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PERTURBED BILLIARD SYSTEMS II

BERNOULLI PROPERTIES

IZUMI KUBO AND HIROSHI MURATA*>

§ 1. Introduction

One of the authors has shown the ergodicity of the perturbed billiard

system which can describe the motion of a particle in a potential field of

a special type [5], [6] . Since then, some development has been made,

and we are now able to show the Bernoulli property of the system in this

article. We hope, the result gives a new progress in statistical mechanics.

Our method of the proof is inspired by the idea of D. S. Ornstein and B.

Weiss [9], which has been used by G. Gallavotti and D. S. Ornstein [ 3 ]

for a Sinai billiard system.

A perturbed billiard transformation will be prescribed in § 3. Roughly

speaking, it is an automorphism T* of two dimensional measure space

(M, v) which can be expressed as the product of Tγ and T, where Tx is a

y-preserving C2-diffeomorphism of M and where T is a Sinai billiard trans-

formation. Such an automorphism T* appears in a dynamical system of

a particle moving in a potential field which is a composition of several

finite range potentials (see [ 5 ], [ 6 ]). In order to discuss such a perturbed

billiard system we need three assumptions (H-l) ~ (H-3), which specify the

diffeomorphism Tx. Under these assumptions, the perturbation of T by

Tj is not so much. Details of them will be found in § 3.

Our main results are the following:

THEOREM 2. Under the assumptions (H-l) — (H-3), partitions a(c) and

a{e) are weak Bernoulli generators for T*. Thus T* is ίsomorphic to a

Bernoulli shift

Here a(c) and a(€) are partitions of M whose elements are connected

Received June 7, 1975.
Revised December 4, 1979.
*} This author was partially supported by Yukawa Fellowship.



2 IZUMI KUBO AND HIROSHI MURATA

components such that the restrictions of T*1 and T* on them are con-
tinuous, respectively.

THEOREM 3. Under the assumptions (H-l)~ (H-3), every countable
partition a is weakly Bernoullίan for T*, whenever log d(x; da) is ίntegrable.

Here d(x; da) is the distance between a point x and the union da of
the boundaries of all elements of a.

THEOREM 5. Under the assumptions (H-l)~(H-3) and (f-l)~(f-3), if
{Sf} is a K-system and a is a finite partition such that logd(w;3a) is
integrable, then a is very weakly Bernoullian for {Sf} (t Φ 0). Furthermore
{Sf} is a Bernoulli flow.

As stated in Corollary 5.3, {Sf} is a ϋΓ-system if it does not have any
point spectrum. With this result, we have a stronger assertion Corollary
6.2. Here {Sf} is a flow of Kakutani-Ambrose type whose basic trans-
formation and ceiling function are T* and f(x), respectively. There we
assume the conditions (f-l)~ (f-3), which are prescribed in §5, so as f(x)
to be regular. Actually, if f(x) is positive and smooth on M, then they
are obviously satisfied. Our formulation is complicated, but necessary in
order to apply to the case of dynamical system on a potential field as
described above.

In section 2 some lemmas to make easier checking weak Bernoulli
property will be given. In section 3 some fundamental results of the
perturbed billiard transformation T*, which have been shown in [ 5 ], will
be summarized. In section 4 the proofs of Theorem 2 and Theorem 3 will
be shown appealing lemmas in §2. The most complicated parts of the
proofs are in the estimations of densities of measures related to trans-
versal fibres of JΓ*. In section 5 we will discuss on the construction of
transversal fibres and the i£-properties of the flow {Sf}. In section 6 the
proof of Theorem 5 will be shown by using properties of the transversal
fibres.

Lastly we remark that the same results can be obtained for more
general Tx as discussed in [6], since the properties stated in § 3 are also
true for the general case.

§2. Weak and very weak Bernoulli partitions

Let (M, v) be a Lebesgue space with total mass v(M) = 1, and let T
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be a bimeasurable measure preserving transformation on M. D. S. Ornstein
gave the following definitions:

DEFINITION 2.1. A countable partition a of M is said to be weakly
Bernoullian for T, [if for any e > 0 there exists N > 0 such that for all
N" >N'>N, all n > 05 and ε-a.e. B in V£V T~'a

(2.1) Σ

Here "ε-a.e. J5 in ξ" means "except element B of the partition ξ which is
included in a set of measure ε". For two countable partitions a = {At}
and j8 = {BJ of M, define the usual metric by

d(a, β) = Σ »(Ai θ Bd ,

where i θ 5 denotes the symmetric difference of the sets A and B. For
given two sequences of partitions {αjί and {̂ J? write

W?
if for all ^ , 1 < < n,

where αy = {A[j\ , A ^ J are partitions on (X, μx) and βj = {B[j\ , B^}}
are partitions on (Y, μγ). Further define the metric d by

3(W?, {ft}?) = inf -±d(αsJj)9

where {α̂ } and {ft} run over all pairs of partitions on the same space such

that {α3)ΐ - {«,}? and {βj}? ~ {βj}?. Let α be a partition and £ be a subset

of M Then the normalized measure vE(A) = p(A (Ί E)/v(E) will be as-

sociated to α|B.

DEFINITION 2.2. A finite partition α is said to be very weakly Ber-
noullian for T, if for every c > 0 there exists N > 0 such that for all N"
> N' > N, all n > 0 and ε-a.e. £ in V£V T~%

(2.2) 3({T'α}?,{T*α|B}?)^e.

D. S. Ornstein and others [2], [4], [7], [8] have shown the follow-
ing theorem:
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THEOREM A. If one of the following conditions is satisfied, then T is

isomorphic to a Bernoulli shift

( i ) There is a weak Bernoulli generator for T.

(ii) There is a sequence of weak Bernoulli partitions an for T such

that V\~=-oo T*an t e*} as n-+oo.

(iii) There is a sequence of very weak Bernoulli partitions an for T

such that Vi°=— Tιan f e as n-+ oo.

In order to apply this theorem to a perturbed billiard system, it is

convenient to prepare the following lemmas.

LEMMA 2.3. ( i ) If for any e > 0 and δ > 0, there exist a natural

number N and a finite family IF of disjoint subsets of M with ΣFGF V(F)

>l-δ such that for all N" > N' > N, all n>0 and ε-a.e. B in
\/N" T-ιrv

(2.3) Σ HA\F) - v(A\F Π J3)|< δ for any F in & ,

(2.4)

then the partition a is weakly Bernoullian for T

(ii) In (i), the condition (2.4) is unnecessary if T is a Ksystem and

the entropy of a is finite.

(iii) In (i), (2.3) is fulfilled if for all A in V?=o T*a, all F in & and

ε-a.e. B in Vf=V T~ιa,

( 2 > 5 ) ^ΠBΠW) _ ,
v(A Π F)v{B n F)

Proof. Put Fo = M- (Jί s^ F, then one has

v(Fa\B) <l-Σ»(F\B)<l-(l-δ)Σ v(F)

< 1 - (1 - δf

by (2.4) and by Σ v(F) > 1 - δ. From (2.3) the estimate

Γ\ F) - »(A ΠF\B)\

< Σ HA\F)v(F) - v{A\B Π F)v(F\B)\
A,F

Hc) The symbol e denotes the partition into the individual points.
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< Σ MA IF) - v(A IB Π F)\ v(F) + Σ «<A IB f] F) \v(F) - v(F\ B)\
A,F A,F

< 2δ

is obtained. Hence for 2ε-a.e. B in Vf=V T7"^,

< Σ WA n 20 - v(A n *Ί B)l + Σ MA n F0) + *(A n

< 2^ + ^ + 1 - (1 - d)2 < δδ.

Thus (i) is proved. If T is a X-system, then for the given ϊF there exists

IV such that for all N" > N'> N, all F in ^ and ε-a.e. B in V^;/ T~ιa,

\v(F)-v(F\B)\<δv(F).

It is easily seen that (2.5) implies (2.3). Q.E.D.

A mapping φ from X to Y is called ε-measure preserving if there exists

a subset # of X with μz(E) < ε such that ΐoχ all A C X - £

Let e(n) be the function on ordinal numbers defined by e(0) = 0, e(ή) = 1

for n Φ 0. For a given partition a = {Aj}, the name function of a is defined

by £(x) = j if x is in A;. The following lemma is due to D. S. Ornstein

and B. Weiss [9] .

LEMMA 2.4. Let {orj? 6e partitions of X with name functions £i(x), and

{βi}ι be partitions of Y with name functions m^y). If there is an ε-measure

preserving mapping φ from X to Y such that

— Σ e(U*) ~ rn^φx)) < ε
n i

holds for x in X — E with μx{E) < ε, then

{&}?) < 16e .

The lemma is easily proved, but it is useful to check (2.2) for a sui-

table partition a (cf. § 6).

§3. Perturbed billiard systems

In the previous article by one of the authors [ 5 ], a perturbed billiard

system was defined as follows. Let Qc, c — 1, 2, , I be disjoint strictly
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convex domains in a 2-dimensional torus T whose boundaries dQe are closed

curves of C3-class. Put Q = T - (J« Q< and dQ = \Jg dQ( and put Mo =

{(#> P)l qsQiP = ( c o s ω> s ί n ω), 0 < ω < 2τr}. The flow {SJ on MQ which

describes the motion of a particle moving around in Q with unit speed

and with elastic collision at dQ is called a Sinai billiard system in Q [11],

[12]; the particle moves along straight lines in the interior of Q with

speed one, and is reflected at dQ according to the law "the angle of reflec-

tion is equal to the angle of incidence". Denote by ΛΓ the set of all unit

incident vectors at dQ. Then every element x =* (q, p) of M can be re-

presented by coordinates (c, r, φ), where c is the number of dQt containing

q, r is the arclength between q and a fixed origin in dQe measured along

dQt clockwise, and φ is the angle between p and the inward normal of

dQe at q. For x in Mo, put

v(x) =* inf {t ^ 0; Stx collides with &Q}

t(x) =* sup {t < 0; Stx collides with dQ}.

Then almost every point x in Mo (with respect to the measure dqdω) is

parametrized by (c, r, φ, v), where υ = υ(x) and (c, r, φ) represents the point

SΌx in M. One can define a transformation T of M, which is called &

Sinai billiard transformation, by

(3.2) Tx « 8τ(x).ox for x in M.

Then {S_t} is α Kakutanί-Ambrose flow with the basic space M, the basic

transformation T and the ceiling function — τ(x). The invariant measure

μ of {Sj determined by Liouville's theorem is expressed in the form

(3.3) dμ= — μ0 cos φdφdrdυdc

and the corresponding invariant measure of T is expressed in the form

(3.4) dv = — v0 cos φdφdrdc

with μ0 = (2ττ IQI)"1 and v0 = (2|9Q|)-χ, where |Q| is the volume of Q and

\dQ\ is the total arclength of the boundary dQ.

DEFINITION 3.1. A transformation T* of M is called a perturbed

billiard transformation if T* is expressed in the form

(3.5) Γ*

where T is the Sinai billiard transformation and Tx is a C2-diffeomorphism
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of M which preserves the measure u and each M ( 0 = {(c, r, ψ)\ (c, r) e dQe}.

In [ 5 ], a special class of perturbed billiard transformations has been

investigated*}:

(H-l) T&, r, φ) = (c, r — H(c, φ), φ), where H(c, φ) is a function of C2-

class and satisfies H(c, (π/2)) = H{c, (3/2)π) = 0,

(H-2) every Q{ are disjoint strictly convex domains whose boundaries

are curves of C3-class,

(H-3) min,,, {h(e9 φ) + [maxr k(c, r) + (min,,,,,, \τ(c, r, ̂ Ol)1]1} > 0, where

h(c9 φ) = dfiΓ(*, )̂/dy) and /̂ (ί, r) is the curvature of dQc at (̂ , r).

Under the above three assumptions the ergodicity and the if-property

of the perturbed billiard transformation T* were shown in [ 5 ]. In order

to describe the results, it is necessary to introduce notation and termi-

nology. A connected curve γ φ = ψ(r) in Mie) is called K-increasing if

for rψrf

(3.6) kmln < ^ " ^ > < KUd
r — rf

holds, where

kmin = min k(e, r) and Kmax(ή ΞΞ max k(cy r) + (min \τ(T^(£9 r, φ))\) .

A connected curve γ; ψ = ψ(r) in M(ί) is called K-decreasing, if for rψr'

Λ m i n S= S -Λ-max

holds, where Kmin = [maxί)9 Λ(̂ , 9) + feLΓ1 and ίΓmax ΞΞ max, [min^ Λ0, 9) +

iζnaxW"1]"1. Put S ΞΞ {(*, r, p) 6 Af; p = w/2 or 3 /̂2}. Then T?S (resp. Γ#S)

is called the curves of discontinuity of T^ (resp. Γj1)- The image T^S

(resp. T^S) consists of a countable number of iί-increasing (resp. K-

decreasing) curves. The curves of T*XS (resp. T*S) decompose M into

connected components and define the partition αr(e) (resp. a(c)) into the

components {Xje)} (resp. {Xjc)}). Then T* (resp. Γ^1) is continuous in the

interior of each component and belongs to C2-class. If T* (resp. T*1) is

continuous on a connected i£-decreasing (resp. if-increasing) curve γ9 then

so is the image of γ.

For a point x = (c, r, φ) in M, put xt = (ei9 ri9 ψt) ΞΞ Ti\e9 r, ψ), (cu r-9 ψ^

ΞΞ Tr'Xu kt ΞΞ ̂ 0,, r,), % ΞΞ A(ίf, r/), /ii ΞΞ h(ci9 ψτ) sxiά τt ΞΞ τ(ci9 ri9 φt). Define

A more general case was discussed in [6].
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functions bn(x; t), — oo < n < oo, of (x, t) in M X (—00, 00) by

b ,χm Λ Ξ (cos y> + kfτXh + t)

i cos φ + k! cos ̂  + kjz'τ^ih + t) + cos ̂  + k1τ1

bn+1(x; t) = bx(Ti»x\ bn(x; t)) n>l

bo(x;t) = t

COS £>_j + feί.! COS φ + kkLxήt — (COS p. j + ̂ ^ τ )
. , . ^ ; t) = b'ΛΊΪx; b_n(x;f)) n > l .

Suppose that γ and T*nγ are given by the equations r = u(φ) and rn

= Un(φn), respectively, with T*n{t, u{φ), <p) = (cn, un(ψn), φn). Then the formula

dun(φn) = h ί ^ φ. du(φ)
dψn \ ' dφ

holds for all n. Further one can see that for (x, ί) in J l ί x [1/Kmin, oo)

bn{T%x\ t) converges to a positive function l/χ(β)(jc) and that b_n(T*nx; —t)

converges to a negative function l/χ(c)(x). The function χ(c) (resp. χ(e)) is

continuous at x not in \Jζ=0 ΓjS (resp. UΓ=o Γ ί ^ ) and satisfies

Kmin < -%(C)W < ί w (resp. ^m i n < χ(e)(x) < #m a x(0) .

THEOREM 1. ( i ) αr(c) αλid α(e) = ϊ7^ V c ) are generators for T* with the

same finite entropy.

(ii) Almost every element of ζ(c) = Vί°=o T^a{c) is a connected K-

decreasing curve whose gradient^ at x is equal to χ(c)(x). Alternatively,

almost every element of ζ(e) = VΓ=o T^a(e) is a connected K-increasing curve

whose gradient at x is equal to χ(e)(x).

(iii) T* is a K-system. Actually, the partition ζ(c) and the partition

ζ ( e ) satisfy the following conditions:

v ncc) = v nc(e) - *
/\ Tjζ(c) = Λ τ*Ce) = ίΛe ίrίϋiαZ partition .

By the theorem, in order to show the Bernoulli property of T7*, it is

enough to give a family SF which satisfies the condition (2.5) in Lemma

2.3. For this purpose, it is necessary to investigate the structure of the

*> When a curve γ is given by the equation φ = ψ(r)y the gradient of γ at x = (r, ψ)
is df/dr.
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measure μ in connection with the partitions ζ(c) and ζie). Denote by γ{c)(x)

the curve which is the element of ζ(c) involving x. Alternatively, denote

by γ(e)(x) the curve which is the element of ζ(e) including x. For two

decreasing curves γ and / , define the canonical mapping Ψp]r by

(3.8) r ' ' r * ' T

Let σr and <τr, be the measures on γ and / respectively defined as follows;

for γ in γ and f in p

*,(?) = f_\dφ\ and σ r ^ ) = f \dφ\ .

Define the measure Φγe?r>σr> by

Ψ^σr(ϊ) = σf{Ψ<?]tγ) .

Then the Radon-Nikodym density relative to dσr is given by

with Λ: in γ and Λ:' = Ψp]7x, where

(3 10) Λ*(x r)"= {̂ i C Q S ^ + kf cosφ, + kjz'τ^b^x', dujdψ) - k'τ, - cos>
cos φ

Similarly, ¥f]r, σr>, σγ are defined for increasing curves /, γ and one has

K } dσr

 g"' A-W«fΓϊV)

with x in ^ and Λ/ = ¥p]7x, where

(3 lOV yl(x r) = __ {̂ i C Q S Ψ + fe/ C Q S 9i + hk'τ^duldφ + h} + kxτx + cos ^
cos p!

By Lemmas 6.1, 6.1' and 7.1 in [5], for any δ > 0 there exist an even

natural number £0 — £0(δ, 1,1/4) and a positive function ε0 = εo(x, δ, 1) which

guarantee the following property: For an x not in Utl-^T^S, let G be

a if-quadrilateral*) (a domain which is enclosed by four curves such that

a pair of opposite curves γb(G), γd(G) are i£-increasing and the other pair

of opposite curves γa(G), γc(G) are i£-decreasing) in the ε0-neighbourhood

The notation for G and some properties of G are explained in [5].
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Uso(x) of x. Suppose that δQ = θ(γa(G)) = θiγ^G))^ and that 2V°G, T%G are

i£-quadrilaterals. Then there exist subsets G(c'δ) and G< M ) which satisfy

the four conditions;

(C-l) for all x in G^δ) (resp. G(e'δ)), fc)(x) Π G(c'δ) (resp. fe\x) Π G(e'δ))

is a connected segment which joins γb(G) and fd(G) (resp. fα(G) and γc(G))9

(C-2) i<G(e a>) > (1 - d)v(G) and KG(e'3)) > (1 - δ)v(G),

(C-3) for any iί-increasing (resp. ^-decreasing) curve γ and f in G,

the canonical mapping ¥p]r (resp. JΓ^r) is absolutely continuous on γ Π G(Ciδ)

(resp. 7- Π G ( M )) with respect to σr and σγ,,

(C-4) for any m > 0, T*mGic>δ) Π Vw(<50) = ^**} (resp. Γ^G(e'δ) Π Vw(^0) = Λ).

Fig. 1

Define the measure ργ on a iΓ-decreasing (or if-increasing) curve γ by

ΞΞ \ dr forfdγ.

Let f be a iί-decreasing curve in G which joins γjfi) and rc(G)> and let

f0 be a iΓ-increasing curve which is an extension of f and is given by the

equation r = w(p), π/2 < φ < (3/2)̂ :. For given φ and ψ, let fΛ be the

curve defined by r = δ(0 — δ(^) — ŵ (-ψ-), where r = w*(ψ) is the equation

of γw(e, ύ(ψ), ψ). Then by Lemma 8.3 in [ 5 ], the measure v is expressed

in the form

(3.11) v(B Π G<c'*>) = f dσr(φ) f

where £0(̂ > Ψ) is defined by

*> For monotone connected curve r, % ) denotes the total variation of γ in ^direc-

tion; % ) EΞ (7r(r) = J ^ φ .

**) FmW Ξ= {«; -cos (̂αί) < (1 + ηi)-m^δQ} with 3? = /cmin | r | m i n and ηx = min fe, (1 - -v.
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(3.12) go(φ, ψ) = V°COS(P

with x = (c, ύ(φ), φ) and x = (c, uφ(ψ), ψ).

Let f be a Z-decreasing curve in G which joins γb(G) and γd(G), and

be defined by the equation r = ώ(^). Then by (3.9), one can see that

v{B Π G(c'δ) Π G^δ))
(3.13) Γ r Λ

where / = r

( c )(^, S(9), φ), W%r(<, ύ(ψ), ψ) = {c, u*(φ), φ) and r ( e ) ψ ~ φ. One

can easily see that for any fixed m > £09 there exists a positive number

ε2 = e2(x, m) < ε0 such that TίUε2(x) Π F0(2(l + ??1)
7%) = ^ for | ; | < m.

LEMMA 3.1* Suppose that G c Z/̂ αc) 6β as above and T*mf is a K-

decreasing curve, then

In particular, if A is a ζ(c)\G-measurable subset of G and B is ζ{e)\G-measurable

subset of G, then

n B n G-> n

In order to prove this lemma, we will prepare two lemmas.

LEMMA 3.2. Let G be as in Lemma 3.1. Let f and γ be K-decreasing

curves in G which join γb(G) and γd(G). If T*mf and T*mf are K-decreas-

ing, then for x in γ Π G ( M )

exp [-c,2(l + ηy
ml1] < g$(ίt) < exp [c,2(l + Vy

m/2]

holds with a positive constant c32.

Proof. Put γ ΞΞ fe\x) Π G and Tj = 2^^. Put x, = Γί^A and ίy =

TiJx with δ = W$(x). Since G is in U6£x) with an x, min{~cos^(y);y

€ ft} > 2ε2(l + η,)m holds for -m<j<0 and % ) < 2ε2 holds. Put c2 =
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KmJKmin. Applying Lemma 5.3 and Lemma 5.4 (i) in [5] , one has the

estimation

log [Λ*tfjf h c21 + log c2)(l

for —m<j<0. Since x is in G ( M ), it holds that min{—cosφ(y);y e γ^}

> δo(l + ηdj/Z2 for j < 0 and that θ{γ) < (1 + c2)δ0. Therefore again one

has

log [A*(&j, rj)IΛ*(xj9 f,)] < 2(c2 + I)c22(l + ηiTjβ2 + (log c2)(l + Viy

for j < — m. These estimates imply Lemma 3.2 by (3.9). Q.E.D.

LEMMA 3.3. Let G be as in Lemma 3.1 and let Tgf0 be K-increasing.

Then

exp [-
C O S

cos

with a positive constant c33.

Proof. Put x = (c, u{φ), φ) and x = (ί, ̂ (ψ), ψ). Similarly in Lemma 3.2,

Σ
j=o

By Lemma 5.3 in [ 5 ], for (*, u(φ), φ) = ), Ψ)

(3.14) log , ψ)
dύ/dψ

On the other hand, the estimate

cos<
log

cos

(πc2ί + c3)(l

2(1

holds, since G is in Uε£x). Q.E.D.

Proof of Lemma 3.1. Since |dr| = |dώ/dψ|cίψ on f, Lemma 3.2 and

Lemma 3.3 imply the first statement in Lemma 3.1, If A and B are as in

Lemma 3.1, then

(e>δ)

where / = γ(c)(y) with some y. Further, / c A ί l G(c'δ) if and only if f f|

/ is in f Π A Π G(c'δ). Therefore one has the second statement. Q.E.D.
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§4. The perturbed billiard transformation is isomorphic to a

Bernoulli shift

Applying the lemmas in § 2 and § 3, the following theorems will be

shown.

THEOREM 2. Under the assumptions (H-l) ~ (H-3), a(c) and a(e) are weak

Bernoulli generators for T*. Thus T* is ίsomorphic to a Bernoulli shift

Proof By Theorem 1, it is sufficient for the proof to give a family

2F which satisfies (2.3) in Lemma 2.3. For given δ > 0, let m0 be a natural

number such that exp c31(l + ^)-mo/2 < 1 + δ and mQ > SQ = 4,(1,1/4, δ).

For every x not in (JJS-mo TΉ and for any δ0 > 0, there exists a K-

quadrilateral G in US2(Xf7no)(x) such that θ(γa(G)) = θ(γb(G)) < δ0, G involves

the point x and T*moG, T%°G are i^-quadrilaterals. By the covering theorem

of Vitali, there exists a finite family ^ of such G's which satisfies G Π G ;

= φ for G Φ Gf in ^ and v(M - \JGe^ G) < δ. Then by Lemmas 6.1, 6.1'

and 7.1 in [ 5 ], there exist subsets G(c'δ) and G ( M ) which satisfy (C-l), (C-2)

and (C-3) in § 3. Let A be an element of the partition V?=o 2*α(c) and

let B be an element of Vf=V- 2ΐ'α ( c >. Since A is ζ(c)-measurable and B is

ζ(e)-measurable, Lemma 3.1 is applicable. Put f = ^(c)(x) Π G and f = ^(e)(x)

(Ί G for a fixed * in G(c'δ) Π G(e'δ). Then one has

(1 + δ)-1 < ^ ° f cos ψdσ{ψ)
" i < A ΓΊ B ΓΊ G ( c ' δ ) ί Ί G ( e ' δ ) ) J n * G < » ^ W

x ί
Since A and B are arbitrary, the above inequality holds even if one

replaces A to G(c'δ) (B to G ( M )). Hence the estimate

α + Λ-< < v ( A n g n G ( M ) n G(e'δXGM n

n G(c'δ) n G<e'>CB n G<C'5) n
is obtained. Therefore the family & = {G(c'δ) Π G(e'δ); G e ^ } satisfies (2.3).

Q.E.D.

COROLLARY 4.1. A Sinai billiard transformation is isomorphic to a

Bernoulli shift In particular, the natural generators a(c) and a(e) are weakly

Bernoullίan for T.

Let a — {Xj} be a countable partition. Denote the boundary of Xό by

dXjm The union da = \Jj BXj is called the boundary of the partition a.
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Let d(x; da) be the distance between a point x in M and the boundary da.

LEMMA 4.2. ( i ) If log d(x; da) is integrable, then the entropy of a is

finite.

(ii) // the boundary da consists of curves whose total arclength is

finite, then log d(x; da) is integrable.

Proof. Put R = supa gx, d(x; dX3), then for xeX5

PR P.R + Jr/2

v{X3) > —vo I cos φdφdr > v0J?8

JO Jιr/2

>vo{d(x;dX3)Yl4.

This inequality implies — ]Γ] v(X )̂ log y(.3Q < oo. The second assertion is

obvious. Q.E.D.

THEOREM 3. Under the assumptions (H-l)~(H-3), every countable

partition a is weakly BernouUian for T* whenever log d(x; da) is integrable.

Proof. For a fixed x and ί > 0, the distance between T^x and

TϊYe)(x) Π da measured along fc)(T^x) is greater than d(T^x; da), if

T*Yc)(x) intersects da. Hence

diTJx; da) < cxθ(TϊYc){x)) < πCί(l + , , )- '

holds with cx ~ (1 + i^-fπ)172, if TίV(c)(*) intersects 3α. Since log d(x; da) is

integrable, for almost every x, 1/i logd^^x da) converges to 0 as ί—> oo,

by the Birkhoff ergodic theorem. Thus for almost every x, the boundary

da is not intersected by T*Yc)(x) of infinitely many ί's. Hence for almost

every x, there exists a natural number n{c)(x) such that for all i > n{c)(x)

γ(c)(x) is included in an element of T^a. Further since log d(x; da) is

integrable, the partition of γ^iT^x) into the connected components of the

sets {γ^XT^x) Π Xj}J=i is a countable partition. Put

ζf == V Ti*a and ζf ΞΞ \J T& .
i=0 i=ί

Then by the above discussions, the restriction of the partition ζ£c) to almost

every element γ(c) of ζ(c) is a countable partition, whose elements are

countable unions of connected segments of γ(c\ Let C(c)(x) be the con-

nected component of x in the element of ζ(

a

c) V ζ(e) which contains x. The

partition ζi€) and Cίe)(x) are similarly defined. Denote by φ(x) the ^-co-

ordinate of x = (̂ , r, 9). Then for almost every x
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θ(σc\x); x) = sup φiy)-ψ(x), i(σ%x);x) = <p(x) -

x);x)= sup Ψ(y)-φ(x), 0(C«>(x); x) = <p(x) -

15

inf φ(y)

inf φ(y)
eC^H)

are all positive.

For δ > 0, let ^0, ra0 and ε2 be as in the proof of Theorem 2. Let t be

a number which satisfies v(E) > l - δ with # = {x; θ(Cic)(x); x) > t, θ(C(c)(x);

x) > t, θ(C(e)(x);x) > t and 0(C(e)(x); x) > ί}. By the similar way to the

proof of Theorem 2, there exists a finite family <&ι of if-quadrilaterals such

that

θ{γa{G)) =

v{E Π G)

Gnσ = φ if G Φ σ,

and that T*moG, T%»G are iί-quadrilaterals and there exist subsets G(c'5)

and G(e'θ) of G which satisfy the conditions (C-l), (C-2), (C-3), and (C-4)

in § 3. For G in ^ l f put

G(c) = { x e G W ) ; C(c)(x) intersects both fδ(G) and

G(e) = {xe G ( M ) ; C(e)(x) intersects both γa(G) and

Then G(c) is a ζ(c)|G-measurable subset and includes E Π G(c'δ). Alternatively,

G(e) is ζ(e)|G-measurable subset and includes E Π G< M ). Since for any

element A of Vo ^ , A Π G(c) is ζ(c)|G-measurable and since for any ele-

ment B of Vf=V 7Vtf> 5 Π G(e) is ζ(e)|G-measurable, Lemma 3.1 is applicable

to the subsets A and B. Thus one has the estimates

- 1 < (1 + δY - 1 ,V

V

and

Hence the

{AΠ B

(A n G (

/\ ^
_r( ' 11 Cr

n G ( C )

: ) ί l G

conditions in

n
< e ) ) ι

u(E

(G(

G ( e ) MG ( < : )

KB n G ( c )

n G^ 5' r

c) n G<e)))

Lemma 2.3

n G ( e )) _ j

n G ( ε ))
1 G< «) ^ (1

> (1 - 25)(1

are fulfilled. Q.E.D.
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§ 5 K-properties of the flow {S{}

Let fix) be a positive function on M and let {Sίt} be a Kakutani-
Ambrose flow with the basic space M, the basic transformation T* and
the ceiling function f(x); that is, {S{} is defined on the space W= {(x, v);
0 < i; < f(x)9 x 6 M} by

(5.1) S{(x9 v) =

iίθ<v-t+

(x, i; — ί) if 0 < i; - t < f(x) ,

l i u fbs v — t — <Z_ιy=k+i / \-* * v/ ^ 7Λ •* * *v> *^ —^ — -*•

Associate the invariant probability measure /^ with {S/}: rf/ir = cfdvdv.
Suppose that the assumptions (H-l)~(H-3) are satisfied. Then {Sf} is
ergodic, since T* is ergodic. Moreover suppose the following three as-
sumptions (f-l)~(f-3):

(f-1) fix) is strictly positive and continuously differentiable on each
element Xf of a(e\

(f-2) there exists a constant K such that

3/0, r, φ)
dr

df(t, r, ψ)
dφ

\ c o s y ? - 1

with (*_„ r_i, £>_i) = Γ^O, r, 9),

(f-3) fix)log\τix)\ is integrable.

For x not in |Jf-o 3*S, put

1

(5.2)
dr 99?

= Σ 3r 5̂ ?

with ^ = ΓJ^Λ;. For x not in (Jfβ0 Γί*S, put

fι'Kχ) = Σ ί-r^-v -?-(**) + -l^ ^ Π

(5.3)
dr

I{e)(xt) dr

dφ

9̂ 5

0

π

dr dr
(x)
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Then by assumptions (f-1), (f-2) and by Lemma 3.2, Lemma 3.3, the series

in (5.2) and (5.3) converge and /(+)(x) (resp. f('Xx)) is continuous at x not

in UΓ-o nS (resp. (JΓ-o TJS).

For w = (x, D) in VF, define curves f+)(w) and f'Xw) passing through

(x, 3) by the following way. Let r = u(c)(φ; x) be the equation of the curve

γ{c)(x) and let r = u(e)(φ; x) be the equation of the curve γ(e)(x). Let f+)(w)

and f'Xw) be the curves defined respectively by the equations

c — c

(5.4) ' ~ u' Λ ^ ' Λ / »"<* ' = ^(ψ'**)

= C

V = V + [φ f< + )(c,U(e)(φ; X), φ)dφ
J

for 0 < v < f(c, r, φ) with x = (c, f, φ). Then, obviously, f + )(w) and f'

are locally transversal fibres; that is,

(i) for wf in f+)(w) (resp. f-\w)\ γ^\wf) = ?(+)(iϋ) (resp. f " W ) =

f H (4
(ii) S{f+)(w) coincides with γi+)(S{w) and S{f"\w) coincides with

γt'^Slw) in a neighbourhood of S{w.

Therefore Γ<+)(w) = (Jι S{f+\Sltw) and f{'Kw)=\JtS{f'KSίtw) consist

of countably many connected curves in ΫF. Further Γι+)(w) and f^'^w)

are transversal fibres; that is,

(i) Γ ( + ) ( H / ) = Γ ( + )(M;) for w' ef(+)(w),

Γ{-\w') = Γ<-\w) for w'eΓ<-\w),

(ii) S{f^(w) = Γ<+)(S{w) and S{f^(w) = f^\S{w).

For each x in M, identify two points (x, /(x)) and (T^x, 0). Under the

identification, let f+)(w) be the connected component of w in Γi+)(w). Then

{f(+)(z#); w e W} gives a partition ζ ( + ) of W. Similarly, f~\w) and ζ (" } are

given by {2̂ ->(&;)}.

A curve γ in W which is given by the equations c = ϊ, r = u(φ) and

υ = ί(y>) is said to be i£-inereasing (resp. i£-decreasing), if the curve γ in

Mω defined by r = w(̂ ) is iί-increasing (resp. UL-decreasing) and t(φ) is

locally Lipschitzc ontinuous. For a given if-increasing curve f in W, define

a measure σf by

(5.5) σf(A) = f |d^|

for A in f. Put for a subset R of (— oo, oo)
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(5.6)

U
teR

Let Π be the natural projection from W to M; Π(x, v) = x. Then for suf-

ficiently small R the measure μ — μf satisfies

(5.7) μ(B Π A^[f; R]) = c, f ^/7(A(+>[f fl Π S))Λ .

Similarly, subsets A("}[f *] and A(->[?; 72] are defined. The local fibres {f( + )}

and {f^} are called mutually integrable (with each other), if for almost

every w = (x,v) in W and for almost every y in Π(A{+)[f~\w)\ 0]) Π

tf^X^ O]), the relation

A^tf-^ii;); 0] Π ZΓ-^y) = A'-ψ+Kw); 0] Π 77"Xy)

holds.

THEOREM 4. Under the assumptions (H-l)~ (H-3) and (f-l) — (f-3),

< ζ(">, ί > 0,

(ii) ί/iβ conditional measure μ( \f+)) (resp. μiΊf'*) is equivalent to

t+i (resp. σ f(-)),

(iii) h(S{) =

(iv) if {f+)} and {f^} are not mutually integrable, then π({S{}) is the

trivial partition, and hence {S{} is a K-system,

(v) if {S{} has no point spectrum, then {S{} is a K-system.

Proof. By the above discussions and the definitions,

) < ζ(-> ( ί > o) and V, S/C(+) = V. Stf<-> = e

are obvious. Let j8 be the partition of W given by β = Π~We) = {Π^X}*;

Xje) ea{e)}. For any countable partition a = {Y,} of W' let d (it;; 3α) be the

distance between w and the boundaries \JjdYj UW* U W*U77"1(S) where

Ψ # = {(x, 0); xeM},W* = {(x, f(x)); x e M) a n d Π~\S) = {(x, v);0<v<

f(x), x € S). Then log d(w; dβ) is integrable by virtue of (f-l)~(f-3). Since

the flow {SO is ergodic, except for a countable number of t's the trans-

formation Sf is ergodic. Fix such a sufficiently small positive t and sup-

pose that log d(w; da) is integrable. Then by the same way as in the proof
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of Theorem 3, one can see that for almost every element f(+) of ζ ( + ), the

restriction of ζ[+) = V*=o Sίfcta to f(+) is a countable partition, each element

of which is a union of a countable number of segments of f(+). Hence

one can see

Since there exists a sequence of partitions {an} of W increasing to e such

that log d(w; dan) are integrable, π(S{) < ζί+\ If a > β9 then ζi+) > 77"1ζ(c)

= {77"V(C); γ{c) e ζ(c)}, since α(c) generates ζ(c). For any ε > 0 and for almost

every w, {Slktw; k > 0} visits the set Ye = {(x, v) e W; u — ε < v < u, (x, u)

e Ui 3Y,} infinitely many times, since S{ is ergodic. Hence ζi+)= VΓ=o S/Λίαf

> ζ ( + ) if a: > β and if logd(z^; 5αr) is integrable. Hence one obtains

π(S0 = ff({S/}) =

Thus (i) is proved. The second assertion (ii) is obvious by definition and

§ 3. The third assertion (iii) comes from the theorem of Rohlin and Sinai

[10] and a theorem of Abramov [1]. For almost every y in M and for a

sufficiently small neighbourhood Uε(y), there exists a quartet {y,yuy2,yz}

in U£y) such that y, in γ(c)(y), y2 in γ{e)(yx\ y3 in γic)(y2) and y in fe)(y3).

Then one can define a mapping F*of Π~\y) by

fa; - f- }(f+ )(f (-\f+ )(^) Π il-Xy,)) Π Π~\y2)) Π 77-^,)) Π 77"Xy)

for w in Π~\y). Obviously, there exists a real number a = a(y, yu y2, y3)

such that

for (y, w) in the domain of ¥. If {f(+)} and {f(-)} are not mutually inte-

grable, then there exists a subset Y of positive measure such that for all

δ > 0 and all y in Y one can choose a quartet {y, y1? y2, y3} with 0 <

|α(y,y 1,y 2,y 3)|<^. Put ζL"2 = Λ S{ζ^ and let A(M;) be a CL+) Λ ζL"2-

measurable bounded function. Since ζL+) Λ ζ_"2 is {S/}-invariant, hb(w) ~

1 fδ

— h(S{w)dt is again ζL+)ΛζL~2-measurable. Then hb(y, u) is continuous in
b Jo

u and hb(w) converges to h(w) a.e. w as 6->0. There exist measurable

functions h[+)(ιv) and hi'^w) such that Λ6(M;) = h(

b

+)(w) = hi~\w) for a.e. w

and that h(

b

+)(w) is constant on ,Γ(+) and h^iw) is constant on JΓ "̂0. Since

canonical mappings ?Γ(C) and ?P*(e) are absolutely continuous, one can choose
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y, y» y2* y* such that hb(yί9 u) = h{

b

+)(yί9 u) =* / ^ ( Λ , u) for almost every u

in [0, f(yt))9 i = 0, 1, 2, 3 with y0 = y. Hence one can obtain

hb(y9 u) = Λδ(y, w + α)

for almost every w in [δ9f(y)—δ] with small d > 0. Since δ can be taken

arbitrary small and hb(y9 u) is continuous in u9 hb(y9 ύ) is constant in u.

Hence hb(y9 u) is constant in a subset with positive measure. Since b and

h are arbitrary, one can see that the partition ζ£?° Λ ζ_~2 contains an ele-

ment of positive measure. Since {S/} is ergodic and ζL+) Λ ζ_"2 is invariant

under {S{}9 the partition ζL+) Λ ζ^ is trivial. Thus (iv) was proved. Sup-

pose that {f(+)} and {f'^ are mutually integrable and that ζL+) Λ ζ_~2 is

not trivial. Since /\k Γfζ(β)ΛΛ* 2*CV is the trivial partition, the factor

flow of {S/} with respect to ζi+) Λ ζi~2 is a circle flow. Hence {S{} has a

point spectrum. Q.E.D.

It is very difficult to check that {f(+)} and {f(-)} are not mutually

integrable for general cases.

LEMMA 5.1. For a K-quadrilateraϊ G, put

vf(G) = fi+)dφ + f(~ydφ — f(+)dφ — f^dφ .
ha hb he hd

(i) // vf(G) = 0 for any G whose lateral sides are segments of {γ{c)}

and {γie)}9 then {f(+)} and {f("}} are mutually integrable.

(ii) If vf(G) > 0 for any G in an open set whose lateral sides are seg-

ments of {γ(c)} and {γ(e)}9 then {f(+)} and {f'^ are not mutually integrable.

COROLLARY 5.2 ([12]). A Sinai billiard system is a K-system.

Proof Since f(x) = —τ(x)9 it holds that

1 ^ df 1 / \ 1 / x dφλ

+ —L- = — sm ω(jc) — sm φ\xj—£L ,
T

χ^(x) 3r dψ

and hence /(+)(x) = sin φlχ(c)(x) (cf. [5]). Similarly one has f^'^x) =

— sin φlχ(e)(x). Hence

vf(G) = — sin φdr — sin ωdr + sin cxir + sin ωdr = —v{G) .
ha Jrb he hd v0

Q.E.D.

COROLLARY 5.3. The flow {S{} in § 3 has expanding and contracting
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transversal fibres. Further if {S{} has no point spectrum, then {S{} is a

K-system.

§fi. Bernoulli flow

A flow {St} is called a Bernoulli flow if every St (t Φ 0) is a Bernoulli

shift.

THEOREM 5. Under the assumptions (H-l)~(H-3) and (f-l)~(f-3), if {S{}

is a K-system and a is a finite partition such that logd(w; da) is integrable,

then a is very weakly Bernoullian for S{ (t ψ 0). Furthermore {S{} is a

Bernoulli flow.

Proof. For ε > 0, choose sufficiently small δ > 0. Let ̂  be a positive

number with μ(E^ > 1 — δ where ^ Ξ {we W; d(w; da) > 3J. Fix a positive

t. Then S{ is an ergodic transformation, since {S{} is a i£-system by the

assumption. Hence by Birkhoff's ergodic theorem, there exist a set E2

with μ(E2) > 1 — δ and a natural number Nt such that for all w in E2 and

all n>Nx

n k=o

where IEί is the indicator function of E\. Then there exists a d2 with

μ(Ez) > 1 - δ, where E3 ΞΞ {W e W; inSo^^irx-i d(Sίktw; da) > δ2}. Denote by

C(+)(w) and C^'Xw) the connected components of w in the elements of ζ ( + )

V ζi+) and C(-} V Ci-) respectively, where ζi+) = VΓ-oSί*^, Ci"} = VΓ-oSίiα

and ζ ( + ) (resp. ζ("}) is the partition into curves {f+)} (resp. {f^5}). By the

same reason in the proof of Theorem 3, there exists a positive number <53

such that μ(EA) > 1 - δ where E, = {we W; θ(Π(Ci+)(w)); Π(w)) > δ3,

θ(Π(C' + )(w)); Π(w)) > δ3, θ(Π(σ-\w)); Π(w)) > δs and 6(II(C<-\w)); Π(w)) >

δ3}. There exists a positive δ4 «δ) such that 1R > sup^6jE5 {|/ (+)(x)|+

\f('Kx)\} with E, ΞΞ {x e M; |cos p(x)| > δ,}. Note that n~\E,) is a subset of

For any x not in UΓ=-~ ϊ7*^, there exists ε3 = ε3(ίc) > 0 such that for

any y in ε3-neighbourhood U,a(x)

|/(+)(x) - f +

\f(x) - f(y)\ < δ2δ and
cos <p(x)

Let ô = 4(£> 1,1/4), m0 > So and e2 = ε2(x, m0) be as in the proof of Theorem
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2. Then for any w = (?, r, φ, v) in E3 and for any δ0 > 0, there exists a

subset G of W which is constructed as follows: There exists a ^-qua-

drilateral G in Ue£x) Π Ue2(x) with x = (?, f, £) = i7(u;) such that Γ;m o and

77™0 are continuous on G, Γ ^ G and Tg°G are ϋΓ-quadrilaterals, ?-α(G)

(resp. γb(G)) is a segment of the fibre fc)(x) (resp. f(e)(x)), and

θ(γa(G)) = θ{γb(G)) < min {δθ9 δί9 δ2,

Put fα ΞΞ f+)(w) Π 77"XG). For w in t^, put

p - ψ i

c2) .

1 -
r - r

f, r, φ, ϋ)

with w = (?, r, φ, v). Define G by

G = U

- δ

U
wefb

φ-φ

n

with α = θ(γa(G)). As stated in § 3, there exist subsets G(c'β) and G ( M ) of

G which satisfy (C-l), (C-2) and (C-3). Put

G(c'δ) = ίw e Π-\&e- >) Π G; f+\w) Π U S/f6 ^ 4

Then one can see the inequality

μ(G(c>δ) Π Π-\G^δ))) > (1 + 25)-4(l - 2δ)μ(G) ,

since 1 - δ < χ{c)(x)lχ{c)(x) <l + δίorxinG. By the covering theorem

of Vitali, there exists a finite family ^ of G's which satisfies

, n E2n E
Π~\E5) D G ,

Put

G Π σ = φ iΐGφG'

= {w e

Then BΓ)E(G) is ζ ( + ) Immeasurable for every element B of \JΐlN>Sίkta with

iV" > i\Γ > 0. By Lemma 3.1, the estimate
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μ(B Π E(G) Π Π-\G
n rϋ + a+δ /»

< dp(γ) dt\ - μ0cosφdσ(φ)
Jΐa(G)Γ\G(e>δ> Jv-a-δ J BΓ\E{a)(\SLtrb(G)

< μ(B n -B(G) n π-wwa - a)
is obtained. Moreover, for j> in γa{G) Π G ( M )

cos

ί v+a+δ r
dt cos φdψ

v-a-δ J BΠE(ΰ)Γ\SLtr
le)(.y)

is obtained. Therefore, there exists a ((1 + 3)3 — l)-measure preserving
mapping φ from UaeΛE(G) Π Π'\G^)) Π ΰ to \Joe,(E(G) Π Π~\G^))
such that φ maps E(G) Π Π-\fe\x)) Π ΰ to £(0) Π Π'\fΛ\x)) for x in
Γα(G) (Ί G (M). Let î(α ) be the name function of S{t a. For z in Et Γ\ E2

n E3 n £(G) n B

^(2) = ^̂ (̂ 2;) for 1 < ί < Nx — 1

and for n> N,

n

hold, since

d(Sίktz; da) > δ2 for 1 < A < N, - 1 ,

— Σ ί r - ( S ^ ) < 2 3

(distance of S£fcί2 and Sίktφz) < min (3^ 32, 53)

for /s > 0. On the other hand, there exist an N2 and a set £J6 such that

> 1 - 3 and for all N', N" > N2 and all B in Vf=V iSί«α, B c Eβ,

n £ 2 n £ 3 n E(O)\B)\ <

holds, since S{ is a iί-system. Hence

μ( u (^1 n £ 2 n £ 3 n JS(G) n
\Ge&

(1 - 3)/»( u
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- δμ(B)

> [(1 - δ)(l - 63) - δ]μ(B) .

Therefore by Lemma 2.4, the partition a is very weakly BernouUian.
Since there exists an increasing sequence of finite partitions {an} such

that logd(w; dan) is integrable and an increases to e as τι-> oo, S{ is a
Bernoulli shift for fixed t Φ 0. Q.E.D.

COROLLARY 6.1. A Sinai billiard system is a Bernoulli flow.

COROLLARY 6.2. If {S{} has no point spectrum, then {S{} is a Bernoulli

flow.

THEOREM 6. The flow {St} given in § 3 is a Bernoulli flow, if the as-
sumptions (H-l)~ (H-3) are fulfilled and if {St} has no point spectrum.

Appendix

The properties of the partitions a(c) and a(e) have been shown in [5],
Now some of them will be stated. Under the suitable numbering the fol-
lowings are true, here denote as a(j) = O(jb) if

0 < lim|αθ')|rδ < Iίm|α(;)|;-δ < oo :

(i) τ*xp = x?\
(ii) τ(x) = O(j) for xeXf (resp. Zf) .

Further the following figure is also true.

7Γ

7Γ

2

Fig. 2

These show that log d(x; da(e)) is integrable. The condition (f-1)

and (i) imply that the distance between w = (x, v) in Π'\Xf) and the



PERTURBED BILLIARD SYSTEMS 25

boundary W* is greater than O(J'1/2)d(x; 9α<e))I/2(/O) - v) if f(x) - v <

O(j1/2)d(x; daieψ2. Moreover,

sup (f(x) - f(y)) < O(j)

is shown. Hence one can easily obtain that logd(w;dβ) is integrable.
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