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ERGODIC PROPERTIES OF THE EQUILIBRIUM MEASURE
OF THE STEPPING STONE MODEL
IN POPULATION GENETICS

SEIICHI ITATSU

§1. Introduction

We shall present in this paper some ergodic properties of the stepping
stone model. The model has been proposed by M. Kimura [2], to describe
the evolution of a genetical population with mating and geographical
structures. It has been investigated and developed by M. Kimura and
G. H. Weiss [3], G. H. Weiss and M. Kimura [6], W. Fleming and C. -H.
Su [1], S. Sawyer [5], and others.

The model is assumed to have infinitely many colonies, which are
discretely distributed, and each of which has individuals of the same
number N. We also assume that migrations take place from colony to
colony, that genes are subject to mutation, and that random sampling of
individuals occurs within a colony. Here the random sampling means
that pairs of genes are sampled from the gene pool of sufficiently large
numbers.

We shall consider the spatial distributions of gene frequencies intro-
duced on the colony space and discuss the time evolution of the distri-
butions by using a Markov chain. S. Sawyer [5] investigated the time
evolution of the stepping stone model and obtained the convergence pro-
perties of the probability of that any two individuals randomly chosen
from different colonies are always genetically identical in the n-th
generation. In this paper we are interested in the ergodic property of the
stepping stone model which is more finer and stronger than S. Sawyer’s
results. In fact we shall show that under the assumption of the existence
of mutation the probability measure of the distribution of the frequencies
on the colony space converges to a limit measure, which is a unique
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equilibrium measure, after a large number of generations and also show
that the equilibrium measure has a mixing property.

Our formulation of the model is given as follows. Let X be a discrete
countable set whose elements are denoted by x, y, 2, w, --- and set S
= {0, 1/2N, - --,2N/2N}*. We construct a Markov process M = {S, {p(n)
= {p,(n); xe X}; n> 0}, P} with state space S and with probability law
P, given an initial measure ¢ on S. For simplicity this process will be
denoted simply by {p(n); n > 0}.

Let w, v be nonnegative constants with u,v <1 and put M = u + v.
Let 4 = (4,,);,.ex be a stochastic matrix, that is, 4 satisfies 1,, > 0 and
>4, = 1. Define an operation from S to [0, 1]* by

(p**)z = Zz: sz((]- - M)pz + U) = (1 - M)Apz +v

for each element p = {p,},cx of S. The transition probability
Q(p, A) = P(p(n + 1) € Alp(n) = p)

is expressed in the form

QA = I (AV) .3+ — ooy
for the cylindrical set A = {p = {P.}sex € S; 0. = k;/2N, x € Y} given by a
finite subset Y of S; that is, given a state of p(n), Q(p(n), A) is a direct
product of a binomial distributions with mean p(n)¥* and size 2N. The
existence of a Markov chain with transition probability @ is obvious (see
D. Revuz [4]).

The Markov chain M given above is called the stepping stone model.
We say that a probability measure v on S is an equilibrium measure of
the model if vQ = v holds. Then the following results hold.

THEOREM 1. Assume |1 — M| < 1. Then there exists a unique equi-
librium measure p of the Markov chain {p(n); n > 0}, and we have for any
initial measure v on S

vQ" —>p as n—oo.

Suppose X be the d-dimensional lattice Z¢. For each x in X a shift
T, on S is defined by T.{p.}.cx = {P..z}sex for {p.},cx in S. We say that
A = (A,)y..cx 18 homogeneous, if 1,, depends only on x — 2.

THEOREM 3. Assume |1 — M| <1 and that A is homogeneous. Let p
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be the unique equilibrium measure of the Markov chain {p(n); n > 0}.
Then for any Borel subsets A, B of S the following relation holds.
lim (A N T;'B) = w(A)(B) .

[FART

The genetical meaning of the model is well-illustrated in M. Kimura
[2] (also see W. Fleming and C. -H. Su [1]), however, for notational con-
venience, we shall quickly explain as follows. The set X is the collection
of colonies each of which contains exactly N individuals. Each colony
is to contain 2N genes. Regard p,(n) as the frequency of an allele A,
in the colony x at the n-th generation. The distribution of frequencies
changes from p(n) to p(n + 1) in the following manner: First mutation
occurs from A, into another allele A, and from A, into A, with mutation
rates u and v, respectively. Second, for any x and z the genes migrate
from z to x with migration rates 2,,. Finally having reproduced infinitely
many offsprings, N individuals are sampled at random within each colony.

The second section is devoted to the proof of Theorem 1. In the
third section we prove Theorem 3 as well as some general mixing pro-
perty. In the fourth section we shall investigate the order of decay of
the third moments of the equilibrium measure and present an example
as an application.

The author wishes to thanks Professor Izumi Kubo for many helpful
suggestions and discussions.

§2. Convergence of the measure
In this section we shall show ergodic properties for the Markov chain
{p(n); n > 0}.

THEOREM 1. Assume |1 — M| < 1. Then there exists a unique equi-
librium measure p. of the Markov chain {p(n); n>0}, and we have for any
initial measure v on S

vQ" —>p as n— oo,

Define a set of polynomials ¢ in p, pe€{0, 1/2N, ---, 2N/2N}, with
parameter k, 0 < k < 2N, as follows
’ 2N 2N-—-1 2N -2 2N —k+ 1"’
q0;p)=1.

E=1,---,2N,
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Then we have the following lemma.

LemMA 1. Any polynomial f(p), pe{0,1/2N, --.,2N/2N}, with non-
negative coefficients can be expressed as a linear combination of the q(k; p)
of the form

f(0) = 3 ckatk;p), o)) 0.

Note. In the above expression

c(k) = 0 for k>degree of f(p), and
> () = f(1).

Proof of Lemma 1. For simplicity we assume that f is a power of p,
say f(p) = p". In the case n = 0, Lemma is trivial. For general n, by
using the product formula

2N -k

k;p) =
pq(k; p) i

k
k4 1; ——_q(k;
gk + L;p) + SN q(k; p)

our assertion can be easily proved inductively.

We have an analogous lemma for the multiparameter case. Let I be
the set of all families @ = {a,},.y of nonnegative integers with |a| = 3 ,cx
o, < 0.

Lemma 2. Any power series f(p) = D .er @@) [[sexp? in p, pe S
={0, 1/2N, - - -, 2N/2N}*, with nonnegative coefficients can be expressed as

a linear combination of the functions [[.cx 9(B.;P.), B€ I, of the form
f(p) = gl C(ﬂ)xgxq(ﬁx;px) s, P =0.

Note. In the above expression, if a(8) = 0 for || > |a|, ¢(8) = 0 for
|81 > |al, and

peZIC(ﬁ)Zf(l) (1=("'11’1,1,°"))'

LemMA 3. There exist constants {c(a, B); «, B € I} satisfying the identity
for the p,:

xgx{(l — M)Ap, + v} = /;I (e, ﬁ)mgxq(ﬁz;px) , ael,

where
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oo, p) =0 if [a|<|Bl,
lda I <[1— M|, élc(“, A< (11— M|+ v,
C(0,0)=1 (0=(""O,0’0s"'))'

a

2.
B:18I=1

Remind the definition of the transition probability @ in §1 to have
(1) E ] z77=+0 = E [] {(p(n)**),2, + (1 — (p(n)**)}**
reEX

zeX

for any family of complex numbers {z,},.x such that z, = 1 for all but a
finite number of indices.

A correlation function r,(«) at n-th generation of the Markov chain
{p(n); n > 0} is defined by

r.(a) = E ] q(e,; p,(n)) for ael.
reX
Then by differentiating terms in (1) we get
(2) Tpale) = E,]e—lx«l — M)Ap,(n) + v)*, ael.

Therefore, the correlation functions r,(a)(n > 0) satisfy the following
recursive equations.

(3) Tau(@) = 2, cla, Hr.(p) ael, n=>0.

(4) r.0)=1.

Proof of Theorem 1. We shall show that every solution of the re-
cursive equation (8) with (4) has a unique limit as n — oo.

Put s =min{l — |1 — M|/2(]1 — M| + v), 1/2} and define a norm of
a bounded function on I by

Ifl = sup s'* | f(@)] .
Denote by R the operator with kernel c(, p):
Rf@) = 2, ca, P f(B) -
Then for any bounded functions f and g on I we have
|Bft) — Bgl| < 2 |l DIIFE) — 8@ + 2. |cte, B)IIF(B) — £(B)]
< 2 lda Pl CIf — gl + 3 lele Als™**IIf — gl

181=1al

<1 — M|“s7'*||f — gl + (1 — M| + v)'*!s~'"|If — g||
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<{1— M+ (1 — M|+ v)s*}s!**||f — g]| .
This implies

|Rf(@) — Rg(@)|s"" <elf — gll, for a0,

where
e =sup {1l — M + (1 — M| + v)*Is"}
<N1-M+(1-M+uvs<1.
Now let K be a Banach space of functions on I with the norm ||| and

let L be a closed subset with f(0) = 1 of K. Then R becomes a strictly
contraction mapping from L into itself.

Thus every solution of the recursive equation (3) with (4) converges
to a unique limit as n tends to infinity and hence for any initial
measure v, vQ" converges to a unique limit. Q.E.D.

§3. Mixing properties of the equilibrium measure

Let p# be the unique equilibrium measure of the Markov chain {p(n);
n > 0}. We start with a function F of m + n variables on X as follows.
For any choice of «, pel

G((X, .B) = prl;[XQ(aa:; px)i!!f q(‘Bz; pz) - Epmle_[X q(ﬁz; pz)} )

where E, denotes.the expectation with respect to the equilibrium measure
p. For any % = (x,, - -+, x,) set a(X), = the number of x,’s with x, = x,
and set a(®) = (@(®),; x€ X). Then a(X)ecl. Form

F#, y) = Gl(%), (), for xe X™, ye X" .
Introduce the notation

sgp‘ f®@ = sup f@, Z=(@,:--,%,).

XLy oy TBE=19Ti+1y°°*sTn
The following theorem is the main result of this section.

THEOREM 2. Assume |1 — M| <1 and },,4,,<1, and let F be as
above. Then F admits a decomposition

F(k)! 5’) = Z FH(-‘;E’ 5;)

1<i<m, 1<j<n

such that
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Sgp UZ Sl;-pleU(-%9 5’)' < o, S?p Z sgptIFH i" y)l<°° ’
i Zi

i=1---mandj=1, - ---,n.

Before the proof of Theorem 2 we consider the case where X is the
d-dimensional lattice Z°. For each x in X a shift T, on S is defined by
TAplicx={P:ss}scx iIn S. We say that 4 = (2,,).,cx is homogeneous, if
2., depends only on x — 2. With this choice of X the following theorem
is proved by using Theorem 2.

THEOREM 3. Assume |1 — M| <1 and A is homogeneous. Let u be
the unique equilibrium measure of the Markov chain {p(n); n > 0}. Then
for any Borel subsets A, B of S the following relation holds.

lim /(A N T3'B) = (A)(B) .

|#]—oo

Proof of Theorem 3. By Lemma 2, for any polynomials f, g of {p,}.cx
there exist constants c(a) (@ € I), ¢/(B) (€ I) which are equal to zero for
all but a finite number of indices and satisfy

f({p:c}xex) = éc(a)xgxq(ax;pz) ’
g({pz}xex) = ﬂeZI c/(ﬁ)xgxq(ﬁx;px) .

These two equations imply

E/Af({pz}x ex){g({pz}ze X) - Epg({px}mex)}
= ;e IC(oc)C’ (B)E, zTGIXq(a, 3 D) xgxq(ﬂz 3 Da) — Eﬂzgx q(B; )}

- ”Ze A B)G(e, p)

= 5 5 3 8 %)!c(a(x’» () F&3) ,

min=12Exm gex» m!

where a! = [[,cxa;!.
Hence

Epf({pz}zeX){g(Tz{pv}vex) - Eyg(Tx{py}vex)}
-3 =X -"‘—ff?—‘f‘—g)—!c<a@>) ) FE 5+ (=, -+, 1) .

m,n=1 2€Xm JcXn

The last term tends to zero as |x| — oo because

lim F(%,5) =0 for any ¥e X™
F1=o
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by Theorem 2. This implies the assertion in Theorem 3, since polynomials
are dense in L!(S, p).

Now we shall show the proof of Theorem 2.

Define a function @ of m + n variables by

OG-+, xni -+, 3) = B, [ {0 = M., + o[ [] (@ = 20p,, + 0}
— B, [1 {0 - Mp,, + o],
and define two norms |/f]l,,; and ||f|,,, of a function f on X™** by
Il = sup 2, sup’ If@&MN, Ik, = sup %l S;lpflf(o'c’, .

Put
B,.,= {f = f(%,y); [ admits a decomposition

f=_ 33 fusuch that Ifylhe < oo, [filhy < o} .

1<ig<m, 1<j<n

By Lemma 3 there exist b(x,, - -, Xn; %y, -+, %) A< <L < - L,
< m) such that

fa—0m 0=,
X H q(a.z(xiu R} xtf);px) ’
z€X
Z )Ib(xl’"',xm;xip"',xir)lgql_Ml_'_v)m ’

{21y ==+ tr}C{l, ooy

lb(xh sy Xy Xy ""xm)l Sll - Mlm.

b(xb L xiv Tty xif)
1y %y ir)c(l, ceey m)

These imply by the definition of @
@(Z,, sy By Wy ey, wn) =

(5) b(zb cc 9 lmy gy 7t '7zif)b(wl, ey Wes Wyyy - -y wj.,r)
X F(ztv . "zir; wju Tty wjf’) .

Now define an operator U on X™*" by

Uf(xh ey X Yo ""yn) = b(xl’ sy X X ""xm)
X b(yl’ sy Yus Yo ",yn)f(xl, ey X Y o "yn) .

Put
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0, = 2. b(21, <+ 5 Zmi 2iyp v 05 21,)
{1y 5 lr} C{lyeee,m)y {1y 00y fre} S {1,000 ,n})
(6) fitseensir}# AL eeesm) OF (G150 0sdr} £ 11,00 5m)

X OWyy « -y Wos Wy~ vy Wy, )E (2, -0 0, 205 Wy + -0, W),
then
(7) ¢ =UF+9,.
Put

W= {(x,, ey Xmy Y v ',yn)eX"LM; {xl, tT ’axm}n{yh ° ;yn} = ¢} »
then by the formula (3)

F(xh ey Xy Yy 0t ‘,yn) = Z Z 131“' : 'zxmﬂmz?llwl. " 'zvnwn
( 8) Z1y0°%m Yly*o*y Un
X Oz, vy 2 Wy, -, W) for (X, -, Xy ¥, -, ) €W
Let T be the operator with kernel 4., - 2., 4001 * * Aynwny then
xwl = e T(UF + 0)) ,
where y» is 1 on W and 0 on W° Therefore

(9) wwF = ywTUywF + 15 T(UyyoF + @) .

We shall prove Fe B, , by induction of m + n. In order to do this,
it is sufficient to prove the following assertions i)~iii) under the as-
sumption that the assertion is true for B,,,, m’ + n’ < m + n. For any
bounded function f,

1) XcheBm,n ’
i) T e <Wlle s DT by <Ny
i) NUfll: <11 =M™ " Wflles  NUflby <11 — M™"|fll,; -

In fact, by these assertions together with (9), we have
(10) twF = 5, Gw TUY Gw TY (UsoF + B, .

By i) UywoF = ywcUF belongs to B, , and by the assumption @, belongs
to B, ,. On the other hand by ii), iii) the sum of the right side of (10)
belongs to B, ,. Hence by i) F = yF + ywoF belongs to B, ,, which is
to be proved. ‘

Proof of i). By definition of W we have
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W= {(xy , Xn; Y1 -+ *, ¥u); % =y, for some i and j}
= in{(xl, e X3 Yo s Ya)s X =Y},

SO
xwo < Zj: Xiwi=ys} -
2y

Therefore yc belongs to B, , because y,.,,; does so.

Proof of ii). Since >, 4,, < 1,

Z S';lpi ITf(-%’ 7)| S Z S‘;pi ; };( '2.17121' * 'zszmZhwl' ‘ 'ZVn’wnlf('%, lT))l
&g &

< %: %: Zﬂtzi Zm: mel' ° '21/1110’1 S]élpi |f(§’ w)l

< 5 Ay Ay S B, D] < [l

Hence

1 TA 1l < flhse -
Similarly || Tf,,; < ||fl,; can be shown.

Proof of iii). This is shown by inequality (5).

8§4. Correlation functions of the equilibrium measure

In this section we shall discuss on the rate of decay of the third
moment of the equilibrium measure g in the case where X is one-
dimensional lattice and 4 is homogeneous. ‘

M. Kimura and G. H. Weiss [3] have given a representation of the
second moments of the equilibrium measure of the form

E o _ — ) — LJ‘M e—ua dﬂ Z,
WP =P (P =P =—— | = 4= I HET xe
where
10) __ 170 _ U
He)= S hoe™, p=-1,
and

o B(1 — )
2N — 1+

1 I " do ’
2z Jo 1— (1 — My |H@E")}
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and they have showed the exponential decay of the moments.

Let ¢ be the unique equilibrium measure and consider a Markov chain
with the initial measure g Then the correlation function r,(«) is inde-
pendent of n and is expressed in the form

r(e) = Eﬂzlc_jx q(a.; p.) -

Hence by (2) the following equations hold

E,p.p,p. = E,p¥*p¥*pf*, x+y+z+x,

2Np, - 1
Eppzmp;%_lpy - E#(p;k*)zp;:*’ X + y,
Epp,; 2Np,, —1 2sz — 2 — Ey(pi‘*)3 .

2N—-1 2N -2

Let p, = p, — P, then

'(1 - M)s Z Rzuzyvzszyﬁuﬁvﬁw for X # Yy F2Fx s
1 ) . . 2—1p .-
1—— )1 —-M Za:ulxvxsz,a u oy Pw ‘Ep z Mz
( av )~ W' 2, PuboPo = —op— HebaP
for x =y + z,
Epﬁzﬁyﬁz E Y (1 1 1 2 (1 M)s Yy
- W)( - —2"‘1\_7‘) - u;w sufrzvfrzw ppupopw
3@ g sy, 2HL—DE@F—D
L forx=y==z.

Hence we can show a representation of the third moments p(x, y)=
E#(pz - p)(p'y - ﬁ)(po - ﬁ) by

2z 2
o(x, y) = (2—11\7)210 _[0 G(et, e''s)e~0=-t0avdg df, for x, ye Z

with the continuous function G(¢, t,) on || = || = 1 which is defined as
follows: Put

R, &) = {1 — (1 — MyH( ) HE)H®E))

_ C
Fo = 1— (1 — MyEHQHG ’

P(t) = 2{2N —1+ IR(t’, t)df}" ,
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2 - = —
~ GN—DEN =g 6 — De(0, 0 — 5 — P)2P — 1}

+ 6N@N — 1)(2p — )],

C, =

and
- P® - ,
Qv = L [ R, 0 @ — DEFQ) + FE) + Fet)} + @N — Deldt .
Let V() be a solution of the equation

V() = — P(t)IR(t, V@)t + Q) .

Here in the above integrals d¢ means the normalized uniform measure
on the one-dimensional torus {te C;|t| = 1}. Now G is expressed in the
form

G(t, ) = Rt 1) — 2EZ2(F@®) + Ft) + Fet)}

_ 1
2N —1

{Vt) + V&) + V6D + el -

From this representation we can investigate the rate of decay of the
third moments of the equilibrium measure.
Suppose

ry= lima4s <1,

x| =00

then the Laurent series

xeZ

converges on the anullus r,<|¢t|<r;’. Moreover the inner and the outer
radii of the Laurent expansion of H(f)H(t™') are r, and ry?, respectively.

Let r and r, be the inner radii of the Laurent expansions of F(f) =
1/{1 — A — MY*H(@®H(t"")} and R(t,1) = 1/{1 — (1 — M)*H@)H({ ")}, respec-
tively. Then obviously we have in general

ro S r S r < 1 ’
and if in particular 3> _. 2,75 = oo, then we have

rn<<r<r<l1.
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Since the Laurent expansion of H(f) has nonnegative coefficients, we
can see

|H@)| < H(t) for r, <[¢f <r5t.
Therefore, by the maximum principle of subharmonic functions, we have

sup |H@E)HE)H( )| = m:;xx n‘lax | H(¢)H(t)H(t 't )
s<lt1l <1 t1l=8 |tz
1< (tgl<s—1 or =1 or =s—1

= max {H(s)H(s™"), 1} ,
for r,<s<1. This implies
|1 — MYy H@E)HG)HE )| < 1
for r<|t,|<1, 1<|L|<r'. Hence R(t, 1) is analytic on {({,5)eC*;r <
8] < 1,1 <t < ri'}. Since
R(, t,) = R, t) = R(t7G, L)

R(t, t,) is analytic on {(, )€ C’; ry <|t, |t], |t:t:] < ri'}. Then we can
obtain the following theorem.

THEOREM 4. Assume that |1 — M| <1 and that A is homogeneous
and satisfies 1, < 1. Then r,<r, <r <1 hold, and for any s,, s with r,
< 8§ <1, r<s<1, there exists a nonnegative constant o(s,, 8) depending
only on s, and s such that

lo(x, )| < o(s;, 8)s° st for x>y >0,
lo(x, ¥)| < o(s, s)s7s? for x>0>y.

Furthermore if 35 _o A0 15'* = o0, r, < r<r<1 hold.

Proof. Since R(t, t,)F(t) and R(t, t,) V(¢,) are analytic on {(¢, ¢,) € C?;
r<||<r, rn<l|t), |tt|<ril}, by using Cauchy’s integral theorem we can
see that for any s, s with r,<s, <1, r<s<1, s <s there exists
a o(s;, s) such that

|| Bt - ZZ=2Fe) — o V|t dtds| < os, )57t

Similarly we can see the ‘existence of ay(s,, 8), 0y(sy, 8), a,(s;) such that

U R, tz){ 2P — 1 F() — V(tz)} trot; ”dt,dtzl < ay(ss, s)s7st
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— 25 - 1 _ 1 -1g-1 —T g
[ Rt o= =L Feay — L Vet vdnas|
< ay(sy, 8)s° st

and

} f R(t, t)eti*tvdt,dt,

< ay(s)sist .
Thus there exists a d(s;, s) such that for x >y >0
lo(x, y)| < %a(sl, s){sis? + s7st¥ + s" Vst + s¥st} < a(s,, s)s™ st .

In the case x > 0 > y the assertion can be obtained in a similar way.
We now give an example of the stepping stone model, We consider
the case of the nearest neighbor migration described in the form

1—m, —m, for x =0,

; m, forx=1,
7 I m, for x=—1,
0 otherwise ,

where m,, m, >0, m, + m, < 1. Then
H(t)= 1—'ml—m2+ m1t+m2t_l.
Therefore, if we put m = m, + m,, b = 2m;m,, we get

HHOHEtH) =1—-2m(1—m) —2b+ m@AL —m)(@E + t%) + b/2(¢t + )
Since r and r, are the maximum zeroes in [0, 1] of 1 — (1 — M)*H@®)H({™)
and 1 — (1 — M)*H(t)H(t™"), respectively, we obtain

r=%@@—d+1—¢r—d—na

n=%wh—d+1—¢h—d—na

where

2b

r=J@+ 0+ (2 - 1)




and
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=@+ 1)3+%((1——1“M3?_1)’

n>r.
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