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TERNARY QUADRATIC FORMS AND

SHIMURA'S CORRESPONDENCE

PAUL PONOMAREV*

Introduction

In his paper [11] Shimura defined a correspondence between modular
forms of half integral weight and modular forms of integral weight. To
each pair (t, f(z)), consisting of a square-free integer t > 1 and a cusp form
f(z) = Σn-i a(ή)e2πίnz of weight */2 (ιc odd, > 3), level N (divisible by 4) and
character χ, he associated a certain function f(t)(z) (Ft(z) in Shimura's
notation). He showed that f(t) was an integral modular form of weight
K — 1 and character χ2, provided / was a common eigenfunction of the
Hecke operator T*χ(p2) for certain primes p\N. Furthermore, he showed
that f{t) was a cusp form if K > 5. He conjectured that the level of f(t)

could be taken as iV/2. Niwa [6] verified this conjecture for K > 7 by
constructing a kernel function for the "lifting" />-*/(1). In particular his
approach obviates any assumption on eigenfunctions. The dependence on
t of the correspondence f*->f(t) can be circumvented if / is a common
eigenfunction for all T*χ(p2). In that case Shimura showed that f(t)(z) =
a(t)F(z), where F is independent of t. This allows one to define a "lifting"
/1-> F which we call the Shimura lifting.

In this paper we determine the effect of Shimura's correspondence on
the theta series associated to certain positive definite ternary quadratic
forms. These quadratic forms are associated to certain maximal lattices
and their duals (see § 1). Let L be one of these lattices, with ambient
space V, and let Θ = θ(z, L) be the associated theta series. In § 5 we ex-
press θ(t) as an explicit linear combination of theta series associated to
maximal lattices from a quaternion algebra 21 which is naturally paired
with V. Our approach is purely arithmetic. It is based on the fundamental
idea of Eichler ([1], Chapter IV) that the effect of a Hecke operator on the
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theta series coming from a similitude genus ("Idealkomplex" in Eichler's
terminology) is the same as a certain "Anzahlmatrix" which is defined in
a purely arithmetic way. Following Rallis [10], we call this "Eichler's
commutation relation." In § 4 we show that the Anzahlmatrices associated
to the lattices L are "reduced" Brandt matrices associated to a quaternion
algebra 21. This, combined with the commutation relations, allows us to
explicitly determine θ(t\ The same approach can be used to evaluate the
effect of the Doi-Naganuma lifting on theta series. The details will appear
elsewhere.

§ 1. Preliminaries

Let V be a nondegenerate quadratic space of dimension n over Q and
q: V->Q the quadratic mapping on V. The symmetric bilinear form B
associated to q is given by:

B(v, w) = q(v + w) — q(v) — q(w) for u, w e V.

A similitude of V is an element σ e GL(V) such that q(σ(v)) = aσq(v) for
every i eV, where aσ e Qx is independent of υ. We call aσ the norm of σ
and denote it by n(σ). If dim V is odd, then r e Qx is the norm of a simili-
tude ^ r is a square. An orthogonal transformation is a similitude of
norm 1.

By a lattice on V we will mean a Z-lattice in V of rank n. The dis-
criminant Δ{L) of a lattice L on V is defined by:

Δ(L) = det [B(vίf Vj)] ,

where {u*} is a Z-basis of L. The norm of L is the positive rational number
n(L) which generates the Z-span of all q(υ), v e L. The reduced discrimi-
nant Δ\L) is defined by:

A'(L) = det [n(Ly>B(vi9Vj)] ,

where {vt} is a Z-basis of L. It is clear that Δ\L) e Z. A lattice L on V
which is maximal among all lattices on V of norm r is called r-maximah

The notions of discriminant, norm and reduced discriminant all carry
over in the obvious way to Z^-lattices on Vp = V®QQP, p a rational
prime. Depending on the situation, they may be regarded either as frac-
tional ideals of Qp or powers of the prime p. For a lattice L on V we
set Lp = L ®z Zp. Two lattices L, M on V are said to be similar, or in
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the same similitude class, if σ(L) — M for some similitude a of V; they

are in the same similitude genus ("Idealkomplex" in the sense of Eichler

[1]) if Lp, Mv are similar for all p. It is well known that the number of

similitude classes in a similitude genus is finite ([1], p. 79).

An integral quadratic form in n variables is a homogeneous polynomial

/ = f(Xl9 , Xn) of degree two with coefficients in Z. The discriminant

of / is taken to be the determinant Δ — Δ(f) of the matrix

A =

We always assume A is nonsingular, i.e. Δ{f) Φ 0. We note that A is an

even matrix, that is, it has integer entries and is even along the diagonal.

The level of / is defined to be the least positive integer N such that NA"1

is even. We put A* = NA'1 and denote by /* the integral quadratic form

associated to A*. By definition, /* is a primitive form, called the primitive

adjoint of /. It should be noted that N\Δ is not necessarily true when n

is odd, since ΔA1 need not be even (cf. [1], Satz 10.3). Of course, it is

true that JV|2J. Moreover, since every Z2-lattice has a one-dimensional

orthogonal component when n is odd ([1], p. 48), it is always true that 2\Δ,

4\N.

Two integral quadratic forms /, g in n variables are equivalent if one

can be obtained from the other by a linear change of variables with integer

coefficients and determinant ± 1 . Equivalent forms have the same dis-

criminant and level. To each similitude class {L} of lattices on V we can

associate an equivalence class {fL} of integral quadratic forms by setting

(1) fL(Xu •••,Xn) = n(L)->q(± XiVi) ,

where {i J is a Z-basis of L. It is clear that fL is primitive and Δ(fL) =

J'(L). If q is positive definite, then fL, fM are equivalent ^ L, M are similar

(cf. [8], p. 33). The level of L is defined to be level of fL. Let U be the

dual lattice of L with respect to B. It is clear that

From now on we assume that n = 3. Then V is similar to the pure

part of some quaternion algebra SI over Q, the quadratic form being the

reduced norm N (cf. [1], § 5.2). Accordingly, there is no loss of generality

in taking V= {ae%\T(a) = 0}, where T is the reduced trace on St. Then
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B(a, β) = — T(aβ), the similitudes of V are the mappings ξ »-• caξa~\ c e Qx,

a?e2lx, and the orthogonal transformations are those with c = ± 1 . Of

course, V is positive definite {=} 21 is definite.

To determine all maximal lattices on V is suffices to determine all

those having square-free norm. This corresponds to determining the 1-

maximal and p-maximal lattices on Vp for each prime p. Let d be the

product of all finite primes p such that 2ΪP is not split. For p\d we define

an Eichler order to be any order €)p of 2ίp such that

O £ fZ* ZΛ .v ipZp Zv\

An Eichler order £)p has a unique two-sided prime ideal

OJ LpZp pZp,

From § 2 of [9] we obtain the following classification of maximal lattices:

If p I d: ( i ) Lp is 1-maximal & Lp = {αp e Vp| 2V(αp) e Zp} = D p Π Vp,

where O p is the unique maximal order of 2IP.

(ii) Lp is p-maximal & Lp = {ap e Vp\p\ N(ap)} = ψΠVpy where

5̂ is the unique two-sided prime ideal of Op.

If p\d\ (iii) Lp is 1-maximal (=$ Lp = O p Π Vp, where D p is a maximal

order of 2ίp.

(iv) Lp is p-maximal & Lp = Σβ Π Vp, where 5β is the two-sided

prime ideal of an Eichler order O p of 2IP.

The corresponding reduced discriminants Δp and levels Np are:

f(4) i fp = 2

l(p)

ί(8) if p = 2
(ϋ),(iv) 4 = (2p), ivp= . /

U P ) ύ P Φ 2

(iii) 4 = (2), Np = (4).

We observe that the lattices of type (i) are paired naturally with those

of type (ii). If Lp is of either type, then Mp = {ap e Lp\p\(N(ap)IN(Lp))} is

of the other type.

For p Φ 2 Mp is similar to L*, so this pairing is ordinary duality.

For p = 2 it is not the dual pairing, since the level is changed. Indeed,



TERNARY QUADRATIC FORMS 127

a lattice L2 of type (i) is similar to its dual L\. In accordance with this

pairing, we introduce the notion of * ̂ -transform" of a maximal lattice L

for any δ\d. If L is a maximal lattice on V, then L(δ) = {a e L\δ\fL(a)},

fίδ)
 =/L<5). Such a transform changes the type of the lattice at any prime

p\δ. These transforms are special cases of transformations introduced by

Watson [13] which do not increase the class number. In the present case

it is clear that two maximal lattices L, M are similar £Φ Dδ\ M(δ) are

similar, which means the class number is actually unchanged. The primi-

tive adjoint of a form is another example of a Watson transformation

which leaves the class number unchanged. However, the dual of maximal

lattice need not be maximal. For example, the dual of a lattice of type

(iv) is similar to the trace 0 part of an Eichler order, hence non-maximal.

From above we see that if L is a maximal lattice on V, then L has

level 4m, where m i s a square-free multiple of d. The converse is not

true. However, it can be shown that any lattice on V with such a level

is similar to one gotten from the trace 0 part of an order which is locally

either maximal or Eichler by taking a finite number of ^-transforms and

duals. The details will appear elsewhere. In this paper we will only con-

sider lattices which are similar to ^-transforms of lattices L of the fol-

lowing two types:

(2) I. L = O Π V for some maximal order O of 81 .

(3) II. If d is odd, then L = (2dMψ\ where M is of type I.

The lattices of type I are simply the 1-maximal lattices on V. If L is of

type II, then Lp = Mp = Ώp Π Vp for p\d but

(4) I f c

In particular, such a lattice has norm 1 but is not maximal. The reason

for choosing L in this form when d is odd will become apparent in the

next section. We note that the lattices of type I have discriminant 2d2,

while those of type II have discriminant 32d2. It is clear that a lattice

of reduced discriminant Δ is similar to a d-transform of a lattice of type

I, type II, resp. & 2d\Δ\2d\ 32d|J|32d2, resp. In either case, the total

number of similitude genera with such reduced discriminants is 2e, where

e = the number of primes dividing d.

If L is of type I, then the maximal order £> such that DΠ V = L is
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uniquely determined ([9], p. 585). Let G be the similitude genus contain-

ing the lattices of type I. Then the number of similitude classes in G is

equal to T, "the type number" of 2ί, that is, the number of isomorphism

classes of maximal orders of Si ([9], p. 586). It follows that any similitude

genus obtained from G by taking ^-transforms and duals also has T simili-

tude classes.

§ 2. Eichler's commutation relation for type I lattices

Let / = f{Xu X2, X3) be a positive definite integral ternary quadratic

form. Let Δ be the discriminant of / and N its level. For each integer

72 > 0 put a(n9 f) = {v e Z3\f(v) = n} and

Then θ is an integral modular form of weight 3/2, level N and character

χ(d) = (2Δjd) ([11], p. 456). For each prime number p we have a Hecke

operator Tfjp2) defined ([11], p. 450) such that if

then b(ή) = a(p2n,f) + ((-2Aή)lp)a(n,f) + pa(n/p\f) if p\Δ and

(5) b(n) = a(p2n,f) iΐ p\Δ .

In particular, b(ή) = α(4n, /) for any n > 0 .

Suppose / = /L, where L is a lattice of type I. Following ideas of

Eichler ([1], §21.3), we will show that θ\T3

NJp2) for p\Δ is a certain ex-

plicit linear combination of ^-series associated to the similitude genus of

L. The coefficients of this linear combination come from an "Anzahlmatrix"

P(p2)? which we now describe. Let C19 , Cτ be the similitude classes in

G. Choose a representative Lt e Cu i — 1, , T. Let p be a prime num-

ber. Fix i and consider the set of all Ke G such that K c Lί9 n(K) =

p27z(L )̂, and K Φ pLt if p \ d. This is a finite set with a cardinality which

depends on p but not on i. We denote this cardinality by ττ(p2). Put

τrί:.(p
2) = the number of K which are similar to L3. It is easily seen that

πi:}(p2) depends on (ί,j) but not on the choice of representatives Lί9 Lj.

Then P(p2) = [πυ(p2)] is an "Anzahlmatrix" in the sense of Eichler ([1], p.

109), where the elementary divisors (p, p9 p) are not allowed for pJ(d. We

note that our matrices are the transposes of Eichler's. For any i we have
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( 6 )

For any lattice L on V denote a(ny fL) by a(n, L) and θ(z, fL) by θ(z, L).

Set

PROPOSITION 1. (Eichler's commutation relation.) Let G be the simili-

tude genus containing the lattices of type I. Let Δ be the reduced discri-

minant of G, N the level of G, χ the character (mod N) defined by χ(d) =

(2J/d). Then

( 7 ) θG\Tξχ(p2) = P(P

2)ΘG

for any prime p\Δ.

Although Eichler's book [1] does not contain the definition of Hecke

operators for half integral weight, the above "commutation relation" is,

in principle, contained as a special case of his formula 18.20C, p. 123. For

the sake of exposition and the convenience of the reader, we present a

self-contained proof here. Since 2Δ = 4d2, a square, we must show

( 8 ) Σ πuWΦ, Lj) = a(p*n, Lt) + (^)a(n, L,) + pa{n\p\ Lt)
.7=1 \ P I

for any n > 0.

We may assume the Lt are of type I, so that Lt = ©^ Π V, i = 1, , T,

where D19 , £)τ form a complete set of representatives for the isomorphism

classes of maximal orders of SI. Let © be the set of all rational multi-

ples of maximal orders of SI. Then we have a one-to-one correspondence

between the elements ^ of © and K of G given by ® >-> ® Π V = K. Sup-

pose L is of type I, L — O Π V, O a maximal order of SI. Then the pro-

blem of determining all K e G such that K c L, AI(J5Γ) = p2rc(L) - p2, J5Γ ^

pL is the same as determining all ® e © such that S c f l , ra(ίΐ) = p2, $ =£

For any such β we must have

®q = €)q for q Φ p

®P = Pβp^pβp for some βp e SI* .

We may assume SΓP = M(2, Qp), D p = M(2, Zp). By direct computation,
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pβ;ιM(2, Zp)βp C Af(2, Zp) implies βp = cap9 where c e Q*, αp 6 Af(2, Zp) and

N(ap) = w or pw, w a unit of Zp. Since ®p ^ P©, we have

(9) ®p = pa-λ€)pap ,

where ap e ©p and iV(αp) = pu, u a p-adic unit. Multiplying ap on the

left by a suitable unit of ©p, we may assume

(10) * * = [ J ? ] ° r ^ = [ J C ] > ^ Z , 0 < c < p .

Each of these ap gives a distinct sublattice ® of © of the required type.

In particular, we have

(11) ;r(p 2 )=p + l .

Then (6) combined with (11) verifies (8) for n = 0.

Suppose L is of type I, L = O (Ί V, © a maximal order. For each

integer n > 1 let A(rc, L) = {̂  e L\N{v) = n} = {v e£)\p2 = —n}, so that

card (A(?ι, L)) = α(τι, L). For each μ e A(p2n, L) put ;r(μ, ©) = the number

of ®p such that μ e % . We say that two vectors λ, X e Lp are associates,

and write ^ ~ ^ , if ^7 = σ(X) for some orthogonal automorphism σ of Lp.

Then 7r(̂ , ©) = the number of $ϊp containing μί for any associate μl of μ.

For an integer k > 0 we write p f t | ^ if p"Λ/i e Op; we write pΛ||// if pk\μ but

pk+ίJ(μ. In particular,! || μ Φ=̂> /z is a primitive vector of £)p (or Lp). Since

pJ(J(Lp), any two primitive vectors in Lp of the same length are associates

([1], p. 60). It follows that pk\\μ<=ϊ μ~μ\ where

with m = np2(1"fe).

LEMMA. Let μ e A(p*n, L). Then

1 if μ is primitive ,

(13) ττ(μ, ©) =. 1 + ( i if P || μ >
V p /

p + 1 ί/p 2 | ^ .

Proof Suppose pfc \\μ. Taking ®p as in (9) and μ' as in (12), we see

that π(μ, D) = the number of ap as in (10) such that yl £pa~λ£)pap, i.e.

(14) p*- <
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If μ is primitive, then k = 0 and (14) holds only for

Γl 01

If k > 1, then p"'^'1 e M(2, Zv) for every ap, hence (14) holds for every ap>

and π(μ, O) = π(j?) = p + 1. Now suppose k = 1, so that m = n. Then

(14) is valid for a, = IjJ Jl. Taking ap = ΓJ ^1, 0 < c < p, we get

a\ 0 I*] , _ Γ-c
" 4 - 1 OJ p L-p

which is in M(2, Zt) & c2 + n = 0 (mod />). Thus

«C«, O) =
p

if p 17i

, L;), B4 =Proof of Proposition 1. Let us write A3 =

Note that if K e G with n(K) = p2 is similar to Lj (written K~ L3), then

a(p2n, K) = α(τz, L;). On the one hand, we have

BB
= Σ Σ

j=l K~Lj

Σ
T

V Σ Φ, Lj)
= 1 K~Lj

T

Σ<
K~Lj

Σ

On the other hand,

Σ
eJ5

(15) = Σ i + Σ

by the Lemma. Then (15) equals

Σ i +

Σ
ll

Σ
2 |

p

(16)

= α(p2n, LJ + pain/p*, LJ

a(p% Lt)

if p | ra, and

if
P I v\\f
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in which case p\μ&p\\μ, so that (16) equals

completing the proof.

a{p2n, Lt) + ( — W Lt),

PROPOSITION 2. Let the assumptions be as in Proposition 1. Then

Eichler's commutation relation (7) is valid for p\d.

Proof. We must show (cf. (5))

(17) Σ ^.j(p2)a(n, Ls) = a(p% Lt).
. 7 = 1

Suppose ® e ©, S c O and n(&) =p\ Then ® = p£), since p\d. It follows

that 7r^(p2) = δij9 the Kronecker delta. On the other hand, for p\d we

have

p2\N(μ)&p\μ ΐov μeΩt,

which implies a(p2n, LJ = a(n, Lέ), proving (17).

§3. Eichler's commutation relation for type II lattices

The remaining case for type I lattices where we don't have a com-

mutation relation is p\ J, p)(d. This occurs only if d is odd and p = 2.

As we shall see, (17) is not valid for p — 2 except for special values of τι.

For general n the right hand side of (17) involves representation numbers

of the lattice of type II associated to Lt. In this section we derive com-

mutation relations for type II lattices and, as a result, obtain the missing

one for type I lattices.

Let Lu , Lτ be lattices of type I representing the similitude classes

in G, and D{, , £)τ the corresponding maximal orders of SI. For each

lattice L of type I put

L* = (2dUYd) ,

a lattice of type II (cf. (3)). Then Lf, , L$ form a complete set of re-

presentatives for the similitude classes in G*, the similitude genus con-

taining the type II lattices. For each prime p let P*(p2) = [πfj(p2)] denote

the Anzahlmatrix corresponding to norm p2 and the system Lf, , L* (in

§5 we'll see that P*(p2) = P(p% Let 0G be the column of ^-series cor-

responding to Lf, ,L£, resp. These 0-series have the same level and
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character as those from G.

PROPOSITION 3. Suppose d is odd. Let N = 4d, χ the character mod N

defined by χ(m) = (4d2lm). Let G* be the similitude genus containing the

lattices of type II. Then

(18) ΘG*\ TUP2) = P*(p2)βG* forpψ2

and

(19) ΘGATU±) = ΘG.

Proof. If L is of type I, then L* = Lp for all p Φ 2. The arguments

used to prove Propositions 1 and 2 carry over verbatim to prove (18). It

is evident from (4) that a(4n, L*) = a(n, L), which proves (19).

The identity (19) is not the commutation relation we seek, as it does

not involve P*(4). Before stating it we need some preparatory discussion.

We may assume Sί2 = M(2, Q2), O2 = M(2, Z2). Then

<••»•" 4

By duality, the orthogonal automorphisms of Lf are the same as those

of L2: ξ H-> ±6~1f6, where ε is a unit of D2. Suppose Ke G*, Kd L*, n(K)

= 4, K Φ 2L*. Then i ί p = L* for p ^ 2 and

(20) # 2 = 2/32-
1L*/32

for some /32 e GL(2, Q). However, 2β^Lfβ2 c Lf & ^Ltβ, c L2

# Φ=> 2-λβςλL2β2

Z) L2 <=Φ L2 D 2β2L2βςτ ^ O2 ID 2β2O2β2-
1. As before, we may replace /32 by α2

e D2 with iV(α2) = 2w, w a 2-adic unit. Multiplying a2 on the left by a

suitable unit of D2> we may assume a2 is as in (10) with p = 2.

LEMMA 1. Suppose λ, X are two primitive vectors of Lf such that N(X)

= N(λ') and λ ΞΞ 7! (mod 2L2). Then λ~λ' .

Proof. We apply Kneser's criterion ([5], § 2) to the situation J5 = Lf,

a = 4, F = (^), G = (Λ0. Then Ea = Ea = 2L2. Kneser's condition (9) fol-

lows from the primitivity of λ, 7!.

For an element μ e A(4n, L*) put π(μ, L*) = the number of K as above

such that μ e K2. Then 7r(μ, L*) is the number of a2 as in (10) satisfying
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(21) 2" ιa2μ'aϊ1 e L2*

for any fixed associate μl of μ. We note that if n is represented by L*,

then -n must be a square (mod 4), so that n = 0, 3 (mod 4). For such a

value of ra let (—n/2) denote the usual Kronecker symbol.

LEMMA 2. Let μ e A(4n, L*), where n = 0, 3 (mod 4).

1 i/ μ is primitive ,

(22) *0«,L*)= l + (-γ L ) i,

Proof. Suppose μ = L ^ X ^ . Then — x2 — 4^2 = An implies that 2\x.

Moreover, μ is primitive Φ̂  (y, z) — 1. Suppose μ is primitive. Applying

Kneser's criterion, we may take

μ=Y-
0 2ή
2

Checking condition (21), we find that π{μ, L*) = 1.

Now suppose 2k\\μ, k>l. If k > 1, then all of the a2 satisfy (21), so

that τr(μ, L*) = 3 in this case.

Finally suppose k — 1. Then μ — 2 ~J° ^ , where (x, y, 2:) = 1 and

— x2 — 4yz = n. There are two cases:

(1) If 2\x, then n = 0 (mod 4) and we may take

/ = Γ 0 n/21
L-2 0 J

Condition (21) is satisfied only once for each possible n, so π(μ, L*) = 1.

(2) If x is odd, then n = — 1 (mod 4) and we may take

Γ
L
- l
- 2

We find that π(μ, L*) = 0 if -n = 5 (mod 8) and π(/i, L*) = 2 if -n = 1

(mod 8). This completes the proof of the Lemma.

PROPOSITION 4. Suppose d is odd. Let Lf, , L% represent the iso-

metry classes of type II lattices. Let n = 0, 3 (mod 4). Then

(23) Σ 4(4)α(rc, Lf) - α(4n, L?) + (^)a(n, Lf) + 2α(n/4, Lf) .
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Proof. Using the same counting argument as for Proposition 1, we

see that (23) is a direct consequence of Lemma 2.

COROLLARY. P*(4)0 G = θQ\Tξi7L(4) + 2ΘG*.

Proof. We have for any n:

(24) Σ πfj(4)a(n9 L3) = £ TΓ* (4)α(4n, Lf) = a(16n, Lf) + 2φ, Lf)

= a(4n, Lτ) + 2a(n, Lf) .

In particular, the Corollary shows that the space of theta series as-

sociated to lattices of type I is not invariant under the Hecke operator

Tfa(4) when d is odd. As a special case of (24) we have

(25) Σ π*(4)a(n, L3) = a(4n, Lz) + 2a(n/4, Lτ) if 4| n .

§4. Brandt matrices

In this section we show that the Anzahlmatrices defined in § 2 are

nothing but "reduced" Brandt matrices associated to the quaternion

algebra 21. First we recall the definition of a Brandt matrix (cf. [3], p. 138).

Let O be a maximal order of 21. Two left ©-ideals 2, &' are equivalent

if £' = 2a for some a e 2ίx. An analogous notion of equivalence can be

defined for right O-ideals. It is well known that the number of equivalence

classes of left O-ideals is the same as the number of equivalence classes

of right D-ideals, and that this number is independent of the choice of

maximal order £). Fix a maximal order D and let O = 2U , 2H be a

complete set of representatives for the left ideal classes of O. Let <O =

O1? -' ,£)H be the right orders of 2U •••,£#, resp. Since any maximal

order is isomorphic to one of the £)i9 there is no loss of generality in

assuming that Ol9 , £>τ give a complete set of representatives for the

isomorphism classes of maximal orders of SI. We note, in particular, that

T< H.

We put 2U = fi*1^, 1 < k9 £ < H, a lattice on 2ί with left order Ofc

and right order O/β If we fix k, then Zte49 £ = 1, , H, give a complete

set of representatives for the left ideal classes of OΛ. We recall that any

proper similitude of 2ί is of the form ξ >-* aξβ, a,βe%x ([8], p. 4). It fol-

lows that any lattice on 21 of reduced discriminant d2 is properly similar

to one of the 2U. Let n be a positive integer. The Brandt matrix
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corresponding to n is defined by;

(26) B(ή) = [bjfi)] ,

where bu(ή) = the number of integral left ©fc-ideals of norm n which are

equivalent to 2M. Since £*/ = &£k, it is apparent that bu(n) = the number of

left ©fc-ideals of the form 2k£a, where a e Zn and N(&kea) = n, i.e. N(oί)IN(2£k)

= n. Let //fc be the integral quadratic form associated to ί££k as in (1).

Let w4 = α(l, /w) = order of the unit group of ©,. Then

(27) bjμ) = α ( n > ^ f c ) for n > 1 ,

and if we set bke(0) = ljw£, we obtain

an integral modular form of weight 2, level d and trivial character.

As before, let Lt = Oέ Π V, i = 1, , T. Let p be a prime not dividing

d. Fix i,y < T. Any similitude of norm/?2 on Vis of the form ξ >-+ pa~ιξa,

o?e2ίx. It follows that TΓ^CP2) = the number of sublattices K C Lt of the

form K = pa~ιL5ay K Φ pLt. By the one-to-one correspondence between G

and ©, the latter equals the number of sublattices ® C £)t of the form

pa^ΏjOc Φ p£)i9 i.e. crΌ/K ^r £), (this is automatically satisfied if i ^ ; ) .

Our basic problem is to determine all a e Sίx such that

(28) pa-'&ja C Ot .

We first solve this problem in the idele group J% of 21, that is, we find all

a — (aq) e JΉ such that

(29) pά-'Ωjά C Of ,

where pα-"1©^ is the lattice on SI whose g-th localization is pa~\£)3)qaq.

For any maximal order £> put 3l(Q) = {f e Jn\f"Of = ©}, Sΐ(O) = 3i(D)

Π 2ίx. It is well known (cf. [7], p. 299) that f e 5R(β) <=) γ = rεδ, where r 6

Qx, ε = (Sί) with ε .eOJ for all g, and N(Ωδ)\d. The lattices Oδ, 2e in

number, give a complete set of representatives for the group of two-sided

ideals of D mod the rational principal ones.

Since £);, ©* are locally isomorphic, 3άoeJ% such that α " 1 © ^ = Oiβ

Then
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C £), ̂ pa-'Gjά C a^Ofy^ piάά^Y'Qμa^1 C O, => α^-1 = fβ ,

where f e 9lφj) and iVζÔ Q) = p. Hence

(30) a = r e ^ o ,

where r, e, § are as above for © = £),-. Put $0 = O,α0- 5δ = ©A Then

is a left O^-ideal with right order O*, and S) is a two-sided ideal of

with iV(S))|d. Suppose α:e2ίx satisfies (28). Then (30) implies that

(31) a e

for some r e Qx and S), such that

(32) iV(α)

Multiplying α on the left by an element of 91(0) leaves pa'^jcc unchanged.

Hence we may assume r = 1 and {£)} is a complete set of representatives

for the two-sided ideals of O^ mod the principal ones, a group of order

2e~fj for some 0 < fj < e. If we fix $ 0 and let 2) vary, then $ = 2)$0 will

range over a complete set of representatives for the right £Videal classes

with left order isomorphic to O .̂ This shows, in particular, that

(33) Σ
. 7 = 1

LEMMA. Let {$} be a complete set of representatives for the right

ideals with left order isomorphic to O .̂ Let p be a prime, p\d. Then

(34) a ( P f ΰ

Proof Multiplying each $ on the left by a suitable element of 21x,

we may assume {$} is given as in the preceding discussion. Then for each

$ we have an ideal % and an element a e % such that N(ά) — pNffi) and

pa-'Dja = ft. Suppose ^ e Si, ^ 2 e &, iV^) = piV(Si), #(**) = p i V ^ , and

= pαi"1©^. It follows that e^αf1 e 91(0 )̂, which implies

(35)

Since the two-sided ideals of Ô  are uniquely determined by their norms,

(35) => ̂ 2 , ̂  are equivalent =φ ̂ 2 - Si Then α^f1 € ̂ ^ r 1 = O, and N(a2a^)

= 1, which means a2 — εaλ for some ε e O*. This completes the proof.

PROPOSITION 5. Let p be a prime. Then
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(36) πtj(p*) = Σ bjj>) .

Proof. First supppose p\d. As ί varies over all indices such that

O^ = £)j, &M varies over a complete set of representatives for the right β«-

-ideals with left order isomorphic to £>j. Therefore, by the Lemma and

(27),

= Σ ^ ^ - = Σ bit{p).
Ot=Oj W£ OβSOj

Now suppose p\d. Then, as remarked earlier, πiό(p2) = <^ . On the

other hand, since an integral left O^-ideal of norm p is uniquely determined

and two-sided, bu(p) = 0 unless €)£ = ©* and, in that case, bu(p) = 1 for
a unique ί.

Applying Proposition 5, we see that the Anzahlmatrix P(p2) may be

obtained from the Brandt matrix B(p) as follows: First, for each j < Γ,

replace the 7-th column of B(p) by the sum of all columns with index i

such that O^ ̂  Oy. Then P(p2) is the T X T submatrix of the latter matrix

consisting of all entries with row and column index < T. In this sense,

we may regard P(p2) as a "reduced" Brandt matrix. Symbolically, we

write

(37) P(p2) = B(p) .

Of course, this reduction procedure can be applied to any Brandt

matrix B(ή) to obtain a matrix B(n) = [πtj(n2)], where

(38) πυ(n2)= Σ bjμ) .

Extending definition (38) to i > T, we see that

(39) πkj(n2) = π£j(n2) if Ofc s O, .

LEMMA. B(m)B(ή) = B(m)B(ή).

Proof. Let B(m)B(n) = (cj, ( c j = W L e t ^ ~ ; s ign i fy O« =
Then

/>« = Σ cu = Σ Σ btr(m)brAn)

T T

= 2 J Z J oίr(m)πrj{n) = ΣJ (1^
fc=l r~fc fc = l r~A;
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T

= Σ πik(m2)πkj(n2) 9 &s was to be shown.

We extend the definition of Anzahlmatrix by setting

(40) P(n2) = B(ή) for n > 0 .

PROPOSITION 6. ( i ) If (m, n) = 1, then P(m2)P(n2) = P(m2n2).

(ii) If p\d, then P(p2a) = I for all a > 0.

(iii) If p\d and 0 < a < b, then

P(p2a)P(p2b) = 2/? & P(p 2 ( α + δ - 2 f c ) ) .
k = 0

Proof Each assertion is an immediate consequence of the Lemma

and the corresponding multiplicative property of the B{m) ([3], p. 138).

§5. Shimura's correspondence

In this section we explicitly determine the effect of Shimura's cor-

respondence on theta series associated to ternary lattices of type I and

II. For each such θ(z) and square-free integer t > 1 we will express θ{t)(z)

in terms of the theta series associated to the quaternary lattices &u defined

in § 4. As a simple application, we will also be able to determine the

effect on theta series associated to ^-transforms of type I or type II lattices.

We first settle the matter of P*(p2) = P(p2).

LEMMA. Let p be a prime. Then for any i, j we have

(41) *tj(p2)wj2" - πj

Proof Applying a result of Eichler ([1], p. 110, (17.8)) and keeping in

mind that his Anzahlmatrices are the transposes of ours, we see that

(42) *</p2)ι>, = *ji(j>*)Vi ,

where υk denotes the order of the orthogonal automorphism group of Lk9

k = 1, , T. Any orthogonal automorphism of Lfc is of the form ξ i->

±or1ξa for some a e 9ϊ(Ofc). It is easily seen that [9Ϊ(OΛ): Qx] = wk2
fk-1

([7], p. 299). Then υk = wk2
fk and the assertion follows from (42).

PROPOSITION 7. Assume d is odd. Let Lu - , Lτ represent the ίsometry

classes of type I lattices, so that Lf, , L% represent the isometry classes

of type II lattices. Let p be a prime and P(p2), resp. P*(p2), the associated
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Anzahlmatrίx with respect to Lί9 , LΓ, resp. Lf, , Lf. Then P*(p2) =

Proof. Let a e 2ίx. Then

pa-'Lfa C Lf ^pa~ιL)a C L\

-ιa~xLμ 'D Lt ^paLtOc'1 C Lά .

Thus α r ^ α r 1 gives a one-to-one correspondence between elements a such

that pa~ιLfa c Lf and elements β such that pβ'^Lφ c L,. Furthermore,

it is easily seen that pa~ιLJa — pLf ^paLiOc'1 — pLό. The number of as

is πfjζp^w^J, while the number of β's is π^p^w^/K Applying the Lemma,

we get

proving the result.

Let t > 1 be a square-free integer. Following Shimura ([11], p. 458),

we define χt9 a character modM, as follows:

0 otherwise

In particular, χt(ή) = 0 if n is even. Let L be a lattice of type I or II.

We set

(43) 0(ί) = θ«\z, L) =

where A(ί)(ra) is defined for n > 1 by

(44)

and A(t)(0) is the unique value which makes θ{t) a modular form.

Let Lj, , Lτ represent the isometry classes of type I lattices. If d

is odd, let Lf, ,L£ be the corresponding type II lattices. Put

θt = θ(z, Ld = Σ α ^ y * ' - ,

fff = θ(z, Lf) = f; at(ny*", i = l, - ,T.
0
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Let ΘG = fa], ΘG* = [βf], a(t) = [at(t)]9 α*(ί) = [af(t)], all considered as column

vectors. Put

θ = θ(z) =

THEOREM 1. Let t > 1 be a square-free integer. If d is odd assume that
t = 1, 2 (mod 4). TAβfi w β Λαuβ

^« = Θa(t) .

Proof. We must show for each i that

(45) θP^Σ

Evaluating the M-th Fourier coef&cient of each side for M> 1, we
must show

(46) Σ

The proof will be by induction on the number of primes dividing M. If
M = 1 the statement is trivial. Suppose (46) is true for M and its divisors,
and let N — Mp, p a prime. There are two cases: (1) p\M or p\d, (2)
p\M and p\d.

Case (1). For any k we have

(47) Σ ^*(P2) Σ XtWaάΆPIm*) = Σ ^«(p2) Σ ^ X ^ α / O
i = l m|i¥ i = l i = l

The right side of (47) =

(48) Σ (Σ πMπa(M2))aβ) = Σ ^(N^t) ,

by Proposition 6 (i), (ii). If p is odd or p — 2\d, the left side of (47) =

(49) Σx^Σ
m\M ί = l

T
m\M

by Propositions 1 and 2. We note that (49) is also valid for p = 2 when
d is odd by applying (24) and the fact that tM2jm2 is not represented by
Lf. Then (49) equals



142 PAUL P0N0MAR2V

Σ χ ( Y I ) Σ χt{mp)ak{tMψlmψ)
m\M m\M

= Σ Xt(n)ak(tN2ln2), as required.
\NΣ

n\N

Case (2). In this case, applying Proposition 6 (iii), we see that the

right side of (47) equals

(50)

= Σ **

On the other hand, the left side of (47) equals

(51) Σ Xt(m) Σ πu(P2)cii(tMηm*) +
m\M ί=l

pίί(M/m)

(52) Σ Xt(m) Σ π^P'MtMΊm*)
m\M i=l

p\(M/m)

The evaluation of (51) proceeds exactly as in Case (1) to give

(53) Σ χt(m)ak(tMΎlnt) + Σ χt{mp)ak{tMYImψ) .
UM/) HM/)

After application of Proposition 1 and (25), (52) becomes

(54) Σ Xt(m)ak(tMYIm2) +p Σ χt(m
m\M m\M

p\(M/m) p\(M/m)

Adding (53) to (54), we see that the left side of (47) equals

n\N m\(M/p)

(55)

= ΣxMak(tNητf) + pΣπk

by the inductive hypothesis. By equating (55) with (50), the Theorem is

proved.

Assume that d is odd. Let t ;> 1 be square-free, t = 3 (mod 4). Define

ωt, a character mod dt, as follows

ωt(n) = < \ n

0 otherwise

We note that
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(56) ωt(2kή) = (-^LYχt(ή) if n is odd .

Let L* be a lattice of type II. We define a "modified" Shimura lifting
(0*)M by

(57) (0*) [ ί ] = Σ AW(ή)e2πίn* ,

where A™(0) = A(ί)(0) and

(58) Σ AW(»)B- * = (± a(tn\ L*)n

\
Replacing χt by ωt and applying Proposition 4, we can proceed as in the

proof of Theorem 1 to obtain:

LEMMA. Assume d is odd. Let t > 1 be a square-free integer, t = 3

(mod 4). Then

θLβ = Θa*(t) .

THEOREM 2. Assume d is odd. Let t > 1 be a square-free integer, t = 3

(mod 4). Then

θ® - (Θ(z) -

Proof. By (56), we have Σ o>t(n)n~s = (Σ lt(n)n's)(l - ( - f ^ - ) " 1 . It

follows that

2

Hence (θt)m(z) = (θΐ)m(z) - (-tj2)(θf){2z). The proof is completed by ap-

plying the Lemma.

If f(z) is an integral modular form of weight two and level d, then

f(2z) is an integral modular form of weight two and level 2d. In par-

ticular, Theorem 2 shows that liftings (0?)(ί) are of level 2d when ^ Ξ 3

(mod 4). This is to be contrasted with the liftings θiίy of Theorem 1, which

are of level d. On the space of integral modular forms of weight two and

level 2d we have operators U(p) defined for primes p\2d as follows:
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If /(*) = Σ a(n)e2'^, then (f\ U(p))(z) = ± a(pn)e2*in*.
n=0 n-0

From the definition (43), (44) of θ{t\ it is clear that

(59) (ftI TUpψ" = θ™I U(p) for p\2d .

In addition, for (n, d) = 1 we have Hecke operators T(n) defined on the
forms of level d. If f(z) is an integral modular form of weight two and
level d, then

(60) (/| T(2))(z) = (/| U(2))(z) + 2f(2z) .

The Hecke operators T(ή) satisfy the following commutation relation ([4],
p. 166):

(61) (θ\T(n))(z) = B(n)θ(z).

It follows that

(62) θ | T(ή) = (θ\ T(n)) = (B(ή)θ(z)) = B(ή)Θ(z)

for (n, d) = 1. We are in a position now to evaluate the liftings in the
remaining cases.

THEOREM 3. Assume d is odd. Let t > 1 be a square-free integer.
( i ) If t ΞΞ 1, 2 (mod 4),

(ii) 1/ t ΞΞ 3 (mod 4),

0$ - «5(z)α(ί) - 2Θ(2z)α*(£) .

Proof First suppose ^ Ξ 1 , 2 (mod 4). Applying the Corollary to Pro-
position 4, we have

G ϋG I U \Δ)) — ΌG

by (59), (62) and (60). The result then follows from Theorem 1.
Now suppose t ΞΞ 3 (mod 4). Applying Proposition 3 and Theorem 2,

we obtain

//>q\
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Using (60), (62) and Proposition 4, we see that (63) equals

(Θ(Z)B(2) - 20(2*) - (-^)9(*))α*( ί )

= 9(*)(P(4)α*(ί)) - 2Θ(2z)a*(t) - (—

= B(z)(a*(4t)

= Θ(z)a(t) -

as asserted.

Let δ\d, where d can be even or odd. Suppose M is similar to L(δ\

where L is of type I or type II. Let t > 1 be square-free, δί = δ/(t, δ).

Then

a(tn\ M) = a(tδn\ L) = a(tδxn\ L) ,

by the proof of Proposition 2. Let θ = θ(z, M). To determine θ{t) in this

case, one takes the character χt defined by:

0 otherwise

It is clear that Theorems 1, 2, 3 carry over to ^-transforms of type I or

type II lattices, with the congruence conditions on tδλ instead of t and

with the quadratic symbol (—tδJ2) instead of (—t/2). More precisely, let

Lί9 - -, Lτ represent the similitude classes in G. Let Mt = Lf\ ί = 1, , T.

Let Γ denote the similitude genus containing the Mt. If d is odd, let Z7*

denote the similitude genus containing the Mf. Let ΘΓ = [θ(z, ΛQ], ΘΓ* =

[θ(z, M?)], a(t) = [a(t, Mt)]9 a*(t) = [a(t, M*)]. Then we have:

COROLLARY. Let δ, ΘΓ, ΘΓ*, a(t), a*(t) be as just defined.

( i ) Suppose d is even, or d is odd and tδ = 1, 2 (mod 4). Then

θψ = θa(i) ,

θ% = Θ(2z)a(t) (if d is odd) .

(ii) Suppose d is odd, tδ = 3 (mod 4). Then

θf = θ(z)a(t) - 2Θ(2z)a*(t) ,

θ% = (θ(z) -
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§6. Concluding Remarks

The dependence on t of Shimura's correspondence φ »-* φ(t) can be cir-
cumvented if φ is a cusp form which is a common eigenfunction for all
Hecke operators T£χ(p2). In that case <p(t) = a(t) f, where a(t) is the ί-th
Fourier coefficient of φ and / is independent of t ([11], p. 453). It is natural
to call f the "Shimura lifting of φ" The theta series we have considered
are neither cusp forms nor, in general, Hecke eigenfunctions. In this sec-
tion we will consider the question of the existence of Hecke eigenfunc-
tions in the space spanned by these theta series. In addition, we will
generalize a result of Niwa's on the image of Shimura's correspondence
when d is an odd prime.

As before, let θ19 , θτ be the theta series associated to the isometry
classes of type I lattices. If d is odd let θf, —,θ$ be the corresponding
theta series associated to type II classes. Let Ω be the C-linear span of
θl9 - , ΘT9 β* the C-linear span of θf9 - ,θ$. The basic problem we must
address is whether fl, resp. Ω + Ω*9 has a basis of common eigenfunctions
for all 2ΐ!χ(p2) when d is even, resp. d is odd.

Putting ψ* = [Viδij], where the υt are as in (42), we have

for all primes p. It follows that

B{n)r = ΨΈ{n) for all n > 0 .

Then R(ή) = JΨ^B^Ψ is symmetric for all n > 0. Since {.R(n)} is a
commuting family of symmetric real matrices, there exists an invertible
real matrix C such that CBjn^C-1 is a diagonal real matrix for all n > 0
(cf. [1], p. 111). Let us write

"ft(Λ)
(64) CB^C- 1 =

i. βτ(n)\

and put fix) =

(65)

l,- ,T. Then

CΘC"1 =

From (62) it follows that ft\Ί\n) =
that

(n)ft for (re, d) = 1. For p\d it is clear
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Θ\ U(p) = Θ\ U(p) = ΘB(p) = ΘB(p) = Θ ,

from which it follows that ft\ U(p) = ft for all p\d. Hence each ft{z) is a

common eigenfunction for all T(ri)9 (n, d) = 1, and t/(p), p |d, and we have:

Σ βt(n)n- = Π (1 ~ A ( P ) P " S + P1"25)-1 Π tt ~ P'O"1 .
n = l %>\d p\d

Suppose first that d is even. Let φ = [ψi(z)] be defined by φ — CθG.

By Propositions 1 and 2, θG\Tξa(p2) = B(pjθG for all p. It follows that

φ\Tξχ(p2) - CB{p)C-ιψ, so that

(67) φλTUtf) = βi(P)ψi for all p .

In particular, some subset of {<pt} provides a basis of Ω of common eigen-

functions for all the T£χ(p2). Furthermore, if φ^z) is a cusp form, then its

Shimura lifting must be ft(z). We put

(68) E(z) = Σ I>ΓW .
i = l

Then E\Tgz(P2) = E for p\d, and for p ^ d we have

E\τ»χ(p2) = Σ ^Γ l Σ

- Σ Σ vj^itjtyj - Σ (P + i)^"1^ = (P +
y * y

by (6) of § 2. We conclude that E(z) lifts to the Eisenstein series

(69) E2(z) = §
(m,d)=l

Since ^ — θό is a cusp form for all ί, j , dt — M~ιE is a cusp form for each

i, where M = Σ J vJι- K follows that the subspace of cusp forms in Ω is

of codimension one. Without loss of generality, we may assume ψx — E,

/Ί = E2. Then any φίΦ E must be a cusp form.

Now suppose d is odd. Let C, ψ be as above, and put φ* = [φf(z)]

= CθG*. Then for each i we have

= βt(p) \V<] for p Φ 2 .
L * J

Furthermore, by Proposition 3, and the Corollary to Proposition 4, we

have
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0]ΓB(2) -2JΊΓC 0

cJL i o JLo c
Jβ,(2) - 2

- 2

0
[:*]'

so that

i = l,--,T.

Putting gi(z) = fi(2z), we also have:

The relation (71) is a special case of the following general phenomenon.

Let / be an integral modular form of (even) weight k and level N. Suppose

/ is an eigenfunction for a Hecke operator T(p), where p is a prime, pJ(N.

Let a(p) be the eigenvalue and put g(z) = f(pz). Then we have:

Since /, ^ are linearly independent, we see that U(p) is diagonalizable on

the span of /, g & X2 — a(p)X + pk~ι has two distinct roots. If / is a cusp

form, then Deligne's proof of the Petersson conjecture shows that a(p)2 <

4pfc"1 (when k = 2 this was first proved by Eichler [2]). We conclude that

U(p) is diagonalizable on the span of /, g {==$ d(p)2 < 4pfc-1. In particular,

for square-free level M, the diagonalizability of the operators U(p) on old

forms of level M is equivalent to this "strong" form of Petersson's con-

jecture for all new forms of level a proper divisor of M.

Returning to our situation, we see that if φi9 φf are cusp forms and

ψi is an eigenfunction for Tξx{4t) in the span of φt, φf, then the lifting of

ψi will have a Dirichlet series with the following Euler product:

(72)

where

(1 - ^(2)2-)" Π (1 - βi(P)P's + P1-2')-1 π
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(73) (1 - σ4(2)2-)(l - σ«(2)2-) = (1 - j8,(2)2" + 21"2*) .

In particular, the lifting of ψι will be an old form of level 2d which is an

eigenfunction for all U(p), p\2d. Moreover, Ω + Ω* has a basis of common

eigenfunctions for all T£χ(p2) unless, for some i, φi9 φf are linearly inde-

pendent and βi(2)2 = 8, in which case at{2) = σt{2) = ± <f2. Looking at

the tables of Wada [12], we see that &(2)2 < 8 if d is any odd prime <250.

For ί = 1 we have Ψι = E, φf = E* = £ v^θf, βt(2) = 3. Then E -

2E*9 E — E* are eigenfunctions for T£χ(4) with eigenvalues 1, 2, resp.

The corresponding liftings are E2(z) — 2E2(2z), E2(z) — E2{2z), resp., where

E2(z) is as in (69).

We conclude with a discussion of the image of Shimura's correspond-

ence in the special case d = p, an odd prime. For i, k < H, j < T, let

θt1t(z) = Σ bίk(n)e^z ,
n=0

Using the notation of § 4, θi^iz) — wγθ(z, fH) is the theta series associated

to jiji. It is easily seen that DJ — ^Pj1? where ^ is the unique two-sided

ideal of £)j with norm p. It follows that

Then fjj represents p & ψj is principal φ θtJ = ^ o Φ=) /^ is equivalent to fft.

If ^37 is not principal, then

(74) θυ(z) = wjKθ(z, fJt) + θ(z9 fl)) .

Let 2K denote the space of modular forms of weight 2 and level p. We

have an operator W(p) on SJί defined by

Let aft' denote the subspace of SK of all / such that f\W(p) = - / . The

inversion formula for theta series (cf. [1], p. 136, (20.6)) implies that θυ e

m~ for all ί, j . Let g, g* denote the genus of Γ0(p), (ro(p), J° ~J]) ,

resp. Then g = H — 1, dim 3ft ~ = H — g*. Comparing the classical formula

of Fricke for g - 2g* ([14], p. 408) with the formula for T ([3], p. 147), we

see that
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(75) dim2R- = Γ .

Since the level is prime, 3ft ~ has a basis consisting of E2 and newforms

of level p. Let 3K~ld denote the span of E2(z), E2(2z) and the oldforms of

level 2p coining from SW" It is clear that dim 3ft~ld = 2T. As a direct

consequence of Theorems 1-3 we have

PROPOSITION 8. Let d = p, an odd prime, t > 1 a square free integer.

( i ) If L is a lattice of type I and t = 1, 2 (mod 4), £/*erc θ(n(zy L) e 3ft".

(ii) // L is o/ ξype II, or if L is of type I and t = 3 (mod 4),

Remarks 1. Using the Corollary at the end of § 5, we see that the

same results hold for p-transforms after replacing t by tp in the congru-

ences.

2. The case t = 2 (mod 4) was first proved by Niwa in a letter to

Shimura in 1975.

3. The fact that dim 3ft" = T, dim3ftoid = 2Γ suggests that the theta

series θu θf are linearly independent and the Shimura lifting (or θ ^ θ(t)

for certain t) is a bijection.
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