 i}\right|^{s} \frac{\left(y y^{\prime}\right)^{1 / 2}}{\left(z-\bar{z}^{\prime}\right) / 2 i} e^{-i\left(\phi-\phi^{\prime}\right)},(s>1) .
$$

By the relation (4), the integral operator ω_{s} vanishes on $\mathfrak{M}(k, \lambda)$ for all $k \neq 1$. The distribution of spectrum (k, λ) is given by Kuga in the compact case ([5]). It is discrete and

$$
\begin{aligned}
& \left(1, \mu_{\beta}\right), \quad\left(\mu_{\beta}<0, \mu_{\beta} \neq-\frac{3}{2},-\frac{1}{2}\right) \\
& \left(1,-\frac{3}{2}\right), \\
& \left(1,-\frac{1}{2}\right)
\end{aligned}
$$

give the complete set of spectra of the type $(1, *)$. But the spectra of types $-\frac{3}{2}<\mu_{\beta}<0$ in $\left(1, \mu_{\beta}\right)$ and ($1,-\frac{1}{2}$) do not appear actually in the complete set (Bargmann) ${ }^{2}$. We put

$$
\begin{aligned}
\mu_{0} & =-\frac{3}{2}, \mu_{1}, \mu_{2}, \cdots, \\
d_{\beta} & =\operatorname{dim} M\left(1, \mu_{\beta}\right), \quad(\beta=0,1,2, \cdots) .
\end{aligned}
$$

[^0]Then the left-hand side of the trace formula (5) implies

$$
\sum_{n=1}^{\infty} h\left(\lambda^{(n)}\right)=\sum_{\beta=0}^{\infty} d_{\beta} \Lambda_{\beta},
$$

where Λ_{β} denotes the eigenvalue of ω_{s} in $\mathfrak{M}\left(1, \mu_{\beta}\right)$. For the eigenvalue Λ_{j}, using the special eigenfunction

$$
f(z, \phi)=e^{-i \phi} y^{\prime} \beta, \mu_{\beta}=r_{\beta}\left(r_{\beta}-1\right)-\frac{5}{4},
$$

for a spectrum $\left(1, \mu_{\beta}\right)$ in $C^{\infty}(\tilde{S})$, we obtain

$$
\Lambda_{\beta}=2^{2+s} \pi \frac{\Gamma(1 / 2) \Gamma((1+s) / 2)}{\Gamma(s) \Gamma(1+(s / 2))} \Gamma\left(\frac{s-1}{2}+r_{\beta}\right) \Gamma\left(\frac{s-1}{2}-r_{\beta}\right) .
$$

If we put $r_{\beta}=\frac{1}{2}+i v_{\beta}$, then

$$
\mu_{\beta}=-\frac{3}{2}-v_{\beta}^{2}, v_{\beta}=\frac{\left.\sqrt{-\left(6+4 \mu_{\beta}\right.}\right)}{2} \geqq 0
$$

and

$$
\Lambda_{\beta}=2^{2+s} \pi \frac{\Gamma(1 / 2) \Gamma((1+s) / 2)}{\Gamma(s) \Gamma(1+(s / 2))} \Gamma\left(\frac{s}{2}+i v_{\beta}\right) \Gamma\left(\frac{s}{2}-i v_{\beta}\right) .
$$

Therefore there is a one-to-one correspondence between the functions Λ_{β} of μ_{β} and even function $h\left(v_{\beta}\right)$, the correspondence being given by $\Lambda_{\beta}=$ $h\left(v_{\beta}\right)$. For the case of weight 2, Selberg introduced in [5] the pointpair invariant kernel $\omega_{2} \cdot\left(\left(\left(y y^{\prime}\right)^{1 / 2}\right) /\left|\left(z-\bar{z}^{\prime}\right) / 2 i\right|\right)^{s}$ of (a)-(b) type under the condition $s>0$. The above kernel ω_{s} is obtained by $s \rightarrow s-1$ in ω_{2}. $\left(\left(\left(y y^{\prime}\right)^{1 / 2}\right) \|\left(z-\bar{z}^{\prime}\right) / 2 i \mid\right)^{s}$. Therefore our kernel ω_{s} is a point-pair invariant kernel of $(a)-(b)$ type under the condition $s>1$. In general, it is known that the series $\sum_{\beta=0}^{\infty} d_{\beta} A_{\beta}$ is absolutely convergent for $s>1$. By the Stirling formula, we see that the above series is also absolutely and uniformly convergent for all bounded s except $s=0$.

Now we shall calculate the components $J(I), J(P)$, and $J(R)$ of traces appearing in the right-hand side of (6).
i) unit class: $M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

It is clear that

$$
\omega_{s}(z, \phi ; M(z, \phi))=1
$$

and therefore

$$
J(I)=\int_{\tilde{D}_{M}} d(z, \phi)=\int_{\tilde{D}} d(z, \phi)<\infty .
$$

ii) Hyperbolic conjugacy classes.

We shall call a hyperbolic element P primitive, if it is not a power with exponent >1 of any other element in Γ, and correspondingly we say the conjugacy class $\{P\}$ is primitive. When we write the primitive hyperbolic conjugacy classes as $\left\{P_{\alpha}\right\}(\alpha=1,2, \cdots)$, the hyperbolic conjugacy classes in Γ can be expressed as $\left\{P_{\alpha}^{k}\right\}(\alpha=1,2, \cdots ; k=1,2, \cdots)$. It is noted that the Jordan canonical form of P is $\left(\begin{array}{ll}\lambda_{0} & 0 \\ 0 & \lambda_{0}^{-1}\end{array}\right)$ with $\lambda_{0}>1$, and we can conclude that $\Gamma\left(P^{k}\right)=\Gamma(P)$ is an infinite cyclic group generated by the primitive element P. Put

$$
g^{-1} P g=\left(\begin{array}{cc}
\lambda_{0} & 0 \\
0 & \lambda_{0}^{-1}
\end{array}\right) \quad(g \in G) \quad \text { and } \Gamma^{\prime}=g^{-1} \Gamma g
$$

Then we have

$$
\Gamma^{\prime}\left(\left(\begin{array}{ll}
\lambda^{0} & 0 \\
0 & \lambda_{0}^{-1}
\end{array}\right)=g^{-1} \Gamma(P) g\right.
$$

The hyperbolic component $J(P)$ is calculated as follows:

$$
\begin{aligned}
& J\left(P^{k}\right)=\int_{\tilde{D}_{P}} \omega_{s}\left(z, \phi ; P^{k}(z, \phi)\right) d(z, \phi) \\
& =\int_{g^{-1 \bar{D}_{P}}} \omega_{s}\left(g(z, \phi), P^{k} g(z, \phi)\right) d(z, \phi) \\
& =\int_{g^{-1 \tilde{D}_{P}}} \omega_{s}\left(z, \phi ; g^{-1} P^{k} g(z, \phi)\right) d(z, \phi) \\
& \left(g^{-1} \tilde{D}_{P} \text { is a fundamental domain of } \Gamma^{\prime}\left(\left(\begin{array}{ll}
\lambda_{0} & 0 \\
0 & \lambda_{0}^{-1}
\end{array}\right) \text { in } \tilde{S}\right)\right. \\
& =(2 \pi)\left(2^{s+1} i\right)\left|\lambda_{0}^{k}\right|^{(s+1)} \int_{g^{-1 D_{P}}} \frac{y^{s-1}}{\left(z-\lambda_{0}^{2 k} \bar{z}\right)\left|z-\lambda_{0}^{2 k} \bar{z}\right|^{s}} d x d y \\
& \left(z=\rho e^{i \theta}, \rho>0,0<\theta<\pi\right) \\
& =\left(2^{s+2} \pi i\right)\left|\lambda_{0}^{k}\right|^{s+1} \int_{1}^{\rho_{0}^{2}} \frac{d \rho}{\rho} \int_{0}^{\pi} \frac{(\sin \theta)^{s-1} d \theta}{\left(e^{i \theta}-\lambda_{0}^{2 k} e^{-i \theta}\right)\left|e^{i \theta}-\lambda_{0}^{2 k} e^{-i \theta}\right|^{s}} \\
& \left(\alpha=\frac{1+\lambda_{0}^{2 k}}{1-\lambda_{0}^{2 k}}\right) \\
& =\left(2^{s+2} \pi i\right)\left|\lambda_{0}^{k}\right|^{(s+1)} \log \lambda_{0}^{2} \frac{1}{\left(1-\lambda_{0}^{2 k}\right)\left|1-\lambda_{0}^{2 k}\right|^{s}} \int_{0}^{\pi} \frac{(\sin \theta)^{s-1}(\cos \theta-i \alpha \sin \theta)}{\left(\cos ^{2} \theta+\alpha^{2} \sin ^{2} \theta\right)^{(s / 2)+1}} d \theta
\end{aligned}
$$

$$
\begin{aligned}
(t= & \cot \theta) \\
& =\left(2^{s+2} \pi i\right) \left\lvert\, \lambda_{0}^{k^{(s+1)}} \log \lambda_{0}^{2} \frac{-2 \alpha i}{\left(1-\lambda_{0}^{2 k}\right)\left|1-\lambda_{0}^{2 k}\right|^{s}} \frac{1}{2|\alpha|^{s+1}} \frac{\Gamma((s+1) / 2) \Gamma(1 / 2)}{\Gamma((s+2) / 2)} .\right.
\end{aligned}
$$

Thus,

$$
J\left(P^{k}\right)=\left(2^{s+3} \pi\right) \frac{\Gamma(1 / 2) \Gamma((s+1) / 2)}{\Gamma((s+2) / 2)} \frac{\log \left|\lambda_{0}\right|}{\left|\lambda_{0}^{-k}-\lambda_{0}^{k}\right|\left(\lambda_{0}^{-k}+\lambda_{0}^{k}\right)^{s}} .
$$

Consequently, we have

$$
\begin{aligned}
J(P) & =\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} J\left(P_{\alpha}^{k}\right) \\
& =\frac{8 \pi^{3 / 2} 2^{s} \Gamma((s+1) / 2)}{\Gamma((s+2) / 2)} \sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\log \left|\lambda_{0, \alpha}\right|}{\left|\lambda_{0, \alpha}^{k}-\frac{\lambda_{0, \alpha}^{k} \mid}{\lambda_{0, \alpha}}\right| \lambda_{0, \alpha}^{k}+\left.\lambda_{0, \alpha}^{-k}\right|^{-s} .}
\end{aligned}
$$

iii) Elliptic conjugacy classes.

Let $\rho, \bar{\rho}$ be the fixed points of an elliptic element $M(\rho \in S)$ and $\zeta, \bar{\zeta}$ be the eigenvalues of M. Let φ be a linear transformation such that maps S into a unit circle:

$$
w=\varphi(z)=\frac{z-\rho}{z-\bar{\rho}} .
$$

Then we have

$$
\varphi M_{\varphi^{-1}}=\left(\begin{array}{ll}
\zeta & 0 \\
0 & \bar{\zeta}
\end{array}\right) .
$$

and

$$
\frac{M z-\rho}{M z-\bar{\rho}}=\frac{\zeta}{\bar{\zeta}} \frac{z-\rho}{z-\bar{\rho}} .
$$

The elliptic component $J(R)$ is calculated as follows:

$$
\begin{aligned}
J(M) & =\int_{\tilde{\bar{D}} \cdot 1 /} \omega_{s}(z, \phi ; M(z, \phi)) d(z, \phi) \\
& =\frac{1}{[\Gamma(M): 1]} \int_{\tilde{S}} \omega_{s}(z, \phi ; M(z, \phi)) d(z, \phi) \\
& =\frac{2^{s+1} i}{[\Gamma(M): 1]} \int_{\tilde{S}} \frac{\left(y y^{\prime}\right)^{(s+1) / 2}}{\left(z-\bar{z}^{\prime}\right)\left|z-\bar{z}^{\prime}\right|^{s}} e^{-i\left(\phi-\varphi^{\prime}\right)} d(z, \phi) \quad\left(\left(z^{\prime}, \phi^{\prime}\right)=M(z, \phi)\right) \\
& =\frac{8 \pi \overline{\bar{y}}}{[\Gamma(M): 1]} \int_{|w|<1} \frac{(1-w \overline{(1-s})^{s-1}}{\left(1-\bar{\zeta}^{2} w \bar{w}\right)\left|1-\bar{\zeta}^{2} w \bar{w}\right|^{s}} d u d v \quad(w=u+i v) \\
(w= & \left.r e^{2 \theta}\right)
\end{aligned}
$$

$$
=\frac{16 \pi^{2} \bar{\zeta}}{[\Gamma(M): 1]} \int_{0}^{1} \frac{{ }^{\prime}\left(1-r^{2}\right)^{s-1} r}{\left(1-\bar{\zeta}^{2} r^{2}\right)\left|1-\bar{\zeta}^{2} r^{2}\right|^{s}} d r .
$$

By a simple calculation, we have

$$
\lim _{s \rightarrow 0} s J(M)=\frac{8 \pi^{2}}{[\Gamma(M): 1]} \frac{-\bar{\zeta}}{\left(\overline{\zeta^{2}}-1\right)^{2}}
$$

We put

$$
\zeta^{*}(s)=\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\log \lambda_{0, \alpha}}{\lambda_{0, \alpha}^{k}-\lambda_{0, \alpha}^{-k}}\left(\lambda_{0, \alpha}^{k}+\lambda_{0, \alpha}^{-k}\right)^{-s} .
$$

Then, by the trace formula, the Dirichlet series $\zeta^{*}(s)$ has a meromorphic continuation to all s, the only singularity being a simple pole at $s=0$ whose residue will appear in (7).

Finally, multiply the both sides of (5) by s and tend s to zero, then the limit is expressed, by the above i), ii), iii), as follows:

$$
\begin{equation*}
d_{0}=\frac{1}{2} \sum_{\{M]_{i}} \frac{1}{[\Gamma(M): 1]} \frac{-\bar{\zeta}}{\left(\overline{(}^{2}-1\right)^{2}}+\frac{1}{2} \operatorname{Res}_{s=0} \zeta^{*}(s), \tag{7}
\end{equation*}
$$

where the sum over $\{M\}$ is taken over the distinct elliptic conjugacy classes of Γ.

Remark on the Dirichlet series $\zeta^{*}(s)$. In his work ([3]), H. Huber introduced some zeta function defined by

$$
H(s)=\sum_{\alpha=1}^{\infty} \sum_{k=1}^{\infty} \frac{\log \left|\lambda_{0, \alpha}\right|}{\left|\lambda_{0, \alpha}^{k}-\lambda_{0, \alpha}^{-k}\right|}\left(\lambda_{0, \alpha}^{2 k}+\lambda_{0 \alpha}^{-2 k}\right)^{-s+(1 / 2)} .
$$

It is clear that

$$
\operatorname{Res}_{s=0} \zeta^{*}(s)=\operatorname{Res}_{s=1 / 2} H(s)
$$

These functions are "Selberg type zeta-functions" connected with the distribution problems of hyperbolic conjugacy classes in a discrete group.

As more information of d_{0}, we consider an integral operator $\tilde{\omega}_{s}$ on $\mathfrak{M}(0, \lambda)$ defined by

$$
\tilde{\omega}_{s}\left(z, \phi ; z^{\prime}, \phi^{\prime}\right)=\frac{\left(y y^{\prime}\right)^{(s+1) / 2}}{\left|\left(z-\bar{z}^{\prime}\right) / 2 i\right|^{s+1}}, \quad(s>1)
$$

Then, by a similar calculation as in the above we have

$$
\operatorname{Res}_{s=0} \zeta^{*}(s)=2 \operatorname{dim} \mathfrak{M}\left(0,-\frac{1}{4}\right) .
$$

Now our main result can be stated as follows.
Theorem C. Let Γ be a fuchsian group of the first kind not containing the element $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ and suppose that Γ has a compact fundamental domain in the upper half plane S. Let d_{0} be the dimension for the linear space consisting of all holomorphic automorphic forms of weight 1 with respect to the group Γ. Then the number d_{0} is given by the formula:

$$
d_{0}=\frac{1}{2} \sum_{\{M\}} \frac{1}{[\Gamma(M): 1]} \frac{-\bar{\zeta}}{\left(\bar{\zeta}^{2}-1\right)}+\operatorname{dim} \mathfrak{M}\left(0,-\frac{1}{4}\right),
$$

where the sum over $\{M\}$ is taken over the distinct elliptic conjugacy classes of $\Gamma, \Gamma(M)$ denotes the centralizer of M in $\Gamma, \bar{\zeta}$ is one of the eigenvalues of M, and $\mathfrak{M}(0,-1 / 4)$ denotes the eigenspace with the eigenvalue $-1 / 4$ for the Laplacian $y^{2}\left(\left(\partial^{2} / \partial x^{2}\right)+\left(\left(\partial^{2} / \partial y^{2}\right)\right)\right.$ on the space $C^{\infty}(\Gamma \backslash S)$.

References

[1] T. Hiramatsu, Eichler classes attached to automorphic forms of dimension -1 , Osaka J. Math., 3 (1966), 39-48.
[2] -, On some dimension formula for automorphic forms of weight one II, to appear.
[3] H. Huber, Zur analytichen Theorie hyperbolischer Raumformen und Bewegungsgruppen, Math. Annalen, 138 (1959), 1-26.
[4] M. Kuga, Functional analysis in weakly symmetric Riemannian spaces and its applications, (in Japanese), Sugaku, 9 (1957), 166-185.
[5] -, On a uniformity of distribution of 0-cycles and the eigenvalues of Hecke operators, II, Sci. Papers College Gen. Ed. Univ. Tokyo, 10 (1961), 171-186.
[6] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applicationss to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87.
[7] J.-P. Serre, Modular forms of weight one and Galois representations, In: Proc. Symposium on Algebraic Number Fields, 193-268. Academic Press, 1977.

Department of Mathematics
Kobe University

[^0]: 2) This remark was informed by Satake's letter to the author.
