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SEMINORMAL RINGS AND WEAKLY NORMAL VARIETIES

JOHN V. LEAHY AND MARIE A. VITULLI

Introduction

In the late sixties and early seventies the operation of weak nor-
malization was formally introduced first in the case of analytic spaces
and later in the abstract scheme setting (cf. [6] & [4]). The notion arose
from a classification problem. An unfortunate phenomenon in this area
occurs when one tries to parametrize algebraic objects associated with a
space by an algebraic variety; the resulting variety is, in general, not
uniquely determined and may, for example, depend on the choice of co-
ordinates. Under certain conditions one does know that the normaliza-
tion of the parameter variety is unique. The price one pays for passing
to the normalization is that often this variety no longer parametrizes what
it was intended to; one point on the original parameter variety may split
into several in the normalization. This problem is avoided if one passes
instead to the weak normalization of the original variety. One then
obtains a variety homeomorphic to the original variety with universal
mapping properties that guarantee uniqueness.

In recent years weakly normal complex spaces have been system-
atically studied by several people and many interesting results have been
obtained. On a complex space X define the sheaf of c-holomorphic func-
tions Θc

x on X as follows. For an open subset C/of Xlet Γ(U, Θc

x) consist
of all continuous complex valued functions on U which are holomorphic
at the regular points of U. X is weakly normal if Θx = Θc

x (where ΘΣ

denotes the sheaf of holomorphic functions on X).
In [2] a generic type singularity called a multicross was defined and

was shown to be what most frequently occurs in weakly normal spaces.
More precisely, the complement of the multicrosses is an analytic subset
of codimension at least two. One has a Hartogs theorem for weak nor-
mality (cf. [5] & [2] for a refinement) and an Oka theorem which corn-
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pletely classifies weakly normal spaces which are pure dimensional, local
complete intersections (cf. [1]). Within the class of weakly normal spaces
there is the subclass of locally optimal spaces; these spaces can be de-
scribed by requiring that a certain local cohomology sheaf be identically
zero.

A purely algebraic notion, called seminormality, appeared in a paper
by Traverso [20] in 1970. It was then observed that if one studies the
affine rings of schemes over a field of characteristic 0, the affine ring is
seminormal if and only if the associated affine scheme is weakly normal
in the sense of Andreotti and Bombieri in [4]. Let A be a commutative
ring and let B denote its normalization. For a (commutative) ring C let
R(C) denote the Jacobson radical of C. The seminormalization + A of A is
defined by +A = {b e B\ bx e Ax + R(BX) yx e Spec (A)}. A is said to be
seminormal if A = +A.

In recent years the algebraic notion has been studied from several
different points of view. In [20] Traverso established the connection be-
tween the seminormality of a ring R and a certain property of the Picard
group Pic (R). In [9] Gilmer and Heitmann extended this result using a
generalization of a criterion for seminormality which we believe first ap-
peared in a paper by Hamann [10]. The i£-theorists have also been study-
ing the notion particularly as it applies to curves. The geometric nature
of weakly normal curves has been understood for some time. In [7]
Bombieri classified the singularities of an irreducible weakly normal curve
over an algebraically closed field of characteristic 0 and proved that
ordinary singularities arising from generic projections of surfaces in P3

are weakly normal.
Perhaps it is a consequence of the diversity of the investigators'

particular fields of interest that the algebraic theory is still disjoint. In
the first half of section one of this paper we have gathered the scattered
known results of the theory.

The material found in the latter half of section one (as well as results
1.6 and 1.7) is all new. We begin by showing that for a finite integral
extension A (Z B the seminormalization of A in B is equal to

Π +Λ where +

XA
#6 Ass (B/A)

is the ring obtained from B by gluing over x. This enables us to prove
that for a seminormal extension A c B a s above, the associated primes
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of BjA give an exact description of the gluing sequence whose existence
was established by Traverso's Structure Theorem ([20], Theorem 2.1). In
section three we give an example of a seminormal extension A C B such
that BjA has an embedded prime; hence one must also glue over the
embedded primes of B\A in any type of structure theorem. We completely
classify the seminormal rings amongst the reduced Cohen-Macaulay rings
having finite normalization. We conclude section one by showing that
for algebro-geometric local rings seminormality is preserved when one
passes to completions.

In the second section we focus our attention on algebraic varieties
over an algebraically closed field of characteristic 0. As the notions of
seminormality and weak normality are identical in this case we use the
latter terminology. The starting point of our treatment is the following
theorem (2.2): Let f:Y-+X be a dominating finite morphism of aίfine
varieties whose affine coordinate rings are B and A respectively. Then
BA consists of all regular functions on Y that agree on the fibres of /.
Using this result we develop the close connection that exists between
the algebraic and complex space theories.

We define the sheaf of c-regular functions on a variety and then show
that a variety is weakly normal if and only if every c-regular function
is regular. We pursue the function theoretic approach and in order to
provide a firm foundation for future study we provide the proofs of several
results that are probably well known by many. This point of view enables
us to quickly obtain many results. For example, we are easily able to
define the weak normalization of a variety and clearly state its universal
mapping properties. We also show that the product of weakly normal
varieties is weakly normal. We establish the equivalence of the weak
normality of a complex algebraic variety and the weak normality of the
associated complex analytic space. Finally, we give criteria for determin-
ing when the union of weakly normal varieties is again weakly normal
and use these results to establish the weak normality of several general
classes of varieties in section three.

In the future we plan to develop the algebro-geometric analogue of
the (complex space) multicross singularity and determine the role that
this class of singularities and local cohomology play in the singularity
theory of weakly normal varieties.
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§ 1. Preliminaries

All rings in this paper are commutative with identity. If A is a ring

we will let R(A) denote the Jacobson radical of A, i.e. R(A) is the in-

tersection of all maximal ideals of A. If x e Spec (A) corresponds to the

prime ideal px and M is an A-module we let Mx denote S'^M where the

multiplicative subset S — A — px. If m e M we let mx and m(x) denote

the images of m under the canonical homomorphisms: M -> Mx and

M-+ Mx/pxMx respectively. Finally we let κ{x) = AJpxAx and Ω(A) =

{x e Spec (A) | x is a closed point}. We now give a simplified version of a

result by Andreotti and Bombieri ([4], § 1, Proposition 3)

PROPOSITION 1.1. Let A c B be an integral extension of rings. Then

(1) R(B) Π A - R(A)

(2) if (A, m) is local then C = A + R(B) is a local rings with maximal

ideal R(B) and the canonical map: A/m -• CIR(B) is an iso-

morphism.

Proof. (1) follows from knowing that the induced map Spec (B) —>

Spec (A) is surjective and that if p — P Π A for some prime ideal P of B

then p is maximal if and only if P is maximal.

(2) Suppose (A, m) is local. Then A + R(B) is clearly a subring of

B and the canonical map A/m -> A + R(B)IR(B) is an isomorphism. Hence

R(B) is a maximal ideal of C. But by (1) we have R(C) = R(B) Π C =

R(B) so that R(B) is the unique maximal ideal of C.

DEFINITIONS 1.2. Let A c B be an integral extension of rings. We

define

%A = {b e BI bx e Ax + R(BX\ vx e Spec (A)}

+

BA is called the seminormalization of A in B and if A = JA then we say

that A is seminormal in B. If B is the normalization of A (i.e. the

integral closure of A in its total ring of quotients) we set +A = %A and

we say that A is seminormal if A = +A. +A is called the seminormali-

zation of A.

We now recall Traverso's characterization of the operation of semi-

normalization.

PROPOSITION 1.3 (Traverso [20]). +

BA is the largest subring Af of B

containing A such that:
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(1) For each x e Spec (A) there is exactly one xf e Spec (A') over x,

and

(2) The canonical homomorphism tc(x) -» κ(xf) is an isomorphism.

We note that this characterization of BA entails that if A is semi-

normal in B then A is seminormal in every intermediary ring C lying

between A and B.

We now present several equivalent criteria for determining when A

is seminormal in an overring B. In the case where A is a pseudo-

geometric ring and B is the normalization of A the equivalence of (l)-(3)

below was first proven by Hamann in [10]. In [9] Gilmer and Heitmann

prove this equivalence for an arbitrary ring A and its normalization B.

We include criterion (4) here as it is the most manageable in actual

computations. We include the proof of Gilmer and Heitmann for (2)

implies (1).

PROPOSITION 1.4. For an integral extension Ad B the following state-

ments are equivalent.

(1) A is seminormal in B.

(2) For each b in B, the conductor of A in A[b] is a radical ideal

of A[b].

(3) A contains each element b of B such that bn, bn+1 e A for some

positive integer n.

(4) For a fixed pair of relatively prime integers e > / > 1, A contains

each element b of B such that b% bf e A.

Proof. Statements (3) and (4) are each equivalent to demanding that

A contain each element b of B such that bm, 6m+1, •• are in A, for some

positive integer m.

(3)=>(2). Suppose (3) is valid, feA[b] and fn e (A: A[b]). Then for

any geA[b] we have (fg)n,(fg)n+1 e A so that fgeA by (3). Thus fe

(A: A[b]) as desired.

(1) => (3). Suppose A = +

BA and that b e B, bn,bn + 1eA for some posi-

tive integer n. Let jceSpec(A) be arbitrary. Then bx,bx

+1eAx. If bn

x is

a unit in Ax9 then bx = bn

x

+1lbn

xe Ax. Otherwise, bn

x e pxAx c R(BX) and

since the latter is a radical ideal in Bx, bx e R{BX). In any case, bx e Ax

+ R(BX) and since x was arbitrary, b e +

BA = A.

(2) => (1). Suppose that (2) holds but A is not seminormal in B.

Choose be%A\A and a minimal prime px of (A: A[b]) in A. Let c =
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(A: A[b]), C= A[b]. Since A[b] is finitely generated as an A-module we

have pxAx = cx = (Ax: Cx). By assumption, c is a radical ideal of C and

hence cx is a radical ideal of Cx. Viewing cx as the intersection of its

minimal primes in Cx we obtain pxAx = cx = R(CX). Now {+

BA)X is local

with residue field canonically isomorphic to κ(x) and Ax C Cx C (BA)X.

Hence Cx is local with maximal ideal R(CX) and residue field canonically

isomorphic to κ(x). Furthermore, pxAx = R(CX) and T generates Cx/pxCx

as a yc(x)-module so by Nakayama's lemma 1 generates Cx as an A^-module.

That is, Ax = Cx, contradicting the fact that (Ax: Cx) = pxAx.

COROLLARY 1.5. Let A c B be an integral extension of rings.

(1) If A is semίnormal in B then (A: B) is a radical ideal of B.

(2) Suppose that A c B c C. If A is seminormal in B and B is

seminormal in C, then A is seminormal in C.

Proof. (1) Assume that A is seminormal in B. Suppose that b e

B\(A: B) but bn e (A: B) for some n > 1. Choose c e B such that be § A.

Then (bc)n = 6ncn e A since bn e (A: B) and similarly (bc)n+1 e A, contradict-

ing criterion (3) of (1.4) above.

(2) is an immediate consequence of criterion (3) of (1.4).

COROLLARY 1.6. If A is seminormal in B and S is any multiplicative

subset of A, then S- 1A is semίnormal in S'Ή. Moreover, the operations

of seminormalizatίon and localization commute.

Proof. We show that condition (3) of (1.4) is valid for S^A c S^B

if it is valid for A d B.

Suppose that b/s e S"1!? and that (b/s)n, (bls)n+1 e S^A for some positive

integer n. Then there exist elements t and t! of S such that tbn, tfbn+ι e

A. Thus (tt'b)n,(ttfb)n+ιeA and hence tt'beA. Therefore b/seS^A.
In general if we let C = BA then S~ιC is seminormal in S~XB and

clearly S'ιC ^ S-IBS'^A. Then S - 1C is seminormal in S-IBS^A and since

conditions (l)-(2) of (1.3) hold for S ^ C c s-iiS-'A we must have S^C =

s-iϊS^A by (1.3).

PROPOSITION 1.7. A is semίnormal in B if and only if Ax is semi-

normal in Bx for each x e Ω(A).

Proof. The assertion in one direction follows from (1.6). Conversely,

suppose that Ax is seminormal in Bx for each x e Ω(A) but A is not semi-

normal in B. Using the fourth criterion for seminormality of (1.4) there
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exists an element b e B\A such that 62, bz e A. As Ax is seminormal in

Bx for each x e Ω(A) we have bx e Ax for each x e Ω(A).

However, since b § A there exists some maximal ideal mx of A con-

taining (A: 6). Then (A./. bx) = (A: b)x c: m^A ,̂ contradicting the fact that

bxe Ax. Hence A is seminormal in B.

Henceforth we shall always assume that A c B is a finite integral

extension of noetherian rings. We now recall Traverso's notion of gluing.

Let x e Spec (A) and let xu , xn denote the points in Spec (B) lying

over x. For each i let ωt: κ(x) -> κ{x^) denote the canonical homomorphism.

Define +

XA = {be B\ bx e Ax + R(BX)}. One can easily see that an

element b of B lies in +

XA if and only if:

(1) b(xt) e Wi(/c(x)) for each i, and

(2) ω;\b(xz)) = ωjKb(Xj)) for all i,j.

DEFINITION 1.8. We say the ring +

XA constructed above is the ring

obtained from gluing B over x or that +

XA is the gluing of A in B over x.

PROPOSITION 1.9 (Traverso [20]). +

XA is the largest subring A' of B

containing A such that

(1) There is exactly one xf e Spec (A') over x, and

(2) The canonical homomorphism κ(x) -> κ(x') is an isomorphism.

In particular, +

XA is seminormal in B.

Remarks 1.10. (1) Let C = +

BA where A C B is a finite integral ex-

tension of noetherian rings. Then (A: C) is not an intersection of primes

in C. For if so, let px be a minimal prime of (A: C) in A. Then pxAx

= (A: C)x — (Ax: Cx) = R(CX) where the latter equality follows from view-

ing (Ax: Cx) as the intersection of its minimal primes in Cx. Arguing as

we did in the proof of (1.4) this implies Ax = Cx, a contradiction.

(2) Suppose A is seminormal in B where A C B is a finite integral

extension and A is noetherian. Then we know c = (A: B) is a radical

ideal of B and hence is a radical ideal of A. Suppose that px c: A is a

minimal prime of c.

Then As is seminormal in Bx in fact Ax is its own gluing in Bx over

^XAX. We have (Ax: B J = c,, = pxA* (since 1? is an A-module of finite

type). Also c is a radical ideal in B so that viewing c as the intersec-

tion of its minimal primes in B we have cx = R(BX). Thus Ax = Ax +

R(BX) and Ax is its own gluing in Bx over pxAx.

In particular if A is a reduced noetherian ring of dimension one with
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finite normalization B then A is seminormal if and only if Ax is its own

gluing in Bx for all closed points x e Spec (A), (cf. [7], p. 208).

(3) Let A c B be as above and let C = +

XA. Let x! denote the unique

prime of Spec (C) over x. Then C is equal to the gluing of C in B over

xf by the characterization of +,C given in (1.9).

We now prove a sequence of results that enable us to obtain refine-

ments of Traverso's structure theorem and its consequence (cf. [20],

Theorems 2.1 and 2.3).

LEMMA 1.11. Let A c B be as before. Suppose that (A: B) is a re-

duced ideal of B and is a prime ideal of A. Then A = +

XA where px =

(A: B) if and only if Ass^ (B/A) = {px}.

Proof. As we assumed that px = (A: B) is a reduced ideal of B we

must have px = pxB = VpJΪ = P, Π Π Pn where Pu , Pn are the

minimal primes in B of pxB. Then pxAx = (A: B)x = (Ax: Bx) = R(BX) so

that Ax = Ax + R(BX) and hence +

XA = {b e B\ bx e Ax] = {b e B\ (A: b) ξ

px}. Also note that px = (A: B) = (0: BjA) entails that px is the minimal

associated prime of B/A.

Thus A = +

XA t=$ b e A whenever (A: b) <χ px (=$ every associated prime

of BjA is contained in ^ ^ Ass^ (BjA) = {px}.

THEOREM 1.12. A is seminormal in B if and only if A = {b e B\bxe

Ax + R(BX) ypx e Ass^ (B/A)}.

Proof. Let A = {b e B \ bx e Ax + R(BX) vpx e Ass^ (B/A)}. Then +

BA

^ A7 so that if A = A then A is seminormal in B.

Conversely, assume that A is seminormal in B. To see that A = A

we proceed by induction o n r = f Ass^ (B/A) the case r = 0 being trivial.

Let r > 1 and assume the assertion is true whenever # Ass^ {BjA) < r.

Let A c B b e such that # Ass^ (B/A) = r and choose x2 e Spec (A) so that

pXl is a minimal prime of B/A. Then pXl is a minimal prime of (A: B)

and Aβ l = AXl + R(BX1) as in (1.9).

Set Bf = XlA and let α/ denote the unique prime of JB/ lying over xx.

Then JB; = pB' so that Assfi, {BIB) = {fc,} by (1.11) and hence Ass^

Consider the exact sequence of A-modules: 0 —> 57-^ "

-> 0. As AΛ1 = AX1 + R(BX1) we have B = {6 6 B|(A: b) ξ pXl} and con-

sequently pXl is not an associated prime of B7A. Then
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Ass. (BlA) = Ass. (B'/A) U Ass. {BIB)

so that # Ass. (B'lA) < r.

Since A is seminormal in JB, A is seminormal in i?' and hence by the

induction hypothesis

A = {b 6 B I bx e Ax + R(B'X) vpx e Ass. (B'/A)}

Now

Λ(Bί) = B(BΛ) Π Bx

so that

A = {b e Bf I bx e A, + £(£,) vpx e Ass. (B'/A)}

= {b e B| 6, e Ax + R(BX) vfc €

Suppose that A is seminormal in JB. Index the associated primes of
B\A so that ht pXl < ht pτ2 < < ht pXr. Define subrings of B inductively

as follows: Set B° = B and define

W = {beB^\bXie AXi + R(B^)} , (i = 1, . ., r) .

As ^(BJT1) = B(BXi) Π Si; 1 we also have B* = {& e B*"1) 6β< 6 Ax< +

THEOREM 1.13. Suppose that A is seminormal in B with the notation

as above. Then:

(1) Bι is obtained from B1'1 by gluing over xi (i = 1, , r).

(2) Ass. (B^A) = {j)Xί+1> , pXr} (ί = 1, , r).

(3) A = Br Q - Q B1 Q B° = B.

Proof. (1) follows from the definition of the subrings Bι and (3) fol-

lows from (2).

To see (2) we mimic the proof of (1.11). Suppose that Ass. (Z^'VA)

= {Pxi, -' ', Pχr}
 a n ( i 1 < ^ < ^ Then px. is a minimal prime of Bl'ljA and

hence a minimal prime of (A: B*'1). As Bι is the gluing in Bil over xt

we have Ass. (B*" 1 ^) = fr^} and Ass. (BVA) = {pXi+1, ., pβr} as in the

proof of (1.12).

THEOREM 1.14. Let A be seminormal and suppose in addition that A

is reduced with finite normalization B. Let

m = max {{1} U {ht p | p e Ass. (B/A)}} .

If ae A is not a zero divisor then every associated prime of AjaA has

height no greater than m.
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Proof. Index the associated primes of BjA so that ht pXl < < ht pXr

and let the subrings Bι (i = 0, , r) be defined as above. Let a e A be

a non-zero divisor. Then a is not a zero divisor in B since A is reduced

and the minimal primes of A and B are in bijective correspondence.

Hence a is not a zero divisor in B* (i = 0, , r).

We prove by induction on i that if P e Ass5i(B7aB*) then h t ( P Π A)

< Jft.

Suppose P e Ass* (JB/αB) so that ht P = 1. Set p = P Π A. If ht p

> 1 then (A: B) a P 0 A = p. For if not Ap = Bp so that ht p = dim Ap

= dim Bp = ht PBP = 1, a contradiction. As (A: B) is a reduced ideal

of B and is not contained in any minimal prime of B we must have P is

a minimal prime of (A: B) in B. Thus p e Ass^ (B/(A: B)) and in light of

the exact sequence of A-modules:

0 • A/(A: B) • B/(A: B) > B/A • 0

we have p e Ass^ (B/A) so that ht p < m.

So let 0 < i < r and assume that if P 6 Ass5ί (Bl\a&) then ht (P Π A)

< m. Let PeAssBi+1(Bί+1laBί+ί), let p = P Π A and assume that htp >

m. Let ξ e Bί+1\aBi+ί be such that P = (α£ ί + 1 : £). Then PJB̂ f c αBέ and

hence f € αB\ For if not, PBι c Q for some Q e Assfiί (Bι\aW) and ht (p)

< ht (Q Π A) < m, a contradiction. Thus £ € αJ5ί and P c: Pf for some

P r e Ass£ΐ+1 (aBllaBi+x). As α is not a zero divisor in B* we have aBιlaBί+ι

and B^B**1 are isomorphic as B i+^modules and hence P <ΞkPf for some

P 7 e Ass5ί+1 (B7B*+1). Then p = P n i g F n A = fcί+1 (by 1.13) so that

htp < h t ^ . + 1 < m, a contradiction. Hence if P e AssBi+1 (Bi+l/aBi+i) then

ht (P Π A) < m and by induction if p e Ass^ (AjaA) then ht p < m.

Remark 1.15. The m of (1.14) is the best we can do. For in the

sequence of (1.13) {pr} = Ass^ (Br~ιIA). Hence there exists an element

βeBr~\A such that pr = (A: β). Suppose β = b/a where 6, ae A and a

is not a zero divisor. Then pr = (aA: b) so that pr e AssA (A/aA). In par-

ticular if A is seminormal then A satisfies the condition S2 of Serre if and

only if every associated prime of BjA is minimal of height one.

We also point out that there exist seminormal extensions A C B

such that BjA has embedded primes (cf. Example 3.7). Suppose A C B

is such an extension and p = (A: β) is an embedded prime of BjA. Then

βx € Ax — Ax + R(BX) for every minimal prime px of (A: B) but β e A. So

one must glue over the embedded primes in any type of structure theorem
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for seminormal extensions (cf. Theorems 1.12 and 1.13).

LEMMA 1.16. Let A be a reduced noetherian ring with finite normali-

zation B. If p is an associated prime of B/A then depth Ap = 1.

Proof. Since Ass^ (BjA) cz Supp (BjA) we know that every associated

prime of B/A has height at least one (since A is reduced) and this entails

that if p e Ass4 (B/A) then depth Ap > 1.

Let pxe AssA(B/A). Then we have a short exact sequence: 0-^Ax

—> Bx —> Bx/Ax —> 0 and in turn a long exact sequence on cohomology:

0 > Hom^ (*(*), Ax) > Hom^ (*(*), Bx) • Hom^ (*(*), Bx/Ax)

• Exti, (*(*), Ax) • .

As Ax is reduced of dimension at least one and Bx is the normali-

zation of Ax we have Hom^ (κ(x), Bx) = 0 and hence Hom^ (κ(x), BxjAx)

c: Ext^x (tc(x), Ax). As pxAx is an associated prime of Bx/Ax we have

Hom^ (fc(x), BxjAx) ^ 0. Hence Ext^ (κ{χ\ Ax) ^ 0 and depth Ax = 1.

At this point we would like to recall another notion of seminormality

as defined by Endo in [8], Suppose that A is a reduced noetherian ring

with finite normalization B. We say that A satisfies the condition R[ of

Endo if for each height one prime px of A, Ax is equal to its own gluing

in Bx over pxAx. Endo calls A seminormal if A satisfies R[ and the con-

dition S2 of Serre. We now show that this entails that A is seminormal

in the sense of Traverso and give an example that illustrates A can be

seminormal in the sense of Traverso without satisfying S2.

LEMMA 1.17. Let A a B be as above and assume that A satisfies con-

ditions R[ and S2. Then A = +A.

Proof. If A satisfies S2 then by (1.16) we may conclude that every

associated prime of BjA has height 1. Since A satisfies R[, Ax — Ax +

R(BX) for each px e Ass^ (B/A). Then

A = {b e BI bx e Ax + R(BX) ypx e Ass^ (B/A)}

= {beB\bxeAxypxe Ass^ (B/A)}

= {b e BI (A: b) is not contained in any associated prime of BjA)

= A .

so that A = +A by (1.12).

EXAMPLE 1.18 (Two planes in 4-space meeting at the origin). Let xl9
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x2, xs, £4 be transcendentals over the complex numbers C, let px = (xί9 x2),

p2 = (x3, x4) and set A = C[xu x2, x3, xj/ϊ>i Π ϊ>2 Then if B denotes the

normalization of A we have B = C[x3, xj X C[x1? x2] and an exact sequence

0 >A-^->B-^>C >0

where a(f + Px Π P2) - (/(0, 0, x3, *Λ /(*i, ** 0, 0)) and #/, g) = /(0, 0) -

g(0, 0). Hence (A:B) = (x1? x2, x3, x4) where JC€ denote the image of xt in
A (i = 1, , 4). Say (/, ^ ) e B and (f, g>) e A, (f, ̂ 3) 6 A. Then /(0, 0)2

= £(0,0)2 and f(O,θy = g(O,θy so that /(0,0) = g(0,0) and (f,g)eA.

Hence A is seminormal by (1.6, (3)). As (A: B) is a height 2 prime in A

we see that A does not satisfy S2 by (1.16).

COROLLARY 1.19. Let A be a reduced Cohen-Macaulay ring with finite

normalization B. Then A is seminormal if and only if (A: B) is a radical

ideal in B.

Proof As A is Cohen-Macaulay we see that every associated prime

of BjA is of height 1 by (1.16).

If A is seminormal then (A: B) is a radical ideal in B.

Conversely assume that (A: B) is a radical ideal in B. If A Φ B,

then (A: B) is the intersection of height one primes in A. If px is any

minimal prime of (A: B) then pxAx = (Ax: Bx) is a reduced ideal of Bx

and hence pxAx = R(BX) so that Ax = Ax + R(BX). Then A satisfies R[

and is seminormal by (1.17).

Another important consequence of the structure theorem (1.13) is that

in the geometric situation the completion of a seminormal local ring is

again seminormal. Toward this end we recall a definition.

DEFINITION 1.20. We say that a local ring A is an algebro-geometric

local ring if A ̂  Bp where B is a reduced and finitely generated ^-algebra

for some algebraically closed field k and p 6 Spec (JB).

For a local ring (A, m) and an A-module M, we let M denote the

m-adic completion of M.

THEOREM 1.21. An algebro-geometric local ring is seminormal if and

only if its completion is seminormal.

Proof Let A be an algebro-geometric local ring and let B denote

its normalization. Then B is an A-module of finite type and B is the

normalization of A. (See [13], Theorem 72, p. 240 and Theorem 79, p. 259).
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First let us assume that A is seminormal. Suppose that Ass^ (B/A)

= {Pxl9 ''', fcj where h t ^ < . < ht p,r. Let A = Br c . . . c 5 ° = B

be the sequence of subrings of B as in (1.13). Letting Cι = (JBί)A we

proceed by induction to show that Cί is seminormal in C = C° for i =

0, , r, the case / = 0 being trivial.

So assume that 0 < ί < r and that C* is seminormal in C. Recall

that Bί+1 was defined to be the gluing of A in Bι over xi+1. If y e

Spec(ΰ ί + 1) is the unique point lying over xi+u then Bί+1 = +

yB
ί+1 and

Ass^+1(BV^ ί+1) = {£„}. Since C ί + 1 is also the i?(J3ί+1)-adic completion of

Bί+1 we have Ass^^C'/C^1) = Assci+1(Ci+1/pyC
i+1) by ([13], Theorem 12,

p. 58).

As pyC
ί+1 is a reduced ideal ([13], Theorem 79, p. 259) we know that

every associated prime of C^C**1 is a minimal prime of (Cί+1: Cl) =

(JBί+1:S*)A ([15L Theorem 18.1, p. 58) and the latter is a reduced ideal of

C\ Consequently, if Pz is a minimal prime (in Cί+1) of (C i + 1 : C*) "then

cr1 = cr1 + Λ(C*).
Finally,

C i + 1 = {β e CI β, e Q + 1 v P, e AsSί7ί+1 (C7C*+1)}

= {̂  e C'ljβ, e Ci+1 + R(Q)yPz e AsSί7i+1(C7C*+1)}

and C ί + 1 is seminormal in C ί by (1.12). Since Cί+1 is seminormal in C ί

and C* is seminormal in C we have C i + 1 is seminormal in C by (1.5). By

induction, A = Cr is seminormal in JB = C.

Conversely, assume that A is seminormal in J5. Suppose be B and

ό2, ό3 e A. Then 6 e B Π A = A by (1.4). Hence A is seminormal in B

by (1.4).

§ 2. The case of algebraic varieties

Let k be a fixed algebraically closed field of characteristic 0. When

we use the term variety we assume that the underlying topological space

is the set of closed points of a reduced, separated scheme of finite type

over k. Unless otherwise stated all rings in this section are assumed to

be ^-algebras. We will say A is an affine ring if A is the coordinate

ring of an affine variety (over k). In particular, if A is an affine ring

with total ring of quotients K and L is any finite extension of K, then

the integral closure AL of A in L is a finite A-module. ([13], Theorem

72, p. 240).
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By assuming char k = 0 we avoid all inseparability problems and as

was pointed out in the introduction the operations of seminormalization

and weak normalization coincide. Henceforth we will use the latter ter-

minology; i.e., if A C B is an integral extension of fe-algebras we will

call BA the weak normalization of A in B. A main result here is that

if A C B is a finite integral extension of affine rings and we let π: Y =

Var (B) -» X = Var (A) denote the induced morphism of varieties then +

BA

consists of all regular functions f on Y such that f(y^ = f(y2) whenever

= π(y2). To see this we recall the following well known result.

LEMMA 2.1. Let π:Y-> X be a dominating finite morphism of irreduc-

ible varieties and let n = [K(Y): K(X)]. Then there is a non-empty open

subset U of X such that for each xe U the fibre π'\x) consists of n distinct

points.

Proof. Replacing X by a non-empty open V such that V is normal

and Y by π~\V) we can assume that X is normal. Since char k = 0, π

is a separated morphism and the result can be found in [19] (Theorem 7,

p. 116).

THEOREM 2.2. Let Ad B be a finite integral extension of affine rings

and define Af by A! = {b e B\ bx e Ax + R(BX) yxeX= Var (A)}. Then

A = BA. Thus if π: Y = Var (B) -> X is the induced morphism, then BA

consists of all regular functions f on Y such that f(yϊ) — f(y2) whenever

Proof. By definition we have +

BA c A'. To prove equality it suffices

to see that:

(1) For each point x e Spec (A) there is exactly one point x' 6

Spec (A;) over x, and

(2) The canonical map tc(x) -> ΛΓ(X') is an isomorphism.

Let x e X = Var (A). Since Ax^AxdAx + R(BX) and the latter is

a local ring with residue field k (by (1.1)) we see that Ax is local. Hence

there exists a unique point xf in Spec {A') over x. Thus (1) and (2) are

valid for all xeX.

Then (1) is valid for all points in Spec (A) by a standard application

of the Nullstellensatz. For let p be an arbitrary prime in A and sup-

pose Pλ and P2 are primes in A over p. Let M be any maximal ideal

of A containing P1 and let m = M Π A. By Going Up there exists a
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maximal ideal Mr ZD P2 lying over m. Since (1) above holds for m we

have M = Mf Z) P2. Thus every maximal ideal containing Pt also contains

P2 and hence P2 c Pλ. Similarly, P, C P2 so that Px = P2.

Now let p C A be an arbitrary prime and let P be the unique prime

in Af over p. Then Alp C AfjP is a finite integral extension of domains

with quotient fields tc(p) and Λ ( P ) , respectively. Since the induced mor-

phism of varieties is a homeomorphism we must have [κ(P): Λ ( p)] = 1 by

(2.1). Thus the canonical map κ(p) —> κ(P) is an isomorphism. Hence A!

Clearly, if fe B then fe A' if and only if f(yλ) = f(y2) whenever

= ^ 2 ) where π: Y = Var (B) -> X is the induced morphism.

We should point out that this result was first indicated by observing

that this is precisely how one defines the holomorphic functions on the

weak normalization of a complex space. The following sequence of results

shows that the algebraic notion is entirely analogous to the complex space

concept. In order to present the material in a unified fashion we will

present some results that are probably well known by many.

Remark 2.3. A third characterization of +

BA where A c B is a finite

integral extension of affine rings is as follows. Let A' = {be B\b®l —

1 ® 6 is nilpotent in B®AB}. Let π: Var (B) -> Var (A) be the induced

morphism. Then 6 e A / Φ 4 6 ® l — 1(8)6 is in every maximal ideal of

B®Λ B ^ b(yϊ) = 6(j2) whenever π(yλ) = π(y2) t=? be %A. In particular, the

Lipschitz-saturation A%,k of A in B relative to k C A c B (cf. [12]) is

contained in +

BA.

DEFINITIONS 2.4. The sheaf of c-regular functions on a variety X9

denoted by Θ°Xi is defined as follows: If Ud X is open, then Γ(U,ΘC

X)

consists of all continuous ^-valued functions on U which are regular at

the nonsingular points of U.

We say that X is weakly normal at x e X if ΘZtX = Θc

XtX. X is weakly

normal if Θx = 0χ.

If Y is a variety we shall always let S(Y) denote the singular locus

of Y.

LEMMA 2.5. A normal variety is weakly normal.

Proof. It suffices to assume that X = Var (A) is affine and show that

A = Γ(X, Φx) = Γ(X, Θc

x). Suppose that φ:X-> k is continuous and φ\x-S(x>
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is regular. If / is the ideal of A defining S(X), then ht I > 2 since A is

normal. Since A satisfies condition S2 of Serre and I is reduced we must

have J-depth A > 2. Then looking at the long exact sequence of coho-

mology with support on S(X) we see that the restriction map A = Γ(X, Θx)

-+ Γ(X — S(X), Θx) is an isomorphism (see [11], Example 2.3 (p. 212),

Examples 3.3-3.4 (p. 217).). Hence there exists a regular function / on

X such that f\x-S(X) = φ\z-sw Since φ — f is globally continuous and

vanishes on the dense open subset X — S(X) of X, it must be identically

zero. Thus φ = f is regular on X.

PROPOSITION 2.6. A continuous k-valued function on a variety X regular

on some dense open subset of X is c-regular on X.

Proof. Suppose φ:X-^k is continuous and regular on the dense

open subset U of X. Let xe X be a non-singular point. Let V be an

irreducible affine open neighborhood of x. Then φ is regular on V Π U.

So there exist regular functions /, g on V with g Φ 0 such that φ\Vg =

flglvg Then gφ — f is zero on Vg so that gφ = / on V and in particular

Sxψx = fx a s germs of continuous functions. We claim that this implies

gx divides fx in Θx>x.

Since x is a non-singular point 0 ^ is a UFD. Factor &. in Φx>x so

that ft. = Π P'/ a n d e a c h germ /?., is prime in ΘXtX. Since Π P'/ψχ = fx

we can find an affine open neighborhood W of x in V such that PχΓ(W,Oz)

is prime and Π P / ^ k = f\w So / vanishes on W(pt) and hence pjx —f

for some /Ί e Γ(W, Θx). By induction on 2 s, we may conclude that gxhx

= fx for some hx e (9XfX. Then gx(hx — φx) = 0 and hence /ι = φ in some

neighborhood of x.

(2.7) Suppose X = Var (A) is affine. Let B denote the normalization of

X, X = Var (J3) and π: X -> X the projection. Suppose 9 e Γ(X, ^ ) . Then

by (2.6) φ o 7r is c-regular on X and hence regular. By (2.2) we have φ o TΓ

e +A. Conversely if /e +A then / is regular on X and is constant on

the fibres of π. Hence / induces a continuous function on X which is

regular off the singular locus of X. Now if S is any multiplicative subset

of A then +(S- !A) = S-\+A) by (1.6). Hence for an arbitrary variety X

the sheaf Θc

x is coherent. In particular, the set W(X) of non-weakly

normal points is a closed subset of X.

COROLLARY 2.8. Suppose that X is weakly normal and that f: Y-+X

is a finite birational morphism. If f is a homeomorphism then f is an



SEMINORMAL RINGS 43

isomorphism {of varieties).

Proof. Suppose that / is a homeomorphism. Let U = Var (A) be any

affine open in X so that f'\U) = Var (B) is again affine. Then f\ A -* B

is an inclusion of affine rings and induces an isomorphism on the respec-

tive total quotient rings. By abuse, let us assume A C B. Then A is

weakly normal in B (since A is weakly normal) and B is contained in

the normalization of A. But / is a homeomorphism so that every regular

function on f~\U) agrees on the fibres of/. Hence A = B by (2.2). Thus

/ is an isomorphism.

THEOREM 2.9. Let X be a variety. Then there exists an essentially

unique pair (Xw, π) consisting of a weakly normal variety Xw together with

a finite birational morphism π: Xw -> X which is a homeomorphism. By

essentially unique we mean that if (Xu π^ is any other such pair, then there

is a unique morphism -η:Xι-^ Xw such that π°η = πx and η is an iso-

morphism.

Proof. Let φ\ X —> X be the normalization of X. Define an equivalence

relation St on X by xx ~ x2 if and only if φ(xt) = <p(x2). Let Xw = X\0t

and let p\X-+Xw be the projection. Let π:Xw-±X be the (uniquely

determined) continuous map such that π o p = φ. Clearly π is a homeo-

morphism. Define a sheaf of ^-valued functions Θχw on Xw as follows.

For U C Xw open let Γ(U, Θχw) = {foπ\fe Γ(π(U), Θc

x)}.

By our earlier remarks, if Var (A) = V is an affine open in X and

ψ-\V) = Var(B), then (π-\V), 0χvl-HV)) - Var (+

BA). Hence π is finite

and birational.

To see that Xw is separated suppose a, β: Y -> Xw are morphisms.

Then {yeY\a(y) = β(y)} = {yeY\πoa(y) = πoβ(y)} is closed in 7. We
also note that Xw is weakly normal. For if U c Xw is open and / is c-

regular on U then /ΌTΓ"1 is c-regular on π(U), where π"1 is the topolo-

gical inverse of π. Hence / = /Ότr"1oτr is regular on U.

Finally, suppose (Xl9 π^) is another such pair. Then there exists a

unique continuous map η: Xx —> Xw such that π o η = πx. Since Xx is weakly

normal, η must carry regular functions on Xw to regular functions on X{

i.e. 7] is a morphism. Then η is an isomorphism by (2.8).

The pair (Xw, π) constructed in (2.9) is called the weak normalization

of X. We could have defined it by mimicing the construction of the

normalization of X. That is, cover X by affine opens Var (A%) and show
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that the affine varieties Var (+A,) can be glued to obtain a variety Xw

with the specified properties. However, the function theoretic approach

enables us to quickly obtain results which seem obscure from the algebraic

point of view. Towards this end we prove the following lemma.

LEMMA 2.10. Let X be a variety, A k-υalued function φ on X is c-

regular if and only if its graph Γφ is closed in X X A1.

Proof. Suppose that Γφ = {(x, φ{x)) \ x e X) is closed in X X A\

Since any proper closed subset of A1 is a finite set of points, to see

that φ is continuous it suffices to show that φ~\a) is closed for each a e k.

Now Γψ Π X X {a} -> X is a closed mapping. Hence φ~\a) = px(Γ9 Π X X

{a}) is closed in X and φ is continuous.

To see that φ is oregular it suffices to assume that X = Var (A) is

a non-singular irreducible affine variety. Thus A is a regular ring and

XX A1 ~ Var (A[t\) where A[t] is again regular (see [13], (17.J), p. 126.)

By assumption,

is a closed mapping and hence Γφ is an irreducible closed subset of X X

A1 of codimension one (since Γψ is homeomorphic to X). Let Pa A[t]

be the height one prime defining Γ9 and let p = P Π A. Since P A ^ ] is

a height one prime in the UFD Ap[t] it must be principal. Hence replac-

ing X by a non-empty affine open we may and shall assume there exists

a prime F in A[t] such that Γ9 is the zero set of F in X X A1.

Say F — a0 + axt + + art
r, at e A, ar Φ 0. Then the discriminant

D(F) of F is non-zero in A (since ch k = 0) and if D(F)(x) Φθ (xe X), then

F x = αo(x) + αj(x)ί + + αr(x)Γ has r distinct roots in k. Since Γ p

meets each fibre {x} X A1 in precisely one point we must have r = L

Hence ^ = —aQlax on Xαi. Thus by (2.6) ψ is regular on X

Conversely, suppose that φ: X-± A1 is c-regular. Let π: X-* X be the

normalization of X Then ^OTΓ. X — ^ 1 is regular. Hence Γφoπ is closed

in X X A1. Since Γ X I: X X A1 -+ X X A1 is a closed mapping and Γ9 =

7r X lCΓ^) we see that Γ p is closed in X X A\

COROLLARY 2.11. 7//:X-> Y is a morphism of varieties and (Xw,τ),

(Yw, μ) are the weak normalizations of X and Y respectively, then there is

a unique morphism fw: Xw —> Yw such that μ°fw = /or.
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Proof. Let fw be the unique continuous map such that μ°fw = /or.

We wish to see that fw carries regular functions on Yw to regular func-

tions on Xw. For this it suffices to show that / carries c-regular functions

on Y to c-regular functions on X. Let U C Y be open and φ: U—>k be

c-regular. Then Γφ is a closed subset of U X A\ Since g = f\f-HU) X 1:

f~λ(U) X A1 -> U X 41 is a morphism, g-^Γ,) is closed in f~\U) X 41. Now

g-\Γψ) = Γ f β / so that 90/ is c-regular on f'ι{U) by (2.9).

COROLLARY 2.12. If φ is c-regular on X and Y d X is closed, then

φ\γ is c-regular on Y.

Proof. Since Γψ\γ = Γψ Π Γ x i 1 and Y X A1 is closed in I x ^ ί 1 it

follows that Γψ\γ is closed in Y X 4̂1. Hence φ\γ is c-regular by (2.10).

COROLLARY 2.13. Suppose X and Y are weakly normal varieties. Then

X X Y is weakly normal.

Proof. It suffices to assume that X and Y are affine varieties and

show that Γ(X X Y, (Pxχγ) = Γ(X X Y, Φe

zx7).

Let φ: X X Y-> & be c-regular and let U = X - S(Z), V = Y - Sf(Y)

so that £>|c/XF is regular. Let {U^r

i=1 and {V^J^ be affine open covers of

U and V respectively. For each x e X let φx: Y ~> k be defined by ψx{y)

φ{x,y). Since φ\{x]χγ is c-regular by (2.12) and Y is weakly normal we see

that φx is regular on Y. Similarly for each yeY define a regular function

φ"\X-»khγ φy(x) = φ(x,y).

For a fixed i, consider the collection {φx}xeUi of regular functions on

Y. We wish to see it spans a finite dimensional subspace of Γ(Y, Θγ).

Since V = ^Js

j=1Vj is dense in Y and the restriction map Γ(Y, Θγ)-+

Γ(V,(PY) is injective it suffices to show that {^l^^e^ spans a finite dim-

ensional subspace of Γ(V,(PY). Now for each j , Ut X V3 is affine and

ψ\UίXV. e A, (x) Bj, where A, = Γ(Ui9 Θx), B3 = Γ( V̂ , Φr). Hence K|Fy},eετ

spans a finite dimensional subspace of B3. As the canonical map

Γ(V, Θγ) —> Bt X - - - X Bs is injective we may conclude that {φx\v}xeui spans

a finite dimensional subspace of Γ(V, Θγ). Hence {ψx}xeUi spans a finite

dimensional subspace of Γ(Y, Θγ). Since i was arbitrary

r

{ψχ}χeu = U {ψχ}χeui
i = l

spans a finite dimensional subspace Ψ* of /"(Y, Φγ).

For 3/ e Y let τv: Ψ* —> k be evaluation at y. By a lemma of Palais
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([17], Lemma 3.1) there exist yl9 -,yn in Y such that τvi,

f* and if ζu -,ξn is the dual basis for "Γ then φ\Uxγ = ΣΓ-i^ 1"® £f

But φ — Xϊ-i ̂ y i ® & * s globally defined and vanishes on the dense open

set U X Y oΐ X X Y and hence must be identically 0. Thus φ = 2*=i ̂ y ί

(g) ξt and ̂  is regular on X X Y.

Let Ήx denote the sheaf of continuous ^-valued functions on a variety

X. An interesting way to view the germs of c-regular functions at a

point is given by the following:

PROPOSITION 2.14. (Dx>x is the integral closure of ΘXfX in ^ Z i i .

Proof. We first assume that X — Var (A) is irreducible, normal and

affine and that a continuous function φ:X->k is integral over A. Let

K denote the quotient field of A and let n = [K(φ): K],

Let F(t) be the minimal polynomial of φ over K. Since A is normal,

F(t) e A[t]. We claim that deg F = n = 1.

Let Y = Var (A[φ\) and let π: Y—• X be the morphism induced by the

inclusion A C A[φ], By (2.1) we can find a non-empty open set U d X

such that for each xeU the fibre π~x{x) consists of n distinct points.

Let x e U and let {yί9 , yn} = TΓ"1^). Then there is an element b e A[^]

such that 6(3>i), , b(yn) are distinct. But b = a0 + axφ + + αm£>m>

α ^ i , m < n and ^(yz ) = ^(x) each £ = 1, , n so that b(yt) = ao(x) +

ax{x)φ{x) + + am(x)φ(x)m each i = 1, , n. Hence n = 1 and there

exists an ae A such that α + φ = 0. Then p e A . Thus A is integrally

closed in Γ(X, <gz).

In the general case, let X be an arbitrary variety and let π: X —• X

be the normalization of X Suppose that xeX and /", € ̂ XyX is integral
over ΘXtX. Then there is an affine open neighborhood U = Var (A) of x

such that /: U->k is continuous and integral over A. Then/Όττ: π~ι(U)

—> β is continuous and integral over A = Γ(π~ι{U), ΘΣ). Now π~\U) is

an affine open in X and its irreducible components are disjoint and hence

open so that foπ is regular on each component by the preceding remarks

and hence foπ is regular on π~\U). Hence / is c-regular on U and fx

e Θx,x.

We now give some criteria for determining when a union of weakly

normal varieties is again weakly normal. The first result (2.18) is based

on a Mayer-Vietoris sequence for ideals in a ring and is proven for

complex spaces in [2]. Proposition (2.19) generalizes that result.

Let I and J be ideals in a ring A so that we have an exact sequence
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of A-modules:

a
(2.15) 0 > A/1 Π J • A/1® AIJ—-> A/I + J • 0

where

a(a + I Γi J) = (a + I, a + J)

and

β(a + I, a' + J ) = (σ - α' + (J + J)) .

Now suppose that X is a variety such that X = V1 U V2, where

and V2 are closed subvarieties. Consider the sequence of sheaves:

(2.16) 0 > Θx - ^ * GYχ Θ ίPF2 ^ > (PVlΓ)V2 > 0

where φ(f) = (f\Vχ,f\v2) and ψ-(g, A) = ^ | F I Π F 2 - A|FlΠF2. Clearly ψoψ == 0

but the sequence (2.16) is not in general exact. Let ^ Ί and S2 be the

sheaves of ideals defining Vx and V2 respectively.

LEMMA 2.17. The sequence (2.16) is exact if and only if Jx + j ^ 2 =

^VinFa i/ β r̂f only if JΊ + J>2 is a reduced sheaf of ideals.

Proof. Suppose U c X is an affine open and let

A = TO tfx) , I1 = TOΛ), /2 =

Then we have a commutative diagram.

where the first two vertical arrows are identity maps and the last is the

canonical map. As we remarked earlier the top row is exact. If the

bottom row is exact then γ3 is an isomorphism by the 5-Lemma and if γ3

is an isomorphism then the bottom row must be exact. Since U was

arbitrary the result follows. As / = ViΊ + h this is equivalent to the

condition that Jx + J2 be a reduced sheaf of ideals.

PROPOSITION 2.18. Let X= V1 U V2 where Vx and V2 are closed sub-

varieties.

(1) If X is weakly normal the complex (2.16) is exact
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(2) // Vx and V2 are weakly normal, then X is weakly normal if and

only if (2.16) is exact

Proof. (1) Let ft be regular on Vt (ί = 1, 2) and suppose that fι\Vlf]v2

= / 2 | F i n τ v Let π:X-+X be the normalization of X and let Vt = π"\V^

(i = 1, 2). Then X= V1 U V2 and /i°τr| f i n f 2 ==/2o7r| f inp2. Hence there

exists a unique regular function h on X such that h\Ϋi = ft <>π (i = 1, 2).

Then Λ agrees on the fibres of π and hence h = foπ for some regular

function / on X. Then f\Vi = ft (ί = 1, 2).

(2) Now let us assume that Vt and V2 are weakly normal and that

the sequence (2.16) is exact. Let Ud X be open and suppose that φ:U

-» & is c-regular. Then ^ = <p\UΓ]Vi is c-regular on £7 Π Vt (i = 1, 2) by

(2.12) and hence is regular. Since (2.16) is exact this implies that φ is

regular on U.

PROPOSITION 2.19. Let X = Xx U U Xn where each Xt is a closed

subvariety and suppose that Xt is weakly normal for each i. Further as-

sume that Xt Π Xj- = Y whenever i Φ j . Then X is weakly normal if and

only if Jγ = Jx. + Jx^...^Xi_λ (i = 2, , n).

Proof. We proceed by induction on n, the case n = 1 being trivial.

Suppose X = Xj U U Xn where n > 1 and each Xt is weakly

normal and X, Π Xj- = Y whenever i Φ j . Then X = (X, U U Xn-ι) U

Xn. By the induction hypothesis ^ U U Xn-\ is weakly normal if and

only if Jγ = ^"JΓ< + t/ j r i U...U X i_1 (i = 2, , n — 1). Combining this with

(2.18) we see that X is weakly normal if and only if

0 (ft I (7) (Ί O n\

Remark 2.20. In [16] Orecchia proves a related result. Namely,

suppose that A is a noetherian reduced ring with minimal primes

pu , pn. Suppose, in addition, that the ideals

Pi + Π h (h h = 1, , ή)

are unmixed of constant height t Then A is seminormal in C =

X X A/t)n if and only if fo + \JjΦi p3 is a radical ideal (i = 1, , τι)

if and only if (A: C) is a radical ideal of A.

LEMMA 2.21. Let X = X1 \J X2 be a union of closed subvarietίes and

suppose that Y = Xί f] X2 is weakly normal. Then X is weakly normal

if and only if each Xt is weakly normal and Jγ — J'Xx + J> x%.
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Proof. One part of the assertion follows from (2.18). Suppose then

that X and Y = Xx Π X2 are weakly normal so that JΎ = J' Xχ + J X2 and

the sequence (2.16)

0 • Θx - ^ > 0Zχ Θ Θx% - ^ Θχ^Xτ • 0

is exact (cf. (2.18)). Let U d X be an affine open and suppose φ: U Π Xι

-> k is c-regular. Then φ\Uf]Y is c-regular by (2.12) and hence is regular

on [/ Π Y. So there exists a regular function / defined on U such that

/ |^ n F = φ\UC]Y. Then the pair (<p,f\Uf]x2) defines a c-regular function on

U by (2.10) and since X is weakly normal there exists a regular function

g on U such that # U X l = φ and # U χ 2 = / U χ 2 Hence ψ is regular on

U f] Xi and since [7 was an arbitrary affine open Xx is weakly normal.

Similarly, X2 is weakly normal.

(2.22) Recall that if x e X the Zariski tangent space TXtX is defined by

TXfX = Homfc (mxlml, k) where mx is the germs of regular functions vanish-

ing at x. We shall identify TXjX with Derfc (ΦXfX, k) via the canonical

isomorphism. If Y c: X is a closed subvariety and J^ r is the ideal sheaf

defining Y, then for a point x e Y w e have Derfc {ΘY)X, k) equal to the sub-

space of Der* (ΘXtX, k) consisting of all derivations vanishing on J>γ,x.

So we have a natural inclusion TYtX c: TXfX.

PROPOSITION 2.23. Let X = Xι U U Xn be a union of closed sub-

varieties and assume that Xt Π X} = Y whenever ί Φ j and Y is weakly

normal.

(1) X is weakly normal if and only if each Xt is weakly normal and

*s Xi ~Γ <s XiΌ - υXi-i — <s Y \ ι — "9 ' ' ' 9 n)

(2) Suppose in addition that Y is non-singular. Then X is weakly

normal if and only if each Xt is weakly normal and TYfX = TXifX Π

Tz1χ}^uχt-uχ f°r a l 1 x€ Y(ί = 2, . . , n).

Proof. The first assertion follows from (2.21) and the induction argu-

ment of (2.19).

Suppose then that Y is non-singular. It suffices to see that for any

i between 2 and n, J'Xi + J^χlU...UXi_1 = <fγ if and only if Tγ>x = TXux Π

Tx^..^Xi_x,x for all xeY. Let xe Y. Then TYfX = Derfc (ΘX,JJΎ,X, k) and

TXitX Π ΓXlU...ux<_ l iX = Derfc (ΘxJJXi>x, k) Π Όerk(ΘxjyXlΌ...ϋXi_uX, k) s

ΦxjyXitX + y^u-.u^-i,*, k)> N o w JSXiιX + / J l U . . . U J i _ 1 ( , = Jr

YtX and

y.x is a regular local ring. Then JXttX + ^ ^ . . . u ^ , , , , = JYtX if and
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only if C = ΘxJJXux + ^x^..^Xi_x,x is regular if and only if dim* (TXitX

Π TXlϋ...ΌXi_liX) = (KruΠ) dim C if and only if TXux Π TXlΌ...ΌXi_ltX = TYtX.

At this point we would like to establish the correspondence between

the sheaf of c-regular functions on a complex algebraic variety and the

sheaf of c-holomorphic functions on the associated complex analytic space.

First we need to establish some notation (see [11] for a more detailed

description).

If (X, 0z) denotes a complex algebraic variety we let (Xh, ΘXj) denote

the associated complex analytic space so that ΘXh is the sheaf of holo-

morphic functions on Xh. We let /: (Xh, d)Xj) —> (X, Θx) denote the canonical

morphism of locally ringed spaces. Since the point sets of X and Xh are

identical we will often identify them. When we say a subset of X is open

(resp. closed) we mean with respect to the usual topology. When we say

a subset of X is Z-open (resp. Z-closed) we mean with respect to the

Zariski topology. Let ΘXn denote the sheaf of c-holomorphic functions on

Xh as defined in the introduction.

PROPOSITION 2.24. With notation as above, the canonical morphism

f*Φx —• ΘXn is an isomorphism. In particular, X is weakly normal at a

point x if and only if Xh is weakly normal at x.

Proof. If U is open and V is any Z-open containing U then we have

a map of C-algebras:

Γ(V,ΘX)—>Γ(U,(9<Xh).

Since if <p: V-> C is c-regular then its graph Γψ is Z-closed in V X C and

hence Γ9 is an analytic subset of V X C so that ψ is c-holomorphic on

V (see [2], Remark 1.4) and φ\υ is c-holomorphic on U.

Hence we have a canonical map:

Γ(V,ΘX) (X) Γ(U,(PXh) >Γ(U,ΘXh)
Γ(V,ffχ)

Thus there is a canonical morphism:

Suppose x e X is arbitrary. We would like to see that (f*Θc

x)x -> ΘXn%x

is an isomorphism. Since this question is local in nature we may assume

that X a Cn is affine and embedding Cn in Pn we have xeXcz X where

X is a protective variety and X is an affine Z-neighborhood of x. Now
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ΘXh is a coherent sheaf on Xh so that by twisting up if necessary we may

and shall assume that @XhfX = ΘχhtX is generated by global meromorphic

functions on Xh. Suppose ψ is such a generator. Then φ is a rational

function on X and there is some open neighborhood U of x on which is

c-holomorphic.

Let A = ΘXtXy B = 6^Λ,X so that we have A C JB is a faithfully flat

map of noetherian local rings (see [18]). Then ψ is in the total ring of

quotients of A and B[φ] == A[p] ®^ J5 is a finite JB-module. By faithful

flatness, if l,φ, - ,φr generate B[φ] as a 5-module they will generate

A[φ] as an A-module. Hence ψ is integral over A.

Let ; r :X->Xbe the normalization of X. Replacing X by an affine

Z-neighborhood of x and cutting down U if necessary, we may and shall

assume that there is a regular function / on X such that f\π-HU) = ψ ° π\π-Hυγ

Let F : X X X-> C be defined by F(y, -ε) = f(y) - f(z). Let F denote

the Z-closed subset of X X X consisting of all points (y, z) such that π(y)

= φ ) . Then F vanishes on Y f] π'\U) X π'^U). Hence if Y, denotes

the union of those irreducible components of Y which meet π~\U) X

π~\U) we have F\Yl — 0. Moreover, if Y2 denotes the union of the re-

maining components then (x, x) & π X π(Y2) so if d:X~>XχX is the

diagonal map V — Δ~\X X X — π X π(Y2)) is a Z-neighborhood of x. Then

whenever y,zeπ~\V) and π(y) = π(z) we have f(y) = f(z). Thus there
exists a c-regular function g on V such that goπ — f\π-HV). Hence g\Uί)V

= ^ n F and ^ e ^ .

Then the ΘXhiX-module generators of ί̂ ftfJ. are in Θc

XfX so that we have

a surjection.

But this map is clearly injective (since ΘΣhiX is flat over ΘXtX) and hence

{f*Gc

x)x -> ̂ χft,Λ is an isomorphism.

In particular, X is weakly normal at x if and only if 0ZtX = ΘXtX if

and only if

if and only if Xh is weakly normal at x.
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§3. Some examples

Using the results of section 2 we offer some methods of construction
of weakly normal varieties which arise from the complex space theory.
The method of (3.1) was first observed by Mochizuki [14] in the case where
X is nonsingular and was generalized in [2]. The constructions of (3.2)
and (3.4) also appear in [2]. We include only the affine version of the
multicross here. We will further investigate this generic type singularity
for weakly normal spaces in a future paper.

As before, all varieties are taken over an algebraically closed field k
of characteristic 0.

PROPOSITION 3.1. Let F = (/j, ,fn): X-+ An be a morphism and as-

sume that X is weakly normal Then the variety Y = X X {0} U ΓF is

weakly normal if and only if (fu , fn)Φz is a reduced sheaf of ideals.

Proof. Since X X {0} and ΓF are both isomorphic to X and hence

are weakly normal we can appeal to (2.18). Then Y is weakly normal

if and only if / I x ( ( ) ) + J ΓF is a reduced sheaf of ideals. Let yu , yn

be affine coordinates on An. Then

^JΓXW = {y» , yn)®xxAn and JΓF = (3Ί - Λ, , y» -

so that yxx{0} + Jί

ΓF = (yly ,y»,Λ, ,/J^χ x^. But this is a reduced
ideal sheaf if and only if (/j, , fn)Θx is a reduced ideal sheaf and the
assertion follows.

Suppose that Wu , Wp are linearly disjoint linear subspaces of An

and let W = Wγ U U Wp. In the complex space theory W is said to
be a normal crossing at the origin. By a homogeneous change of co-
ordinates we may assume that

Wt = { x \ x i t j = 0 , j = 1 , , St} w h e r e x l t ί , , x P ι S p , x p + ί , - - - , x q

are coordinates for An.

PROPOSITION 3.2. The normal crossing W = Wx U U Wp is weakly

normal.

Proof. Let W(r) = W1 U U Wr (1 < r < p) and assume that Wt =

{x\xίfj = 0, j = 1, -,8t}. We proceed by induction on r to show that if

Γr) is the ideal defining Wir) then Γr) = (xί>h * r J r | l <jt <st,l< i< r)

and W(r) is weakly normal. The assertion is trivial for r = 1 so assume
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that 2 < r < p and that W{r'υ is weakly normal with J ( r- 1 } as described

above.

Then I(r) — J^-1* n (xrtk\l < k < sr) is a homogeneous ideal. Suppose

that a homogeneous polynomial / of degree d is in Γr\ Then

f — y 1 Π r " 1 ' 1 . γaP,spγ«p + l . . . /v-«3
/ — Z_J α ( α ) ^ l , l Xp,Sp Xp + 1 XQ

I«I =d

where |α| = α l f l + + aPfSp + ap+1 + + aq. Since fe (xr>li \l<k<sr)

we must have α(β) = 0 whenever 2i r

=i^ r, f e = 0. Since fe Γr-χ) we must have

G(«) = 0 whenever 2]$=i (xitJ = 0 some i = 1, , r — 1. Thus

fe (xίtjι - - xrJr 11 < j t < si91 < i < r)

as desired. Since Γr) is homogeneous,

J ( r ) = ( x h j l « r i i r | l <jt < s ί f l < ί < r ) .

Now X(r~υ is weakly normal by the induction hypothesis. Since

I ( r - 1 } + (xr, fc |l < k < sr) is a reduced ideal, W(r) = Wr~l) U Wr is weakly

normal by (2.17) and (2.18).

DEFINITION 3.3. Let I = {Tl9 , Γp} be a collection of disjoint subsets

of {1, , n}. Let T[ = U w ŷ (i = 1, • ,p) and let

Vt = {x 6 i4n I xΛ = 0 V a e T-} .

The variety V, = Vi U U Vp is said to be a multicross of type I.

PROPOSITION 3.4. The multicross Vτ of type I is weakly normal.

Proof. This is a direct consequence of (2.19). For let It = (xa\ae T-)

(f = l,.•.,/>), e 7 = ( x β | α e U ? - i ϊ ΰ . Then I, + Γ W /j- = e/ (i = 1, ,p),

since (^ | ̂  e Γ€) c Π ^ - f r

PROPOSITION 3.5. Let π: An -> ̂ ίw+p 6β defined by π(uu , wn_1? y) =

(wj, , Mn_!, υ2, uγv, , wpu) where 1 < p < n — 1. Then V — π(An) is

weakly normal.

Proof. Since π: An -* V is the normalization of V it suffices by (2.2)

to see that if f(u, v) agrees on the fibres of π then / comes from a regular

function on V. Let B = k[uu , un_u v] and let A denote the &-subalgebra

generated by uu , un.u v\ u,v, , upv.

Suppose feB agrees on the fibres of π. Write / = ΣJLoftίΦ*, 8t^

k [ u u - •', u n ^ ] . T h e n / ( 0 , α p + 1 , - - , a n , β ) = / ( 0 , α : p + 1 , , a n , - β ) a l l a i 9 β e k

implies that
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Σ gt(O, up+u , un)υ* = Σ (-l)'ft(O, up+ί, , un)υ*

in k[up+1, - - -,un,v] and hence ^ ( 0 , up+1, , wn) = 0 whenever £ is odd.

But then

f=Σ
£ even

is in A since &(w) - g(0, up+l9 , un) e (ul9 , wp)£ <= A.

EXAMPLE 3.6. The union of non-weakly normal components can be

weakly normal.

In A\ let H = {x\xt = x2 = 0} and let W = f(A2) where f(u,v) =

(u, uv, v2, u3). Consider V = H U W. ' Let ^ and ^52 denote the ideals

defining H and VF respectively so that I = ^ (Ί 5̂2 is the ideal defining

V. Then A = k[xu x2, xΛ, x4]/7 is the affine coordinate ring of V and its

normalization B = ̂ [x3, x4] X k[xl9 xjxi] is the product of two polynomial

rings over k.

Suppose an element (/, g) of B lies in + A, i.e., f(a2, a3) = g(0, a) for

all aek.

Then g lies in the &-subalgebra of k[xu x2/#i] generated by xl9 x29 x3 =

(x2lxi)2 and x4 = {x2\x^f and we may consider (/, g) as an element of A/^

X A/$β2. Recall the exact sequence of (2.15)

0 > A Λ A ^ χ A f t Λ ^ + ¥2 >0.

Now ?βi + ψ2 = (xi, x2, x\ — xl) is the ideal defining W Π H and since

f(a2, α3) = ̂ (0, α) for all aek we have (with the appropriate identifications)

/ — g e $βχ + φ2. Hence (/, g) = αr(/ι) for some Λ e A and A is weakly normal.

However, W is not weakly normal. Its afπne coordinate ring is the

&-subalgebra of the polynomial ring k[u, v] generated by u, uv9 υ2 and vz

and k[u, v] is its normalization. Since k[uy uv, v2, υs] C k[u, v] fails to satisfy

condition 3 of (1.4), W is not weakly normal.

EXAMPLE 3.7. If B is the normalization of a weakly normal afHne

ring A, then B/A can have embedded primes.

Let u, x, y, z, w be transcendentals over k, let C denote the polynomial

ring k[u9 x, y, z9 w] and let & = (x2z — w2

9 u — w), p2 = (w, x, y). Let A =

C/pi ίΊ p2 Since pi + p2 = (u9 x, y, w) is prime, C/pj is weakly normal by

(3.5) and C/p2 is normal, A is weakly normal by (2.19). Then B =

k[x,y, w/x] X k[z9 w] is the normalization of A and (A: B) — (x, ΰ, ϊD)A =

((x, 0), (x(w/x)9 0), (x(w/x)9 w))B = (x) x k[z9 w] (Ί ^[x, y, w/x] X (α;). Notice
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that the prime ideal P = k[x, y, w/x] X (w) contracts to p = (ΰ, x, y, w)A

and this properly contains (x, ΰ, w)A. In lieu of the exact sequence of

A-modules:

0 • AI(A: B) • B/(A: B) • B/A • 0

we see that p is an embedded prime of BjA. One sees that p — (A: (0,1))

and 5(0,1) = (0, 0) e A while y β (A: B).

More generally, suppose X = Var (A) is a weakly normal affine variety

with normalization π: X = Var (B) —> X Suppose that X has two irreduc-

ible components W and Z, that Z is normal, W Π Z is irreducible and

properly contained in some component of N(W), the non-normal points

of W. Then N(X) = N(W). Let g be the regular function on X such

that ^|ff-i(Wr) = 0 and g\π-HZ) = 1 and let h be a regular function on Xsuch

that ft, vanishes o n f f ί l Z but not on any component of N(W). Then (h o ττ)g

is c-regular and hence regular on X but /ι is not in any minimal prime

of (A: B). Hence B\A has embedded primes.
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