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PERTURBED BILLIARD SYSTEMS II
BERNOULLI PROPERTIES

IZUMI KUBO anp HIROSHI MURATA®

§1. Introduction

‘One of the authors has shown the ergodicity of the perturbed billiard
system which can describe the motion of a particle in a potential field of
a special type [5], [6]. Since then, some development has been made,
and we are now able to show the Bernoulli property of the system in this
article. We hope, the result gives a new progress in statistical mechanics.
Our method of the proof is inspired by the idea of D. S. Ornstein and B.
Weiss [ 9], which has been used by G. Gallavotti and D. S. Ornstein [3]
for a Sinai billiard system.

A perturbed billiard transformation will be prescribed in §3. Roughly
speaking, it is an automorphism 7T, of two dimensional measure space
(M, v) which can be expressed as the product of T; and 7T, where T, is a
v-preserving C’-diffeomorphism of M and where T is a Sinai billiard trans-
formation. Such an automorphism 7T appears in a dynamical system of
a particle moving in a potential field which is a composition of several
finite range potentials (see [5], [6]). In order to discuss such a perturbed
billiard system we need three assumptions (H-1)~ (H-3), which specify the
diffeomorphism 7). Under these assumptions, the perturbation of T by
T, is not so much. Details of them will be found in §3.

Our main results are the following:

TueorREM 2. Under the assumptions (H-1)~(H-3), partitions «© and
a® are weak Bernoulli generators for T,. Thus T, is isomorphic to a
Bernoulli shift.

Here «© and o® are partitions of M whose elements are connected
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components such that the restrictions of T;' and T, on them are con-
tinuous, respectively.

THEOREM 3. Under the assumptions (H-1)~(H-3), every countable
partition « is weakly Bernoullian for T., whenever log d(x; da) is integrable.

Here d(x; 0e) is the distance between a point x and the union ow of
the boundaries of all elements of a.

THEOREM 5. Under the assumptions (H-1)~(H-3) and (f-1)~(£-3), if
{S7} is a K-system and « is a finite partition such that log d(w;da) is
integrable, then o is very weakly Bernoullian for {S/} (t #+ 0). Furthermore
{S/} is @ Bernoulli flow.

As stated in Corollary 5.3, {S/} is a K-system if it does not have any
point spectrum. With this result, we have a stronger assertion Corollary
6.2. Here {S/} is a flow of Kakutani-Ambrose type whose basic trans-
formation and ceiling function are T, and f(x), respectively. There we
assume the conditions (f-1)~(f-3), which are prescribed in §5, so as f(x)
to be regular. Actually, if f(x) is positive and smooth on M, then they
are obviously satisfied. Our formulation is complicated, but necessary in
order to apply to the case of dynamical system on a potential field as
described above.

In section 2 some lemmas to make easier checking weak Bernoulli
property will be given. In section 3 some fundamental results of the
perturbed billiard transformation T,, which have been shown in [5], will
be summarized. In section 4 the proofs of Theorem 2 and Theorem 3 will
be shown appealing lemmas in §2. The most complicated parts of the
proofs are in the estimations of densities of measures related to trans-
versal fibres of T,. In section 5 we will discuss on the construction of
transversal fibres and the K-properties of the flow {S/}. In section 6 the
proof of Theorem 5 will be shown by using properties of the transversal
fibres.

Lastly we remark that the same results can be obtained for more
general T, as discussed in [6], since the properties stated in § 3 are also
true for the general case.

§2. Weak and very weak Bernoulli partitions
Let (M, v) be a Lebesgue space with total mass (M) =1, and let T
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be a bimeasurable measure preserving transformation on M. D. S. Ornstein
gave the following definitions:

DEFINITION 2.1. A countable partition a« of M is said to be weakly
Bernoullian for T, [if for any ¢ > 0 there exists N> 0 such that for all
N’">N >N, all n >0, and e-a.e. Bin /¥y T 'a

2.1) > WA) —v(A|B)| <e.

n
AeVTia
i=0

Here “c-a.e. B in §” means “except element B of the partition & which is
included in a set of measure ¢”. For two countable partitions « = {4}
and B = {B;} of M, define the usual metric by

dle, p) = 2, (A, © B),

T

where A © B denotes the symmetric difference of the sets A and B. For
given two sequences of partitions {«,}? and {8,}7 write

fa} ~ {81t
if for all 2,1 <j<n,
m(NAa9) = N BY),
where a; = {A}, - - -, AY})} are partitions on (X, xx) and 8, = {B{, - - -, B{),

are partitions on (Y, ¢y). Further define the metric d by

dday, B} = inf L3 d@,B),

fes}, {85} n 1

where {®;} and {8;} run over all pairs of partitions on the same space such
that {o}r ~ {&;}? and {B;}7 ~ {B;}7. Let « be a partition and E be a subset
of M. Then the normalized measure vz(A) = v(A N E)/u(E) will be as-
sociated to «|g.

DerFINITION 2.2. A finite partition « is said to be very weakly Ber-
noullian for T, if for every ¢ > 0 there exists N > 0 such that for all N”
> N' >N, all n >0 and ¢-a.e. B in \/Yy T ta,

(2.2) d({T'a}t, {T'«| B}y) < ¢ .

D. S. Ornstein and others [2], [4], [7], [8] have shown the follow-
ing theorem:
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TueoreM A. If one of the following conditions is satisfied, then T is
isomorphic to a Bernoulli shift.

(i) There is a weak Bernoulli generator for T.

(ii) There is a sequence of weak Bernoulli partitions a, for T such
that \/2-. T'a, 1 €¥ as n— oo,

(iii) There is a sequence of very weak Bernoulli partitions «, for T
such that \/3_. T'a, 1 € as n— oo.

In order to apply this theorem to a perturbed billiard system, it is
convenient to prepare the following lemmas.

Lemma 2.3. (i) If for any ¢ >0 and d > 0, there exist a natural
number N and a finite family & of disjoint subsets of M with 3 ., u(F)
>1—6 such that for all N >N >N, all n>0 and c-ae. B in

e T 'ay

(2.3) > I(A|F)—wA|FN B)|<é forany Fin %,
@4 2 WF) —oF|B)| <3,

then the partition o is weakly Bernoullian for T.

(ii) In @), the condition (2.4) is unnecessary if T is a K-system and
the entropy of « is finite.

(i) In @), (2.3) is fulfilled if for all A in \/?_, T'a, all F in &% and
e-a.e. Bin /Yy T e,

WA NBNFUF)
(2.5) WA N Fy(BNF)

11 <.
Proof. Put Fy= M — \Jpes F, then one has
w(F,|B)<1— %]u(F[B) <1-—-Q1- 5)};U(F)
<1—(1-9y
by (2.4) and by > u(F) >1— 4. From (2.3) the estimate
ZF]E;I:J(A N F) — v(A N F|B)|

< 2 A F)F) — (A[B N F)«(F|B)|

* The symbol € denotes the partition into the individual points.
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< Z_’;IU(AIF) — wA|B N F)|u(F) + 2, XA|B N F)|AF) — u(F|B)|
< 20
is obtained. Hence for 2-a.e. B in \/¥y. T-'a,
> 1M4) — AA|B)|
’ SFZAIv(AﬂF)—v(A ﬂFlB)H—ZA]{u(A N F) + »(A N F,|B)}
32;3+5+1—~(1—5)2g55.

Thus @) is proved. If T is a K-system, then for the given % there exists
N such that for all NV > N> N, all F in & and ¢-a.e. B in \/¥ T %,

[WF) — o(F|B)| < ou(F) .
It is easily seen that (2.5) implies (2.3). Q.E.D.

A mapping ¢ from X to Y is called e-measure preserving if there exists
a subset £ of X with py(E) < e such that for all AC X — E

meh) g
IUX(A)

Let e(n) be the function on ordinal numbers defined by e(0) = 0, e(n) =1
for n# 0. For a given partition & = {A,}, the name function of « is defined

by 4(x) =j if x is in A;. The following lemma is due to D. S. Ornstein
and B. Weiss [9]. '

Lemma 2.4. Let {o,}t be partitions of X with name functions ¢,(x), and
{B:}: be partitions of Y with name functions m(y). If there is an e-measure
preserving mapping ¢ from X to Y such that

LSt @) — mig) < <
holds for x in X — E with py(E) <, then
d(fert, {8J7) < 16e .

The lemma is easily proved, but it is useful to check (2.2) for a sui-
table partition « (cf. § 6).
§3. Perturbed billiard systems

In the previous article by one of the authors [5], a perturbed billiard
system was defined as follows. Let @, ¢=1,2,.--,I be disjoint strictly
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convex domains in a 2-dimensional torus T whose boundaries 9@, are closed
curves of C’-class. Put @ = T — (U, @, and 3@ = |, 9Q, and put M, =
{@,p); e @, p = (cosw, sinw), 0 < w < 2z}. The flow {S;} on M, which
describes the motion of a particle moving around in @ with unit speed
and with elastic collision at 3@ is called a Sinai billiard system in  [11],
[12]; the particle moves along straight lines in the interior of @ with
speed one, and is reflected at 4@ according to the law “the angle of reflec-
tion is equal to the angle of incidence”. Denote by M the set of all unit
incident vectors at 0Q. Then every element x = (g,p) of M can be re-
presented by coordinates (¢, r, ¢), where ¢ is the number of 9@, containing
g, r is the arclength between ¢ and a fixed origin in 8@, measured along
0@, clockwise, and ¢ is the angle between p and the inward normal of
0@, at q. For x in M,, put

v(x) = inf {t > 0; S;x collides with @)}

3.1
3.1) 2(x) = sup {t < 0; Sx collides with 3@} .

Then almost every point x in M, (with respect to the measure dgdw) is
parametrized by (¢, r, ¢, v), where v = v(x) and (¢, r, ¢) represents the point
S,x in M. One can define a transformation T of M, which is called @
Sinai billiard transformation, by

3.2) Tx = 8,,.0x for xin M.

Then {S_.,} is a Kakutani-Ambrose flow with the basic space M, the basic
transformation 7" and the ceiling function —z(x). The invariant measure
¢ of {S} determined by Liouville’s theorem is expressed in the form

(3.3) dyp = — p, cos pdopdrdud:
and the corresponding invariant measure of 7' is expressed in the form
(3.4) dy = —v, cos pdpdrd:

with g, = (27 |Q) ' and v, = (2]0Q)) ", where |Q| is the volume of @ and
[0Q| is the total arclength of the boundary Q.

DerFiniTION 3.1. A transformation 7T, of M is called a perturbed
billiard transformation if T, is expressed in the form

(3.5) T, =TT,

where T is the Sinai billiard transformation and 7, is a C*-diffeomorphism
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of M which preserves the measure v and each M = {(;,r, ¢); (, 1) €9Q,}.

In [5], a special class of perturbed billiard transformations has been
investigated®:

H-1) T, r,¢) = (¢, r — H(, ¢), ¢), where H(c, ¢) is a function of C*-
class and satisfies H(c, (x/2)) = H(c, (3/2)x) = 0,

(H-2) every @, are disjoint strictly convex domains whose boundaries
are curves of C*-class,

(H-3) min, , {h(;, ¢) + [max, k(;, 7) + (min, , |z, r,¢)])"]"'} > 0, where
A, 9) = dH(:, p)/dp and k(c, 1) is the curvature of 9Q, at (., r).

Under the above three assumptions the ergodicity and the K-property
of the perturbed billiard transformation 7', were shown in [5]. In order
to describe the results, it is necessary to introduce notation and termi-
nology. A connected curve y; ¢ = 4(r) in M® is called K-increasing if
for r =+ r’

3.6) b < YOV < 0

holds, where
kpww = min k(¢, r) and K, (0) = max k(, r) + (min |[e(T5 e, 1, @) l>_l .
A connected curve 7; ¢ = ¥(r) in M is called K-decreasing, if for r +r’

3.7 Ky < YO =90 g
r—r

holds, where K, = [max, , A(c, ¢) + kzi]"' and K, = max, [min, h(c, ¢) +
K...0)7'1". Put S={(,r,9)e M;¢p ==/2 or 3z/2}. Then TS (resp. T,S)
is called the curves of discontinuity of T, (rvesp. T;). The image T;'S
(resp. T,S) consists of a countable number of K-increasing (resp. K-
decreasing) curves. The curves of T3'S (rvesp. T,S) decompose M into
connected components and define the partition o® (resp. o) into the
components {X®} (resp. {X;”}). Then T, (resp. T;") is continuous in the
interior of each component and belongs to C*-class. If T, (resp. T3 is
continuous on a connected K-decreasing (resp. K-increasing) curve 7, then
so is the image of 7.

For a point x = (¢, 1, 9) in M, put x, = (¢, 1y, 9) = T3, 1, 9), (s, 1Ly 0)
= Ti'x, k= k@, 1), Kk = ke, r)), by = e, ¢;) and 7, = «(¢;, 15, ¢;). Define

® A more general case was discussed in [6].
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functions b,(x;t), —oc0o < n < oo, of (x,2) in M X (— o0, ) by

by(x; 8) = (cos ¢ + Rt)h+ 1)+ 1
(ky cos ¢ + K cos ¢, + kRz)h + t) + cos ¢, + ki,
bux; 1) = 0(Ti"x; b,(x;8) n2>1
blx; )=t
_ coso + ko)t — ©
bt )= —h— (kcoso_, + k., éos go¢+ kk'_)lr)t — (cosp_; + E.i7)
boni(x;8) = b_(Tix; b_,(x58) n>1.

Suppose that y and T;"y are given by the equations r = u(p) and r,
= un(ﬁ”n)» respectively ’ with T>; n(‘, u(ga), 9’) = (lm un(son)’ ¢n)- Then the formula
du(¢)>
do
holds for all n. Further one can see that for (x,f) in M X [1/K_,,
b,(T7x; t) converges to a positive function 1/x“(x) and that b_, (T3 x; —¢)
converges to a negative function 1/y’(x). The function ¥ (resp. ¥*) is
continuous at x not in |y, T3S (resp. Uz, T:"S) and satisfies

do,

n(‘, T, o5

o)

Ko < —2(x) < Koax (vesp. ko < 29(x) < Kinl(0))

THEOREM 1. (i) a® and &'® = T;'a'” are generators for T, with the
same finite entropy. ’ '

(ii) Almost every element of (= \/7, Tia® is a connected K-
decreasing curve whose gradient® at x is equal to x“X(x). Alternatively,
almost every element of {© = \/7., T;'a® is a connected K-increasing curve
whose grddient at x is equal to ¥‘“(x).

(iii) 7T, is a K-system. Actually, the partition {“ and the partition
L@ satisfy the following conditions:

T;lc(c) > C(c) , T*C(e) > C(e) ,
\/ Tig® = \/ Tic® =€
A Tl = N\ TiL® = the trivial partition .

By the theorem, in order to show the Bernoulli property of T, it is
enough to give a family % which satisfies the condition (2.5) in Lemma
2.3. For this purpose, it is necessary to investigate the structure of the

* When a curve 7 is given by the equation ¢ = y(r), the gradient of y at x = (r,¢)
is dy/dr.
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measure g in connection with the partitions £ and . Denote by 7¢(x)
the curve which is the element of {® involving x. Alternatively, denote
by 7“(x) the curve which is the element of ¢ including x. For two
decreasing curves y and 7/, define the canonical mapping T, by

vear—7

.8
3.8 T x s 1O N 7.

Let o, and ¢, be the measures on 7y and 7’ respectively defined as follows;
for 7 in y and # in y

o = | ldg| and o, = | 1dgl.
Define the measure ¥7%.0,, by

o () = o, (T2 .

[Ye

Then the Radon-Nikodym density relative to do, is given by

39) AT 0y _ g, — f[ A*(x;, Tic'r)

do & i==o A*(xi, T5%)

r

with x in 7 and &' = ¥¥ x, where

(6.10) A, ) = {k, cos ¢ + K cos ¢, + kk'z,}b(x; du/dp) — k'7, — cos ¢ _
cos ¢

Similarly, %, ¢,, 0, are defined for increasing curves 7/, and one has

, dr.q, = Ax,, T5'7)
3.9 Ihadialll €Y st i (c) iy L%
( ) dO' Uo A(xu T‘ILT,)

r

with x in y and x’ = ¥, x, where

(310 Az, p) = — {k, cos ¢ + K cos ¢, + kRt }H{du/dp + h} + ki, + cos ¢
coS ¢,

By Lemmas 6.1, 6.1’ and 7.1 in [5], for any § > 0 there exist an even
natural number ¢, = 440, 1, 1/4) and a positive function ¢, = ¢(x, d, 1) which
guarantee the following property: For an x not in (2 _,, TLS, let G be
a K-quadrilateral® (a domain which is enclosed by four curves such that
a pair of opposite curves r,(G), r,(G) are K-increasing and the other pair

of opposite curves 7,(Q), r.(G) are K-decreasing) in the e-neighbourhood

* The notation for G and some properties of G are explained in [5].
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U.(x) of x. Suppose that §, = 0(1.(G)) = 0(1,(G))* and that T;»G, TG are
K-quadrilaterals. Then there exist subsets G*» and G“® which satisfy
the four conditions;

(C-1) for all x in G©? (resp. G?), r(x) N G? (resp. y(x) N G©?)
is a connected segment which joins y,(G) and 7,G) (resp. 7.(G) and 7.(G)),

(C-2) UG = (1 — )(G) and AG*") = (1 — HG),

(C-3) for any K-increasing (resp. K-decreasing) curve 7y and ¢ in G,
the canonical mapping 7%, (resp. ¥¥,) is absolutely continuous ony N G*?
(resp. y N G*?) with respect to ¢, and o,

(C-4) forany m>0, T;"G" N V,(d,) = ¢** (resp. TG N V,(d,) = @).

T x)

Fig. 1

Define the measure p, on a K-decreasing (or K-increasing) curve y by
oD = L dr for 7 Cy.

Let y be a K-decreasing curve in G which joins 7,(G) and 7.(G), and let
7, be a K-increasing curve which is an extension of 7 and is given by the
equation 7 = ii(p), 7/2 < ¢ < (3/2)zr. For given ¢ and +, let 7#* be the
curve defined by r = ii(p) — @(¢) — u*(¥), where r = u?(4) is the equation
of 7%, (¢), ). Then by Lemma 8.3 in [5], the measure » is expressed
in the form

311)  o(B N Ge) = j doy(p) f &0, ¥)da,w () ,

7 (¢, (p),9) NBNG €. D

where gy(o, V) is defined by

* For monotone connected curve 7, 8(y) denotes the total variation of 7 in ¢-direc-
tion; 0(r) = oy(r) = Ldsm

*0 Vin(3) = {25 —cos () < (1 + 71)"™/323} with 7 = kmin |7|min and 7 = min {7, 1 = »*.
Kmin/Kmax}-
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vy COS @ = ATix; Ti')
X W), ) o AT5'%; TE)

with x = (, @(p), ¢) and & = (¢, uw*(¥), V).
Let 7 be a K-decreasing curve in G which joins 7,(G) and 7,G), and
be defined by the equation r = i@(p). Then by (3.9), one can see that

)J(B N G(c,a) N G(e,d))
= OIAYIONS) I
s @D [, s 846 T DB EI0AS)

(3.12) 8lp, V) =

(38.13)

where 7 = 7, Wlp), @), (e, &), ¥) = (¢, u?(p), ») and ¥4 = p. One
can easily see that for any fixed m > 7, there exists a positive number
&, = &fx, m) < ¢ such that TLU, (x) N Vy(2(1 + 5)",) = ¢ for [j| < m.

LEmMA 3.1. Suppose that G C U,(x) be as above and Ti;™} is a K-
decreasing curve, then
exp [—cy(1 + 771)-1"/2]

—Y d A
< B G 7 Go) o cosgoda,,(go)Lg,wm@_a)mq 0¥)

< exp [c,(1 + 771)_7"/2] .
In particular, if A is a {®|;-measurable subset of G and B is {®|s-measurable
subset of G, then
exp [—c,y(1 + 771)-1:;/2]

Yo i
= V(A N BN G N G(e””) FNBNG .® cos (Pd07(90) LnAnG(c-w dpf(‘!’)

< exp [cu,(1 + 771)_7”/2] .

In order to prove this lemma, we will prepare two lemmas.

LemMA 3.2. Let G be as in Lemma 3.1. Let  and 7 be K-decreasing
curves in G which join 1(G) and 1(G). If Ty™} and T;™$ are K-decreas-
ing, then for % in 7 N G*®

exp [—ca(l + 7)™ < g3(%) < exp [eu(l + ) "]
holds with a positive constant C,,.

Proof. Put y=¢“@#%) N G and 1, = Ty’r. Put £, = T;’% and %; =
T:'% with & = (ﬁ';(ff)(a‘c). Since G is in U, (x) with an x, min {—cos ¢(¥); ¥y
€7} > 261 + »)™ holds for —m <j <0 and 6(y) < 2, holds. Put ¢, =
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K..o/Ky. Applying Lemma 5.3 and Lemma 5.4 (i) in [5], one has the
estimation ‘

log [A*((ij, 75].)//1*(52;” fj)] < (€ + € + loge)(1 + )"

for —m <j<0. Since & is in G*?, it holds that min {—cos ¢(y); ¥ € 7,}
> 0,1 + 5)”* for j <0 and that 6(7) < (1 + ¢))3. Therefore again one
has

log [A*(8,, 7)/4%&), 791 < 2c, + Deal(l + 9.)7 + (log e)(1 + 7,
for j < —m. These estimates imply Lemma 3.2 by (3.9). Q.E.D.

LemMma 3.3. Let G be as in Lemma 3.1 and let T7y, be K-increasing.
Then

) ™ < 8ilp, ¥) cosp  x, uly), V)
T v cosy x, ), 9)
< exp [e(1 + 771)_m/2]

eXp [-—033(1 + 7

with a positive constant cs;.
Proof. Put x = (¢, i(p), ) and & = (¢, u?(y), ¥). Similarly in Lemma 3.2,

o AT %, T57)
1 * * 10
=8 ATz, T

< 0;2(1 + 771)_m .

By Lemma 5.3 in [5], for (¢, #(), ¢) = ¥; 0 a0t W), V)
(e)

(3.14) l1og X—(ﬁc-iul/gp)—"’)l < (wew + )L+ 7)™ .

On the other hand, the estimate

log 2252} < 31 4 77
coSs

holds, since G is in U, (x). Q.E.D.

Proof of Lemma 3.1. Since |dr| = |di#/d{|dy on 7, Lemma 3.2 and
Lemma 3.3 imply the first statement in Lemma 3.1. If A and B are as in
Lemma 3.1, then

BNG>n¢ ifyC AN G

©, B (¢,9) ) =
ran B ny={; AN G — g

where 7 = 7“(y) with some y. Further, ¥ C A N G°? if and onlyif 7 N
7 isin § N A N G“”. Therefore one has the second statement. Q.E.D.
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§4. The perturbed billiard transformation is isomorphic to a
Bernoulli shift

Applying the lemmas in §2 and §3, the following theorems will be
shown.

THEOREM 2. Under the assumptions (H-1) ~ (H-3), a‘® and «‘® are weak
Bernoulli generators for T,. Thus T, is isomorphic to a Bernoulli shift.

Proof. By Theorem 1, it is sufficient for the proof to give a family
& which satisfies (2.3) in Lemma 2.3. For given 6 > 0, let m, be a natural
number such that expe,(1+ ) ™2 <1+ 48 and m, > 4, = 4,1, 1/4, 5).
For every x not in U™_,, T'S and for any &, > 0, there exists a K-
quadrilateral G in U,,, .,(x) such that 6(r,(G)) = (7r,(G)) < d,, G involves
the point x and T;™@G, T2G are K-quadrilaterals. By the covering theorem
of Vitali, there exists a finite family ¥ of such G’s which satisfies G N G’
=¢ for G# G in g and v(M — | ge, G) < 8. Then by Lemmas 6.1, 6.1
and 7.1 in [5], there exist subsets G*® and G which satisfy (C-1), (C-2)
and (C-3) in §3. Let A be an element of the partition \/7, Tia'® and
let B be an element of \/¥y Ti'a. Since A is {‘’-measurable and B is
{“-measurable, Lemma 3.1 is applicable. Put 7 = y“(x) N G and 7 = ()
N G for a fixed x in G N G*». Then one has

-1 —Yy
(1 + 5) < IJ(A NBN G N G(e,b)) NBAGED COSSDdO'(SD)

X do(r) <1+34.

n Ana(c.ﬁ)
Since A and B are arbitrary, the above inequality holds even if one
replaces A to G» (B to G*®). Hence the estimate

115t < MAN BN G N GG N G) _ g o gy
A+ < WA NG NGB N G N GP) @+9

is obtained. Therefore the family F = {G“? N G*?; G € ¢} satisfies (2.3).
Q.E.D.
CoroLLARY 4.1. A Sinai billiard transformation is isomorphic to a

Bernoulli shift. In particular, the natural generators «® and a'® are weakly
Bernoullian for T.

Let @« = {X,} be a countable partition. Denote the boundary of X, by
0X,. The union dx = | J,0X; is called the boundary of the partition a.
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Let d(x; 0a) be the distance between a point x in M and the boundary da.

LemMmA 4.2. (1) If logd(x;da) is integrable, then the entropy of « is
finite.

(i1) If the boundary oo consists of curves whose total arclength is
finite, then log d(x; da) is integrable.

Proof. Put R = sup,cx, d(x;0X;), then for xe X,

R [(R+=z/2
u(X;) > —”"j J cos pdedr > y R4
0 /2
> vo{d(x; 0X))1/4 .

This inequality implies — > (X)) log u(X;) < o. The second assertion is
obvious. Q.E.D.

THEOREM 3. Under the assumptions (H-1)~(H-3), every countable
partition « is weakly Bernoullian for T, whenever log d(x; dx) is integrable.

Proof. For a fixed x and i> 0, the distance between T;ix and
T7ir(x) N 0o measured along 7y(T;'x) is greater than d(T;x;dw), if
T3 r(x) intersects da. Hence

d(Ti'x; 0a) < (T (%) < mey(1 + 5)7*

holds with ¢, = (1 + K;2)Y, if T3*“(x) intersects da. Since log d(x; da) is
integrable, for almost every x, 1/i log d(T';'x; dat) converges to 0 as i — oo,
by the Birkhoff ergodic theorem. Thus for almost every x, the boundary
o is not intersected by T::r(x) of infinitely many i’s. Hence for almost
every x, there exists a natural number n‘(x) such that for all i > n®(x)
79(x) is included in an element of Tiw. Further since log d(x;da) is
integrable, the partition of y(T;‘x) into the connected components of the
sets {y(Ti'xy N X}5-, is a countable partition. Put

©=VTie and (¥ = {71 Tia.

Then by the above discussions, the restriction of the partition £ to almost
every element 7 of { is a countable partition, whose elements are
countable unions of connected segments of . Let C*“(x) be the con-
nected component of x in the element of £ V/ ¢ which contains x. The
partition ¢ and CY(x) are similarly defined. Denote by ¢(x) the ¢-co-
ordinate of x = (¢, 7, ¢). Then for almost every x
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(C(x);x) = sup o(y) —p(x),  GC(x); x) = p(x) — inf o(y)

YEC O () y€eC @ (x)
Cx);x) = sup o(y) — o(x),  OC(x); x) = ¢(x) — inf ()
YyEC (e) () yeC @) (z)

are all positive.

For 6 > 0, let ¢4, m;, and ¢, be as in the proof of Theorem 2. Let ¢ be
a number which satisfies W(E) > 1 — 6 with E = {x; 8(C(x); x) > t, 0(C(x);
x) > t, (C(x); x) > ¢t and §(C“(x); x) > t}. By the similar way to the
proof of Theorem 2, there exists a finite family ¢, of K-quadrilaterals such
that

0(Ta(G)) = H(TO(G)) < t/(]- + Kmax/Kmln) ’
EN G >0 -G,
u(E - U G) <a,

Geg

GNG=¢ ifG+q,

and that T;™G, TG are K-quadrilaterals and there exist subsets G
and G®® of G which satisfy the conditions (C-1), (C-2), (C-3), and (C-4)
in §3. For G in %, put

Go = {x e G?; C(x) intersects both 7,(G) and r,(G)},
Go = {x e G*?; C“(x) intersects both 7,(G) and r.(G)}.

Then G is a ¢|;-measurable subset and includes E N G*?. Alternatively,
G© is ¢|s-measurable subset and includes E N G“?. Since for any
element A of \/? Tia, AN G© is ¢ |s-measurable and since for any ele-
ment B of \/¥y. Ti'a, B N G© is {®|-measurable, Lemma 3.1 is applicable
to the subsets A and B. Thus one has the estimates

WA NBN GO n é(e))v(éw) N é(e))
WA N G© n é(e))y(B n G© N é(e))
WG N G9) > uE N G N GP) > (1 — 3G,

—1]g(1+a)*—1,

and

y( U @@n é<e>)) > (1 — 25)(1 — 35).

Geg1

Hence the conditions in Lemma 2.3 are fulfilled. Q.E.D.
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§5. K-properties of the flow {S/}

Let f(x) be a positive function on M and let {S’/,} be a Kakutani-
Ambrose flow with the basic space M, the basic transformation T, and
the ceiling function f(x); that is, {S/} is defined on the space W = {(x, v);
0 < v <f(x), xe M} by

(Ti*x, v — ¢t + 355 f(Ti'x)
fo<v—t+4 25 f(Tilx) <f(Tikx), k> 1,
6.1)  S/(x,v)={(x,v— 1) fo<v—t<f(x,
(Ti*x,v — t — 235 [(T57x)
HO0<v—t— 20 f(Ti7x) <f(Ti*x), k< —1.
Associate the invariant probability measure p, with {S/}: dy, = c,dvdy.
Suppose that the assumptions (H-1)~(H-3) are satisfied. Then {S/} is
ergodic, since T, is ergodic. Moreover suppose the following three as-
sumptions (f~1)~ (f-3):
(f-1) f(x) is strictly positive and continuously differentiable on each
element X/© of a®,
(f-2) there exists a constant K such that

{ of (e, r,go) \ af(z r,go) }cosgo— 1 g

z_ <
With (‘—1’ ;‘—l’ 90—1) = *(la r; SD),

(f-3) f(x)log|z(x)| is integrable.

For x not in |y, TS, put

(+) - < 1 of (x,) of (x;) (e 1
Fow = 5 g Lo + LI T U o1

1 of (x,) of (xz‘) (© -1
ey |+ | LEL T 1, e

with x, = Ty’x. For x not in Uy, T3'S, put

Fow = 3 [t T + L @) I, 4 1))

(5.2)

fom = 5

(e)()
1 o af
o o DT @,
. £(-) — 1 of E ¥ (e) -1
fo@= 3 o (e)(xi) I i))+ bIL, 145G, 7o)
+ | L] + |2 ()[

1 (x) or
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Then by assumptions (f-1), (~2) and by Lemma 3.2, Lemma 3.3, the series
in (56.2) and (5.3) converge and f**’(x) (resp. f)(x)) is continuous at x not
in Ui, TiS (resp. Ui, T5'S).

For w = (%, ¥) in W, define curves 7*)(w) and 7 ’(w) passing through
(%, D) by the following way. Let r = u‘(p; %) be the equation of the curve
7(x) and let r = u“(p; %) be the equation of the curve y(x). Let 7*(w)
and 7(w) be the curves defined respectively by the equations

(=7 t =1
G4y {7 @D and {7 = #7(0; %)
v="> —r O, ue; ), p)dp v=">7 +r e, u(p; %), o)dp

for 0 < v < f(,r,¢) with & = (¢, 7, ). Then, obviously, 7*"(w) and 7(w)
are locally transversal fibres; that is,

(i) for w’ in 7*”(w) (resp. 7 (w)), 7V W) = F"(w) (resp. 77 (W) =
7(w)),

(i) S/7“w) coincides with 7*(Sfw) and S{7(w) coincides with
7(S{w) in a neighbourhood of Sfw.
Therefore ["*(w) = |J, S{7*(S7,w) and I'(w) = |J, S{7(SZ,w) consist
of countably many connected curves in W. Further I"*X(w) and ' (w)
are transversal fibres; that is,

(i) I'Ww) = I'>w) for w e I'“(w),

oW = I'(w) for w e I'~(w),

() SIIFw) = I'(Sfw) and S{T(w) = I'(S{w).
For each x in M, identify two points (x,f(x)) and (T,x,0). Under the
identification, let #*(w) be the connected component of w in I"*)(w). Then
{#"(w); w e W} gives a partition {*) of W. Similarly, 7 (w) and £~ are
given by {I'(w)}.

A curve 7 in W which is given by the equations ¢ = ¢, r = u(p) and
v = () is said to be K-increasing (resp. K-decreasing), if the curve y in
M® defined by r = u(p) is K-increasing (resp. K-decreasing) and #(p) is
locally Lipschitze ontinuous. For a given K-increasing curve § in W, define
a measure g, by

(5.5) o(4) = L [do|

for A in 7. Put for a subset R of (— o0, o0)
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APl = U 7w,
(5.6) wWES —¢F
A®[; Rl = U A7 4]
tER

Let IT be the natural projection from W to M; II(x, ) = ¥. Then for suf-
ficiently small R the measure p = p, satisfies

6.7) WB N AL R) = ¢, [ (AT N Bt

Similarly, subsets A‘”’[7; t] and A[7 ;‘R] are defined. The local fibres {7*’}
and {7} are called mutually integrable (with each other), if for almost
every w= (%, 0) in W and for almost every y in II(A““[7*(w);0]) N
(AP (w); 0]), the relation

AD[O®w); 0] N I () = AV (w); 0] N 117()
holds.

THEOREM 4. Under the assumptions (H-1)~(H-3) and (f-1) ~(f-3),
(i) 8780 >¢m, /- <, t>0,
Ve SIEw =V, 8/ =g
Ne SIED = A, 8/ = =({S{}),
(ii) the conditional measure p(-|7*’) (resp. p(-|77’) is equivalent to
gy (resp. o,0),

(i) A(S{) = KSIEVIE) = MSLEIE) = 1Ty / [ fds,

@iv) if {7} end {7’} are not mutually integrable, then n({S/}) is the
trivial partition, and hence {S]} is a K-system,
(v) if {S{} has no point spectrum, then {S{} is a K-system.

Proof. By the above discussions and the definitions,
SIEW >80, SO <L ¢> 0 and VSV =V, SEC = e

are obvious. Let 8 be the partition of W given by g = II"'a'® = {I['X/?;
X e a®). For any countable partition @ = {Y,} of W let d (w; o) be the
distance between w and the boundaries | J,3Y, U W, U W*UII-(S) where
W, ={(x,0); xe M}, W* = {(x, f(x)); xe M} and I (S)={(x,v); 0<v <
f(x), xe S}. Then log d(w; dp) is integrable by virtue of (f-1)~(f-3). Since
the flow {S/} is ergodic, except for a countable number of #'s the trans-
formation S/ is ergodic. Fix such a sufficiently small positive ¢ and sup-
pose that log d(w; da) is integrable. Then by the same way as in the proof
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of Theorem 3, one can see that for almost every element 7 of {*), the
restriction of {{¥ = \/7_, 87« to #* is a countable partition, each element
of which is a union of a countable number of segments of 7#*. Hence
one can see

A G St-pa <N\ SiEH =L .
n k=0 s

Since there exists a sequence of partitions {«,} of W increasing to ¢ such
that log d(w; da,) are integrable, (S < &». If a > B, then ¢V > M-¢
= {II"'7®; 19 e {9}, since «'® generates (. For any ¢ > 0 and for almost
every w, {S7,w;k > 0} visits the set ¥V, = {(x,v) e W;u — e <v < u, (x, w)
e | J; 8Y;} infinitely many times, since S/ is ergodic. Hence £V =\/7., 87, .«
> ifa>p and if log d(w; da) is integrable. Hence one obtains

w(S) = =({S87h = N\ S

Thus (1) is proved. The second assertion (ii) is obvious by definition and
§3. The third assertion (iii) comes from the theorem of Rohlin and Sinai
[10] and a theorem of Abramov [1]. For almost every y in M and for a
sufficiently small neighbourhood U(y), there exists a quartet {y,y:, Y., ¥}
in U(y) such that y, in y(y), 3, in y(y), 35 in ¥(y,) and y in y(yy).
Then one can define a mapping Zof II-*(y) by

Tw=7F"GF ¢ ) NI (y) N O (y) NI () N IT(Y)

for w in II7'(y). Obviously, there exists a real number a = a(y, ¥, Y2 ¥s)
such that

W(y, u) = (y’ u -+ a)

for (y, ) in the domain of ¥. If {?*} and {7’} are not mutually inte-
grable, then there exists a subset Y of positive measure such that for all
6>0 and all y in Y one can choose a quartet {y,y, ¥, y:} with 0 <
la(y, ¥, ¥ ¥5)] < 0. Put {2 = A S8 and let A(w) be a & A Z:2-
measurable bounded function. Since ) A £ is {S/}-invariant, h,(w) =

% r h(S{w)dt is again £ A 2-measurable. Then A,(y, u) is continuous in
[}

u and h,(w) converges to A(w) a.e. w as b—0. There exist measurable
functions A{"(w) and A{’(w) such that h,(w) = h{"(w) = A (w) for a.e. w
and that A{*(w) is constant on I’ and A{(w) is constant on I, Since
canonical mappings ¥ and ¥ are absolutely continuous, one can choose
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¥ ¥, ¥ ¥ such that hy(y;, w) = h{*(y;, w) = h{”(y;, u) for almost every u
in [0,f(»)), i =0, 1, 2, 3 with y, =y. Hence one can obtain

h(y, w) = hy(y, u + @)

for almost every u in [, f(y)—4] with small § > 0. Since 6 can be taken
arbitrary small and h,(y, u) is continuous in u, h,(y, u) is constant in wu.
Hence h,(y, u) is constant in a subset with positive measure. Since b and
h are arbitrary, one can see that the partition £ A £ contains an ele-
ment of positive measure. Since {S/} is ergodic and £ A %) is invariant
under {S7}, the partition ¢ A €’ is trivial. Thus (iv) was proved. Sup-
pose that {7*} and {7’} are mutually integrable and that "’ A %) is
not trivial. Since A, TECO A A Tkg, is the trivial partition, the factor
flow of {S/} with respect to (¥ A 22 is a circle flow. Hence {S/} has a
point spectrum. Q.E.D.

It is very difficult to check that {7*’} and {7’} are not mutually
integrable for general cases.

LemMma 5.1. For a K-quadrilateral G, put

0@ = [ fodp+ [ fodp — [ fodp— [ fody.

(i) If v(G) = 0 for any G whose lateral sides are segments of {y“’}
and {y®}, then {#*’} and {77’} are mutually integrable.
@) If v(G) > 0 for any G in an open set whose lateral sides are seg-
ments of {y} and {r*}, then {7**’} and {7’} are not mutually integrable.

CoroLLARY 5.2 ([12]). A Sinai billiard system is a K-system.
Proof. Since f(x) = —z(x), it holds that
1 oof L of _ 1

do,
do ’

. 1 .
-4 sin o(x) — ——— sIn o(x
X(c)(x) or dp 1 9(x) 90( ) 29(x,) 90( )

and hence f*)(x) = sing/y(x) (cf. [5]). Similarly one has [“'(x) =

—sin ¢/x“(x). Hence

v(G) = — L sin pdr — I sin odr + fr sin pdr + L sin pdr = ;l—v(G) .
a b c d (1)

T

Q.E.D.

CoroLLARY 5.3. The flow {S{} in §3 has expanding and contracting
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transversal fibres. Further if {S/} has no point spectrum, then {S{} is a
K-system.

§.6. Bernoulli flow

A flow {S;} is called a Bernoulli flow if every S, (¢ + 0) is a Bernoulli
shift.

THEOREM 5. Under the assumptions (H-1) ~(H-3) and (f-1) ~(f-3), if {S{}
is a K-system and « is a finite partition such that log d(w; o) is integrable,
then « is very weakly Bernoullian for S} (t + 0). Furthermore {S{} is a
Bernoulli flow.

Proof. For e > 0, choose sufficiently small_ 6> 0. Let §, be a positive
number with u(E,)) > 1 — § where E, = {w e W; d(w; da) > §,}. Fix a positive
t. Then S/ is an ergodic transformation, since {S/} is a K-system by the
assumption. Hence by Birkhoff’s ergodic theorem, there exist a set E,
with x(E,) > 1 — 6 and a natural number N, such that for all w in E, and
all n > N,

15 1 (S7w) < 25
n k=0

where I is the indicator function of Ef{. Then there exists a 4, with
W(E) > 1 — 4, where E, = {we W;inf .y, . d(S?,.w; da) > &,}. Denote by
C*(w) and C(w) the connected components of w in the elements of {*’
Ve and £V £ respectively, where £ = /i, ST, 0 = Vi S
and {* (resp. {7) is the partition into curves {r'*’} (resp. {7*’}). By the
same reason in the proof of Theorem 3, there exists a positive number J,
such that wE) > 1—6 where E, = {we W; 0II(CH(w)); I(w)) > &,
OII(C(w)); (w)) > 85, 6(II(C(w)); IT(w)) > &, and O(I(C~(w)); I(w)) >
d;). There exists a positive d, (<d) such that 1/6, > sup,cz, {{f(®)] +
[f<(x)|} with E; = {x € M; |cos ¢(x)| > 6,}. Note that I7-'(E;) is a subset of
E.

For any x not in | J ., T.S, there exists ¢ = e(x) > 0 such that for
any y in e-neighbourhood U, (x)

[f @) — FOD)] < a8, If %) — F()] < a9

f@) — f()] <35  and ﬂw(—y)|<1+a
cos ¢(x)

Let 4, = 440, 1, 1/4), my, > £, and ¢, = &,(x, m,) be as in the proof of Theorem
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2. Then for any w = (;, 7,%,0) in E, and for any 4, > 0, there exists a
subset G of W which is constructed as follows: There exists a K-qua-
drilateral G in U,(%) N U, (%) with % = (, 7, $) = II(w) such that T;™ and
Ty are continuous on G, Ty;™G and Tp°G are K-quadrilaterals, y,(G)
(resp. 7,(@)) is a segment of the fibre 7“)(x) (resp. 7)(X)), and

0(ro(Q)) = 0(r(G)) < min {3, d,, 6y, }/(1 + ¢5) .
Put 7, =7Y(w) N II'(G). For @ in W, put

1< =9 1 146
< Tt S +
D) =<¢ o) ;

fFOR) — 6 < :_ U < FOUR) + 6

with @ = (;, 7, 3, ). Define G by
G= U S/ U D@)n IG),

-a<s<sa WETy

with a = #(7,(G)). As stated in § 3, there exist subsets G*? and G*? of
G which satisfy (C-1), (C-2) and (C-3). Put

Ge» = {wel]“(G‘c’”) N G; ¥ w) N 3, Sit, + ¢} .
sl<a

Then one can see the inequality
pGe 0 TG = (L + 20)74(1 — 20)u(G)

since 1 — 0 < y°x)/x*(%) <1+ 6 for x in G. By the covering theorem
of Vitali, there exists a finite family ¢ of G’s which satisfies

WENENENENG>®1-00ub),
I-E)> G,

#(E‘ N E N E N E N IYE) ~6Lejgé) <3,
NG =9 G+,
Put
EG) ={weG>; W) N E,N G+ ¢} .

Then BN E(G) is £*)|;-measurable for every element B of \/ ¥y 87 with
N” > N'>0. By Lemma 3.1, the estimate
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B N EG) N TG/ + 0)

< a dt — 1t COS @d
~ J@nces o t-a-3 BAE@NSL,1(6) to pda(p)

< (B N E@G) N I (G?)[(1 — 3)

is obtained. Moreover, for y in 7,(G) N G«

D +a+28
I dtI cos pdgp
-a-23 BNE@G)NSL 7t (y)

V+a+d
j dt cos pdop

T-a—3 BNE@G)NSL r@ (y)

1-0< <1l+3d

is obtained. Therefore, there exists a ((1 + d)° — 1)-measure preserving
mapping ¢ from Use, (E(G) N I(G“") N B to Uge, (E(G) N IT-(G))
such that ¢ maps E@) N I'G“x) N B to E’(G) N II'(r“(x)) for x in
1@ N G*», Let ¢ (w) be the name function of S} «. For z in E, N E,
NENEGNB

£(2) = ¢(¢2) for 1I<i<N,—1

and for n > N,

fnj e(4(2) — £(g2) < 26

S |-

hold, since
d(S’,z;0a)>05, forl<k<N, —1,
1% 1(S%2) < 2,
n k=0
(distance of S7,,z and S7,,¢z) < min (6,, 6, 6,)

for £ > 0. On the other hand, there exist an N, and a set E;, such that
wE)>1—4 and for all N', N” > N, and all B in \/}’y. S/, BC E,,

\(E, N E, N E, N E@G) — (E, N E, N E N EG)B)| < 6u(G)

holds, since S/ is a K-system. Hence

g(au (E, N E,NEnEQGN B))

(534

>3 WE N E N E NE N GuB) — su(B)
Gey

=1 — o | C)u(B) — 3u(B)
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>@1- 5)(.“(E1 NENENEN II"Y(EJ)) — 5)[1(3) - 5/1(B)
> [1 — &)1 — 60) — ] (B) .
Therefore by Lemma 2.4, the partition « is very weakly Bernoullian.
Since there exists an increasing sequence of finite partitions {«,} such

that log d(w; da,) is integrable and «, increases to ¢ as n— oo, S/ is a
Bernoulli shift for fixed ¢ = 0. Q.E.D.

COROLLARY 6.1. A Sinai billiard system is a Bernoulli flow.

CoroLLARY 6.2. If {S/} has no point spectrum, then {S{} is a Bernoulli
flow.

TuroreM 6. The flow {S;} given in §3 is a Bernoulli flow, if the as-
sumptions (H-1)~(H-3) are fulfilled and if {S,} has no point spectrum.

Appendix

The properties of the partitions a© and a‘® have been shown in [5].
Now some of them will be stated. Under the suitable numbering the fol-
lowings are true, here denote as a(j) = O(j°) if

0 < lim |a(j)|j~* < lim |a(j)]j* < oo :
j== oo

(i) T.XP =X9°,

(1) z(x) = O@) for x € X© (resp. X{).
Further the following figure is also true.

0G™) OG™)
 — n—

3r
2 T
oG oG-
P xp G
0G~)
O(j—z) 0(]‘—-1/‘2)
x J
g Tl
oG 0G™)
Fig. 2

, These show that log d(x; da‘) is integrable. The condition (f-1)
and (i) imply that the distance between w = (x,v) in 7 %(X/?) and the



PERTURBED BILLIARD SYSTEMS

25

boundary W?* is greater than O(j~'®d(x; da)*(f(x) — v) if f(x) — v <

O@G"™d(x; 0a*)'?. Moreover,
sup (f(x) — f(3) < 00)
2,y Xj‘)

is shown. Hence one can easily obtain that log d(w; 9p) is integrable.
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