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ERGODIC PROPERTIES OF THE EQUILIBRIUM MEASURE

OF THE STEPPING STONE MODEL

IN POPULATION GENETICS

SEIICHI ITATSU

§ 1. Introduction

We shall present in this paper some ergodic properties of the stepping
stone model. The model has been proposed by M. Kimura [2], to describe
the evolution of a genetical population with mating and geographical
structures. It has been investigated and developed by M. Kimura and
G. H. Weiss [3], G. H. Weiss and M. Kimura [6], W. Fleming and C. -H.
Su [1], S. Sawyer [5], and others.

The model is assumed to have infinitely many colonies, which are
discretely distributed, and each of which has individuals of the same
number N. We also assume that migrations take place from colony to
colony, that genes are subject to mutation, and that random sampling of
individuals occurs within a colony. Here the random sampling means
that pairs of genes are sampled from the gene pool of sufficiently large
numbers.

We shall consider the spatial distributions of gene frequencies intro-
duced on the colony space and discuss the time evolution of the distri-
butions by using a Markov chain. S. Sawyer [5] investigated the time
evolution of the stepping stone model and obtained the convergence pro-
perties of the probability of that any two individuals randomly chosen
from different colonies are always genetically identical in the τι-th
generation. In this paper we are interested in the ergodic property of the
stepping stone model which is more finer and stronger than S. Sawyer's
results. In fact we shall show that under the assumption of the existence
of mutation the probability measure of the distribution of the frequencies
on the colony space converges to a limit measure, which is a unique
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equilibrium measure, after a large number of generations and also show
that the equilibrium measure has a mixing property.

Our formulation of the model is given as follows. Let X be a discrete
countable set whose elements are denoted by x9 y, z, ιυ9 and set S
= {0,1/2N, , 2N/2N}Σ. We construct a Markov process M = {S, {p(ή)
= {p«(n);x6X}; n> 0}9Pμ} with state space S and with probability law
Pμ given an initial measure μ on S. For simplicity this process will be
denoted simply by {p(ri); n > 0}.

Let u, v be nonnegative constants with u, v < 1 and put M = u + v.
Let A = (4λ , 2 6 i be a stochastic matrix, that is, A satisfies λxz > 0 and
γ^z χxz = 1. Define an operation from S to [0, l]x by

(***), = Σ 4/(1 - M) A + „) = (l _ M)Jp, + v
z

for each element p = {px}xex of S. The transition probability

QG>, A) = Pμ(p(n + 1) e Λ|p(n) = />)

is expressed in the form

Q(p, A) = Π

for the cylindrical set A = {p = {px}xeχ € S;px = kxf2N, xe Y} given by a
finite subset Y oΐ S; that is, given a state of p(τι), Q(p(n), A) is a direct
product of a binomial distributions with mean p(n)** and size 2iV. The
existence of a Markov chain with transition probability Q is obvious (see
D. Revuz [4]).

The Markov chain M given above is called the stepping stone model.
We say that a probability measure v on S is an equilibrium measure of
the model if vQ = \> holds. Then the following results hold.

THEOREM 1. Assume |1 — M\ < 1. Then there exists a unique equi-
librium measure μ of the Markov chain {p(ή); n > 0}, and we have for any
initial measure v on S

vQn —> μ as n —> oo .

Suppose X be the d-dimensional lattice Zd. For each x i n l a shift

Tx on S is defined by Tx{pz}zex = {pz+x}zex for {pz}zex in S. We say t h a t

A = (Zxz)x,zex is homogeneous, if ^ , depends only on x — z.

THEOREM 3. Assume |1 — M\ < 1 and ί/iaί Λ is homogeneous. Let μ
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be the unique equilibrium measure of the Markov chain {p(ή);n> 0}.
Then for any Borel subsets A, B of S the following relation holds.

lim μ(A Π T-'B) = μ(A)μ(B) .
|a>|-co

The genetical meaning of the model is well-illustrated in M. Kimura
[2] (also see W. Fleming and C. -H. Su [1]), however, for notational con-
venience, we shall quickly explain as follows. The set X is the collection
of colonies each of which contains exactly N individuals. Each colony
is to contain 2N genes. Regard px(ri) as the frequency of an allele A1

in the colony x at the n-th generation. The distribution of frequencies
changes from p(ή) to p(n + 1) in the following manner: First mutation
occurs from Aλ into another allele A2 and from A2 into At with mutation
rates u and υ9 respectively. Second, for any x and z the genes migrate
from z to x with migration rates λxz. Finally having reproduced infinitely
many offsprings, N individuals are sampled at random within each colony.

The second section is devoted to the proof of Theorem 1. In the
third section we prove Theorem 3 as well as some general mixing pro-
perty. In the fourth section we shall investigate the order of decay of
the third moments of the equilibrium measure and present an example
as an application.

The author wishes to thanks Professor Izumi Kubo for many helpful
suggestions and discussions.

§ 2. Convergence of the measure

In this section we shall show ergodic properties for the Markov chain
{p(n); n > 0}.

THEOREM 1. Assume |1 — M\ < 1. Then there exists a unique equi-
librium measure μ of the Markov chain {p(ή); n>0}, and we have for any
initial measure v on S

vQn -> μ as n -> oo .

Define a set of polynomials q in p, p e {0, l/2iV, , 2N/2N}, with
parameter k, 0 < k < 2N, as follows

) - 2Np 2Np-l 2Np-2 2Np - k + 1 k _ χ . . . m
)-^N~ 2N-1 2N-2 2N-k+l ' * " *' ' ™'

q(0;p) = l .
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Then we have the following lemma.

LEMMA 1. Any polynomial f(p), p e {0,1/2JV, , 2N/2N}, with non-
negative coefficients can be expressed as a linear combination of the q(k;p)
of the form

Note. In the above expression

c(k) — 0 for k>degree of f(p), and

£<<*)=/a).
Λ; = 0

Proof of Lemma 1. For simplicity we assume that / is a power of p,
say f(p) = pn. In the case n = 0, Lemma is trivial. For general n9 by
using the product formula

pq(k;p) = 2N

2~
 k q(k + l p) + ^

our assertion can be easily proved inductively.
We have an analogous lemma for the multiparameter case. Let I be

the set of all families a = {ax}xex of nonnegative integers with |α| = ΣxQχ
ax < oo.

LEMMA 2. Any power series f(p) = ΣL«SI a(a) X[xQχPT in p, p e S

= {0, l/2iV, , 2N/2N}*, with nonnegative coefficients can be expressed as

a linear combination of the functions UχeχQ(βχlPχ)> β e J, of the form

f(p) = Σ cOS) Π Q(βx; Ps) , c(β) > 0 .
βei χQ.x

Note. In the above expression, if a(β) = 0 for \β\ > |α|, c(β) = 0 for
|j9| > |α|, and

Σ / ( i 3 ) = / ( D (1 = (•••,1,1,1, •••)).

LEMMA 3. There exist constants {c(a9 β); a, β e 1} satisfying the identity
for the px:

Π {(1 - M)Λpx + υ}" = Σ c(a, β) Π q(β,;p*) ,
xex βei xex

where
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Σ W, β)\ < |1 - M|"" , Σ IΦr, J8)| ^ (|1 - M| + u)'«' ,
β:\β\ = \a\ βei

c(O,O) = l (0 = (•••, 0,0,0, •••))•

Remind the definition of the transition probability Q in § 1 to have

( 1 ) E Π *r p* ( n + 1 ) = £ Π {(P(n)**)xzx + (1 - (p(n)**)Γ

for any family of complex numbers {zx}xez such that zx = 1 for all but a

finite number of indices.

A correlation function rn(a) at τι-th generation of the Markov chain

{p(ή); n > 0} is defined by

rn(a) = E Π ζK<** Pχ(^)) for α e l .

Then by differentiating terms in (1) we get

( 2 ) rn+1(a) = E Π ((1 - M)Apx(ή) + υ)«* , ael.

Therefore, the correlation functions rn(a) (n > 0) satisfy the following

recursive equations.

(3) r n + 1 ( α ) = Σ c(a, β)rn(β) ael, n>0.
βei

( 4 ) rn(0) = l .

Proof of Theorem 1. We shall show that every solution of the re-

cursive equation (3) with (4) has a unique limit as n—> oo.

Put s = min {1 — |1 — Λf |/2(|1 - M | + v), 1/2} and define a norm of

a bounded function on I by

Denote by R the operator with kernel c(a, β):

Σ
βei

Then for any bounded functions / and g on I we have

\Rf(a) - Rg(a)\ < Σ {<**, β)\ \f(β) - g(β)\ + Σ \Φ, β)\\f(β) - g(β)\
\β\=\<*\ \β\<\<*\

< Σ |c(α,^)|S-""a||/:-^||+ Σ
| J3 | = | « I \β\<\<*\

-' ' ||/ - g\\
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< { | i _ M\\*\ + (|1 - M\ + v)^s^}s-^2\\f - g\\ .

This implies

\Rf(a)-Rg(a)\sW<ε\\f-g\\, for aφO,

where

ε = sup {|1 - M| | α | + (|1 - M\ + u)'«'s'*'}
|α|>0

< |1 - M\ + (|1 - M\ + v)s < 1 .

Now let K be a Banach space of functions on I with the norm || || and

let L be a closed subset with /(0) = 1 of K. Then R becomes a strictly

contraction mapping from L into itself.

Thus every solution of the recursive equation (3) with (4) converges

to a unique limit as n tends to infinity and hence for any initial

measure v, vQn converges to a unique limit. Q.E.D.

§ 3. Mixing properties of the equilibrium measure

Let μ be the unique equilibrium measure of the Markov chain {p(n);

n > 0}. We start with a function F of m + n variables on X as follows.

For any choice of a, βel

G(a, β) = EμU q(ax;px){U q(βx;px) - Eμ\\ q(βx;px)} ,
xex xex xex

where Eμ denotes.the expectation with respect to the equilibrium measure

μ. For any x = (xl9 , xm) set a(x)x = the number of x/s with xt = x9

and set a(x) = (a($)x; x e X). Then a(x) e I. Form

) = G(a(x), am, for xeXm,yeXn

Introduce the notation

sup* f(x) = sup f(x), x = (xu •..,

The following theorem is the main result of this section.

THEOREM 2. Assume |1 — M\ < 1 and Σ***« ^ 1> a n < ^ ̂  F be as

above. Then F admits a decomposition

0= Σ

such that
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sup Σ supJ\F t0, Sf>\< oo , sup Σ sup4\Fttfl, $)\< oo ,

i = 1, , m and 7 = 1, , n.

Before the proof of Theorem 2 we consider the case where X is the
d-dimensional lattice Zd. For each x in X a shift 2^ on S is defined by
Tx{p}zeχ={pz+X}zeχ in S. We say that A = (λxz)x^x is homogeneous, if
λxz depends only on x — z. With this choice of X the following theorem
is proved by using Theorem 2.

THEOREM 3. Assume |1 — M| < 1 and A is homogeneous. Let μ be
the unique equilibrium measure of the Markov chain {p(ή); n > 0}. Then
for any Borel subsets A, B of S the following relation holds.

limμ(A Π T-'B) = μ(A)μ(B).
|a?|-oo

Proof of Theorem 3. By Lemma 2, for any polynomials /, g of {px}xex

there exist constants c(a) (a e I), c'{β) (β e I) which are equal to zero for
all but a finite number of indices and satisfy

Σ
βei

These two equations imply

= Σ c(aW(β)Eμ Π qW,Px){ Π q(β,;p.) ~ Eμ \[ q(βx;px)}
a,βei xex xex xex

= Σ ΦY(β)G(a, β)
ββl

= V V VΣ/ ' ^ / '_ ̂  / '_ __ •ml nl

where a\ = Ux
Hence

Eμf({pzUχ){g(Tx{py}vex) - Eμg(Tx{py}yex)}

m,w=i ίGxm $Gxn ml nl

The last term tends to zero as \x\ —> oo because

lim F(%, j?) = 0 for any x (
lΐN->°o

(x, -,x))



44 SEIICHI ITATSU

by Theorem 2. This implies the assertion in Theorem 3, since polynomials
are dense in L^S, μ).

Now we shall show the proof of Theorem 2.
Define a function Φ of m + n variables by

,χm;yi,- ,yn) = Eμ fl {(i - M)Pxi + u}[π {(i - M)Py. + v

and define two norms ||/||M and ||/||2fi of a function / on Xm+n by

II/IIM = sup Σ sup' |/<*, y)l , 11/11,,, - sup Σ βupΊ/<*> j»| .

Put

βm ) n = 1/= /(£,:?); / admits a decomposition

/ = Σ fij such that \\ftJ\\lti < oo, | |^ | | 2^ < oo} .

By Lemma 3 there exist b(xί9 •••,#«; x^, , xir) (1 < h < i2 < < ir

< m) such t h a t

m

Π {(1 - M)pXi + v} = Σ 6te, ,xn; xit, , xίr)
i = l ( i i , " ,<r}C{l, •••, TO}

x Π Q("*(χiι, •• ,*<r);p») >

Σ | ( l j \ | - Af| + i;)- ,
Uu •• ,

These imply by the definition of Φ

Φ{Zu - ,zm;wί9 . . . , u J =

( 5 ) b(zu , £ m ; «<x, , zir)b(wu , wn; i ^ , ,

X F(ziι9 -',zir;wh, .••, ^ r / ) .

Now define an operator U on Xm+n by

i J / ^ , , xm; yu ,y n ) = ftfe, , xm; xίf , * w )

x 6 ( y i , - 9yn;yi, • • • , y n ) / ( ^ •• , ^ m ; y i , - - ^ y n )

Put
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Φι = Σ b(Zi9 - , Zn; Ziι9 , Zj
( Ό ) Ui, —,ir}*{l, ,ro} or tfi, ,./r'}*{l, ,n}

X 6(0;,, . . . , wn; wJι9 , wjr,)F(zil9 , *,r; α^, , z%,),

then

( 7 ) Φ=UF+ΦX.

Put

W = {(xu -• >xM;yι, "'9yn)eXm+n; {xu , **} Π { Λ , •• ,y l>} = $ ,

then by the formula (3)

J?\X\y , Xm>yu * ' '^y n) = = Z_ι 2 l ι ΛXϊZl ' ' ^χmzm^ynυi' ' * ^ynwn

ί g \ 2i, Zm VW",Vn

X Φ ( ^ , •••, « „ ; ! ! ; ! , , α;n) f o r (x 1 ? •••,xm;y 1, - - ^ y j e W

L e t T b e t h e o p e r a t o r w i t h k e r n e l λ x ι β ι - 4 m 2 m ^ l ί ϋ l -ΛVn1θΛ9 t h e n

where χ^ is 1 on W and 0 on WG. Therefore

( 9 ) XwF = XwTUXwF + XwT(UXwcF + Φt) .

We shall prove Fe Bm,n by induction of m + n. In order to do this,

it is sufficient to prove the following assertions i) — iii) under the as-

sumption that the assertion is true for Bn,tn,9 m! + rί < m + n. For any

bounded function /,

ii) ιιτ/ιιM<ιι/ιιM,
iii) II [7/||M < |1 - M Π / | | M , || E7/||lfi < |1 - M\^\\f\\2ij .

In fact, by these assertions together with (9), we have

(10) XwF = Σ (χwTUΠχwT)(UχwcF + Φd .

By i) UχwCF = XwcUF belongs to Bm,n and by the assumption Φx belongs

to J3m,n. On the other hand by ii), iii) the sum of the right side of (10)

belongs to JBm,n. Hence by i) F = χwF + XwoF belongs to J5m>n, which is

to be proved.

Proof of i). By definition of W we have
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Wc = {(*!, . . , xm; yί9 , yn); xt = y, for some i and ;'}

= U {(*i> '"9χn

m

9yw"9yn); χt = ys),

so

Σ X{i yj}

Therefore χ̂ σ belongs to Bm,n because X{Xi=yj} does so.

Proof of ii). Since Σ * λxa < 1,

Σ sup* |Γ/(iί, y)\ < Σ sup^ Σ Σ 41 2 1 iχm,Ai«t •*,

< Σ Σ ^,.4 Σ ^ . , Λ... SUP4 \f{ί,
xi zι & 2

< Σ Σ Λ,.,- Λ.
Hence

Similarly || Γ/||2fi < ||/||2fi can be shown.

Proof of iii). This is shown by inequality (5).

§ 4. Correlation functions of the equilibrium measure

In this section we shall discuss on the rate of decay of the third

moment of the equilibrium measure μ in the case where X is one-

dimensional lattice and A is homogeneous.

M. Kimura and G. H. Weiss [3] have given a representation of the

second moments of the equilibrium measure of the form

- (1 - M)2\H(eίθ)\

where

H\e ) =
 Σ J "XO

 e x 9 P — -jΓF >
xez M

and

c = Pd-P)

2N - 1 + -±- ' d^
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and they have showed the exponential decay of the moments.

Let μ be the unique equilibrium measure and consider a Markov chain

with the initial measure μ. Then the correlation function rn{a) is inde-

pendent of n and is expressed in the form

Hence by (2) the following equations hold

,Pi*Pi*Pϊ*,

-py = Eμ(p**yP**, xφy,

pypz = Eμp**p**pf*, xφyφzφx,

2Npx - 1

2N-1

E p 2Np* ~
μP* 2N 1 ~ 2

p
μP* 2N- 1 2N-2

Let px —px — p, then

- E (p**Y

~ λPx }

EμPxPyPz = -

(1 - Mf Σ λχu*vXwEμpupvpm ίov xφyφzφx,

-Eμpxpz

for x = y φ z ,

_ 3(2p - 1) „ ,. γ 2pXl - p)(2p - 1)
2N~ λPx) + (2Nf

for x = y = z .

Hence we can show a representation of the third moments p(x, y)=

Eμ(px - p)(Pv ~ P)(Po - P) by

ρ(x,y) = - T ^ Γ Γ G(e»\ e « ) β - " 1 - " " < » , d 9 i f o r x , y e Z
(2N)2 Jo Jo

with the continuous function G(tu t2) on |ί,| = \t2\ = 1 which is defined as

follows: Put

\, Q = {1 - (1 -

c

P(t) =
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2 " 1)}

and

Q(t) = ^ > J i?(^,«)[- (2p -

Let V(t) be a solution of the equation

V(t) = - P(t) J i?(ί, O V(OΛ + Q(t).

Here in the above integrals dt means the normalized uniform measure
on the one-dimensional torus {teC; \t\ — 1}. Now G is expressed in the
form

G(tu td = R(tu <θ[- %L^

)} + cj .

From this representation we can investigate the rate of decay of the
third moments of the equilibrium measure.

Suppose

r o =

then the Laurent series

converges on the anullus ro<|i|<ro~
1. Moreover the inner and the outer

radii of the Laurent expansion of HiήHit'1) are r0 and ΓQ1, respectively.
Let r and rx be the inner radii of the Laurent expansions of F(t) =

1/{1 - (1 - MfH{t)H{t-χ)} and R(t, 1) = 1/{1 - (1 - MyH(t)H(t~% respec-
tively. Then obviously we have in general

r0 < r < r < 1 ,

and if in particular 2]Γ=_oo ̂ o^ό"|αJ| = o0, then we have

r0 < r < r < 1 .
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Since the Laurent expansion of H(t) has nonnegative coefficients, we

can see

\H(t)\ < H(\t\) for r o < | ί | < r o - 1 .

Therefore, by the maximum principle of subharmonic functions, we have

sup IHiwJtlifiJJtlWΓ't;1)] = max max
^|ial<S"~1 or =1 or = s- i

for r o <s<l. This implies

y < 1

for rKl^il^l, l^ l^Krf 1 . Hence R(tu t2) is analytic on {(tl9t2)eC2; rt <

| ί i | ^ l , l ^ | ί , | < r r 1 } . Since

R(tu t2) = R(t2, U) = R(tr%\ 4) ,

R(tu t2) is analytic on {(tl9 QeC9; rx < μj, |ί2|, |M2| < r;1}. Then we can

obtain the following theorem.

THEOREM 4. Assume that |1 — M\ < 1 and £/&a£ Λ[ is homogeneous

and satisfies r0 < 1. ΪTiβn r0 < r, < r < 1 Λo/d, and /or any su s with rx

< Sj < 1, r < s < 1, ZΛere exists a nonnegative constant σ(su s) depending

only on st and s such that

\p(x, y)\ < σ(su Φ a - y s? for x > y > 0 ,

\p(x, y)\ < σ(su s)s*sl for x > 0 > y .

Furthermore if Σ?--«, λx0 ro-
|ar| = oo, r o < r < r < l hold.

Proof. Since Λfe, ί2)F(^) and R(tu t2)V(U) are analytic on {(tu t2) e C2;

r<\ti\<r~\ r!<|i 2 | , Id^Krf1}, by using Cauchy's integral theorem we can

see that for any sl9 s with rx < sx < 1, r < s < 1, S! < s there exists

a <7i(si, s) such that

Similarly we can see the existence of σ2(su s), σz(su s), (74(sj) such that

lί m> ί z ){- W=i
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1

and

Thus there exists a σ(su s) such that for x > y > 0

< σ(sί9

In the case x > 0 > y the assertion can be obtained in a similar way.
We now give an example of the stepping stone model, We consider

the case of the nearest neighbor migration described in the form

(1 — rrii — m2 for x = 0,

rrii for x = 1 ,

m2 for x = — 1,

0 otherwise,

where mu m2 > 0, mx + m2< 1. Then

H(f) = 1 — Mi — Ϊ1Π2 + lΐlit + Ί7l2t~
l .

Therefore, if we put m = m1 + m29 b = 2mxm29 we get

H{t)H{f) = 1 - 2τn(l - m) - 26 + m(l - τn)(* + Γ1) + 6/2(< + Γ1)2.
Since r and rx are the maximum zeroes in [0,1] of 1 — (1 —
and 1 — (1 — MfHtyHit'1), respectively, we obtain

= ±Wr-d+i-Vr-d-iy,

Γi = 4(vVi - d + 1 - Vn - <* - I) 1 ,

where
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and
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