M. von Renteln Nagoya Math. J. Vol. 84 (1981), 1-8

BOUNDARY BEHAVIOR OF POSITIVE HARMONIC FUNCTIONS IN BALLS OF Rⁿ

MICHAEL VON RENTELN

§1. Introduction

Let \mathbb{R}^n be the real *n*-dimensional euclidean space. Elements of \mathbb{R}^n are denoted by $x = (x_1, \dots, x_n)$, and ||x|| denotes the euclidean norm of x. The open ball B(x, r) with center x and radius r is defined by

$$B(x, r) := \{y : \|y - x\| < r\}$$

and the sphere S(x, r) is defined by

$$S(x, r) := \{y : ||y - x|| = r\}.$$

In particular B := B(0, 1) is the unit ball and S := S(0, 1) is the unit sphere.

Let u be a positive harmonic function in B. Then by the Herglotz Theorem ([2], p. 29) there exists a positive Borel measure μ on the unit sphere S such that

$$u(z) = \frac{1}{\sigma_n} \int_S P(z, x) d\mu(x) \qquad (x \in S)$$

holds for all $z \in B$. P(z, x) is the Poisson kernel for B defined by

$$P(z, x) := \frac{1 - \|z\|^2}{\|z - x\|^n}$$

and σ_n is the surface area of S.

Now the question arises of the relationship between the limiting behavior of u(z) as z approaches a boundary point and the measure μ on the boundary. To study this question we define the open polar cap J(a, r)having center $a \in S$ and radius r by

$$J(a, r) := \{x \in S : ||x - a|| < r\}$$

Received September 25, 1979.

and the symmetric derivative $(D\mu)(a)$ of the measure μ at a surface point a by

$$(D\mu)(a) := \lim_{r\to 0} \frac{\mu}{m} [J(a, r)]$$

where

$$\frac{\mu}{m}[J(a,r)] := \frac{\mu[J(a,r)]}{m[J(a,r)]}$$

and *m* is Lebesgue measure on the sphere. We note that $\gamma'_n r^{n-1} \leq m[J(a, r)] \leq \gamma_n r^{n-1}$ for $0 \leq r < 1$, where γ_n, γ'_n are constants depending only on the dimension *n*. The first main result regarding the limiting behavior of *u* is the following, which is due to Fatou (1906) in case n = 2 and to Bray and Evans (1927) for n = 3.

FATOU'S THEOREM. Let u be a positive harmonic function in the open unit ball of \mathbb{R}^n having measure μ in its Herglotz representation. If $(D\mu)(a)$ exists, then the radial limit $\lim_{r\to 1} u(ra)$ exists and is equal to $(D\mu)(a)$.

Remark. The Theorem of Fatou also holds in the case $(D\mu)(a) = +\infty$. We indicate a short proof of this fact. Let $x \in J(a, 1 - r)$. Using the triangle inequality we get

$$||ra - x|| \leq ||ra - a|| + ||a - x|| \leq 2(1 - r).$$

From this it follows that

$$u(ra) = \frac{1}{\sigma_n} \int_{S} \frac{1 - r^2}{\|ra - x\|^n} d\mu(x) \ge \frac{1}{\sigma_n} \int_{J(a, 1 - r)} \frac{1 - r}{2^n (1 - r)^n} d\mu(x)$$

= $\frac{1}{2^n \sigma_n} \frac{\mu[J(a, 1 - r)]}{(1 - r)^{n - 1}} \ge \frac{\gamma'_n}{2^n \sigma_n} \frac{\mu}{m} [J(a, 1 - r)] \to +\infty$

for $r \to 1$, since $(D\mu)(a) = +\infty$.

Fatou's Theorem also holds, if z approaches the point a in a nontangential manner (in a Stolz domain at a), see e.g. [2], p. 55. But if we replace Stolz domains by more general regions the situation changes dramatically. In this case the boundary behavior of u can be very erratic. To see this, let us introduce regions $R(a, \delta, \gamma)$ in B touching the unit sphere at a.

DEFINITION. For $a \in S$, $\delta > 0$, $\gamma \ge 1$ let

$$R(a, \delta, \gamma) := \{z \in B : 1 - ||z|| \geq \delta ||z' - a||^r\} \setminus \{a\},\$$

2

where z' is the radial projection of z on the sphere, i.e. z' = z/||z|| if $z \neq 0$ and we define z' = a if z = 0.

Evidently the radius $\{ra: 0 \leq r < 1\}$ lies in $R(a, \delta, \gamma)$ for any $\delta > 0$, $\gamma \geq 1$. If $\gamma = 1$ the region $R(a, \delta, \gamma)$ is essentially a Stolz domain at a, i.e. a cone with vertex at a and aperture depending on δ . As γ increases, $R(a, \delta, \gamma)$ touches the unit sphere with an increasing degree of tangency, e.g. for $\gamma = 2$ and n = 2, $R(a, \delta, \gamma)$ is essentially the interior of an oricycle at a. In two dimensions the regions $R(a, \delta, \gamma)$ were introduced by Cargo [1] to study tangential limits of Blaschke products.

§2. The distinction between angular and tangential boundary behavior

We will now make clear the difference between $\gamma = 1$ and $\gamma > 1$ regarding the boundary behavior of u. For simplicity we choose the dimension n = 2, the boundary point a = 1 and $\delta = 1$. Let $\gamma > 1$ be given. We construct a positive harmonic function u, such that $u(z_n) \to 0$ for every sequence $z_n \in R(a, \delta, 1), z_n \to a$, but for any number $c \ge 0$ (including c = $+\infty$) there exists a sequence $z_n \in R(a, \delta, \gamma), z_n \to a$ with $u(z_n) \to c$. In other words, the partial cluster sets of u on $R(a, \delta, 1)$ or $R(a, \delta, \gamma)$ respectively consist of only one point 0 or is the whole interval $[0, \infty]$ respectively. One should note that the simple example of a harmonic function h given in Helms ([2], p. 54) does not work here, since the partial cluster set of h on $R(a, \delta, \gamma)$ consists of exactly one point in all cases $1 < \gamma < 2$.

Construction of the measure. We choose the discrete singular measure

$$\mu = \sum_{k=1}^{\infty} s_k \delta_{(a_k)}$$

with $a_k = \exp(it_k)$, $t_k = 2^{-k}$, $s_k = t_k^{\beta}$, $1 < \beta < \gamma$. $\delta_{(a_k)}$ is the Dirac measure associated with the point a_k . Let u be the positive harmonic function with this measure μ in its Herglotz representation.

1. Case. Let $0 < r < \frac{1}{2}$, then there exists an index $n \in N$ with

$$t_{n+1} < r \leq t_n$$
 .

This implies

$$0 \leq \frac{\mu}{m}[J(a,r)] \leq \frac{1}{2t_{n+1}}\mu[J(a,t_n)].$$

A short calculation yields

MICHAEL VON RENTELN

$$\frac{1}{2t_{n+1}}\mu[J(a,t_n)]=\frac{1}{2t_{n+1}}\sum_{k=n}^{\infty}s_k<2t_n^{\beta-1}\to0\qquad(n\to\infty)\;.$$

Therefore $(D\mu)(a) = 0$ and it follows by Fatou's Theorem $u(z_n) \to 0$ for any sequence $z_n \in R(a, \delta, 1), z_n \to a$.

2. Case. We choose points $z_n = r_n e^{it_n}$ with $1 - r_n = t_n^{\gamma}$. Thus $z_n \in R(a, \delta, \gamma)$ for all $n \in N$. Let I_n be the interval around t_n defined by

$$I_n := \{e^{it} : |t - t_n| < t_n^r\}$$
.

For n sufficiently large, i.e. $n > (\gamma - 1)^{-1}$, the only point t_k belonging to I_n is the point t_n . Therefore $\mu(I_n) = s_n$. By standard estimations we obtain

$$egin{aligned} u(z_n) & \geq \int_S rac{1-r_n}{(1-r_n)^2+(t_n-t)^2} d\mu \geq \int_{I_n} rac{t_n^r}{t_n^{2r}+(t_n-t)^2} d\mu \ & \geq rac{1}{2t_n^r} \int_{I_n} d\mu = rac{1}{2} t_n^{eta^{-r}} o \infty \qquad (n o \infty) \;. \end{aligned}$$

Thus $u(z_n) \to \infty \quad (n \to \infty)$.

For $n \in N$ let $A_n := B(a, 1/n) \cap R(a, \delta, \gamma)$. Since u is continuous on A_n and A_n is a connected set, $u(A_n)$ is also connected. Since $u(A_n) \subset \mathbf{R}$ and the only connected subsets of \mathbf{R} are the intervals, $u(A_n)$ must be an interval. From the construction above we see that $u(A_n) = (0, \infty)$ for every $n \in N$. Therefore the partial cluster set of u on $R(a, \delta, \gamma)$ is $\bigcap_{n=1}^{\infty} \overline{u(A_n)} = [0, \infty]$.

§3. The problem

Let u be a positive harmonic function in B represented by the measure μ on S and let $a \in S$. We are interested in the behavior of u in the region $R(a, \delta, \gamma)$. Of course, this depends on the measure μ on S and especially on the behavior of μ in a neighbourhood of a. In view of the possibly erratic limiting behavior, our main problem is to give a condition on the measure μ such that u is bounded in $R(a, \delta, \gamma)$. An obvious necessary condition is that μ be continuous at the point a, i.e. $\mu(\{a\}) = 0$, and an obvious sufficient condition is that there exist r > 0 such that $\mu[J(a, r)] = 0$. But there are much weaker conditions, e.g. one can show that the condition

$$\int_s \frac{d\mu(x)}{\|a-x\|^{r(n-1)}} < \infty$$

is sufficient. Let us give an interpretation of this condition. Take the neighbourhood J(a, r) of the point a. Then the condition says that $\mu[J(a, r)]$ tends to zero with some speed as $r \to 0$. It is not hard to show that the condition above is not necessary. In order to get a necessary and sufficient condition we introduce the following maximal function.

DEFINITION. For a finite positive Borel measure μ on S and a region $R = R(a, \delta, \gamma)$, we define the real function $M = M(R, \mu, x)$ on S and the number $N = N(R, \mu)$ by

$$egin{aligned} M(R,\,\mu,\,x) &:= \sup\left\{rac{\mu}{m}[J(x,\,r)]\colon r > \delta\,\|\,x-a\|^{r}
ight\}\,,\ N(R,\,\mu) &:= \sup\left\{M(R,\,\mu,\,z')\colon z\in R(a,\,\delta,\,\gamma)
ight\}\,, \end{aligned}$$

where z' is the radial projection of z onto the sphere S (with the agreement z' = a if z = 0).

Remark. In the special case n = 2, $\gamma = 1$ and μ absolutely continuous, $M(R, \mu, x)$ is the Hardy-Littlewood maximal function.

Some auxiliary results will be given in the next section.

§4. Auxiliary results

LEMMA 1. There exist positive constants C_1 and C_2 , depending only on the dimension n, such that for all $z \in B$, $x \in S$ the Poisson kernel can be estimated as follows:

$$C_1rac{1-\|m{z}\|}{(1-\|m{z}\|)^n+\|m{x}-m{z}'\|^n} \leq P(m{z},m{x}) \leq C_2rac{1-\|m{z}\|}{(1-\|m{z}\|)^n+\|m{x}-m{z}'\|^n} \,,$$

where z' is the radial projection of z onto S. In case of z = 0 the inequality holds for any $z' \in S$. One can choose $C_1 = 1/n$ and $C_2 = 2 \cdot 3^n$.

Proof. We note that ||z - z'|| = 1 - ||z|| = dist(z, S) and

(1)
$$1 - ||z|| \leq ||x - z||$$
.

The triangle inequality implies

(2)
$$||x-z|| \leq ||x-z'|| + (1-||z||)$$

and

(3)
$$||x-z'|| \leq ||x-z|| + (1-||z||) \leq 2||x-z||.$$

Now (1), (2), (3) imply

$$\frac{1}{3}\{\|x-z'\|+(1-\|z\|)\} \le \|x-z\| \le \{\|x-z'\|+(1-\|z\|)\}.$$

After exponentiating and further estimating we obtain

$$(rac{1}{3})^n \{ \|x-z'\|^n + (1-\|z\|)^n \} \leq \|x-z\|^n \leq n \{ \|x-z'\|^n + (1-\|z\|)^n \} \ ,$$

and from this the result follows.

LEMMA 2. If u is a positive harmonic function in B with associated measure μ in the Herglotz representation, then

$$u(z) \leq CM(R, \mu, z')$$

holds for all $z \in R(a, \delta, \gamma)$. C is a constant depending only on the dimension n.

Remark. In the special case of a Stolz domain, i.e. $\gamma = 1$, and for μ absolutely continuous, the estimate in Lemma 2 is essentially known. See E. Stein ([3], p. 62, Theorem 1a) for an analogous *n*-dimensional statement.

Proof. Fix a point $z \in R(a, \delta, \gamma)$. We decompose the sphere S in a union of subsets S_k depending on z. Let $S_k = S_k(z)$ be defined as follows:

$$egin{aligned} &S_0 := \{x \in S \colon \|x - z'\| < 1 - \|z\|\} \ , \ &S_k \colon = \{x \in S \colon 2^{k-1}(1 - \|z\|) \leqq \|x - z'\| < 2^k(1 - \|z\|)\} \ , \end{aligned}$$

where $k = 1, 2, \cdots$. For $k = 0, 1, 2, \cdots$ let $I_k := \bigcup_{1=0}^{k} S_1$. We note that I_k is the open polar cap $J[z', 2^k(1 - ||z||)$ of radius $2^k(1 - ||z||)$. Let p be the smallest integer k with $2^k(1 - ||z||) \ge 1$. We put $I_p = S$. Therefore,

$$m(I_k) \leq \gamma_n 2^{k(n-1)} (1 - ||z||)^{n-1} \qquad (k < p) .$$

Using Lemmas 1 and 2 we can estimate as follows:

$$\begin{split} \int_{S} P(z,x) d\mu(x) &\leq C_{2} \int_{S} \frac{1 - \|z\|}{(1 - \|z\|)^{n} + \|x - z'\|^{n}} d\mu(x) \\ &\leq C_{2} \Big\{ \int_{S_{0}} \frac{1 - \|z\|}{(1 - \|z\|)^{n}} d\mu(x) + \sum_{k=1}^{P} \int_{S_{k}} \frac{1 - \|z\|}{\|x - z'\|^{n}} d\mu(x) \Big\} \\ &\leq C_{2} \Big\{ \frac{\mu(I_{0})}{(1 - \|z\|)^{n-1}} + \sum_{k=1}^{P} \frac{\mu(I_{k})}{2^{n(k-1)}(1 - \|z\|)^{n-1}} \Big\} \\ &\leq C_{2} \gamma_{n} \Big\{ \frac{\mu(I_{0})}{m(I_{0})} + \sum_{k=1}^{P} \frac{2^{n}\mu(I_{k})}{2^{k}m(I_{k})} \Big\} \\ &\leq C_{2} \gamma_{n} \Big(1 + 2^{n} \sum_{k=1}^{P} \frac{1}{2^{k}} \Big) \sup \Big\{ \frac{\mu}{m} [J(z', r)] \colon r > (1 - \|z\|) \Big\} \end{split}$$

$$\leq C_2 \gamma_n (1+2^n) M(R,\mu,z') \; .$$

This yields $u(z) \leq CM(R, \mu, z')$ with $C = C_2 \gamma_n (1 + 2^n) / \sigma_n$. Since the constant C is independent of the special point $z \in R(a, \delta, \gamma)$, the inequality holds for all $z \in R(a, \delta, \gamma)$.

§ 5. The main result

THEOREM. A positive harmonic function u in B with measure μ in its Herglotz representation is bounded in the region $R(a, \delta, \gamma)$ if and only if $N(R, \mu) < \infty$.

Proof. One direction follows from Lemma 1. To prove the converse, assume that u is bounded in $R(a, \delta, \gamma)$. Then there exists an absolute constant M, such that

(1)
$$\int_{S} P(z, x) d\mu(x) \leq M$$

holds for all $z \in R(a, \delta, \gamma)$. To prove $N(R, \mu) < \infty$ we have to show that there exists an absolute constant C such that

(2)
$$\frac{-\mu}{m}[J(z',r)] \leq C$$

holds for all $z \in R(a, \delta, \gamma)$ and all $r > \delta ||z' - a||^r$. It is clear that we may assume r < 1. Let such a pair z, r be given. We choose a special point $z_r = (1 - r)z'$. It follows that $||z_r|| = 1 - r < 1$, i.e. $z \in B$ and $1 - ||z_r|| = r$. Since $r > \delta ||z' - a||^r$ we have $z_r \in R(a, \delta, \gamma)$, i.e. $1 - ||z_r|| \ge \delta ||z' - a||^r$. Using our assumption (1) for the point z_r and Lemma 1 we obtain

$$\begin{split} M &\geq \int_{S} P(z_{r}, x) d\mu(x) \geq C_{1} \int_{S} \frac{1 - \|z_{r}\|}{(1 - \|z_{r}\|)^{n} + \|x - z_{r}'\|^{n}} d\mu(x) \\ &\geq C_{1} \int_{\|x - z_{r}'\| < r} \frac{r}{r^{n} + r^{n}} d\mu(x) = \frac{1}{2} \frac{C_{1}}{r^{n-1}} \mu[J(z_{r}', r)] \\ &\geq \frac{1}{2} C_{1} \gamma_{n}' \frac{\mu}{m} [J(z', r)] . \end{split}$$

Note that $z' = z'_r$. Thus we have

$$\frac{\mu}{m}[J(z',r)] \leq C$$

with the constant $C = 2M/C_1\gamma'_n$, which is independent of z and r. Therefore we have established (2).

MICHAEL VON RENTELN

References

- G. T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Can. J. Math., 14 (1962), 334-348.
- [2] L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969.
- [3] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.

Mathematisches Institut der Universität D-6300 Giessen, West-Germany

Current address: Mathematische Institut I der Universität D-7500 Karlsruhe, West-Germany