SUPER-EUKASIEWICZ PROPOSITIONAL LOGICS

YUICHI KOMORI

§ 0. Introduction

In [8] (1920), Łukasiewicz introduced a 3 -valued propositional calculus with one designated truth-value and later in [9], Łukasiewicz and Tarski generalized it to an m-valued propositional calculus (where m is a natural number or \boldsymbol{K}_{0}) with one designated truth-value. For the original 3 -valued propositional calculus, an axiomatization was given by Wajsberg [16] (1931). In a case of $m \neq \boldsymbol{K}_{0}$, Rosser and Turquette gave an axiomatization of the m-valued propositional calculus with an arbitrary number of designated truth-values in [13] (1945). In [9], Łukasiewicz conjectured that the \boldsymbol{K}_{0}-valued propositional calculus is axiomatizable by a system with modus ponens and substitution as inference rules and the following five axioms: $p \supset q \supset p,(p \supset q) \supset(q \supset r) \supset p \supset r, p \vee q \supset q \vee p,(p \supset q) \vee$ $(q \supset p),(\sim p \supset \sim q) \supset q \supset p$. Here we use $P \vee Q$ as the abbreviation of $(P \supset Q) \supset Q$. We associate to the right and use the convention that \supset binds less strongly than \vee. In [15] p. 51, it is stated as follows: "This conjecture has proved to be correct; see Wajsberg [17] (1935) p. 240. As far as we know, however, Wajsberg's proof has not appeared in print." Rose and Rosser gave the first proof of it in print in [12] (1958). Their proof was essentially due to McNaughton's theorem [10], so it was metamathematical in nature. An algebraic proof was given by Chang [1] [2] (1959).

On the other hand, Rose [11] (1953) showed that the cardinality of the set of all super-Łukasiewicz propositional logics is \mathbf{K}_{0}. Surprisingly it was before Rose and Rosser's completeness theorem [12]. The proof in Rose [11] was also due to McNaughton's theorem. Some of our theorems in this paper have already been obtained by Rose [11]. But our proofs are completely algebraic.

In our former paper [5], we gave a complete description of super-

[^0]Łukasiewicz implicational logics (SLIL). In this paper, we will give a complete description of super-Łukasiewicz propositional logics (SLL). We need the completeness of a theory on some ordered abelian groups in [6] to give the complete description of SLL. In the first three sections, we will develope a theory without need of the result in [6]. So some of the results in §1-§3 are included in more generalized forms in the later sections.

In § 1, we will give a complete description of these SLLs which are obtained by adding only C formulas to the smallest SLL $L u$. In § 2, we will discuss the inclusion relations between SLLs. And we will have the theorem stated in [15] p. 48 without proof. In § 3, we will give a characterization of SLLs without finite model property. § 4 is the main section of this paper. A complete description of SLLs will be given in it. In §5, we will give some applications of the complete description of SLLs. In $\S 6$, we will discuss the lattice structure of all SLLs and illustrate a finite sub-structure of it.

We suppose familiarity with [4] and [5]. Only in §4, we suppose familiarity with [6]. A CN formula (or simply, formula) is an expression constructed from propositional variables and logical connectives \supset and \sim in the usual way. By a super-Łukasiewicz propositional logic (SLL), we mean a set of formulas which is closed with respect to substitution and modus ponens, and contains the following five formulas:

A1. $p \supset q \supset p$,
A2. $(p \supset q) \supset(q \supset r) \supset p \supset r$,
A3. $p \vee q \supset q \vee p$,
A4. $(p \supset q) \vee(q \supset p)$,
A5. $\quad(\sim p \supset \sim q) \supset q \supset p$.
A C algebra is an algebra $\langle A ; 1, \rightarrow\rangle$ which satisfies the following axioms, where A is a non empty set and 1 and \rightarrow are 0 -ary and 2 -ary functions on A respectively.

$$
\begin{array}{ll}
\text { B1. } & 1 \rightarrow x=x . \\
\text { B2. } & x \rightarrow y \rightarrow x=1 . \\
\text { B3. } & (x \rightarrow y) \rightarrow(y \rightarrow z) \rightarrow x \rightarrow z=1 . \\
\text { B4. } & x \cup y=y \cup x . \\
\text { B5. } & (x \rightarrow y) \cup(y \rightarrow x)=1 .
\end{array}
$$

We abbreviate $(x \rightarrow y) \rightarrow y$ by $x \cup y$. We use the same convention as before. A CN algebra is an algebra $\langle A ; 1, \rightarrow, \neg\rangle$ which satisfies the following axiom, where $\langle A ; 1, \rightarrow\rangle$ is a C algebra and \neg is an 1-ary function on A.

$$
\text { C1. } \neg x \rightarrow \neg y \leq y \rightarrow x .
$$

Here we denote $x \rightarrow y=1$ by $x \leq y$. We say simply that A is a $C N$ algebra, when $\langle A ; 1, \rightarrow, \neg\rangle$ is a $C N$ algebra. If a formula contains no connective other than \supset, it is called $a C$ formula. In [5], we denote the set of C formulas valid in a C algebra A by $L(A)$. In this paper, we denote the set of formulas valid in a $C N$ algebra A by $L(A)$. The set of C formulas valid in a $C N$ algebra A is denoted by $L_{I}(A) . \quad L u$ denotes the set of formulas derivable from A1-A5, that is, $L u$ is the smallest SLL. For any SLL L, L_{I} denotes the set of C formulas contained in L. Let \boldsymbol{H} be any set of formulas and L be any SLL. Then we denote the smallest SLL which includes $L \cup \boldsymbol{H}$ by $\boldsymbol{L}+\boldsymbol{H}$. Sometimes, $L+\left\{P_{1}, \cdots, P_{n}\right\}$ is denoted by $L+P_{1}+\cdots+P_{n}$. A SLL L is called to be finitely axiomatizable if there exists a finite set \boldsymbol{H} such that $L=\boldsymbol{L} \boldsymbol{u}+\boldsymbol{H}$.

We denote the set $\{0,1 / m, 2 / m, \cdots,(m-1) / m, 1\}$ and the set of all rationals in the interval $[0,1]$ by $S_{m}(m \geq 1)$ and S_{ω}, respectively. We define the functions \rightarrow and \neg on $S_{m}(1 \leq m \leq \omega)$ by $x \rightarrow y=\min (1,1-x$ $+y$) and $\neg x=1-x$, respectively. Then we can regard S_{m} as a $C N$ algebra. S_{m} is the well-known Łukasiewicz ($m+1$)-valued (or \boldsymbol{K}_{0}-valued if $m=\omega$) model. We denote also the $C N$ algebra with only one element by S_{0}.

§1. SLLs obtained by adding only C formulas

Let A be a $C N$ algebra. A non-empty subset J of A is a filter of A if it satisfies the following two conditions:

1) $1 \in J$,
2) $x \in J$ and $x \rightarrow y \in J \Rightarrow y \in J$.

Let A be a $C N$ algebra, x be an element of A other than 1. A is irreducible with respect to x if x is contained within any filter of A which contains at least an element other than 1. A is irreducible, if there exists an element such that A is irreducible with respect to the element or A has only one element. By Theorem 2.10 in [4], we have

Theorem 1.1. Any irreducible CN algebra is linearly ordered.

We can, similarly to Theorems 3.8 and 3.9 in [5], show the following theorems.

Theorem 1.2. If a $C N$ algebra B is a subalgebra of a $C N$ algebra A, or $B=A / J$ for some filter J of A, then $L(B) \supseteq L(A)$.

Theorem 1.3. For any SLL L, there exists a set $\left\{A_{\lambda}\right\}_{\lambda_{\in A}}$ of irreducible $C N$ algebras such that $L=\bigcap_{i \in \Lambda} L\left(A_{\lambda}\right)$.

Next theorem gives a complete description of SLLs obtained by adding only C formulas.

Theorem 1.4. Let $\left\{A_{i} \mid i \in I\right\}$ be a set of C formulas. If $L=L u+$ $\left\{A_{i} \mid i \in I\right\}$, then $L=\bigcap_{k \leq n} L\left(S_{k}\right)$ for some $n \leq \omega$.

Proof. By Theorem 4.1 in [5], if $A_{i} \oplus \boldsymbol{L u}$, then A_{i} is interdeducible in $L u$ with $(p \supset)^{m} q \vee p$ for some m. Here we define $(P \supset)^{n}(Q)$ as $(P \supset)^{0}(Q)$ $=Q$ and $(P \supset)^{n+1}(Q)=P \supset(P \supset)^{n}(Q)$, and we denote $(P \supset)^{n}(Q)$ by $(P \supset)^{n} Q$ when no confusion occurs. Because $L u+(p \supset)^{m} q \vee p \ni(p \supset)^{\ell} q \vee p$ for $l \geq m$, there exists n such that $L=L u+(p \supset)^{n} q \vee p$. As $(p \supset)^{n} q \vee p$ is valid in S_{k} for any $k \leq n, L \subseteq \bigcap_{k \leq n} L\left(S_{k}\right)$. We can easily shown that if $(p \supset)^{n} q \vee p \in L(A)$, then ord $(A) \leq n$. Here we give same definition of order of a $C N$ algebra as a C algebra, that is, ord $(A)=\sup \{\operatorname{ord}(x) \mid x \in A\}$ and ord (x) is the least integer n such that $x \cup(x \rightarrow)^{n} y=1$ for any element y of $A(\operatorname{ord}(x)=\omega$, if no such integer n exists). Therefore, we have that if $(p \supset)^{n} q \vee p \in L(A)$ and A is irreducible, then A is isomorphic to S_{k} for some $k \leq n$. Then, we have $L=\bigcap_{k \leq n} L\left(S_{k}\right)$. Clearly, if $A_{i} \in L u$ for any $i \in I$, then $L=L u=\bigcap_{k<\omega} L\left(S_{k}\right)=\bigcap_{k \leq \omega} L\left(S_{k}\right)$.
Q.E.D.

If $L_{I} \nsubseteq L u$, that is, $L_{I} \neq L u_{I}$, there exists a non-negative integer n such that $(p \supset)^{n} q \vee p \in L$. Let I be the set of non-negative integers $\left\{i \mid L \subseteq L\left(S_{i}\right)\right.$ and $\left.i \leq n\right\}$. Then, we can show that $L=\bigcap_{i \in I} L\left(S_{i}\right)$. Let J be the set of non-negative integers $\left\{i \mid L \nsubseteq L\left(S_{i}\right)\right.$ and $\left.i \leq n\right\}$. For each $i \in J$, there exists a formula P_{i} such that $P_{i} \in L$ and $P_{i} \oplus L\left(S_{i}\right)$. Let H be the set of formulas $\left\{P_{i} \mid i \in J\right\}$. Then, without being depend on the representative P_{i} chosen, we have that $L=\boldsymbol{L} \boldsymbol{u}+(p \supset)^{n} q \vee p+\boldsymbol{H}$. Therefore, we have the following theorems.

Theorem 1.5. If $L_{I} \neq L u_{I}$, then there exists a finite set I of nonnegative integers such that $L=\bigcap_{i \in I} L\left(S_{i}\right)$.

Theorem 1.6. If $\boldsymbol{L}_{I} \neq \boldsymbol{L} u_{I}$, then is finitely axiomatizable.

Corollary 1.7. The cardinality of the set $\left\{\boldsymbol{L} \mid \boldsymbol{L}\right.$ is a SLL such that L_{I} $\left.\neq L u_{I}\right\}$ is countable.

§ 2. Inclusion relations between SLLs

Though $L_{I}\left(S_{n}\right) \subseteq L_{I}\left(S_{m}\right)$ for $n \geq m$ in SLILs, we can easily know that $L\left(S_{3}\right) \nsubseteq L\left(S_{2}\right)$. In [9], it is stated that Lindenbaum proved that $L\left(S_{n}\right) \subseteq$ $L\left(S_{m}\right)$ if and only if m is a divisor of n. We will generalize Lindenbaum's theorem. We define the CN algebras $S_{n}^{\omega}(n=1,2,3, \cdots)$ as follows.

$$
\begin{aligned}
S_{n}^{\omega}= & \{(x, y) \mid x \in\{1 / n, 2 / n, \cdots,(n-1) / n\}, y \in Z\} \\
& \cup\{(0, y) \mid y \in N\} \cup\{(1,-y) \mid y \in N\},
\end{aligned}
$$

where Z and N are the set of all integers and the set of all non-negative integers, respectively.

$$
\begin{aligned}
& (x, y) \rightarrow(z, u)= \begin{cases}(1,0) & \text { if } z>x \\
(1, \min (0, u-y)) & \text { if } z=x \\
(1-x+z, u-y) & \text { otherwise }\end{cases} \\
& \neg(x, y)=(1-x,-y) .
\end{aligned}
$$

When $n=1$, the first term in S_{1}^{ω} is regarded as an empty set. S_{1}^{ω} is essentially equivalent to the $M V$-algebra C defined in Chang [1]. We can check easily that $\left\langle S_{n}^{\omega} ;(1,0), \rightarrow, \neg\right\rangle$ is a $C N$ algebra.

Theorem 2.1. Let I and J be finite sets of positive integers.

$$
\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{m}\right) \subseteq L\left(S_{m}\right)
$$

if and only if there exists $n \in I \cup J$ such that m is a divisor of n.
Proof. If there exists $n \in I \cup J$ such that m is a divisor of n, S_{m} is isomorphic to a subalgebra of S_{n} (or S_{n}^{ω}). Therefore, we have $\bigcap_{i \in I} L\left(S_{i}\right)$ $\cap \bigcap_{j \in J} L\left(S_{j}^{v}\right) \subseteq L\left(S_{m}\right)$. Conversely, suppose that $\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{*}\right)$ $\subseteq L\left(S_{m}\right)$. Let r be $\max I \cup J$ and P be the formula

$$
\left[\left[(p \supset)^{m-2} \sim p \supset p\right] \supset\right]^{r+1}\left[(p \supset)^{m-1} \sim p \supset\right]^{r+1} p
$$

If f assigns the element $(m-1) / m$ of S_{m} for p, then $f(P)$ is also $(m-1) / m$. Hence, we have $P \oplus L\left(S_{m}\right)$. Therefore, we have $P \notin \bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{*}\right)$. Hence, there exists $i \in I$ such that $P \oplus L\left(S_{i}\right)$ or there exists $j \in J$ such that $P \oplus L\left(S_{j}^{\sigma}\right)$. Suppose that $P \oplus L\left(S_{j}^{\omega}\right)$. Let g be an assignment of S_{j}^{ω} such that $g(P) \neq(1,0)$. We can show that for any $x, y \in S_{j}^{\omega}$ and any $l>j$, if
$(x \rightarrow)^{\ell} y \neq(1,0)$ then x is of the form $(1, *)$. Here by $c=(b, *)$ we mean that the first component of c is b. Hence, $(a \rightarrow)^{m-2} \neg a \rightarrow a=(1, *)$ and $(a \rightarrow)^{m-1} \neg a=(1, *)$, where a denotes $g(p)$. Let $a=(1-k / j, *)$. Then we have $(m-1) k / j \leq(j-k) / j$ and $m k / j \geq 1$. Hence, we have that $j=m k$. When $P \oplus L\left(S_{i}\right)$, the proof is similar.
Q.E.D.

Corollary 2.2 (Lindenbaum). $L\left(S_{n}\right) \subseteq L\left(S_{m}\right)$ if and only if m is a divisor of $n(1 \leq m<\omega, 1 \leq n<\omega)$.

Theorem 2.3. Let I and J be finite sets of positive integers.

$$
\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{o}\right) \subseteq L\left(S_{m}^{o}\right)
$$

if and only if there exists $n \in J$ such that m is a divisor of n.
Proof. If there exists $n \in J$ such that m is a divisor of $n, \bigcap_{i \in I} L\left(S_{i}\right)$ $\cap \bigcap_{j \in J} L\left(S_{j}^{\omega}\right) \subseteq L\left(S_{m}^{\omega}\right)$ because S_{m}^{ω} is isomorphic to a subalgebra of S_{n}^{ω}. Conversely, suppose that $\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{\omega}\right) \subseteq L\left(S_{m}^{\omega}\right)$. Let r be max I $\cup J$ and P be the formula

$$
\left[\left[(p \supset)^{m-2} \sim p \supset p\right] \supset\right]^{r+1}\left[(p \supset)^{m-1} \sim p \supset\right]^{r+1}\left[(q \supset)^{r} s \vee q\right] .
$$

Let f be an assignment of S_{m}^{ω} such that $f(p)=((m-1) / m, 0), f(q)=(1,-1)$ and $f(s)=(0,0)$. Then $f(P)=(1,-1)$. Hence, we have $P \oplus L\left(S_{m}^{\omega}\right)$. Therefore, we have $P \oplus \bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{j}\right)$. Because $P \in \bigcap_{i \in I} L\left(S_{i}\right)$, there exists $j \in J$ such that $P \notin L\left(S_{j}^{o}\right)$. Similarly to the proof of Theorem 2.1, we have this theorem.
Q.E.D.

Corollary 2.4. $L\left(S_{n}^{\omega}\right) \subseteq L\left(S_{m}^{\omega}\right)$ if and only if m is a divisor of $n(1 \leq$ $m<\omega, 1 \leq n<\omega)$.

§ 3. SLLs without fmp

By the result of [5], we know that any SLIL has the finite model property (fmp). We will show that there exist SLLs without fmp.

Definition 3.1. A SLL L has fmp if there exists a set of finite $C N$ algebras $\left\{A_{i} \mid i \in I\right\}$ such that $L=\bigcap_{i \in I} L\left(A_{i}\right)$.

A finite irreducible $C N$ algebra is isomorphic to S_{n} for some n. Therefore, by Theorem 1.3, we have

Theorem 3.2. A SLL L has fmp if and only if there exists a set I of non-negative integers such that $L=\bigcap_{k \in I} L\left(S_{k}\right)$.

Theorem 3.3. If $\boldsymbol{L} \neq \boldsymbol{L u}$, then $\boldsymbol{L}_{I} \neq \boldsymbol{L} \boldsymbol{u}_{I}$ if and only if \boldsymbol{L} has fmp.
Proof. By Theorem 1.5, L has fmp if $L_{I} \neq \boldsymbol{L u}_{I}$. Conversely, L has fmp. Then there exists a set I of non-negative integers such that $L=$ $\bigcap_{k \in I} L\left(S_{k}\right)$. Because $L \neq L \boldsymbol{u}, I$ is a finite set. $S o(p \supset)^{n} q \vee p \in L$ where $n=\max I$. Hence $L_{I} \neq \boldsymbol{L} \boldsymbol{u}_{I}$.
Q.E.D.

For any positive integers m, n, S_{n}^{ω} has a subalgebra isomorphic to S_{m} if we regard S_{m} and S_{n}^{ω} as C algebras. Then we have

Lemma 3.4. $\quad L_{I}\left(S_{k}^{\omega}\right)=L u_{I}$ for any positive integer k.
Theorem 3.5. If both I and J are finite sets of positive integers, $J \neq$ ϕ and $L=\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{\omega}\right)$, then L has not fmp.

Proof. $L \neq L u$ because $I \cup J$ is a finite set. By $J \neq \phi$ and Lemma 3.4, $\boldsymbol{L}_{I}=\boldsymbol{L} \boldsymbol{u}_{I}$. Therefore, L has not fmp by Theorem 3.3.
Q.E.D.

Corollary 3.6. $L\left(S_{n}^{\omega}\right)$ has not fmp for any positive integer n.

§4. A complete description of SLLs

This section is the main part of this paper.
Definition 4.1. Let A be a linearly ordered $C N$ algebra, and a be the maximum element of A. An element x of A is called almost maximum if $(x \rightarrow)^{n} \neg a \neq a$ for any positive integer n. An element of x is called infinitesimal if $\neg x$ is almost maximum. If A has an element other than the maximum element, the set M_{A} of all almost maximum elements of A is a filter of A. The $C N$ algebra A / M_{A} is denoted by \tilde{A}. $\operatorname{rank}(A)$ is defined by $\operatorname{rank}(A)=\operatorname{ord}(\tilde{A})$.

Clearly, only one almost maximum element of \tilde{A} is the maximum element, that is, \widetilde{A} is locally finite (This is Chang's terminology [1].).

Theorem 4.2. Let A be a linearly ordered $C N$ algebra. If rank (A) $=\omega$, then $L(A)=L u$.

Proof. By Theorem 1.2, $L(A) \subseteq L(\widetilde{A})$. Because \widetilde{A} is locally finite, \widetilde{A} is isomorphic to a subalgebra of the $C N$ algebra of all real numbers between 0 and 1 (cf. [2] p. 78). By ord $(\tilde{A})=\omega, A$ has an infinite number of members. Therefore, $L(\tilde{A})=L u$ (cf. [12] p. 5). Hence, we have $L(A)$ $=L u$.
Q.E.D.

For a given model G of $\boldsymbol{S S}$ (cf. [6]), let the segment $G[c]$ determined
by a positive element c of G be the set of all elements $x \in G$ such that $0 \leq x \leq c$. We define the functions \rightarrow and \neg on $G[c]$ as follows:

$$
\begin{aligned}
x \rightarrow y & =\min (c, c-x+y), \\
\neg x & =c-x .
\end{aligned}
$$

Then we can easily prove the following lemma.
Lemma 4.3. The algebra $\langle G[c] ; c, \rightarrow, \neg\rangle$ defined above is a linearly ordered $C N$ algebra. If m satisfies $-1<2(m-c)<1$, then $\operatorname{rank}(G[c])$ $=m$.

We now wish to establish the converse to Lemma 4.3. Let A be a linearly ordered $C N$ algebra and 0 be the minimum element of A. We let A^{*} be the set $\{(s, x) \mid s \in\{+,-\}, x$ is an infinitesimal element of $A\}$. We identify $(+, 0)$ with $(-, 0)$ and denote (\pm, x) by $\pm x$, respectively. On the set A^{*} we define the functions + and - and the relation $0<$ as follows:

$$
\begin{aligned}
& (+, x)+(+, y)=(+, \neg x \rightarrow y) \\
& (-, x)+(-, y)=(-, \neg x \rightarrow y), \\
& (+, x)+(-, y)=(-, y)+(+, x)= \begin{cases}(+, \neg(x \rightarrow y)) & \text { if } y \leq x \\
(-, \neg(y \rightarrow x)) & \text { if } x<y\end{cases} \\
& -(+, x)=(-, x), \\
& -(-, x)=(+, x), \\
& 0<(s, x) \Leftrightarrow s=+\quad \text { and } x \neq 0
\end{aligned}
$$

Then the algebra $\left\langle A^{*} ;+,-, 0<\right\rangle$ is a totally ordered abelian group. Generally, the group $Z G=Z \times G$ is a model of $S S$ is G is a totally ordered abelian group, where $Z \times G$ is ordered as $0<(x, y)$ if and only if either $0<x$ or $x=0$ and $0<y$. Hence $Z A^{*}$ is a model of $\boldsymbol{S S}$.

Lemma 4.4. Let A be a linearly ordered $C N$ algebra, ord $(A)=\omega$ and $\operatorname{rank}(A)=n$. Then there exists an infinitesimal element b of A such that $b \neq 0$ and $A \cong Z A^{*}[(n,+b)]$.

Proof. By $\operatorname{rank}(A)=n, \tilde{A} \cong S_{n}$. Let φ be an isomorphism from \tilde{A} to S_{n} and α be an element of \tilde{A} (and hence an equivalence class of A) such that $\varphi(\alpha)=(n-1) / n$. Since ord $(A)=\omega$, we can take a sufficiently large element x of α such that $(x \rightarrow)^{n} 0<a$ (a is the maximum element of A). We can show that for any $y \neq a$ there is an unique infinitesimal
element z of A such that $y=(x \rightarrow)^{m} z$ or $y=(x \rightarrow)^{m-1} \neg(\neg x \rightarrow z)$ if $\varphi([y])$ $=m / n$. Let b detote $\neg(x \rightarrow)^{n} 0$. Let f be a function from A to $Z A^{*}[(n$, $+b)$] such that $f\left((x \rightarrow)^{m} z\right)=(m,+z), f\left((x \rightarrow)^{m-1} \neg(\neg x \rightarrow z)\right)=(m,-z)$ and $f(a)=(n,+b)$. Then f is an isomorphism from A onto $Z A^{*}[(n,+b)]$.
Q.E.D.

The first order language \mathscr{L}^{\prime} is the same as in [6], which consists of $0,1,-,+, 0<, n \mid$ (for each integer $n>0$) and $=$. Let $\mathscr{L}^{\prime \prime}$ be the language obtained from \mathscr{L}^{\prime}, by adding a binary function symbol min. The language of the theory $\boldsymbol{S} \boldsymbol{S}^{\prime}$ is $\mathscr{L}^{\prime \prime}$ and the set of axioms of $\boldsymbol{S \boldsymbol { S } ^ { \prime }}$ is obtained from $\boldsymbol{S S}$ by adding the following axiom:

$$
\text { (j) } \quad z=\min (x, y) \leftrightarrow(x<y \rightarrow z=x) \wedge(y \leq x \rightarrow z=y) \text {. }
$$

It is clear that each model of $\boldsymbol{S S}$ can be regarded also as a model of $\boldsymbol{S \boldsymbol { S } ^ { \prime }}$. In $\boldsymbol{S S ^ { \prime }}$, for any formula $A(x)$, the following is derivable:

$$
A(\min (s, t)) \leftrightarrow(s \leq t \rightarrow A(s)) \wedge(t<s \rightarrow A(t))
$$

Therefore, for any formula F of $\mathscr{L}^{\prime \prime}$ we can construct the formula F^{*} of \mathscr{L}^{\prime} such that $F \leftrightarrow F^{*}$ is derivable in $S \boldsymbol{S}^{\prime}$ and each variable of which some occurrence is bound in F^{*} is also bound in F. Especially, F^{*} is open if F is open. Hence, by Corollary 2.3 in [6], we have

Lemma 4.5. For any open formula F of $\mathscr{L}^{\prime \prime}$ and any model A of $\boldsymbol{S S}^{\prime}$ $\cup(i), F$ is valid in $Z Q$ if and only if F is valid in A.

We now define the term P^{*} of $\mathscr{L}^{\prime \prime}$ corresponding to a formula P of SLL in the following manner:

$$
\begin{aligned}
& p^{*}=h(p) \\
& (P \supset Q)^{*}=\min \left(c-P^{*}+Q^{*}, c\right) \\
& (\sim P)^{*}=c-P^{*}
\end{aligned}
$$

Here h is an injective mapping from the set of propositional variables of SLL to the set of variables of $\mathscr{L}^{\prime \prime}$ such that $h(p) \neq c$ for any p. We assume that $x_{1}, x_{2}, \cdots, x_{n}$ are the only variables occurring in P^{*}. Next, we define the formula P^{0} as $P^{0}=\left(0 \leq x_{1} \leq c \wedge \cdots \wedge 0 \leq x_{n} \leq c \rightarrow P^{*}=c\right)$.

Lemma 4.6. For any formula P of SLL and any linearly ordered $C N$ algebra A such that $\operatorname{ord}(A)=\omega$ and $\operatorname{rank}(A)=n, P$ is valid in A if -1 $<2(n-c)<1 \rightarrow P^{0}$ is valid in $Z Q$.

Proof. Suppose that P is not valid in A. There exists an assignment
f of A such that $f(P)<a$ where a is the maximum element of A. By Lemma 4.4, there exists an isomorphism φ from A to $Z A^{*}[(n,+b)]$. Let g be an assignment of $Z A^{*}$ such that $g(x)=\varphi\left(f\left(h^{-1}(x)\right)\right)$ and $g(c)=(n,+b)$. Then $-1<2(n-c)<1 \rightarrow P^{0}$ is not true under g. Since $Z A^{*}$ is a model of $\boldsymbol{S S ^ { \prime }} \cup(i),-1<2(n-c)<1 \rightarrow P^{0}$ is not valid in $Z Q$ by Lemma 4.5.
Q.E.D.

Lemma 4.7. For any linearly ordered $C N$ algebra A such that ord (A) $=\omega$ and $\operatorname{rank}(A)=n, L(A) \subseteq L(Z Z[(n, 1)])$.

Proof. By Lemma 4.4, $A \cong Z A^{*}[(n,+b)]$. A subalgebra of $Z A^{*}[(n$, $+b)$] generated by $(1,0)$ is isomorphic to $Z Z[(n, 1)]$.
Q.E.D.

Lemma 4.8. For any integer k,

$$
L(Z Z[(n, 0)]) \subseteq L(Z Z[(n, k)]) \subseteq L(Z Z[(n, 1)])
$$

Proof. By Lemma 4.7, $L(Z Z[(n, k)]) \subseteq L(Z Z[(n, 1)])$. Suppose that P is not valid in $Z Z[(n, k)]$. Let f be an assignment of $Z Z[(n, k)]$ such that $f(P)=(u, v) \neq(n, k)$. Let g be an assignment of $Z Z[(n, n k)]$ such that $g(p)=(m, n l)$ if $f(p)=(m, l)$ for any propositional variable p. Then $g(P)$ $=(u, n v) \neq(n, n k) . \quad Z Z[(n, n k)]$ is isomorphic to $Z Z[(n, 0)]$ (isomorphism φ is given by $\varphi((m, l))=(m, l-m k)$). Hence, P is not valid in $Z Z[(n, 0)]$.
Q.E.D.

Lemma 4.9. For any integer k,

$$
L(Z Z[(n, 0)])=L(Z Z[(n, k)])=L(Z Z[(n, 1)])
$$

Proof. By Lemma 4.8, it suffices to show that $L(Z Z[(n, 0)]) \subseteq L(Z Z[(n$, 1)]). Let P be a formula which is not valid in $Z Z[(n, 0)]$ and f be an assignment of $Z Z[(n, 0)]$ such that $f(P) \leq(n,-1)$. Let $g_{m}: Z Z[(n, 0)] \rightarrow$ $Z Z[(n, 0)]$ be a homomorphism such that $(i, j) \mapsto(i, m j)$. Let f^{\prime} be an assignment of $Z Z[(n, 1)]$ such that $f^{\prime}(p)=g_{m} f(p)$ for any propositional variable p. For any formula F with the degree d (that is, the number of occurrences of logical connectives in the formula F is d), we shall show by induction on d that

$$
g_{m} f(F)-(0, d) \leq f^{\prime}(F) \leq g_{m} f(F)+(0, d)
$$

Suppose F is $G \supset H$ and the degrees of G and H are e and e^{\prime}, respectively. By the inductive hypothesis,

$$
\begin{aligned}
& g_{m} f(G)-(0, e) \leq f^{\prime}(G) \leq g_{m} f(G)+(0, e) \\
& g_{m} f(H)-\left(0, e^{\prime}\right) \leq f^{\prime}(H) \leq g_{m} f(H)+\left(0, e^{\prime}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& f^{\prime}(G \supset H)=\min \left((n, 1)-f^{\prime}(G)+f^{\prime}(H),(n, 1)\right) \\
& g_{m} f(G \supset H)=\min \left((n, 0)-g_{m} f(G)+g_{m} f(H),(n, 0)\right)
\end{aligned}
$$

and $d=e+e^{\prime}+1$, we have

$$
g_{m} f(G \supset H)-(0, d) \leq f^{\prime}(G \supset H) \leq g_{m} f(G \supset H)+(0, d)
$$

The case that F is $\sim G$ is similar. Therefore, we have that $f^{\prime}(P) \leq$ $(n, d-m)$. If $m \geq d, P$ is not true in $Z Z[(n, 1)]$ under the assignment f^{\prime}.
Q.E.D.

We are now in a position to prove the following key theorem.
Theorem 4.10. For any linearly ordered $C N$ algebra A such that $\operatorname{ord}(A)=\omega$ and $\operatorname{rank}(A)=n, L(A)=L(Z Z[(n, 0)])$.

Proof. By Lemma 4.7 and Lemma 4.9, we have $L(A) \subseteq L(Z Z[(n, 0)])$. We shall show that $L(A) \supseteq L(Z Z[(n, 0)])$. Let P be a formula valid in $Z Z[(n, 0)]$. By Lemma 4.9, P is valid in $Z Z[(n, k)]$ for any integer k. Hence $-1<2(n-c)<1 \rightarrow P^{0}$ is valid in $Z Z$. By Lemma $4.5,-1<$ $2(n-c)<1 \rightarrow P^{0}$ is valid in $Z Q$. By Lemma 4.6, P is valid in A. Q.E.D.
$Z Z[(n, 0)]$ is isomorphic to S_{n}^{ω} defined in $\S 2$. Now, we can prove the main theorem.

Theorem 4.11. For any SLL, there exist sets of non-negative integers I, J such that $L=\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{v}\right)$. If $L \neq L u$, then both sets I and J are finite.

Proof. By Theorem 1.3, there exists a set $\left\{A_{\lambda}\right\}_{\}_{\in \Lambda}}$ of irreducible $C N$ algebras such that $L=\bigcap_{2 \in \Delta} L\left(A_{2}\right)$. By Theorem 3.13 in [5], $L\left(A_{\lambda}\right)=L\left(S_{n}\right)$ if $\operatorname{ord}\left(A_{2}\right)=n . \quad$ By Theorem 4.10, $L\left(A_{\lambda}\right)=L\left(S_{n}^{\nu}\right)$ if $\operatorname{ord}\left(A_{\lambda}\right)=\omega$ and $\operatorname{rank}\left(A_{2}\right)=n . \quad$ By Theorem 4.2, $L\left(A_{\lambda}\right)=L u=\bigcap_{k<\omega} L\left(S_{k}\right)$ if $\operatorname{rank}\left(A_{\lambda}\right)=\omega$. Therefore, $L=\bigcap_{i \in I} L\left(S_{i}\right) \cap \bigcap_{j \in J} L\left(S_{j}^{\sigma}\right)$ for some I and J. If $I \cup J$ is infinite, then $L \subseteq \bigcap_{i \in I \cup J} L\left(S_{i}\right)$ because $L\left(S_{n}^{\omega}\right) \subseteq L\left(S_{n}\right)$. By Theorem 20 in [15] p. 49, $\bigcap_{i \in I U J} L\left(S_{i}\right)=L u$. Hence, we have $L=L u$.
Q.E.D.

§ 5. Applications of the main theorem

By Theorem 4.11, Theorem 3.5 gives a complete characterization of SLLs without fmp. For example, we can show as follows that $L \boldsymbol{u}+P$ has not fmp, where P is the formula $(p \supset \sim p) \supset(\sim p \supset p) \supset p \vee \sim p$. Because $P \in L\left(S_{3}\right) \cap L\left(S_{1}^{\omega}\right)$ and $P \oplus L\left(S_{n}\right)$ for $n=2$ or $n \geq 4$ and $P \oplus L\left(S_{n}^{\omega}\right)$ for $n \geq$ 2, we have $L u+P=L\left(S_{3}\right) \cap L\left(S_{1}^{0}\right)$ by Theorem 4.11. Hence, $L u+P$ has not fmp by Theorem 3.5.

The following theorem, that was proved in Rose [10], is easily obtained from Theorem 4.11.

Theorem 5.1. The cardinality of the set of all SLLs is countable.
Rose [11] also showed that any SLL is finitely axiomatizable. We will show it as follows.

Lemma 5.2. $L u+A_{n}=\bigcap_{x \leq n} L\left(S_{k}^{e}\right)$, where

$$
A_{n}=\left[(p \supset)^{2 n} \sim p\right] \supset\left[(p \supset)^{n-1} \sim p \supset p\right] \supset(p \supset)^{n-1} \sim p \vee p
$$

Proof. By Theorem 4.11 and $L\left(S_{k}^{o}\right) \subseteq L\left(S_{k}\right)$ for any k, it suffices to show that (1) $A_{n} \in L\left(S_{k}^{v}\right)$ for $k \leq n$ and that (2) $A_{n} \oplus L\left(S_{k}\right)$ for $k>n$.

Proof of (1). Let f be an assignment of S_{k}^{ω}. If $f(p) \leq((k-1) / k, 0)$ or $f(p)=(1,0)$, then $f\left((p \supset)^{n-1} \sim p \vee p\right)=(1,0)$. Therefore, $f\left(A_{n}\right)=(1,0)$. If $f(p)=((k-1) / k, *)$, then $f\left((p \supset)^{n-1} \sim p \supset p\right) \leq f\left((p \supset)^{n-1} \sim p\right)$. Therefore, $f\left(A_{n}\right)=(1,0)$. If $f(p)=(1, *)$, then $f\left((p \supset)^{2 n} \sim p\right) \leq f(p)$. Hence, $f\left(A_{n}\right)=(1,0)$.

Proof of (2). Let f be an assignment of S_{k} such that $f(p)=1-[k / n$ $+1] \cdot 1 / k$, where $[x]$ is the integral part of x. Then $f\left((p \supset)^{2 n} \sim p\right)=1$, $f\left((p \supset)^{n-1} \sim p \supset p\right)=1$ and $f\left((p \supset)^{n-1} \sim p \vee p\right) \neq 1$. Therefore, $f\left(A_{n}\right) \neq 1$.
Q.E.D.

Theorem 5.3. Any SLL is finitely axiomatizable.
Proof. Let L be a SLL. If $L=L u$, then L is finitely axiomatizable. Suppose that $L \neq L u$. Then there exists a positive integer n such that $\bigcap_{j \leq n} L\left(S_{j}^{\omega}\right) \subseteq L$. Hence $A_{n} \in L$. Because $A_{n} \oplus L\left(S_{k}\right)$ and $A_{n} \oplus L\left(S_{k}^{\omega}\right)$ for any $k>n$, there exist two sets of positive integers I^{\prime} and J^{\prime} such that $L=$ $\bigcap_{i \in I^{\prime}} L\left(S_{i}\right) \cap \bigcap_{j \in J^{\prime}} L\left(S_{j}^{(}\right)$and $I^{\prime}, J^{\prime} \subseteq\{i \mid i \leq n\}$. Let I and J be the sets of positive integers $\left\{i \mid L \nsubseteq L\left(S_{i}\right)\right.$ and $\left.i \leq n\right\}$ and $\left\{j \mid L \nsubseteq L\left(S_{j}^{o}\right)\right.$ and $\left.j \leq n\right\}$, respectively. For each $i \in I(j \in J)$, there exists a formula $P_{i}\left(Q_{j}\right)$ such that
$P_{i} \in L\left(Q_{j} \in L\right)$ and $P_{i} \oplus L\left(S_{i}\right)\left(Q_{j} \oplus L\left(S_{j}^{j}\right)\right)$. Let \boldsymbol{G} and \boldsymbol{H} be the set of formulas $\left\{P_{i} \mid i \in I\right\}$ and $\left\{Q_{j} \mid j \in J\right\}$, respectively. Then, we have that $L=$ $\boldsymbol{L u}+\boldsymbol{G}+\boldsymbol{H}+\boldsymbol{A}_{n}$.
Q.E.D.

We denote the set of all formulas by W. By Theorem 4.11, $W-L$ is recursive enumerable for any SLL L. By Theorem 5.3, L is recursive enumerable for any SLL L. Hence we have

Theorem 5.4. Any SLL is decidable.
Krzystek and Zachorowski [7] proved that $L\left(S_{n}\right)(2 \leq n \leq \omega)$ has not Interpolation Property. Quite similarly, we can prove the following theorem.

Theorem 5.5. Any SLL except W and $L\left(S_{1}\right)$ has not Interporation Property.

Proof. Let L be a SLL except W and $L\left(S_{1}\right)$. Let P and Q be the formulas $((r \supset r \supset p) \supset r \supset p) \supset p$ and $(s \supset s \supset p) \supset s \supset p$, respectively. The formula $P \supset Q$ is valid in S_{ω}. Hence we have $P \supset Q \in L u$. Let A be a $C N$ algebra such that A is $S_{n}(n \geq 2)$ or $S_{n}^{\omega}(n \geq 1)$. Let f be an assignment of A such that $f(r), f(s) \oplus\{0,1\}$ and $f(p)=0$. It is easy to observe that $f(P), f(Q) \oplus\{0,1\}$ but for every formula R, built up from the variable p only, $f(R) \in\{0,1\}$. Hence, for every such $R, P \supset R \notin L(A)$ or $R \supset Q \oplus L(A)$. By Theorem 2.1 and Theorem 4.11, $L \subseteq L\left(S_{n}\right)$ for some n ≥ 2 or $L \subseteq L\left(S_{1}^{o}\right)$. Therefore, $P \supset Q \in L$ but for every R, built up from the variable p only, $P \supset R \oplus L$ or $R \supset Q \oplus L$.
Q.E.D.

§ 6. Lattice structures of SLLs

Hosoi [3] showed that the set \mathscr{L} of all intermediate propositional logics is a pseudo-Boolean algebra (PBA). We can similarly prove that the set $\mathscr{P} \mathscr{L}$ of all SLLs is a PBA. Let $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ be a set of SLLs. Then $\cap_{\lambda \in \Lambda} L_{\lambda}$ is naturally a SLL but $\bigcup_{\lambda \in \Lambda} L$ is not always a SLL. But there exists the minimum SLL including $\bigcup_{\lambda \in \Lambda} L_{\lambda}$. So, by $\bigcup_{\lambda \in \Lambda} L_{\lambda}$, we mean the minimum SLL including $\bigcup_{\lambda \in 1} L_{\lambda}$. By the definition, we have

Theorem 6.1. $\mathscr{P} \mathscr{L}$ forms a complete lattice with \subseteq as the order relation.
Further, we have
Theorem 6.2. $\bigcup_{\lambda \in \Lambda} L_{\lambda} \cap \boldsymbol{L}=\bigcup_{\lambda \in \Lambda}\left(L_{\lambda} \cap \boldsymbol{L}\right)$.
Proof. It suffices to prove that $\bigcup_{\lambda \in \Lambda} L_{\lambda} \cap L \subseteq \bigcup_{\lambda \in \Lambda}\left(L_{\lambda} \cap L\right)$. Suppose
that $P \in \bigcup_{\lambda \in \Lambda} L_{\lambda} \cap L$. Then there exist formulas $Q_{1}, Q_{2}, \cdots, Q_{n} \in \bigcup_{\lambda \in \Lambda} L_{\lambda}$ such that $Q_{1} \supset Q_{2} \supset \cdots \supset Q_{n} \supset P \in L u$. Hence, $Q_{1} \vee P \supset Q_{2} \vee P \supset \cdots$ $\supset Q_{n} \vee P \supset P \in L u \quad$ because $\left(Q_{1} \supset Q_{2} \supset \cdots \supset Q_{n} \supset P\right) \supset Q_{1} \vee P \supset Q_{2} \vee$ $P \supset \cdots \supset Q_{n} \vee P \supset P \in L u$. On the other hand, as each Q_{i} belongs to some L_{λ}, each $Q_{i} \vee P$ belongs to some $L_{\lambda} \cap L$. So P belongs to $\bigcup_{\lambda \in \Lambda}\left(L_{\lambda}\right.$ $\cap \boldsymbol{L}$).
Q.E.D.

Remark. $\bigcap_{2 \in \Lambda} L_{\lambda} \cup L=\bigcap_{\lambda \in \Lambda}\left(L_{\lambda} \cup L\right)$ does not always hold. For example, $\bigcap_{i \in N} L\left(S_{i}\right) \cup L\left(S_{1}^{\omega}\right)=L\left(S_{1}^{o}\right) \neq L\left(S_{1}\right)=\bigcap_{i \in N}\left(L\left(S_{i}\right) \cup L\left(S_{1}^{o}\right)\right)$.

Theorem 6.2 is a necessary and sufficient condition for a complete lattice to be a PBA.

Theorem 6.3. $\mathscr{S} \mathscr{L}$ is a PBA with W and $L u$ as the maximum element and the minimum element, respectively.

We denote by $\mathscr{S} \mathscr{L}(L)$ the set of all SLLs including L. By Theorem 4.11, $\mathscr{S} \mathscr{L}(L)$ is a finite set if $L \neq L u$. Hence we have

Theorem 6.4. If $L \neq L u$, then $\mathscr{S} \mathscr{L}(L)$ is a finite $P B A$.
We illustrate the lattice structure of $\mathscr{S} \mathscr{L}\left(L\left(S_{6}^{*}\right)\right)$ in the following Figure using Theorems 2.1, 2.3 and 4.11. Here we use the abbreviation such as $\left(2,3,1^{\omega}\right)=L\left(S_{2}\right) \cap L\left(S_{3}\right) \cap L\left(S_{1}^{\omega}\right)$.

References

[1] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467-490.
[2] -, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc., 93 (1959), 74-80.
[3] T. Hosoi, On intermediate logics II, J. Fac. Sci., Univ. Tokyo, Sec. I, 16 (1969), 1-12.
[4] Y. Komori, The separation theorem of the \boldsymbol{K}_{0}-valued Eukasiewicz propositional logic, Rep. Fac. Sci., Shizuoka Univ., 12 (1978), 1-5.
[5] —, Super- Kukasiewicz implicational logics, Nagoya Math. J., 72 (1978), 127133.
[6] - Completeness of two theories on ordered abelian groups and embedding relations, Nagoya Math. J., 77 (1980), 33-39.
[7] P. S. Krzystek and S. Zachorowski, Lukasiewicz logics have not the interpolation property, Rep. Math. Logic, 9 (1977), 39-40.
[8] J. Łukasiewicz, 0 logice trójwartościowej, Ruch filozoficzny, 5 (1920), 169-171.
[9] J. Łukasiewicz and A. Tarski, Untersuchungen über den Aussagenkalkül, Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23 (1930), 30-50.
[10] R. McNaughton, A theorem about infinite-valued sentential logic, J.S.L., 16 (1951), 1-13.
[11] A. Rose, The degree of completeness of the \boldsymbol{K}_{0}-valued Łukasiewicz propositional calculus, J. London Math. Soc., 28 (1953), 176-184.
[12] A. Rose and J. B. Rosser, Fragments of many-valued statement calculi, Trans. Amer. Math. Soc., 87 (1958), 1-53.
[13] J. B. Rosser and A. R. Turquette, Axiom schemes for m-valued propositional calculi, J.S.L., 10 (1945), 61-82.
[14] -, Many-valued Logics, North-Holland, Amsterdam, 1958.
[15] A. Tarski, Logic, semantic, metamathematics, Oxford Univ. Press, 1956.
[16] M. Wajsberg, Aksjomatyzacja trójwartościowego rachunku zdań, Comptes rendue des séauces de la Société des Sciences et des Lettres de Varsovie, Classe III, 24 (1931), 259-262.
[17] ——, Beitrage zum Metaaussagenkalkül I, Monatshefte für Mathematik und Physik, 42 (1935), 221-242.

Department of Mathematics
Faculty of Science
Shizuoka University
Ohya Shizuoka
422, Japan

[^0]: Received December 17, 1979.

