Y. Kitaoka Nagoya Math. J. Vol. 82 (1981), 99-111

TENSOR PRODUCTS OF POSITIVE DEFINITE QUADRATIC FORMS, V

YOSHIYUKI KITAOKA

Our aim is to prove

THEOREM. Let L be a positive lattice of E-type such that $[L: \tilde{L}] < \infty$ and \tilde{L} is indecomposable.

(i) If $L \cong L_1 \otimes L_2$ for positive lattices L_1, L_2 , then L_1, L_2 are of E-type and $[L_1: \tilde{L}_1], [L_2: \tilde{L}_2] < \infty$ and \tilde{L}_1, \tilde{L}_2 are indecomposable.

(ii) If L is indecomposable with respect to tensor product, then for each indecomposable positive lattice X we have

(1) $L \otimes X \cong L \otimes Y$ implies $X \cong Y$ for a positive lattice Y,

(2) If $X = \bigotimes^{t} L \otimes X'$ where X' is not divided by L, then $O(L \otimes X)$ is generated by O(L), O(X') and interchanges of L's, and

(3) $L \otimes X$ is indecomposable.

We must explain notations and terminology. By a positive lattice we mean a lattice on positive definite quadratic space over the rational number field Q. Let L be a positive lattice and put

$$m(L) = \min_{\substack{x \in L \\ x \neq 0}} Q(x)$$

where Q() is a quadratic form associated with L. Set $\mathfrak{M}(L) = \{x \in L \mid Q(x) = m(L)\}$. If $\mathfrak{M}(L \otimes M) = \mathfrak{M}(L) \otimes \mathfrak{M}(M)$ $(=\{x \otimes y \mid x \in \mathfrak{M}(L), y \in \mathfrak{M}(M)\})$ for any positive lattice M, then L is called of E-type. \tilde{L} is a submodule of L spanned by $\mathfrak{M}(L)$. If $L \cong L_1 \otimes L_2$ implies rank L_1 or rank $L_2 = 1$, then we say that L is indecomposable with respect to tensor product. O(L) denotes the orthogonal group of L. If a positive lattice X is isometric to $L \otimes K$ for a positive lattice K, then X is, by definition, divided by L. These notations and terminology will be used through this paper.

In § 1 we prove a theorem about weighted graphs. In § 2 we improve Received August 13, 1979.

a result in [4] and in §3 the above theorem is proved. In §4 examples of a lattice L as in the theorem are given.

§1.

In this section we define a weighted graph and prove a fundamental theorem in this paper.

DEFINITION. Let A be a finite set and [,] be a mapping from $A \times A$ into $\{t \mid 0 \le t \le 1\}$ such that

(i) [a, a'] = 1 if and only if a = a', and

(ii) [a, a'] = [a', a] for $a, a' \in A$.

Then we call (A, [,]) or simply A a weighted graph.

Let A be a weighted graph. A is called connected unless there exist subsets A_1, A_2 of A such that $A = A_1 \cup A_2$, $A_1 \cap A_2 = \phi$ and $[a_1, a_2] = 0$ for any $a_i \in A_i$ (i = 1, 2). If $A = \bigcup A_i$ (disjoint) satisfies

(i) A_i is connected, and

(ii) [a, b] = 0 if $a \in A_i$, $b \in A_j$ and $i \neq j$,

then each A_i is called a connected component of A. Let A, B be weighted graphs. For $(a, b), (a', b') \in A \times B$ we define [(a, b), (a', b')] by $[a, a'] \cdot [b, b']$. Then $A \times B$ becomes a weighted graph. If there exists a bijection σ from A on B such that $[a, a'] = [\sigma(a), \sigma(a')]$ $(a, a' \in A)$, then we say that A, B are isometric and write $\sigma: A \cong B$.

LEMMA 1. Let A, B, C be weighted graphs and assume that $A = \{e_i\}_{i=1}^n$ and $\sigma: A \times B \cong A \times C$. Take any element $b \in B$ and fix it. Define $f_i \in A$, $c_i \in C$, $g_{ij} \in A$, $b_{ij} \in B$ by

$$\sigma(e_i, b) = (f_i, c_i)$$
 and $\sigma(g_{ij}, b_{ij}) = (f_i, c_j)$.

Then we have $[e_i, e_j] = 0$ if $b_{ij} \neq b$.

Proof. Set
$$a_{ij} = [e_i, e_j]$$
. Then $a_{ij} = a_{ji}$ and
(0) $a_{ij} = [f_i, f_j][c_i, c_j]$.

Fix any integer $k \ (1 \le k \le n)$ and define $e'_s \in A$, $b_s \in B$ by $\sigma(e'_s, b_s) = (f_k, c_s)$ $(1 \le s \le n)$. Put $S = \{s \mid b_s \ne b\}$. If $S \ne \phi$, then we take integers u, m such that

$$a_{um} = \max_{i: f_i = f_k \atop s \in S} a_{is} \quad ext{and} \quad f_u = f_k \;, \;\; m \in S \;.$$

If $a_{um} = 0$ can be shown, then the lemma will be proved. Assume $a_{um} \neq 0$ and put $b_m = b'$, $e'_m = e_p$. Then we have

$$\sigma(e_p, b') = (f_k, c_m) , \qquad b' \neq b$$

Since $\sigma(e_i, b) = (f_i, c_i)$, we have

(1)
$$a_{ip}[b, b'] = [f_i, f_k][c_i, c_m],$$

(2) $a_{ip}[b, b'] = [c_i, c_m]$ if $f_i = f_k$,

(3)
$$a_{mp}[b, b'] = [f_m, f_k].$$

Hence $f_u = f_k$ implies

$$egin{aligned} a_{um} &= [f_u, f_m][c_u, c_m] & ext{by (0)} \ &= [f_k, f_m][c_u, c_m] \ &= a_{mp}a_{up}[b, b']^2 & ext{by (2), (3)} \,. \end{aligned}$$

(4)
$$a_{um} = a_{mp}a_{up}[b, b']^2$$

Suppose $f_p = f_k$. Then $\sigma(e_p, b') = (f_k, c_m) = (f_p, c_m)$ implies $a_{um} \ge a_{pm}$. Hence we have

$$egin{aligned} 0 < a_{um} &= a_{mp}a_{up}[b,\,b']^2 & ext{ by (4)} \ &\leq a_{um}a_{up}[b,\,b']^2 \ &\leq a_{um} \;. \end{aligned}$$

This yields $a_{up}[b, b']^2 = 1$ and [b, b'] = 1. This contradicts $b \neq b'$. Therefore we get $f_p \neq f_k$. Suppose $p \in S$; then $a_{up} \leq a_{um}$ holds by definition. Hence we have

$$egin{aligned} 0 < a_{um} &= a_{mp} a_{up} [b, \, b']^2 & ext{by (4)} \ &\leq a_{mp} a_{um} [b, \, b']^2 \ &\leq a_{um} \;. \end{aligned}$$

This implies [b, b'] = 1 and it contradicts $b \neq b'$. Hence we get $p \in S$ and by definition of S there exists an integer t such that $\sigma(e_t, b) = (f_k, c_p)$. On the other hand $\sigma(e_t, b) = (f_t, c_t)$ holds. Hence we get $f_k = f_t$, $c_p = c_t$ and by (2)

$$a_{tp}[b,b'] = [c_t,c_m],$$

and by (1)

(5) $[b, b'] = [f_p, f_k][c_p, c_m].$

From these follows

$$egin{aligned} & [c_p, c_m] = [c_\iota, c_m] \ & = a_{\iota p} [b, b'] \ & = a_{\iota p} [f_p, f_k] [c_p, c_m] \;. \end{aligned}$$

If $[c_p, c_m] \neq 0$, then $a_{tp}[f_p, f_k] = 1$ and this contradicts $f_p \neq f_k$. Hence we have $[c_p, c_m] = 0$ and [b, b'] = 0 by (5) and $[f_m, f_k] = 0$ by (3), and $a_{um} = [f_u, f_m][c_u, c_m] = [f_k, f_m][c_u, c_m] = 0$. This contradicts our assumption $a_{um} \neq 0$. Thus we have proved $a_{um} = 0$. Q.E.D.

THEOREM 1. Let A, B, C be weighted graphs and assume that $A = \{e_i\}_{i=1}^n$ is connected and $\sigma: A \times B \cong A \times C$. Take any element $b \in B$ and put $\sigma(e_i, b) = (f_i, c_i)$. Then we have

$$A \cong \{\sigma(e_i, b) \mid 1 \leq i \leq n\} = \{f_i \mid 1 \leq i \leq n\} \times \{c_i \mid 1 \leq i \leq n\}.$$

Proof. Put $C_i = \{c_k | k \text{ satisfies } f_k = f_i\}$ for $1 \le i \le n$, and denote by \tilde{C}_i a connected component of C_i which contains c_i . Suppose $[e_i, e_j] =$ $[f_i, f_j][c_i, c_j] \neq 0$. We will show $\tilde{C}_i = \tilde{C}_j$. Since $[e_i, e_j] \neq 0$, Lemma 1 implies that there exists an element $e_i \in A$ such that $\sigma(e_i, b) = (f_i, c_j)$. Hence we have $f_i = f_i$, $c_i = c_j$ since $\sigma(e_i, b) = (f_i, c_i)$. By definition of C_i we have $c_j = c_i \in C_i$ and hence $c_j \in \tilde{C}_i$ since $c_i \in \tilde{C}_i$ and $[c_j, c_i] \neq 0$. Thus we have proved $\tilde{C}_i \cap \tilde{C}_j \neq \phi$. Take any element $x \in \tilde{C}_i \cap \tilde{C}_j$; then there exists u such that $x = c_u$ and $f_u = f_i$ since $x \in C_i$. Take any $y \in \tilde{C}_j$ such that [y, x] $\neq 0$. Then y can be written $y = c_k$ with $f_k = f_j$. $[e_u, e_k] = [f_u, f_k][c_u, c_k] =$ $[f_i, f_j][x, y] \neq 0$ yields that $\sigma(e_s, b) = (f_u, c_k)$ for some s. From $f_s = f_u = f_i$, $[c_s, c_u] = [c_k, c_u] \neq 0$ follows that $y = c_k = c_s \in \tilde{C}_i$ since $c_u = x \in \tilde{C}_i$, $c_s \in C_i$ and \tilde{C}_i is a connected component of C_i . Thus we have shown that if $[x,y] \neq 0$ for $x \in \tilde{C}_i \cap \tilde{C}_j$, $y \in \tilde{C}_j$, then $y \in \tilde{C}_i$ holds. This implies $\tilde{C}_j \subset \tilde{C}_i$ and similarly $\tilde{C}_i \subset \tilde{C}_j$ and hence $\tilde{C}_i = \tilde{C}_j$ if $[e_i, e_j] \neq 0$. Since A is connected we get $\tilde{C}_1 = \cdots = \tilde{C}_n$. Take any $s, t \ (1 \le s, t \le n)$. From $c_t \in \tilde{C}_t$ $\tilde{C}_s \subset C_s$ follows that there exists *i* such that $c_i = c_i$ and $f_i = f_s$. Hence $(f_s, c_t) = (f_i, c_i) = \sigma(e_i, b)$ holds. Q.E.D.

§2.

Let L be an indecomposable positive lattice which satisfies the following condition (A').

(A') For any given positive lattices M, N and for any isometry σ from $L \otimes M$ on $L \otimes N$ which satisfies that $\sigma(L \otimes m) = L \otimes n$ ($m \in M$, $n \in N$) implies m = 0, n = 0, there exists a finite subset $\{v_1, \dots, v_m\}$ of L (depending on M, N, σ) such that

(1) each v_i is primitive in L and a submodule spanned by $\{v_1, \dots, v_m\}$ of L is of finite index in L,

(2) putting $M_{v_i} = \{m \in M | \sigma(L \otimes m) \subset v_i \otimes N\},\$

 $N_{v_i} = \{n \in N | \sigma^{-1}(L \otimes n) \subset v_i \otimes M\}$,

we have rank $M_{v_i} = \operatorname{rank} N_{v_i} = \operatorname{rank} M/\operatorname{rank} L$, and

(3) $\sigma(\mathbf{Q}(v_i \otimes M_{v_i})) = \mathbf{Q}(v_i \otimes N_{v_i}).$

Through this section the above L is fixed.

LEMMA 2. Let $M, N, \sigma, v_i, M_{v_i}, N_{v_i}$ be those as in the condition (A'). Then M, N are isometric and they are divided by L, and $\sigma(L \otimes M_{v_i}) = v_i \otimes N$.

Proof. By definition M_{v_i}, N_{v_i} are direct summands (as modules) of M, N respectively, and $\sigma(L \otimes M_{v_i}) \subset v_i \otimes N$, $\sigma^{-1}(L \otimes N_{v_i}) \subset v_i \otimes M$ and rank $\sigma(L \otimes M_{v_i}) = \operatorname{rank}(v_i \otimes N)$, rank $\sigma^{-1}(L \otimes N_{v_i}) = \operatorname{rank}(v_i \otimes M)$ imply $\sigma(L \otimes M_{v_i}) = v_i \otimes N$ and $\sigma^{-1}(L \otimes N_{v_i}) = v_i \otimes M$ since they are direct summands in $L \otimes N, L \otimes M$ respectively. This implies that M, N are divided by L. From (3) follows $\sigma(v_i \otimes M_{v_i}) = v_i \otimes N_{v_i}$ since they are direct summands of $L \otimes N$. Hence we can define an isometry $\mu_i \colon M_{v_i} \cong N_{v_i}$ by $\sigma(v_i \otimes m) = v_i \otimes \mu_i(m)$ for $m \in M_{v_i}$. For $m_i \in M_i, m_j \in M_j$ we show $B(m_i, m_j) = B(\mu_i(m_i), \mu_j(m_j))$ where B stands for bilinear forms associated with quadratic modules.

$$\begin{split} B(v_i, v_j) B(m_i, m_j) &= B(v_i \otimes m_i, v_j \otimes m_j) \\ &= B(\sigma(v_i \otimes m_i), \sigma(v_j \otimes m_j)) \\ &= B(v_i \otimes \mu_i(m_i), v_j \otimes \mu_j(m_j)) \\ &= B(v_i, v_j) B(\mu_i(m_i), \mu_j(m_j)) \;. \end{split}$$

Hence we have $B(m_i, m_j) = B(\mu_i(m_i), \mu_j(m_j))$ if $B(v_i, v_j) \neq 0$. Suppose $B(v_i, v_j) = 0$, then we have

$$egin{aligned} B(L\otimes M_{v_i},L\otimes M_{v_j})&=B(\sigma(L\otimes M_{v_i}),\sigma(L\otimes M_{v_j}))\ &=B(v_i\otimes N,v_j\otimes N)\ &=0\ ,\ &B(L\otimes \mu_i(M_{v_i}),L\otimes \mu_j(M_{v_j}))&=B(L\otimes N_{v_i},L\otimes N_{v_j})\ &=B(\sigma^{-1}(L\otimes N_{v_i}),\sigma^{-1}(L\otimes N_{v_j}))\ &=B(v_i\otimes M,v_j\otimes M)\ &=0\ . \end{aligned}$$

Hence $B(M_{v_i}, M_{v_j}) = B(\mu_i(M_{v_i}), \mu_j(M_{v_j})) = 0$ follows. Thus we have proved $B(m_i, m_j) = B(\mu_i(m_i), \mu_j(m_j))$ for $m_i \in M_{v_i}, m_j \in M_{v_j}$. By (1) we can choose

YOSHIYUKI KITAOKA

a subset of $\{v_1, \dots, v_m\}$, say $\{v_1, \dots, v_n\}$, so that it is a basis of QL. Then $\sigma(L \otimes M_{v_i}) = v_i \otimes N$ implies that $\sum_{i=1}^n M_{v_i}$ is a direct sum and $[M: \sum_{i=1}^n M_{v_i}] < \infty$. Hence a linear mapping μ from QM to QN defined by $\mu(\sum_{i=1}^n m_i) = \sum_{i=1}^n \mu_i(m_i)$ $(m_i \in M_{v_i})$ becomes an isometry from QM on QN. We have only to show $\mu(M) = N$. Take a basis $\{e_i\}$ of L and put

$$e_i = \sum_{j=1}^n a_{ij} v_j$$
, $v_i = \sum_{j=1}^n b_{ij} e_j$ $(a_{ij}, b_{ij} \in Q)$.

 $\sum_{k=1}^{n} b_{ik} a_{kj} = \delta_{ij}$ (Kronecker's delta) is obvious. Take any element $m = \sum_{i=1}^{n} m_i (m_i \in \mathbf{Q}M_{v_i})$ of M and put $\sigma(v_j \otimes m_i) = v_i \otimes n_{ji} (n_{ji} \in \mathbf{Q}N)$; then $n_{ii} = \mu(m_i)$ follows and

$$\sigma(e_k \otimes m) = \sigma\left(\sum_{i, j} a_{kj} v_j \otimes m_i\right)$$
$$= \sum_{i, j} a_{kj} v_i \otimes n_{ji}$$
$$= \sum_t e_t \otimes \left(\sum_{i, j} a_{kj} b_{il} n_{ji}\right).$$

Since $\sigma(e_k \otimes m) \in L \otimes N$, we get $\sum_{i,j} a_{kj} b_{ik} n_{ji} \in N$. Summing up with respect to k, we have

$$\mu(m) = \sum \mu(m_i) = \sum n_{ii} \in N$$
.

Thus $\mu(M) \subset N$ is proved. Since discriminants of M, N are equal, we have $\mu(M) = N$. Q.E.D.

LEMMA 3. Let K, X, Y be positive lattices and assume that K is indecomposable and $\sigma: K \otimes X \cong K \otimes Y$. Then there exist submodules M_0 , M of X and N_0 , N of Y such that

(i) $M_{\scriptscriptstyle 0}, M, N_{\scriptscriptstyle 0}, N$ are direct summands of X, Y respectively and $[X: M_{\scriptscriptstyle 0} \perp M], \ [Y: N_{\scriptscriptstyle 0} \perp N] < \infty, \ and$

$$\sigma(K\otimes M_{\scriptscriptstyle 0})=K\otimes N_{\scriptscriptstyle 0}\,,\qquad \sigma(K\otimes M)=K\otimes N\,,$$

- (ii) if $\sigma(K \otimes m) = K \otimes n \ (m \in M, n \in N)$, then m = 0 and n = 0, and
- (iii) there exist orthogonal decompositions

$$M_{\scriptscriptstyle 0} = \mathop{ert}\limits_{i=1}^t M_{\scriptscriptstyle 0,i} \ , \qquad N_{\scriptscriptstyle 0} = \mathop{ert}\limits_{i=1}^t N_{\scriptscriptstyle 0,i}$$

such that $\sigma(K \otimes M_{0,i}) = K \otimes N_{0,i}$ $(1 \le i \le t)$ and

$$\sigma|_{K\otimes M_{0,i}}=\alpha_i\otimes\beta_i$$

where $\alpha_i \in O(K)$, $\beta_i \colon M_{0,i} \cong N_{0,i}$.

Proof. Suppose that m_1, \dots, m_r are linearly independent elements of X so that there exist elements $n_i \in Y$ such that $\sigma(K \otimes m_i) = K \otimes n_i$. We may assume that r is maximal. Then we put $M = \mathbb{Z}[m_1, \dots, m_r]^{\perp}$, $N = \mathbb{Z}[n_1, \dots, n_r]^{\perp}$ and $M_0 = M^{\perp}$, $N_0 = N^{\perp}$. Clearly (i), (ii) are satisfied. (iii) follows from Lemma 1 in § 3 in [2]. Q.E.D.

LEMMA 4. $L \otimes L$ is indecomposable and $O(L \otimes L)$ is generated by O(L)and an interchange of L's.

Proof. Take an isometry σ of $L \otimes L$. Suppose that there exist $x, y \in L$, $x \neq 0$ such that $\sigma(L \otimes x) = L \otimes y$. Supposing K = X = Y = L in Lemma 3, a submodule of L corresponding to M of X in Lemma 3 is $\{0\}$ since its rank ($< \operatorname{rank} L$) is divided by rank L by Lemma 2. Hence we have $\sigma \in O(L) \otimes O(L)$ by Lemma 3. Suppose that there are no such elements x, y in L. Then, by Lemma 2, there is an element $v \in L$ such that

$$\sigma(L\otimes L_v)=v\otimes L,$$

where $L_v = \{x \in L \mid \sigma(L \otimes x) \subset v \otimes L\}$. Since rank $L_v = 1$, there is an element u such that $L_v = \mathbb{Z}[u]$. Then $\mu\sigma(L \otimes u) = L \otimes v$ holds where $\mu \in O(L \otimes L)$ is defined by $\mu(x \otimes y) = y \otimes x(x, y \in L)$. Hence $\mu\sigma \in O(L) \otimes O(L)$ follows as above. The indecomposability of $L \otimes L$ is proved quite similarly as in the proof of Lemma 4 in [4]. Q.E.D.

LEMMA 5. $\otimes^m L$ is indecomposable provided that the orthogonal group $O(\otimes^m L)$ is generated by O(L) and interchanges of L's and that $\otimes^{m-1} L$ is indecomposable.

Proof. The proof is identical with that of Lemma 5 in [4].

THEOREM 2. Let X be an indecomposable positive lattice. Then we have

(i) for any positive lattice $Y, L \otimes X \cong L \otimes Y$ implies $X \cong Y$,

(ii) if $X = \bigotimes^t L \otimes X'$ where X' is a positive lattice which is not divided by L, then $O(L \otimes X)$ is generated by O(L), O(X') and interchanges of L's,

(iii) $L \otimes X$ is indecomposable.

Proof. We induct on rank X. In case of rank X = 1 our assertion is obvious. Suppose rank X = k + 1. Let Y be a positive lattice and $\sigma: L \otimes X \cong L \otimes Y$. Let M_0, M (resp. N_0, N) be submodules of X (resp. Y)

YOSHIYUKI KITAOKA

as in Lemma 3 for K = L. If M = X (resp. $M_0 = X$), then $X \cong Y$ follows from Lemma 2 (resp. Lemma 3). Hence we may assume $M_0 \neq \{0\}, M \neq \{0\}$. Lemma 2 implies $M \cong N$. Hence we may assume $M = N = \bot K_i$ where K_i is indecomposable and suppose $K_i \cong \bigotimes^{r_i} L \otimes K'_i$ where K'_i is not divided by L. Since rank $K_i \leq \operatorname{rank} M \leq k$, the inductive assumption implies that $L \otimes K_i$ is indecomposable and $O(L \otimes K_i)$ is generated by O(L), $O(K'_i)$ and interchanges of L's, identifying K_i and $\bigotimes^{r_i} L \otimes K'_i$. Hence, noting $L \otimes M \cong L \otimes N \cong \bot L \otimes K_i$, as in 2 in [4] for any basis $\{u_1, \dots, u_n\}$ of L we have

$$egin{aligned} &\sigma(L\otimes M_{u_i})=u_i\otimes N\,, &\sigma^{-1}(L\otimes N_{u_i})=u_i\otimes M\,,\ &\sigma(u_i\otimes M_{u_i})=u_i\otimes N_{u_i}\,, \end{aligned}$$

where

$$egin{aligned} M_{u_i} &= \{m \in M | \, \sigma(L \otimes m) \subset \, u_i \otimes N \} \; , \ N_{u_i} &= \{n \in N | \, \sigma^{-1}(L \otimes n) \subset \, u_i \otimes M \} \; . \end{aligned}$$

Now $X = M_0 \perp M$, $Y = N_0 \perp N$ are proved quite similarly as in the proof of Theorem in §1 in [3]. This is a contradiction since X is indecomposable. Thus (i) is proved. Let X be a positive lattice as in (ii). Assume that there exists an isometry $\sigma \in O(L \otimes X)$ which is not contained in a subgroup of $O(L \otimes X)$ generated by O(L), O(X') and interchanges of L's. Suppose that there exist $x, y \in X$ such that $\sigma(L \otimes x) = L \otimes y$. We define M_0, M, N_0, N as in Lemma 3 for K = L, Y = X. Then $X = M_0 \perp M$ holds as above. Since $M_0 \neq \{0\}$ and X is indecomposable, we have $X = M_0$ and Lemma 3 implies $\sigma \in O(L) \otimes O(X)$. If X is divided by L, that is, $t \ge 1$, then $O(X) = O(L \otimes (\otimes^{t-1} L \otimes X'))$ is generated by O(L) and O(X') and interchanges of L's since $\otimes^{t-1} L \otimes X'$ is indecomposable and rank $\otimes^{t-1} L$ $\otimes X' \leq k$. Thus σ is contained in a subgroup generated by O(L), O(X')and interchanges of L's in $O(L \otimes X)$. This is a contradiction. Therefore there exist no such elements x, y. Hence from Lemma 2 follows that $t \ge 1$ and there exists non-zero $v \in L$ such that $\sigma(L \otimes X_v) = v \otimes X$ where $X_v =$ $\{x \in X | \sigma(L \otimes x) \subset v \otimes X\}$ by the assumption on L. Define $\mu_2 \in O(L \otimes X)$ by $\mu_2(x\otimes y\otimes z)=y\otimes x\otimes z$ $(x,y\in L,z\in \otimes^{\iota-1}L\otimes X');$ then $\mu_2\sigma(L\otimes X_v)=$ $L \otimes v \otimes \otimes^{t-1} L \otimes X'$. If there exist $x \in X_v$, $y \in v \otimes \otimes^{t-1} L \otimes X'$ such that $x \neq 0$ and $\mu_2 \sigma(L \otimes x) = L \otimes y$, then $\mu_2 \sigma \in O(L \otimes X)$ must be contained in a subgroup generated by O(L), O(X') and interchanges of L's as above. This is also a contradiction. Repeating this operation we get, as in 1.6 in [4],

 $\mu_{t+1}\cdots\mu_{2}\sigma(L\otimes X_{v,\cdots,v'\cdots'})=L\otimes v\otimes\cdots\otimes v'\cdots'\otimes X',$

where $\mu_j \in O(L \otimes X)$ is defined by

$$\mu_j(x_1 \otimes \cdots \otimes x_j \otimes \cdots \otimes x_{t+1} \otimes y) \\ = x_j \otimes \cdots \otimes x_1 \otimes \cdots \otimes x_{t+1} \otimes y \qquad (x_i \in L, y \in X').$$

If there exist $x \in X_{v,\dots,v'}$, $y \in v \otimes \cdots \otimes X'$ such that $x \neq 0$ and $\mu_{t+1} \cdots \mu_2 \sigma(L \otimes x) = L \otimes y$, then $\mu_{t+1} \cdots \mu_2 \sigma$ is contained in a subgroup generated by O(L), O(X') and interchanges of L's. This is a contradiction. Hence Lemma 2 yields that $v \otimes \cdots \otimes v' \otimes X'$ is divided by L. This contradicts the assumption on X'. Thus the proof of (ii) is completed. Let X be a positive lattice as in (ii). Then $O(L \otimes X) = O(\otimes^{t+1} L) \otimes O(X')$ has been proved as above. To complete the proof of (iii) we have only to show that $\otimes^{t+1} L$ is indecomposable by virtue of Lemma 3 in [4]. Since X is indecomposable, $\otimes^t L$ is also indecomposable. By virtue of (ii) $O(\otimes^{t+1} L)$ is generated by O(L) and interchanges by L's. Hence Lemma 5 implies that $\otimes^{t+1} L$ is indecomposable. Q.E.D.

Remark. By (i), (iii) and Theorem in 105:1 in [5] $L \otimes X \cong L \otimes Y$ implies $X \cong Y$ for any (not necessarily indecomposable) positive lattices X, Y.

§ 3.

Through this section we fix any positive lattice L of E-type such that $[L: \tilde{L}] < \infty$ and \tilde{L} is indecomposable.

LEMMA 6. Let M, N be positive lattices and assume $\sigma: L \otimes M \cong L \otimes N$. Then for each $m \in \mathfrak{M}(M)$ we have $\sigma(L \otimes m) = F \otimes G$, where F, G are submodules of L, N respectively and m(F) = m(L), and m(G) = m(N).

Proof. Let X be a positive lattice. For $x, y \in \mathfrak{M}(X)/\pm$, we put [x, y] = |B(x, y)|/m(X). Then $\mathfrak{M}(X)/\pm$ becomes a weighted graph and \tilde{X} is indecomposable if and only if $\mathfrak{M}(X)/\pm$ is connected. Put $A = \mathfrak{M}(L)/\pm$, $B = \mathfrak{M}(M)/\pm$, $C = \mathfrak{M}(N)/\pm$. Since L is of E-type, we have $\mathfrak{M}(L \otimes M) = \mathfrak{M}(L) \otimes \mathfrak{M}(M)$, $\mathfrak{M}(L \otimes N) = \mathfrak{M}(L) \otimes \mathfrak{M}(N)$ and σ induces an isometry from $A \times B$ on $A \times C$. By Theorem 1 there exist subsets $F' \subset A, G' \subset C$ such that $\sigma(A, m) = (F', G')$. Denoting by F_0, G_0 submodules of L, N spanned by $F' \subset \mathfrak{M}(L)/\pm$, $G' \subset \mathfrak{M}(N)/\pm$ respectively, we have $\sigma(\tilde{L} \otimes m) = F_0 \otimes G_0$ and $m(F_0) = m(L), m(G_0) = m(N)$. Put $F = \mathbf{Q}F_0 \cap L$, $G = \mathbf{Q}G_0 \cap N$; then

YOSHIYUKI KITAOKA

 $[F: F_0], [G: G_0] < \infty, m(F) = m(L), m(G) = m(N) \text{ and } \sigma(L \otimes m), F \otimes G \text{ are direct summands of } L \otimes N.$ Hence $\sigma(L \otimes m) = F \otimes G$ follows. Q.E.D.

THEOREM 3. If $L \cong L_1 \otimes L_2$ for positive lattices L_1, L_2 , then L_1, L_2 are of *E*-type, $[L_1: \tilde{L}_1]$, $[L_2: \tilde{L}_2] < \infty$ and \tilde{L}_1, \tilde{L}_2 are indecomposable.

Proof. Define $\sigma \in O(L_1 \otimes L_2 \otimes L_2)$ by $\sigma(x \otimes y \otimes z) = x \otimes z \otimes y$ $(x \in L_1, y, z \in L_2)$. For each $m \in \mathfrak{M}(L_2) \sigma((L_1 \otimes L_2) \otimes m) = (L_1 \otimes m) \otimes L_2$ holds. Applying Lemma 6 in case of $M = N = L_2$, we have $m(L_1 \otimes m) = m(L)$. From Proposition 2 in [1] follows that $L_1 \otimes m$ is of *E*-type. Hence L_1 is of *E*-type. Similarly L_2 is of *E*-type. $\mathfrak{M}(L) = \mathfrak{M}(L_1) \otimes \mathfrak{M}(L_2)$ implies $[L_1: \tilde{L}_1], [L_2: \tilde{L}_2] < \infty$ and \tilde{L}_1, \tilde{L}_2 are indecomposable since $[L: \tilde{L}] < \infty$ and \tilde{L} is indecomposable. Q.E.D.

THEOREM 4. Assume that L is indecomposable with respect to tensor product. Then L satisfies the condition (A') in § 2.

Proof. Suppose that L is decomposable and $L = L_1 \perp L_2$ $(L_1, L_2 \neq 0)$. Each $x \in \mathfrak{M}(L)$ is contained in L_1 or L_2 . If $\mathfrak{M}(L) \cap L_1 = \phi$, then $\mathfrak{M}(L) \subset$ $L_{\scriptscriptstyle 2}$ and hence $\widetilde{L} \subset L_{\scriptscriptstyle 2}$ and rank $L \leq {
m rank}\, L_{\scriptscriptstyle 2}.$ This is a contradiction. Hence we have $\mathfrak{M}(L) \cap L_i \neq \phi$ (i = 1, 2) and then L spanned by $\mathfrak{M}(L)$ is decomposable. This contradicts our assumption on L. Thus L is inde-Set $\mathfrak{M}(L) = \{\pm v_1, \dots, \pm v_m\}$. We show that the condition composable. (A') is satisfied for the subset $\{v_1, \dots, v_m\}$ of L by induction with respect to rank M. The first condition of (A') follows from our assumption on L. Let M, N be positive lattices and suppose that for $\sigma: L \otimes M \cong L \otimes N$, $\sigma(L \otimes m) = L \otimes n \ (m \in M, n \in N)$ implies m = 0, n = 0. Since L is of Etype, we have $\sigma(\mathfrak{M}(L)\otimes\mathfrak{M}(M))=\mathfrak{M}(L)\otimes\mathfrak{M}(N)$ and hence $\sigma(\tilde{L}\otimes\tilde{M})=\tilde{L}$ $\otimes \tilde{N}$. Put $\tilde{M}^{\perp} = M', \tilde{N}^{\perp} = N', M'' = M'^{\perp} (\neq \{0\}), N'' = N'^{\perp} (\neq \{0\});$ then we have $[M: M' \perp M'']$, $[N: N' \perp N''] < \infty$, $\sigma(L \otimes M') = L \otimes N'$ and $\sigma(L \otimes M') = L \otimes N'$ $\otimes M'' = L \otimes N''$ by virtue of $[L: \tilde{L}] < \infty$. Assume $M' \neq 0$; then the inductive assumption implies rank $M_{v_i}' = \operatorname{rank} M_{v_i}' = \operatorname{rank} M'/\operatorname{rank} L$ and rank $M_{v_i}^{\prime\prime} = \operatorname{rank} N_{v_i}^{\prime\prime} = \operatorname{rank} M^{\prime\prime}/\operatorname{rank} L$, where

$$egin{aligned} M'_{v_i} &= \{m \in M' \,|\, \sigma(L \otimes m) \subset v_i \otimes N'\} \;, \ N'_{v_i} &= \{n \in N' \,|\, \sigma^{-1}(L \otimes n) \subset v_i \otimes M'\} \;, \end{aligned}$$
 and

 $M_{v_i}^{\prime\prime}, N_{v_i}^{\prime\prime}$ are defined similarly for $M^{\prime\prime}, N^{\prime\prime}$. Moreover M_{v_i}, N_{v_i} are defined similarly for M, N; then $M_{v_i} \supset M_{v_i}^{\prime} \perp M_{v_i}^{\prime\prime}$ and $N_{v_i} \supset N_{v_i}^{\prime} \perp N_{v_i}^{\prime\prime}$ are obvious. Hence rank $M_{v_i} \ge \operatorname{rank} M/\operatorname{rank} L$ holds. Take any $i \ (1 \le i \le m)$ and a subset S of $\{v_1, \cdots, v_m\}$ such that S contains v_i and S is a basis of QL.

We may assume $i = 1, S = \{v_1, \dots, v_n\}$ $(n = \operatorname{rank} L)$. Then $\sigma(L \otimes M_{v_i}) \subset v_i \otimes N$ and $\sigma(L \otimes \sum_{i=1}^n M_{v_i}) \subset \sum_{i=1}^n v_i \otimes N$ imply that $\sum_{i=1}^n M_{v_i}$ is a direct sum. Thus we have $\operatorname{rank} M \ge \sum_{i=1}^n \operatorname{rank} M_{v_i} \ge \sum_{i=1}^n \operatorname{rank} M/\operatorname{rank} L = \operatorname{rank} M$ and hence $\operatorname{rank} M_{v_1} = \operatorname{rank} M/\operatorname{rank} L$. Hence $\operatorname{rank} M_{v_i} = \operatorname{rank} M/$ rank L for each i and similarly $\operatorname{rank} N_{v_i} = \operatorname{rank} N/\operatorname{rank} L$ hold. From this follows that $QM_{v_i} = QM'_{v_i} \perp QM''_{v_i}$ and $QN_{v_i} = QN'_{v_i} \perp QN''_{v_i}$ and hence $\sigma(Q(v_i \otimes M_{v_i})) = \sigma(Q(v_i \otimes M'_{v_i}) \perp Q(v_i \otimes M''_{v_i})) = Q(v_i \otimes N'_{v_i}) \perp Q(v_i \otimes N'_{v_i}) = Q(v_i \otimes N_{v_i})$. Thus the condition (2), (3) are shown if $M' \neq 0$. Suppose M' = 0; then $[M: \tilde{M}], [N: \tilde{N}] < \infty$ hold. For each $m \in \mathfrak{M}(M)$ Lemma 6 implies $\sigma(L \otimes m) = F \otimes G$ where F, G are submodules of L, N respectively and m(F) = m(L). By the assumption on L we get $\operatorname{rank} F$ or $\operatorname{rank} G = 1$. $\operatorname{rank} G = 1$ implies $\sigma(L \otimes m) = L \otimes n$ for some $n \in N$ and it contradicts our assumption on σ . Hence we have F = Z[v] for $v \in \mathfrak{M}(L)$.

Thus for each $m \in \mathfrak{M}(M)$ there exists $v \in \mathfrak{M}(L)$ such that $\sigma(L \otimes m) \subset v \otimes N$.

Take any $v_i \in \mathfrak{M}(L)$ and fix it. For $n \in \mathfrak{M}(N)$ suppose $\sigma(v \otimes m) = v_i \otimes n$ for $v \in \mathfrak{M}(L)$, $m \in \mathfrak{M}(M)$. Since $\sigma(L \otimes m) \subset v_j \otimes N$ for $v_j \in \mathfrak{M}(L)$ as above, v_j must be equal to v_i and hence $\sigma(L \otimes m) \subset v_i \otimes N$, $m \in M_{v_i}$ and $m(M_{v_i}) = m(M)$. Therefore $v_i \otimes n = \sigma(v \otimes m) \in \sigma(L \otimes M_{v_i}) \subset v_i \otimes N$ holds for each $n \in \mathfrak{M}(N)$. Thus we get $v_i \otimes \tilde{N} \subset \sigma(L \otimes M_{v_i}) \subset v_i \otimes N$. From $[N: \tilde{N}] < \infty$ follows rank $M_{v_i} = \operatorname{rank} N/\operatorname{rank} L$, $m(M_{v_i}) = m(M)$ and $[M_{v_i}: \tilde{M}_{v_i}] < \infty$. Similarly rank $N_{v_i} = \operatorname{rank} M/\operatorname{rank} L$ follows.

For each $m \in \mathfrak{M}(M) \cap M_{v_i} = \mathfrak{M}(M_{v_i})$ we put $\sigma(v_i \otimes m) = v_i \otimes n$ $(n \in \mathfrak{M}(N))$. Then we have $\sigma^{-1}(L \otimes n) \subset v_i \otimes M$ by $\sigma^{-1}(v_i \otimes n) = v_i \otimes m$. Hence $n \in N_{v_i}$ follows. Conversely $n \in \mathfrak{M}(N) \cap N_{v_i} = \mathfrak{M}(N_{v_i})$ implies $\sigma^{-1}(v_i \otimes n) = v_i \otimes m$ for $m \in \mathfrak{M}(M)$ and $\sigma(L \otimes m) \subset v_i \otimes N$ by $\sigma(v_i \otimes m) = v_i \otimes n$. Hence we have $m \in M_{v_i}$ and $\sigma(v_i \otimes \mathfrak{M}(M_{v_i})) = v_i \otimes \mathfrak{M}(N_{v_i})$. $[M_{v_i}: \tilde{M}_{v_i}], [N_{v_i}: \tilde{N}_{v_i}] < \infty$ yield $\sigma(Q(v_i \otimes M_{v_i})) = Q(v_i \otimes N_{v_i})$. This completes the proof of Theorem 4.

Theorem 2, 3, 4 yield Theorem at the beginning of this paper.

§4.

In this section we give examples of positive lattices in Theorem.

PROPOSITION. Let $L = Z[e_1, \dots, e_n]$ be a quadratic lattice and put $ca_{ij} = B(e_i, e_j)$. Assume that

- (0) $c, a_{ij} \in Q, c > 0,$
- (1) $a_{ii} = 1$ and $1 \sum_{j \neq i} |a_{ij}| \ge 0$ for $i = 1, \dots, n$,

(2) for any non-empty subset S of $\{1, 2, \dots, n\}$

$$\# \left|S
ight| - 1 \geq \sum\limits_{i,j \in S \atop i
eq j} \left|a_{ij}
ight|.$$

Then L is a positive lattice of E-type and $L = \tilde{L}$.

Proof. By scaling we may suppose c = 1 without loss of generality. Let M be a positive lattice with m(M) = 1. Take any non-zero element $x = \sum_{i=1}^{n} e_i \otimes u_i \in L \otimes M$. Put $b_{ij} = a_{ij} ||a_{ij}|$ if $a_{ij} \neq 0$, = 0 if $a_{ij} = 0$, and $S = \{i | u_i \neq 0\} \ (\neq \phi)$. Then we have

$$\begin{split} Q(x) &= \sum a_{ij} B(u_i, u_j) \\ &= \sum Q(u_i) + \frac{1}{2} \sum_{i \neq j} a_{ij} (2B(u_i, u_j)) \\ &= \sum Q(u_i) + \frac{1}{2} \sum_{i \neq j} |a_{ij}| (Q(b_{ij}u_i + u_j) - Q(u_i) - Q(u_j)) \\ &= \sum_{i \in S} \left(1 - \sum_{\substack{j \in S \\ j \neq i}} |a_{ij}| \right) Q(u_i) + \frac{1}{2} \sum_{\substack{i, j \in S \\ i \neq j}} |a_{ij}| Q(b_{ij}u_i + u_j) \\ &\geq \# |S| - \sum_{\substack{i, j \in S \\ i \neq j}} |a_{ij}| \\ &\geq 1 \, . \end{split}$$

Hence L is positive and $m(L)m(M) \ge m(L \otimes M) \ge 1$. $m(L) \le 1, m(M) = 1$ imply $m(L \otimes M) = 1$ and m(L) = 1. If Q(x) = 1 and hence $x \in \mathfrak{M}(L \otimes M)$, then $b_{ij}u_i + u_j = 0$ and hence $u_i = \pm u_j$ for $i, j \in S$ with $i \ne j, a_{ij} \ne 0$. Suppose $S = S_1 \cup S_2$ and $a_{ij} = 0$ if $i \in S_1, j \in S_2$; then $x = (\sum_{i \in S_1} e_i \otimes u_i)$ $+ (\sum_{j \in S_2} e_j \otimes u_j)$ is an orthogonal sum and $x \in \mathfrak{M}(L \otimes M)$ implies that one of them must vanish. Thus we have S_1 or $S_2 = \phi$ and then $u_i = \pm u_j$ for $i, j \in S$. Therefore x should be $e \otimes u_i$ for $e \in L$, $i \in S$. By definition L becomes a lattice of E-type and m(L) = 1 implies $\mathfrak{M}(L) \supset \{e_i\}$ and hence $L = \tilde{L}$. Thus we complete the proof. Q.E.D.

Remark. If $a_{ii} = 1$, $|a_{ij}| < 1/n$ $(i \neq j)$, then the conditions (1), (2) are satisfied and $\mathfrak{M}(L) = \{\pm e_i | 1 \leq i \leq n\}$. In this case it is easy to see whether L is indecomposable or not. Suppose that L is indecomposable and $L = L_1 \otimes L_2$. Then from our theorem follows that L_1, L_2 are of E-type and $\mathfrak{M}(L) = \mathfrak{M}(L_1) \otimes \mathfrak{M}(L_2)$, $L_i = \tilde{L}_i$ and $|\mathfrak{M}(L_i)| = 2rkL_i$. Hence we can take minimal vectors as a basis of L_i , and then the matrix $(B(f_i, f_j))$ corresponding to L, where $\{\pm f_i\} = \{\pm e_i\}$, is a tensor product of matrices corresponding to L_i by their minimal vectors. Thus it is also easy to see whether L is indecomposable with respect to tensor product or not.

References

- [1] Y. Kitaoka, Scalar extension of quadratic lattices II, Nagoya Math. J., 67 (1977), 159–164.
- [2] —, Tensor products of positive definite quadratic forms, Göttingen Nachr. Nr., 4 (1977).
- [3] —, Tensor products of positive definite quadratic forms II, J. reine angew. Math., 299/300 (1978), 161-170.
- [4] —, Tensor products of positive definite quadratic forms IV, Nagoya Math. J., 73 (1979), 149–156.
- [5] O. T. O'Meara, Introduction to quadratic forms, Berlin-Heidelberg-New York, 1963.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku Nagoya, 464, Japan