PERTURBED BILLIARD SYSTEMS II BERNOULLI PROPERTIES

IZUMI KUBO AND HIROSHI MURATA*)

§1. Introduction

One of the authors has shown the ergodicity of the perturbed billiard system which can describe the motion of a particle in a potential field of a special type [5], [6]. Since then, some development has been made, and we are now able to show the Bernoulli property of the system in this article. We hope, the result gives a new progress in statistical mechanics. Our method of the proof is inspired by the idea of D. S. Ornstein and B. Weiss [9], which has been used by G. Gallavotti and D. S. Ornstein [3] for a Sinai billiard system.

A perturbed billiard transformation will be prescribed in § 3. Roughly speaking, it is an automorphism T_* of two dimensional measure space (M,ν) which can be expressed as the product of T_1 and T, where T_1 is a ν -preserving C^2 -diffeomorphism of M and where T is a Sinai billiard transformation. Such an automorphism T_* appears in a dynamical system of a particle moving in a potential field which is a composition of several finite range potentials (see [5], [6]). In order to discuss such a perturbed billiard system we need three assumptions $(H-1)\sim (H-3)$, which specify the diffeomorphism T_1 . Under these assumptions, the perturbation of T by T_1 is not so much. Details of them will be found in § 3.

Our main results are the following:

Theorem 2. Under the assumptions (H–1) \sim (H–3), partitions $\alpha^{(e)}$ and $\alpha^{(e)}$ are weak Bernoulli generators for T_* . Thus T_* is isomorphic to a Bernoulli shift.

Here $\alpha^{(c)}$ and $\alpha^{(e)}$ are partitions of M whose elements are connected

Received June 7, 1975.

Revised December 4, 1979.

^{*)} This author was partially supported by Yukawa Fellowship.

components such that the restrictions of T_*^{-1} and T_* on them are continuous, respectively.

Theorem 3. Under the assumptions (H-1) \sim (H-3), every countable partition α is weakly Bernoullian for T_* , whenever $\log d(x; \partial \alpha)$ is integrable.

Here $d(x; \partial \alpha)$ is the distance between a point x and the union $\partial \alpha$ of the boundaries of all elements of α .

Theorem 5. Under the assumptions (H-1) \sim (H-3) and (f-1) \sim (f-3), if $\{S_i^f\}$ is a K-system and α is a finite partition such that $\log \tilde{d}(w; \partial \alpha)$ is integrable, then α is very weakly Bernoullian for $\{S_i^f\}$ ($t \neq 0$). Furthermore $\{S_i^f\}$ is a Bernoulli flow.

As stated in Corollary 5.3, $\{S_i'\}$ is a K-system if it does not have any point spectrum. With this result, we have a stronger assertion Corollary 6.2. Here $\{S_i'\}$ is a flow of Kakutani-Ambrose type whose basic transformation and ceiling function are T_* and f(x), respectively. There we assume the conditions $(f-1)\sim(f-3)$, which are prescribed in § 5, so as f(x) to be regular. Actually, if f(x) is positive and smooth on M, then they are obviously satisfied. Our formulation is complicated, but necessary in order to apply to the case of dynamical system on a potential field as described above.

In section 2 some lemmas to make easier checking weak Bernoulli property will be given. In section 3 some fundamental results of the perturbed billiard transformation T_* , which have been shown in [5], will be summarized. In section 4 the proofs of Theorem 2 and Theorem 3 will be shown appealing lemmas in §2. The most complicated parts of the proofs are in the estimations of densities of measures related to transversal fibres of T_* . In section 5 we will discuss on the construction of transversal fibres and the K-properties of the flow $\{S_i^f\}$. In section 6 the proof of Theorem 5 will be shown by using properties of the transversal fibres.

Lastly we remark that the same results can be obtained for more general T_1 as discussed in [6], since the properties stated in §3 are also true for the general case.

§2. Weak and very weak Bernoulli partitions

Let (M, ν) be a Lebesgue space with total mass $\nu(M) = 1$, and let T

be a bimeasurable measure preserving transformation on M. D. S. Ornstein gave the following definitions:

Definition 2.1. A countable partition α of M is said to be weakly Bernoullian for T, if for any $\varepsilon > 0$ there exists $N \geq 0$ such that for all $N'' \geq N' \geq N$, all $n \geq 0$, and ε -a.e. B in $\bigvee_{i=N'}^{N''} T^{-i} \alpha$

(2.1)
$$\sum_{A \in \mathcal{V}_{\varepsilon=0}^{n} t^{l} \alpha \atop \delta=0} |\nu(A) - \nu(A \mid B)| < \varepsilon.$$

Here " ε -a.e. B in ξ " means "except element B of the partition ξ which is included in a set of measure ε ". For two countable partitions $\alpha = \{A_i\}$ and $\beta = \{B_i\}$ of M, define the usual metric by

$$d(lpha,eta) \equiv \sum\limits_{i}
u(A_i igoplus B_i)$$
 ,

where $A \ominus B$ denotes the symmetric difference of the sets A and B. For given two sequences of partitions $\{\alpha_i\}_{i=1}^n$ and $\{\beta_i\}_{i=1}^n$ write

$$\{\alpha_j\}_1^n \sim \{\beta_j\}_1^n$$

if for all k_j , $1 \le j \le n$,

$$\mu_{\scriptscriptstyle X}\!\!\left(igcap_{\scriptscriptstyle 1}^{\scriptscriptstyle n}A_{\scriptscriptstyle k_j}^{\scriptscriptstyle (j)}
ight)=\,\mu_{\scriptscriptstyle Y}\!\!\left(igcap_{\scriptscriptstyle 1}^{\scriptscriptstyle n}B_{\scriptscriptstyle k_j}^{\scriptscriptstyle (j)}
ight),$$

where $\alpha_j = \{A_1^{(j)}, \dots, A_{a(j)}^{(j)}\}$ are partitions on (X, μ_X) and $\beta_j = \{B_1^{(j)}, \dots, B_{b(j)}^{(j)}\}$ are partitions on (Y, μ_Y) . Further define the metric \bar{d} by

$$ar{d}(\{lpha_j\}_1^n,~\{eta_j\}_1^n)=\inf_{\{lpha_j\},~\{eta_j\}}rac{1}{n}\sum_1^nd(\overline{lpha}_j,~\overline{eta}_j)$$
 ,

where $\{\overline{\alpha}_j\}$ and $\{\overline{\beta}_j\}$ run over all pairs of partitions on the same space such that $\{\alpha_j\}_1^n \sim \{\overline{\alpha}_j\}_1^n$ and $\{\beta_j\}_1^n \sim \{\overline{\beta}_j\}_1^n$. Let α be a partition and E be a subset of M. Then the normalized measure $\nu_E(A) = \nu(A \cap E)/\nu(E)$ will be associated to $\alpha|_E$.

DEFINITION 2.2. A finite partition α is said to be *very weakly Bernoullian* for T, if for every $\varepsilon > 0$ there exists $N \ge 0$ such that for all $N'' \ge N' \ge N$, all $n \ge 0$ and ε -a.e. B in $\bigvee_{i=N'}^{N''} T^{-i} \alpha$,

$$\bar{d}(\{T^i\alpha\}_1^n,\{T^i\alpha\,|\,B\}_1^n)\leq\varepsilon\;.$$

D. S. Ornstein and others [2], [4], [7], [8] have shown the following theorem:

Theorem A. If one of the following conditions is satisfied, then T is isomorphic to a Bernoulli shift.

- (i) There is a weak Bernoulli generator for T.
- (ii) There is a sequence of weak Bernoulli partitions α_n for T such that $\bigvee_{i=-\infty}^{\infty} T^i \alpha_n \uparrow \epsilon^{*}$ as $n \to \infty$.
- (iii) There is a sequence of very weak Bernoulli partitions α_n for T such that $\bigvee_{i=-\infty}^{\infty} T^i \alpha_n \uparrow \epsilon$ as $n \to \infty$.

In order to apply this theorem to a perturbed billiard system, it is convenient to prepare the following lemmas.

Lemma 2.3. (i) If for any $\varepsilon > 0$ and $\delta > 0$, there exist a natural number N and a finite family $\mathscr F$ of disjoint subsets of M with $\sum_{F \in \mathscr F} \nu(F) \ge 1 - \delta$ such that for all $N'' \ge N' \ge N$, all $n \ge 0$ and ε -a.e. B in $\bigvee_{i=N'}^{N''} T^{-i} \alpha$,

(2.3)
$$\sum_{A\in \bigvee_{i=0}^{n} 1\atop i=0} |\nu(A|F) - \nu(A|F\cap B)| < \delta \quad \text{for any } F \text{ in } \mathscr{F},$$

(2.4)
$$\sum_{F \in \mathcal{F}} |\nu(F) - \nu(F|B)| < \delta,$$

then the partition α is weakly Bernoullian for T.

- (ii) In (i), the condition (2.4) is unnecessary if T is a K-system and the entropy of α is finite.
- (iii) In (i), (2.3) is fulfilled if for all A in $\bigvee_{i=0}^n T^i \alpha$, all F in $\mathscr F$ and ε -a.e. B in $\bigvee_{i=N'}^{N''} T^{-i} \alpha$,

$$\left|\frac{\nu(A \cap B \cap F)\nu(F)}{\nu(A \cap F)\nu(B \cap F)} - 1\right| < \delta.$$

Proof. Put $F_0 = M - \bigcup_{F \in \mathscr{F}} F$, then one has

$$egin{aligned}
u(F_0 \,|\, B) &\leq 1 - \sum\limits_F
u(F \,|\, B) \leq 1 - (1 - \delta) \sum\limits_F
u(F) \ &\leq 1 - (1 - \delta)^2 \end{aligned}$$

by (2.4) and by $\sum \nu(F) \ge 1 - \delta$. From (2.3) the estimate

$$\sum_{F} \sum_{A} |\nu(A \cap F) - \nu(A \cap F|B)|$$

$$\leq \sum_{A \in F} |\nu(A|F)\nu(F) - \nu(A|B \cap F)\nu(F|B)|$$

^{*)} The symbol \(\int \) denotes the partition into the individual points.

$$\leq \sum_{A,F} |\nu(A|F) - \nu(A|B \cap F)| \nu(F) + \sum_{A,F} \nu(A|B \cap F) |\nu(F) - \nu(F|B)|$$

$$\leq 2\delta$$

is obtained. Hence for 2ε -a.e. B in $\bigvee_{i=N'}^{N''} T^{-i}\alpha$,

$$\begin{split} &\sum_{A} |\nu(A) - \nu(A \mid B)| \\ &\leq \sum_{F,A} |\nu(A \cap F) - \nu(A \cap F \mid B)| + \sum_{A} \left\{ \nu(A \cap F_0) + \nu(A \cap F_0 \mid B) \right\} \\ &\leq 2\delta + \delta + 1 - (1 - \delta)^2 \leq 5\delta. \end{split}$$

Thus (i) is proved. If T is a K-system, then for the given $\mathscr F$ there exists N such that for all $N'' \geq N' \geq N$, all F in $\mathscr F$ and ε -a.e. B in $\bigvee_{N'}^{N''} T^{-i} \alpha$,

$$|\nu(F) - \nu(F|B)| \leq \delta \nu(F)$$
.

It is easily seen that (2.5) implies (2.3).

Q.E.D.

A mapping ϕ from X to Y is called ε -measure preserving if there exists a subset E of X with $\mu_X(E) \leq \varepsilon$ such that for all $A \subset X - E$

$$\left| rac{\mu_{\scriptscriptstyle Y}(\phi A)}{\mu_{\scriptscriptstyle X}(A)} - 1
ight| < arepsilon \; .$$

Let e(n) be the function on ordinal numbers defined by e(0) = 0, e(n) = 1 for $n \neq 0$. For a given partition $\alpha = \{A_j\}$, the name function of α is defined by $\ell(x) \equiv j$ if x is in A_j . The following lemma is due to D. S. Ornstein and B. Weiss [9].

LEMMA 2.4. Let $\{\alpha_i\}_1^n$ be partitions of X with name functions $\ell_i(x)$, and $\{\beta_i\}_1^n$ be partitions of Y with name functions $m_i(y)$. If there is an ε -measure preserving mapping ϕ from X to Y such that

$$\frac{1}{n}\sum_{i=1}^{n}e(\ell_{i}(x)-m_{i}(\phi x))\leq \varepsilon$$

holds for x in X - E with $\mu_x(E) \leq \varepsilon$, then

$$\bar{d}(\{\alpha_i\}_1^n, \{\beta_i\}_1^n) \leq 16\varepsilon$$
.

The lemma is easily proved, but it is useful to check (2.2) for a suitable partition α (cf. § 6).

§3. Perturbed billiard systems

In the previous article by one of the authors [5], a perturbed billiard system was defined as follows. Let \overline{Q}_{ι} , $\iota = 1, 2, \dots, I$ be disjoint strictly

convex domains in a 2-dimensional torus T whose boundaries ∂Q_{ι} are closed curves of C^3 -class. Put $Q = T - \bigcup_{\iota} \overline{Q}_{\iota}$ and $\partial Q = \bigcup_{\iota} \partial Q_{\iota}$ and put $M_0 = \{(q,p); q \in Q, p = (\cos \omega, \sin \omega), 0 \leq \omega < 2\pi\}$. The flow $\{S_{\iota}\}$ on M_0 which describes the motion of a particle moving around in Q with unit speed and with elastic collision at ∂Q is called a Sinai billiard system in Q [11], [12]; the particle moves along straight lines in the interior of Q with speed one, and is reflected at ∂Q according to the law "the angle of reflection is equal to the angle of incidence". Denote by M the set of all unit incident vectors at ∂Q_{ι} . Then every element x = (q, p) of M can be represented by coordinates (ι, r, φ) , where ι is the number of ∂Q_{ι} containing q, r is the arclength between q and a fixed origin in ∂Q_{ι} measured along ∂Q_{ι} clockwise, and φ is the angle between p and the inward normal of ∂Q_{ι} at q. For x in M_0 , put

(3.1)
$$v(x) = \inf\{t \ge 0; S_t x \text{ collides with } \partial Q\}$$
$$\tau(x) = \sup\{t < 0; S_t x \text{ collides with } \partial Q\}.$$

Then almost every point x in M_0 (with respect to the measure $dqd\omega$) is parametrized by (ι, r, φ, v) , where v = v(x) and (ι, r, φ) represents the point $S_v x$ in M. One can define a transformation T of M, which is called a Sinai billiard transformation, by

$$(3.2) Tx = S_{\tau(x)-0}x \text{for } x \text{ in } M.$$

Then $\{S_{-t}\}$ is a Kakutani-Ambrose flow with the basic space M, the basic transformation T and the ceiling function $-\tau(x)$. The invariant measure μ of $\{S_t\}$ determined by Liouville's theorem is expressed in the form

$$(3.3) d\mu = -\mu_0 \cos \varphi d\varphi dr dv d\iota$$

and the corresponding invariant measure of T is expressed in the form

$$(3.4) d\nu = -\nu_0 \cos \varphi d\varphi dr d\ell$$

with $\mu_0 = (2\pi |Q|)^{-1}$ and $\nu_0 = (2 |\partial Q|)^{-1}$, where |Q| is the volume of Q and $|\partial Q|$ is the total arclength of the boundary ∂Q .

Definition 3.1. A transformation T_* of M is called a perturbed billiard transformation if T_* is expressed in the form

$$(3.5) T_* = T_1 T,$$

where T is the Sinai billiard transformation and T_1 is a C^2 -diffeomorphism

of M which preserves the measure ν and each $M^{(\iota)} \equiv \{(\iota, r, \varphi); (\iota, r) \in \partial Q_i\}$.

In [5], a special class of perturbed billiard transformations has been investigated*):

- (H-1) $T_1(\iota, r, \varphi) = (\iota, r H(\iota, \varphi), \varphi)$, where $H(\iota, \varphi)$ is a function of C^2 -class and satisfies $H(\iota, (\pi/2)) = H(\iota, (3/2)\pi) = 0$,
- (H-2) every \overline{Q}_i are disjoint strictly convex domains whose boundaries are curves of C^3 -class,
- (H-3) $\min_{\iota,\varphi} \{h(\iota,\varphi) + [\max_r k(\iota,r) + (\min_{\iota,r,\varphi'} |\tau(\iota,r,\varphi')|)^{-1}]^{-1}\} > 0$, where $h(\iota,\varphi) \equiv dH(\iota,\varphi)/d\varphi$ and $k(\iota,r)$ is the curvature of ∂Q_{ι} at (ι,r) .

Under the above three assumptions the ergodicity and the K-property of the perturbed billiard transformation T_* were shown in [5]. In order to describe the results, it is necessary to introduce notation and terminology. A connected curve γ ; $\varphi = \psi(r)$ in $M^{(r)}$ is called K-increasing if for $r \neq r'$

(3.6)
$$k_{\min} \leq \frac{\psi(r) - \psi(r')}{r - r'} \leq K_{\max}(t)$$

holds, where

$$k_{\min} \equiv \min_{\ell, r} k(\ell, r) \quad \text{and} \quad K_{\max}(\ell) \equiv \max_{r} k(\ell, r) + \left(\min_{r, \varphi} |\tau(T_*^{-1}(\ell, r, \varphi))|\right)^{-1}.$$

A connected curve γ ; $\varphi = \psi(r)$ in $M^{(r)}$ is called *K-decreasing*, if for $r \neq r'$

$$(3.7) K_{\min} \leq -\frac{\psi(r) - \psi(r')}{r - r'} \leq K_{\max}$$

holds, where $K_{\min} \equiv [\max_{\iota,\varphi} h(\iota,\varphi) + k_{\min}^{-1}]^{-1}$ and $K_{\max} \equiv \max_{\iota} [\min_{\varphi} h(\iota,\varphi) + K_{\max}(\iota)^{-1}]^{-1}$. Put $S \equiv \{(\iota,r,\varphi) \in M; \varphi = \pi/2 \text{ or } 3\pi/2\}$. Then $T_*^{-1}S$ (resp. T_*S) is called the curves of discontinuity of T_* (resp. T_*^{-1}). The image $T_*^{-1}S$ (resp. T_*S) consists of a countable number of K-increasing (resp. K-decreasing) curves. The curves of $T_*^{-1}S$ (resp. T_*S) decompose M into connected components and define the partition $\alpha^{(e)}$ (resp. $\alpha^{(e)}$) into the components $\{X_j^{(e)}\}$ (resp. $\{X_j^{(e)}\}$). Then T_* (resp. T_*^{-1}) is continuous in the interior of each component and belongs to C^2 -class. If T_* (resp. T_*^{-1}) is continuous on a connected K-decreasing (resp. K-increasing) curve γ , then so is the image of γ .

For a point $x = (\iota, r, \varphi)$ in M, put $x_i = (\iota_i, r_i, \varphi_i) \equiv T_*^{-i}(\iota, r, \varphi)$, $(\iota_i, r_i', \varphi_i') \equiv T_1^{-1}x_i$, $k_i \equiv k(\iota_i, r_i)$, $k_i' \equiv k(\iota_i, r_i')$, $k_i \equiv h(\iota_i, \varphi_i)$ and $\tau_i \equiv \tau(\iota_i, r_i, \varphi_i)$. Define

^{*)} A more general case was discussed in [6].

functions $b_n(x;t)$, $-\infty < n < \infty$, of (x,t) in $M \times (-\infty,\infty)$ by

$$egin{aligned} b_{_{1}}(x;t) &\equiv rac{(\cos arphi + k' au_{_{1}})(h+t) + au_{_{1}}}{(k_{_{1}}\cos arphi + k'\cos arphi_{_{1}} + k_{_{1}}k' au_{_{1}})(h+t) + \cos arphi_{_{1}} + k_{_{1}} au_{_{1}}} \ b_{_{n+1}}(x;t) &\equiv b_{_{1}}(T_{*}^{-n}x;b_{_{n}}(x;t)) & n \geq 1 \ b_{_{0}}(x;t) &\equiv t \ b_{_{-1}}(x;t) &\equiv -h - rac{(\cos arphi + k au_{_{1}})t - au_{_{1}}}{(k\cos arphi_{_{-1}} + k'_{_{-1}}\cos arphi + kk'_{_{-1}} au)t - (\cos arphi_{_{-1}} + k'_{_{-1}} au)} \ b_{_{-n-1}}(x;t) &\equiv b_{_{-1}}(T_{*}^{n}x;b_{_{-n}}(x;t)) & n \geq 1 \ . \end{aligned}$$

Suppose that γ and $T_*^{-n}\gamma$ are given by the equations $r = u(\varphi)$ and $r_n = u_n(\varphi_n)$, respectively, with $T_*^{-n}(\iota, u(\varphi), \varphi) = (\iota_n, u_n(\varphi_n), \varphi_n)$. Then the formula

$$rac{du_n(arphi_n)}{darphi_n} = b_n \Big(\iota, r, arphi; rac{du(arphi)}{darphi} \Big)$$

holds for all n. Further one can see that for (x,t) in $M \times [1/K_{\min}, \infty)$ $b_n(T_*^n x;t)$ converges to a positive function $1/\chi^{(e)}(x)$ and that $b_{-n}(T_*^{-n} x;-t)$ converges to a negative function $1/\chi^{(e)}(x)$. The function $\chi^{(e)}$ (resp. $\chi^{(e)}$) is continuous at x not in $\bigcup_{n=0}^{\infty} T_*^n S$ (resp. $\bigcup_{n=0}^{\infty} T_*^{-n} S$) and satisfies

$$K_{\min} \leq -\chi^{(e)}(x) \leq K_{\max} \; ext{(resp. } k_{\min} \leq \chi^{(e)}(x) \leq K_{\max}(\iota)) \; .$$

Theorem 1. (i) $\alpha^{(e)}$ and $\alpha^{(e)}=T_*^{-1}\alpha^{(e)}$ are generators for T_* with the same finite entropy.

- (ii) Almost every element of $\zeta^{(e)} \equiv \bigvee_{i=0}^{\infty} T_*^i \alpha^{(e)}$ is a connected K-decreasing curve whose gradient*) at x is equal to $\chi^{(e)}(x)$. Alternatively, almost every element of $\zeta^{(e)} \equiv \bigvee_{i=0}^{\infty} T_*^{-i} \alpha^{(e)}$ is a connected K-increasing curve whose gradient at x is equal to $\chi^{(e)}(x)$.
- (iii) T_* is a K-system. Actually, the partition $\zeta^{(c)}$ and the partition $\zeta^{(e)}$ satisfy the following conditions:

$$egin{aligned} T_*^{-1}\zeta^{(c)} > \zeta^{(c)} \;, & T_*\zeta^{(e)} > \zeta^{(e)} \;, \ & \bigvee_i \; T_*^i\zeta^{(c)} = \bigvee_i \; T_*^i\zeta^{(e)} = \epsilon \ & \bigwedge_i \; T_*^i\zeta^{(c)} = \bigwedge_i \; T_*^i\zeta^{(e)} = the \; trivial \; partition \;. \end{aligned}$$

By the theorem, in order to show the Bernoulli property of T_* , it is enough to give a family \mathscr{F} which satisfies the condition (2.5) in Lemma 2.3. For this purpose, it is necessary to investigate the structure of the

^{*)} When a curve γ is given by the equation $\varphi = \psi(r)$, the gradient of γ at $x = (r, \varphi)$ is $d\psi/dr$.

measure μ in connection with the partitions $\zeta^{(e)}$ and $\zeta^{(e)}$. Denote by $\gamma^{(e)}(x)$ the curve which is the element of $\zeta^{(e)}$ involving x. Alternatively, denote by $\gamma^{(e)}(x)$ the curve which is the element of $\zeta^{(e)}$ including x. For two decreasing curves γ and γ' , define the canonical mapping $\Psi_{\gamma,\gamma}^{(e)}$ by

(3.8)
$$\begin{array}{c} \Psi_{r',\tau}^{(e)} \colon \gamma \to \gamma' \\ \Psi_{r',\tau}^{(e)} \colon x \mapsto \gamma^{(e)}(x) \ \cap \ \gamma' \end{array}.$$

Let σ_r and $\sigma_{r'}$ be the measures on γ and γ' respectively defined as follows; for $\bar{\gamma}$ in γ and $\bar{\gamma}'$ in γ

$$\sigma_{r}(ar{\gamma}) = \int_{ar{r}} |darphi| \quad ext{and} \quad \sigma_{r'}(ar{\gamma}') = \int_{ar{r}'} |darphi| \; .$$

Define the measure $\Psi_{r,r'}^{(e)}\sigma_{r'}$ by

$$\Psi_{r,r'}^{(e)}\sigma_{r'}(ar{\gamma})\equiv\sigma_{r'}(\Psi_{r',r}^{(e)}ar{\gamma})$$
 .

Then the Radon-Nikodym density relative to $d\sigma_r$ is given by

(3.9)
$$\frac{d\Psi_{r,r'}^{(e)}\sigma_{r'}}{d\sigma_{r}} = g_{r,r'}^{(e)} \equiv \prod_{i=-\infty}^{0} \frac{\Lambda^{*}(x_{i}, T_{*}^{-i}r)}{\Lambda^{*}(x'_{i}, T_{*}^{-i}r')}$$

with x in γ and $x' = \Psi_{r',r}^{(e)}x$, where

(3.10)
$$\Lambda^*(x,\gamma) = \frac{\{k_1\cos\varphi + k'\cos\varphi_1 + k_1k'\tau_1\}b_1(x;du/d\varphi) - k'\tau_1 - \cos\varphi}{\cos\varphi} .$$

Similarly, $\Psi_{\tau',\tau}^{(c)}$, $\sigma_{\tau'}$, σ_{τ} are defined for increasing curves γ' , γ and one has

$$\frac{d\Psi_{\gamma,\gamma'}^{(c)}\sigma_{\gamma'}}{d\sigma_{\sigma}} = g_{\gamma,\gamma'}^{(c)} = \prod_{i=0}^{\infty} \frac{\Lambda(x_i, T_*^{-i}\gamma)}{\Lambda(x_i', T_*^{-i}\gamma')}$$

with x in γ and $x' = \Psi_{r',r}^{(c)} x$, where

$$(3.10)' \quad \varLambda(x,\gamma) = -\frac{\{k_1\cos\varphi + k'\cos\varphi_1 + k_1k'\tau_1\}\{du/d\varphi + h\} + k_1\tau_1 + \cos\varphi_1}{\cos\varphi_1}$$

By Lemmas 6.1, 6.1' and 7.1 in [5], for any $\delta > 0$ there exist an even natural number $\ell_0 = \ell_0(\delta, 1, 1/4)$ and a positive function $\varepsilon_0 = \varepsilon_0(x, \delta, 1)$ which guarantee the following property: For an x not in $\bigcup_{i=-\ell_0}^{\ell_0} T_*^i S$, let G be a K-quadrilateral*) (a domain which is enclosed by four curves such that a pair of opposite curves $\gamma_b(G)$, $\gamma_c(G)$ are K-increasing and the other pair of opposite curves $\gamma_a(G)$, $\gamma_c(G)$ are K-decreasing) in the ε_0 -neighbourhood

^{*)} The notation for G and some properties of G are explained in [5].

 $U_{*_0}(x)$ of x. Suppose that $\delta_0 \equiv \theta(\gamma_a(G)) = \theta(\gamma_b(G))^{*_0}$ and that $T_*^{-\ell_0}G$, $T_*^{\ell_0}G$ are K-quadrilaterals. Then there exist subsets $G^{(c,\delta)}$ and $G^{(c,\delta)}$ which satisfy the four conditions;

(C-1) for all x in $G^{(e,\delta)}$ (resp. $G^{(e,\delta)}$), $\gamma^{(e)}(x) \cap G^{(e,\delta)}$ (resp. $\gamma^{(e)}(x) \cap G^{(e,\delta)}$) is a connected segment which joins $\gamma_b(G)$ and $\gamma_a(G)$ (resp. $\gamma_a(G)$ and $\gamma_c(G)$),

(C-2)
$$\nu(G^{(c,\delta)}) \geq (1-\delta)\nu(G)$$
 and $\nu(G^{(e,\delta)}) \geq (1-\delta)\nu(G)$,

(C-3) for any K-increasing (resp. K-decreasing) curve γ and γ' in G, the canonical mapping $\Psi_{r',\tau}^{(c)}$ (resp. $\Psi_{r',\tau}^{(e)}$) is absolutely continuous on $\gamma \cap G^{(c,\delta)}$ (resp. $\gamma \cap G^{(e,\delta)}$) with respect to σ_r and $\sigma_{r'}$,

$$\text{(C-4)} \quad \text{for any } m \geq 0, \ T_*^{-m}G^{(c,\delta)} \cap V_m(\delta_0) = \phi^{**} \text{(resp. } T_*^mG^{(c,\delta)} \cap V_m(\delta_0) = \phi \text{).}$$

Fig. 1

Define the measure ρ_r on a K-decreasing (or K-increasing) curve γ by

$$ho_r\!(ar{\gamma}) \equiv \int_{ar{r}} dr \qquad ext{for } ar{\gamma} \subset \gamma \; .$$

Let γ be a K-decreasing curve in G which joins $\gamma_a(G)$ and $\gamma_c(G)$, and let $\tilde{\gamma}_0$ be a K-increasing curve which is an extension of $\tilde{\gamma}$ and is given by the equation $r = \tilde{u}(\varphi)$, $\pi/2 \le \varphi \le (3/2)\pi$. For given $\dot{\varphi}$ and $\dot{\psi}$, let $\tilde{\gamma}^{\phi,\psi}$ be the curve defined by $r = \tilde{u}(\varphi) - \tilde{u}(\dot{\varphi}) - u^{\phi}(\dot{\psi})$, where $r = u^{\phi}(\dot{\psi})$ is the equation of $\gamma^{(c)}(\iota, \tilde{u}(\dot{\varphi}), \dot{\varphi})$. Then by Lemma 8.3 in [5], the measure ν is expressed in the form

$$(3.11) \qquad \nu(B\,\cap\,G^{(c,\delta)}) = \int d\sigma_{\bf f}(\varphi) \int_{\tau^{(c)}(\epsilon,\tilde{u}(\varphi),\,\varphi)\cap B\cap G^{(c,\delta)}} g_{\bf 0}(\varphi,\psi) d\sigma_{\tau^{(c)}}(\psi) \ ,$$

where $g_0(\varphi, \psi)$ is defined by

^{*)} For monotone connected curve γ , $\theta(\gamma)$ denotes the total variation of γ in φ -direction; $\theta(\gamma) \equiv \sigma_{\gamma}(\gamma) = \int_{-\infty}^{\infty} d\varphi$.

^{**)} $V_m(\delta_0) \equiv \{x\,;\, -\cos\varphi(x) \leq (1+\eta_1)^{-m/32}\delta_0\}$ with $\eta \equiv k_{\min}\,|\,\tau\,|_{\min}$ and $\eta_1 \equiv \min\,\{\eta\,,\, (1+\gamma)^2 \cdot K_{\min}/K_{\max}\}$.

(3.12)
$$g_0(\varphi, \psi) = \frac{\nu_0 \cos \varphi}{\chi^{(c)}(\iota, u^{\varphi}(\psi), \psi)} \prod_{i=0}^{\infty} \frac{A(T_*^{-i}x; T_*^{-i}\tilde{\gamma}_0)}{A(T_*^{-i}\hat{x}; T_*^{-i}\tilde{\gamma}^{\varphi, \psi})}$$

with $x = (\iota, \tilde{u}(\varphi), \varphi)$ and $\hat{x} = (\iota, u^{\varphi}(\psi), \psi)$.

Let $\hat{\gamma}$ be a K-decreasing curve in G which joins $\gamma_b(G)$ and $\gamma_d(G)$, and be defined by the equation $r = \hat{u}(\varphi)$. Then by (3.9), one can see that

$$(3.13) \qquad \qquad \nu(B \cap G^{(e,\delta)} \cap G^{(e,\delta)}) \\ = \int_{\tilde{\tau} \cap G^{(e,\delta)}} d\sigma_{\tilde{\tau}}(\varphi) \int_{\tilde{\tau} \cap \Psi^{(e)}_{\tilde{\tau}, \mathbf{1}'}(B \cap G^{(e,\delta)} \cap \mathbf{1}')} g_{0}(\varphi, \Psi^{(e)}_{\tilde{\tau}, \mathbf{1}'}, \hat{\psi}) g^{(e)}_{\tilde{\tau}, \mathbf{1}'}(\hat{\psi}) d\sigma_{\tilde{\tau}}(\hat{\psi})$$

where $\gamma' = \gamma^{(c)}(\iota, \tilde{u}(\varphi), \varphi)$, $\Psi_{r', r}^{(e)}(\iota, \hat{u}(\hat{\psi}), \hat{\psi}) = (\iota, u^{\varphi}(\tilde{\varphi}), \tilde{\varphi})$ and $\Psi^{(e)}\hat{\psi} \equiv \tilde{\varphi}$. One can easily see that for any fixed $m \geq \ell_0$, there exists a positive number $\epsilon_2 = \epsilon_2(x, m) < \epsilon_0$ such that $T_*^j U_{\epsilon_2}(x) \cap V_0(2(1 + \eta_1)^m \epsilon_2) = \phi$ for $|j| \leq m$.

Lemma 3.1. Suppose that $G \subset U_{i_2}(x)$ be as above and $T_*^{-m}\hat{\gamma}$ is a K-decreasing curve, then

$$egin{aligned} &\exp\left[-c_{\scriptscriptstyle 31}(1+\eta_{\scriptscriptstyle 1})^{-m/2}
ight] \ &\leq rac{-
u_0}{
u(B\,\cap\,G^{(e,\delta)}\,\cap\,G^{(e,\delta)})} \int_{ au\cap G^{(e,\delta)}}\cosarphi d\sigma_{ar{ au}}(arphi) \int_{\Psi_{ar{ au},ar{ au}'}^{(e)}(B\cap G^{(e,\delta)}\capar{ au}')} d
ho_{ar{ au}}(\hat{\psi}) \ &\leq \exp\left[c_{\scriptscriptstyle 31}(1+\eta_{\scriptscriptstyle 1})^{-m/2}
ight]. \end{aligned}$$

In particular, if A is a $\zeta^{(c)}|_{G}$ -measurable subset of G and B is $\zeta^{(c)}|_{G}$ -measurable subset of G, then

$$egin{aligned} &\exp\left[-c_{\scriptscriptstyle 3i}(1+\eta_{\scriptscriptstyle 1})^{-m/2}
ight] \ &\leq rac{
u_0}{
u(A\,\cap\,B\,\cap\,G^{(c,\delta)}\,\cap\,G^{(e,\delta)})} \int_{ar{ au}\cap B\,\cap\,G^{(e,\delta)}} \cosarphi d\sigma_{ar{ au}}(arphi) \int_{ar{ au}\cap A\,\cap\,G^{(c,\delta)}} d
ho_{ar{ au}}(\hat{\psi}) \ &\leq \exp\left[c_{\scriptscriptstyle 3i}(1+\eta_{\scriptscriptstyle 1})^{-m/2}
ight]. \end{aligned}$$

In order to prove this lemma, we will prepare two lemmas.

LEMMA 3.2. Let G be as in Lemma 3.1. Let $\hat{\gamma}$ and $\hat{\hat{\gamma}}$ be K-decreasing curves in G which join $\gamma_b(G)$ and $\gamma_d(G)$. If $T_*^{-m}\hat{\gamma}$ and $T_*^{-m}\hat{\hat{\gamma}}$ are K-decreasing, then for \hat{x} in $\hat{\gamma} \cap G^{(e,\delta)}$

$$\exp\left[-c_{\scriptscriptstyle 32}(1+\eta_{\scriptscriptstyle 1})^{_{\scriptscriptstyle -m/2}}
ight] \leq g_{j,j}^{\scriptscriptstyle (e)}(\hat{x}) \leq \exp\left[c_{\scriptscriptstyle 32}(1+\eta_{\scriptscriptstyle 1})^{_{\scriptscriptstyle -m/2}}
ight]$$

holds with a positive constant c_{32} .

Proof. Put $\gamma \equiv \gamma^{(e)}(\hat{x}) \cap G$ and $\gamma_j = T_*^{-j}\gamma$. Put $\hat{x}_j = T_*^{-j}\hat{x}$ and $\hat{x}_j = T_*^{-j}\hat{x}$ with $\hat{x} = \Psi_{\hat{j},j}^{(e)}(\hat{x})$. Since G is in $U_{i_2}(x)$ with an x, min $\{-\cos\varphi(y); y \in \gamma_j\} \geq 2\varepsilon_2(1+\gamma_1)^m$ holds for $-m \leq j \leq 0$ and $\theta(\gamma) \leq 2\varepsilon_2$ holds. Put $c_2 = 1$

 $K_{\text{max}}/K_{\text{min}}$. Applying Lemma 5.3 and Lemma 5.4 (i) in [5], one has the estimation

$$\log \left[A^*(\hat{x}_j, \hat{\gamma}_j) / A^*(\hat{x}_j, \hat{\gamma}_j) \right] \leq (c_{22} + c_{21} + \log c_2) (1 + \eta_1)^{j-m}$$

for $-m \leq j \leq 0$. Since \hat{x} is in $G^{(e,\delta)}$, it holds that min $\{-\cos\varphi(y); y \in \gamma_j\}$ $\geq \delta_0(1+\eta_1)^{j/32}$ for $j \leq 0$ and that $\theta(\gamma) \leq (1+c_2)\delta_0$. Therefore again one has

$$\log \left[\Lambda^*(\hat{x}_j, \hat{\gamma}_j) / \Lambda^*(\hat{x}_j, \hat{\gamma}_j) \right] \leq 2(c_2 + 1) c_{22} (1 + \eta_1)^{31j/32} + (\log c_2) (1 + \eta_1)^{j}$$

for $j \le -m$. These estimates imply Lemma 3.2 by (3.9). Q.E.D.

Lemma 3.3. Let G be as in Lemma 3.1 and let $T_*^{m_{\tilde{f}_0}}$ be K-increasing. Then

$$egin{aligned} \exp\left[-c_{\scriptscriptstyle 33}(1+\eta_{\scriptscriptstyle 1})^{_{\scriptscriptstyle -m/2}}
ight] &\leq rac{g_{\scriptscriptstyle 0}(arphi,\,\psi)}{
u_{\scriptscriptstyle 0}} \,rac{\cosarphi}{\cos\psi} \,rac{\chi^{\scriptscriptstyle (c)}(\iota,\,u(\psi),\,\psi)}{\chi^{\scriptscriptstyle (c)}(\iota,\, ilde{u}(arphi),\,arphi)} \ &\leq \exp\left[c_{\scriptscriptstyle 33}(1+\eta_{\scriptscriptstyle 1})^{_{\scriptscriptstyle -m/2}}
ight] \end{aligned}$$

with a positive constant c_{33} .

Proof. Put $x = (\iota, \tilde{u}(\varphi), \varphi)$ and $\hat{x} = (\iota, u^{\varphi}(\psi), \psi)$. Similarly in Lemma 3.2,

$$\sum_{j=0}^{\infty} \left| \log \frac{A(T_*^{-j}x, T_*^{-j} ilde{\gamma}_0)}{A(T_*^{-j}\hat{x}, T_*^{-j} ilde{\gamma}^{q,\psi})} \right| \leq c_{32}' (1+\eta_1)^{-m}$$
.

By Lemma 5.3 in [5], for $(\iota, \hat{u}(\hat{\varphi}), \hat{\varphi}) = \Psi_{\hat{\tau}, \tau^{(e)}(\iota, \tilde{u}(\varphi), \varphi)}(\iota, u^{\varphi}(\psi), \psi)$

$$\left|\log \frac{\chi^{(c)}(\iota, u^{\varphi}(\psi), \psi)}{d\hat{u}/d\hat{\psi}}\right| \leq (\pi c_{21} + c_3)(1 + \eta_1)^{-m}.$$

On the other hand, the estimate

$$\left|\log \frac{\cos \varphi}{\cos \psi}\right| \leq 2(1+\eta_1)^{-m}$$

holds, since G is in $U_{\iota_2}(x)$.

Q.E.D.

Proof of Lemma 3.1. Since $|dr| = |d\hat{u}/d\hat{\psi}| d\hat{\psi}$ on \hat{r} , Lemma 3.2 and Lemma 3.3 imply the first statement in Lemma 3.1. If A and B are as in Lemma 3.1, then

$$\varPsi_{\hat{ au}, \gamma'}^{(c)}(A \ \cap \ B \ \cap \ G^{(c,\delta)} \ \cap \ \gamma') = egin{cases} B \ \cap \ G^{(c,\delta)} \ \cap \ \hat{ au} & ext{if} \ \ \gamma' \subset A \ \cap \ G^{(c,\delta)} \ \ \phi & ext{if} \ \ \gamma' \cap A \ \cap \ G^{(c,\delta)} = \phi \end{cases}$$

where $\gamma' = \gamma^{(c)}(y)$ with some y. Further, $\gamma' \subset A \cap G^{(c,\delta)}$ if and only if $\tilde{\gamma} \cap \gamma'$ is in $\tilde{\gamma} \cap A \cap G^{(c,\delta)}$. Therefore one has the second statement. Q.E.D.

§4. The perturbed billiard transformation is isomorphic to a Bernoulli shift

Applying the lemmas in § 2 and § 3, the following theorems will be shown.

Theorem 2. Under the assumptions (H–1) \sim (H–3), $\alpha^{(e)}$ and $\alpha^{(e)}$ are weak Bernoulli generators for T_* . Thus T_* is isomorphic to a Bernoulli shift.

Proof. By Theorem 1, it is sufficient for the proof to give a family $\mathscr F$ which satisfies (2.3) in Lemma 2.3. For given $\delta>0$, let m_0 be a natural number such that $\exp c_{31}(1+\eta_1)^{-m_0/2}<1+\delta$ and $m_0\geq \ell_0\equiv \ell_0(1,1/4,\delta)$. For every x not in $\bigcup_{i=-m_0}^{m_0}T^iS$ and for any $\delta_0>0$, there exists a K-quadrilateral G in $U_{\iota_2(x,m_0)}(x)$ such that $\theta(\gamma_a(G))=\theta(\gamma_b(G))<\delta_0$, G involves the point x and $T_*^{-m_0}G$, $T_*^{m_0}G$ are K-quadrilaterals. By the covering theorem of Vitali, there exists a finite family $\mathscr G$ of such G's which satisfies $G\cap G'=\phi$ for $G\neq G'$ in $\mathscr G$ and $\nu(M-\bigcup_{G\in\mathscr F}G)<\delta$. Then by Lemmas 6.1, 6.1' and 7.1 in [5], there exist subsets $G^{(c,\delta)}$ and $G^{(e,\delta)}$ which satisfy (C-1), (C-2) and (C-3) in § 3. Let A be an element of the partition $\bigvee_{i=0}^n T_*^i\alpha^{(c)}$ and let B be an element of $\bigvee_{i=N'}^{m} T_*^{-i}\alpha^{(c)}$. Since A is $\zeta^{(c)}$ -measurable and B is $\zeta^{(c)}$ -measurable, Lemma 3.1 is applicable. Put $\widetilde{\gamma}\equiv\gamma^{(c)}(x)\cap G$ and $\widehat{\gamma}\equiv\gamma^{(c)}(x)\cap G$ for a fixed x in $G^{(c,\delta)}\cap G^{(c,\delta)}$. Then one has

Since A and B are arbitrary, the above inequality holds even if one replaces A to $G^{(c,\delta)}$ (B to $G^{(e,\delta)}$). Hence the estimate

$$(1+\delta)^{-4} \leq \frac{\nu(A \ \cap \ B \ \cap \ G^{(c,\delta)} \ \cap \ G^{(e,\delta)})\nu(G^{(c,\delta)} \ \cap \ G^{(e,\delta)})}{\nu(A \ \cap \ G^{(c,\delta)} \ \cap \ G^{(e,\delta)})\nu(B \ \cap \ G^{(c,\delta)} \ \cap \ G^{(e,\delta)})} \leq (1+\delta)^4$$

is obtained. Therefore the family $\mathscr{F}\equiv\{G^{(e,\delta)}\cap G^{(e,\delta)}; G\in\mathscr{G}\}$ satisfies (2.3). Q.E.D.

COROLLARY 4.1. A Sinai billiard transformation is isomorphic to a Bernoulli shift. In particular, the natural generators $\alpha^{(c)}$ and $\alpha^{(e)}$ are weakly Bernoullian for T.

Let $\alpha = \{X_j\}$ be a countable partition. Denote the boundary of X_j by ∂X_j . The union $\partial \alpha \equiv \bigcup_j \partial X_j$ is called the boundary of the partition α .

Let $d(x; \partial \alpha)$ be the distance between a point x in M and the boundary $\partial \alpha$.

LEMMA 4.2. (i) If $\log d(x; \partial \alpha)$ is integrable, then the entropy of α is finite.

(ii) If the boundary $\partial \alpha$ consists of curves whose total arclength is finite, then $\log d(x; \partial \alpha)$ is integrable.

Proof. Put $R = \sup_{x \in X_i} d(x; \partial X_i)$, then for $x \in X_i$

$$egin{align}
u(X_j) &\geq -
u_0 \int_0^R \int_{\pi/2}^{R+\pi/2} \cos arphi darphi dr \geq
u_0 R^8/4 \ &\geq
u_0 \{d(x;\partial X_j)\}^3/4 \;.
onumber \end{aligned}$$

This inequality implies $-\sum \nu(X_j) \log \nu(X_j) < \infty$. The second assertion is obvious. Q.E.D.

Theorem 3. Under the assumptions (H-1) \sim (H-3), every countable partition α is weakly Bernoullian for T_* whenever $\log d(x; \partial \alpha)$ is integrable.

Proof. For a fixed x and i>0, the distance between $T_*^{-i}x$ and $T_*^{-i}\gamma^{(c)}(x)\cap\partial\alpha$ measured along $\gamma^{(c)}(T_*^{-i}x)$ is greater than $d(T_*^{-i}x;\partial\alpha)$, if $T_*^{-i}\gamma^{(c)}(x)$ intersects $\partial\alpha$. Hence

$$d(T_*^{-i}x;\partial\alpha) \leq c_1\theta(T_*^{-i}\gamma^{(c)}(x)) \leq \pi c_1(1+\eta_1)^{-i}$$

holds with $c_1 \equiv (1+K_{\min}^{-2})^{1/2}$, if $T_*^{-i}\gamma^{(c)}(x)$ intersects $\partial \alpha$. Since $\log d(x;\partial \alpha)$ is integrable, for almost every x, $1/i\log d(T_*^{-i}x;\partial \alpha)$ converges to 0 as $i\to\infty$, by the Birkhoff ergodic theorem. Thus for almost every x, the boundary $\partial \alpha$ is not intersected by $T_*^{-i}\gamma^{(c)}(x)$ of infinitely many i's. Hence for almost every x, there exists a natural number $n^{(c)}(x)$ such that for all $i\geq n^{(c)}(x)$ $\gamma^{(c)}(x)$ is included in an element of $T_*^i\alpha$. Further since $\log d(x;\partial \alpha)$ is integrable, the partition of $\gamma^{(c)}(T_*^{-i}x)$ into the connected components of the sets $\{\gamma^{(c)}(T_*^{-i}x)\cap X_j\}_{j=1}^\infty$ is a countable partition. Put

$$\zeta_lpha^{(c)} \equiv igvee_{i=0}^\infty T_*^{-i} lpha \quad ext{and} \quad \zeta_lpha^{(e)} \equiv igvee_{i=1}^\infty T_*^i lpha \;.$$

Then by the above discussions, the restriction of the partition $\zeta_{\alpha}^{(c)}$ to almost every element $\gamma^{(c)}$ of $\zeta^{(c)}$ is a countable partition, whose elements are countable unions of connected segments of $\gamma^{(c)}$. Let $C^{(c)}(x)$ be the connected component of x in the element of $\zeta_{\alpha}^{(c)} \vee \zeta^{(c)}$ which contains x. The partition $\zeta_{\alpha}^{(c)}$ and $C^{(c)}(x)$ are similarly defined. Denote by $\varphi(x)$ the φ -coordinate of $x = (\ell, r, \varphi)$. Then for almost every x

$$ar{ heta}(C^{(e)}(x);x) \equiv \sup_{y \in C^{(e)}(x)} arphi(y) - arphi(x) \;, \qquad \underline{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv \sup_{y \in C^{(e)}(x)} arphi(y) - arphi(x) \;, \qquad \underline{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(y) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(x) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(x) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(x) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(x) \ ar{ heta}(C^{(e)}(x);x) \equiv arphi(x) - \inf_{y \in C^{(e)}(x)} arphi(x) - \inf_{y \in C^{(e)}($$

are all positive.

For $\delta > 0$, let ℓ_0 , m_0 and ε_2 be as in the proof of Theorem 2. Let t be a number which satisfies $\nu(E) > 1 - \delta$ with $E = \{x; \bar{\theta}(C^{(c)}(x); x) > t, \underline{\theta}(C^{(c)}(x); x) > t, \bar{\theta}(C^{(c)}(x); x) > t, \bar{\theta}(C^{(c)}(x); x) > t\}$. By the similar way to the proof of Theorem 2, there exists a finite family \mathscr{G}_1 of K-quadrilaterals such that

$$egin{aligned} heta(\gamma_a(G)) &= heta(\gamma_b(G)) < t/(1+K_{ ext{max}}/K_{ ext{min}}) \;, \
u(E \cap G) > (1-\delta)
u(G) \;, \
u\Big(E-igcup_{G\in\mathscr{G}_1}G\Big) < \delta \;, \
G \cap G' &= \phi \qquad ext{if } G
eq G' \;, \end{aligned}$$

and that $T_*^{-m_0}G$, $T_*^{m_0}G$ are K-quadrilaterals and there exist subsets $G^{(c,\delta)}$ and $G^{(e,\delta)}$ of G which satisfy the conditions (C-1), (C-2), (C-3), and (C-4) in § 3. For G in \mathcal{G}_1 , put

$$\hat{G}^{(e)} \equiv \{x \in G^{(e,s)}; C^{(e)}(x) \text{ intersects both } \gamma_b(G) \text{ and } \gamma_a(G)\}$$
 , $\hat{G}^{(e)} \equiv \{x \in G^{(e,s)}; C^{(e)}(x) \text{ intersects both } \gamma_a(G) \text{ and } \gamma_c(G)\}$.

Then $\hat{G}^{(c)}$ is a $\zeta^{(c)}|_{G}$ -measurable subset and includes $E \cap G^{(c,\delta)}$. Alternatively, $\hat{G}^{(e)}$ is $\zeta^{(e)}|_{G}$ -measurable subset and includes $E \cap G^{(e,\delta)}$. Since for any element A of $\bigvee_{i}^{n} T_{*}^{i} \alpha$, $A \cap \hat{G}^{(c)}$ is $\zeta^{(c)}|_{G}$ -measurable and since for any element B of $\bigvee_{i=N'}^{n''} T_{*}^{-i} \alpha$, $B \cap \hat{G}^{(e)}$ is $\zeta^{(e)}|_{G}$ -measurable, Lemma 3.1 is applicable to the subsets A and B. Thus one has the estimates

$$igg|rac{
u(A\ \cap\ B\ \cap\ \hat{G}^{(e)}\ \cap\ \hat{G}^{(e)})
u(\hat{G}^{(e)}\ \cap\ \hat{G}^{(e)})}{
u(A\ \cap\ \hat{G}^{(e)}\ \cap\ \hat{G}^{(e)})
u(B\ \cap\ \hat{G}^{(e)}\ \cap\ \hat{G}^{(e)})}-1igg|\le (1+\delta)^4-1\ ,$$
 $u(\hat{G}^{(e)}\ \cap\ \hat{G}^{(e)})\ge
u(E\ \cap\ G^{(e,\delta)}\ \cap\ G^{(e,\delta)})\ge (1-3\delta)
u(G)\ ,$

and

$$uigg(igcup_{G\in\mathscr{S}_1}(\hat{G}^{(e)}\cap\,\hat{G}^{(e)})igg)\geq (1-2\delta)(1-3\delta)$$
 .

Hence the conditions in Lemma 2.3 are fulfilled.

§ 5. K-properties of the flow $\{S_i\}$

Let f(x) be a positive function on M and let $\{S_{-t}^f\}$ be a Kakutani-Ambrose flow with the basic space M, the basic transformation T_* and the ceiling function f(x); that is, $\{S_t^f\}$ is defined on the space $W \equiv \{(x, v); 0 \le v < f(x), x \in M\}$ by

$$(5.1) S_{t}^{f}(x,v) \equiv \begin{cases} (T_{*}^{-k}x, v - t + \sum_{j=1}^{k} f(T_{*}^{-j}x)) \\ & \text{if } 0 \leq v - t + \sum_{j=1}^{k} f(T_{*}^{-j}x) < f(T_{*}^{-k}x), \ k \geq 1, \\ (x, v - t) & \text{if } 0 \leq v - t < f(x), \\ (T_{*}^{-k}x, v - t - \sum_{j=k+1}^{0} f(T_{*}^{-j}x)) \\ & \text{if } 0 \leq v - t - \sum_{j=k+1}^{0} f(T_{*}^{-j}x) < f(T_{*}^{-k}x), \ k \leq -1. \end{cases}$$

Associate the invariant probability measure μ_f with $\{S_t^f\}$: $d\mu_f = c_f dv d\nu$. Suppose that the assumptions (H-1)~(H-3) are satisfied. Then $\{S_t^f\}$ is ergodic, since T_* is ergodic. Moreover suppose the following three assumptions (f-1)~(f-3):

(f-1) f(x) is strictly positive and continuously differentiable on each element $X_i^{(e)}$ of $\alpha^{(e)}$,

(f-2) there exists a constant K such that

$$\left\{\left|\frac{\partial f(\iota,r,\varphi)}{\partial r}\right| + \left|\frac{\partial f(\iota,r,\varphi)}{\partial \varphi}\right|\right\} \frac{\cos \varphi - 1}{\tau} \leq K$$

with $(\ell_{-1}, r_{-1}, \varphi_{-1}) = T_*(\ell, r, \varphi),$

(f-3) $f(x) \log |\tau(x)|$ is integrable.

For x not in $\bigcup_{i=0}^{\infty} T_*^i S$, put

(5.2)
$$f^{(+)}(x) \equiv \sum_{i=1}^{\infty} \left\{ \frac{1}{\chi^{(c)}(x_i)} \frac{\partial f(x_i)}{\partial r} + \frac{\partial f(x_i)}{\partial \varphi} \right\} \prod_{j=0}^{i-1} \left[\Lambda(x_j, \gamma^{(c)}(x_j)) \right]^{-1},$$

$$\hat{f}^{(+)}(x) \equiv \sum_{i=1}^{\infty} \left\{ \left| \frac{1}{\chi^{(c)}(x_i)} \frac{\partial f(x_i)}{\partial r} \right| + \left| \frac{\partial f(x_i)}{\partial \varphi} \right| \right\} \prod_{j=0}^{i-1} |\Lambda(x_j, \gamma^{(c)}(x_j))|^{-1}$$

with $x_j \equiv T_*^{-j}x$. For x not in $\bigcup_{i=0}^{\infty} T_*^{-i}S$, put

$$f^{(-)}(x) \equiv \sum_{i=-\infty}^{-1} \left\{ \frac{1}{\chi^{(e)}(x_i)} \frac{\partial f}{\partial r}(x_i) + \frac{\partial f}{\partial \varphi}(x_i) \right\} \prod_{j=i+1}^{0} \left[\Lambda^*(x_j, \gamma^{(e)}(x_j)) \right]^{-1}$$

$$+ \frac{1}{\chi^{(e)}(x)} \frac{\partial f}{\partial r}(x) + \frac{\partial f}{\partial \varphi}(x) ,$$

$$\hat{f}^{(-)}(x) \equiv \sum_{i=-\infty}^{-1} \left\{ \left| \frac{1}{\chi^{(e)}(x_i)} \frac{\partial f}{\partial r}(x_i) \right| + \left| \frac{\partial f}{\partial \varphi}(x_i) \right| \right\} \prod_{j=i+1}^{0} |\Lambda^*(x_j, \gamma^{(e)}(x_j))|^{-1}$$

$$+ \left| \frac{1}{\chi^{(e)}(x)} \frac{\partial f}{\partial r}(x) \right| + \left| \frac{\partial f}{\partial r}(x) \right| .$$

Then by assumptions (f-1), (f-2) and by Lemma 3.2, Lemma 3.3, the series in (5.2) and (5.3) converge and $f^{(+)}(x)$ (resp. $f^{(-)}(x)$) is continuous at x not in $\bigcup_{i=0}^{\infty} T_*^i S$ (resp. $\bigcup_{i=0}^{\infty} T_*^{-i} S$).

For $w = (\tilde{x}, \tilde{v})$ in W, define curves $\bar{\gamma}^{(+)}(w)$ and $\bar{\gamma}^{(-)}(w)$ passing through (\tilde{x}, \tilde{v}) by the following way. Let $r = u^{(e)}(\varphi; \tilde{x})$ be the equation of the curve $\gamma^{(e)}(\tilde{x})$ and let $r = u^{(e)}(\varphi; \tilde{x})$ be the equation of the curve $\gamma^{(e)}(\tilde{x})$. Let $\bar{\gamma}^{(+)}(w)$ and $\bar{\gamma}^{(-)}(w)$ be the curves defined respectively by the equations

(5.4)
$$\begin{cases} \iota = \tilde{\iota} \\ r = u^{(c)}(\varphi; \tilde{x}) \\ v = \tilde{v} - \int_{\tilde{\sigma}}^{\varphi} f^{(-)}(\tilde{\iota}, u^{(c)}(\varphi; \tilde{x}), \varphi) d\varphi \end{cases} \text{ and } \begin{cases} \iota = \tilde{\iota} \\ r = u^{(e)}(\varphi; \tilde{x}) \\ v = \tilde{v} + \int_{\tilde{\sigma}}^{\varphi} f^{(+)}(\tilde{\iota}, u^{(e)}(\varphi; \tilde{x}), \varphi) d\varphi \end{cases}$$

for $0 \le v < f(\iota, r, \varphi)$ with $\tilde{x} = (\tilde{\iota}, \tilde{r}, \tilde{\varphi})$. Then, obviously, $\bar{\tau}^{(+)}(w)$ and $\bar{\tau}^{(-)}(w)$ are locally transversal fibres; that is,

- (i) for w' in $\bar{\gamma}^{(+)}(w)$ (resp. $\bar{\gamma}^{(-)}(w)$), $\bar{\gamma}^{(+)}(w') = \bar{\gamma}^{(+)}(w)$ (resp. $\bar{\gamma}^{(-)}(w') = \bar{\gamma}^{(-)}(w)$),
- (ii) $S_t^f \bar{\tau}^{(+)}(w)$ coincides with $\bar{\tau}^{(+)}(S_t^f w)$ and $S_t^f \bar{\tau}^{(-)}(w)$ coincides with $\bar{\tau}^{(-)}(S_t^f w)$ in a neighbourhood of $S_t^f w$.

Therefore $\tilde{\Gamma}^{(+)}(w) \equiv \bigcup_t S_t^f \bar{f}^{(+)}(S_{-t}^f w)$ and $\tilde{\Gamma}^{(-)}(w) \equiv \bigcup_t S_t^f \bar{f}^{(-)}(S_{-t}^f w)$ consist of countably many connected curves in W. Further $\tilde{\Gamma}^{(+)}(w)$ and $\tilde{\Gamma}^{(-)}(w)$ are transversal fibres; that is,

(i)
$$\tilde{\Gamma}^{(+)}(w') = \tilde{\Gamma}^{(+)}(w)$$
 for $w' \in \tilde{\Gamma}^{(+)}(w)$, $\tilde{\Gamma}^{(-)}(w') = \tilde{\Gamma}^{(-)}(w)$ for $w' \in \tilde{\Gamma}^{(-)}(w)$.

(ii)
$$S_t^f \tilde{\Gamma}^{(+)}(w) = \tilde{\Gamma}^{(+)}(S_t^f w)$$
 and $S_t^f \tilde{\Gamma}^{(-)}(w) = \tilde{\Gamma}^{(-)}(S_t^f w)$.

For each x in M, identify two points (x, f(x)) and $(T_*x, 0)$. Under the identification, let $\tilde{\gamma}^{(+)}(w)$ be the connected component of w in $\tilde{\Gamma}^{(+)}(w)$. Then $\{\tilde{\gamma}^{(+)}(w); w \in W\}$ gives a partition $\tilde{\zeta}^{(+)}$ of W. Similarly, $\tilde{\gamma}^{(-)}(w)$ and $\tilde{\zeta}^{(-)}$ are given by $\{\tilde{\Gamma}^{(-)}(w)\}$.

A curve $\tilde{\gamma}$ in W which is given by the equations $\iota=\tilde{\iota},\ r=u(\varphi)$ and $v=t(\varphi)$ is said to be K-increasing (resp. K-decreasing), if the curve γ in $M^{(\tilde{\iota})}$ defined by $r=u(\varphi)$ is K-increasing (resp. K-decreasing) and $t(\varphi)$ is locally Lipschitzc ontinuous. For a given K-increasing curve $\tilde{\gamma}$ in W, define a measure $\sigma_{\tilde{\tau}}$ by

(5.5)
$$\sigma_{\vec{i}}(A) = \int_A |d\varphi|$$

for A in $\tilde{\gamma}$. Put for a subset R of $(-\infty, \infty)$

(5.6)
$$A^{(+)}[\tilde{\gamma};t] \equiv \bigcup_{w \in S_{-t\tilde{\gamma}}} \tilde{\gamma}^{(+)}(w) ,$$

$$A^{(+)}[\tilde{\gamma};R] \equiv \bigcup_{t \in R} A^{(+)}[\tilde{\gamma};t] .$$

Let Π be the natural projection from W to M; $\Pi(\tilde{x}, \tilde{v}) = \tilde{x}$. Then for sufficiently small R the measure $\mu = \mu_f$ satisfies

(5.7)
$$\mu(B \cap A^{(+)}[\tilde{\gamma}; R]) = c_f \int_{\mathbb{R}} \nu(\Pi(A^{(+)}[\tilde{\gamma}; t] \cap B)) dt.$$

Similarly, subsets $A^{(-)}[\tilde{\gamma};t]$ and $A^{(-)}[\tilde{\gamma};R]$ are defined. The local fibres $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are called *mutually integrable* (with each other), if for almost every $w=(\tilde{x},\tilde{v})$ in W and for almost every y in $\Pi(A^{(+)}[\tilde{\gamma}^{(-)}(w);0]) \cap \Pi(A^{(-)}[\tilde{\gamma}^{(+)}(w);0])$, the relation

$$A^{(+)}[\tilde{\gamma}^{(-)}(w);0] \cap \Pi^{-1}(y) = A^{(-)}[\tilde{\gamma}^{(+)}(w);0] \cap \Pi^{-1}(y)$$

holds.

THEOREM 4. Under the assumptions (H-1) \sim (H-3) and (f-1) \sim (f-3),

$$egin{align} ext{(i)} & S_t^f ilde{\zeta}^{(+)} > ilde{\zeta}^{(+)}, \ S_t^f ilde{\zeta}^{(-)} < ilde{\zeta}^{(-)}, \ t > 0, \ & igtarrow_t S_t^f ilde{\zeta}^{(+)} = igtarrow_t S_t^f ilde{\zeta}^{(-)} = \epsilon, \ & igwedge_t S_t^f ilde{\zeta}^{(+)} = igwedge_t S_t^f ilde{\zeta}^{(-)} = \pi(\{S_t^f\}), \ \end{aligned}$$

(ii) the conditional measure $\mu(\cdot|\tilde{\gamma}^{(+)})$ (resp. $\mu(\cdot|\tilde{\gamma}^{(-)})$ is equivalent to $\sigma_{\tilde{\gamma}^{(+)}}$ (resp. $\sigma_{\tilde{\gamma}^{(-)}}$),

(iii)
$$h(S_i^f) = h(S_i^f \tilde{\zeta}^{(+)} | \tilde{\zeta}^{(+)}) = h(S_{-i}^f \tilde{\zeta}^{(-)} | \tilde{\zeta}^{(-)}) = th(T_*) / \int f(x) d\nu,$$

- (iv) if $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are not mutually integrable, then $\pi(\{S_t^f\})$ is the trivial partition, and hence $\{S_t^f\}$ is a K-system,
 - (v) if $\{S_t^f\}$ has no point spectrum, then $\{S_t^f\}$ is a K-system.

Proof. By the above discussions and the definitions,

$$S_t^{f\tilde{\zeta}^{(+)}} > \tilde{\zeta}^{(+)}$$
, $S_t^{f\tilde{\zeta}^{(-)}} < \tilde{\zeta}^{(-)}$ $(t > 0)$ and $\forall A_t : S_t^{f\tilde{\zeta}^{(+)}} = \forall A_t : S_t^{f\tilde{\zeta}^{(-)}} = \epsilon$

are obvious. Let β be the partition of W given by $\beta \equiv \Pi^{-1}\alpha^{(e)} = \{\Pi^{-1}X_j^{(e)}; X_j^{(e)} \in \alpha^{(e)}\}$. For any countable partition $\alpha = \{Y_j\}$ of W let \tilde{d} $(w; \partial \alpha)$ be the distance between w and the boundaries $\bigcup_j \partial Y_j \cup W_* \cup W^* \cup \Pi^{-1}(S)$ where $W_* \equiv \{(x,0); x \in M\}, \ W^* \equiv \{(x,f(x)); x \in M\}$ and $\Pi^{-1}(S) \equiv \{(x,v); 0 \leq v < f(x), x \in S\}$. Then $\log \tilde{d}(w; \partial \beta)$ is integrable by virtue of (f-1)~(f-3). Since the flow $\{S_i^f\}$ is ergodic, except for a countable number of t's the transformation S_i^f is ergodic. Fix such a sufficiently small positive t and suppose that $\log \tilde{d}(w; \partial \alpha)$ is integrable. Then by the same way as in the proof

of Theorem 3, one can see that for almost every element $\tilde{\gamma}^{(+)}$ of $\tilde{\zeta}^{(+)}$, the restriction of $\zeta_{\alpha}^{(+)} \equiv \bigvee_{k=0}^{\infty} S_{-kt}^{f} \alpha$ to $\tilde{\gamma}^{(+)}$ is a countable partition, each element of which is a union of a countable number of segments of $\tilde{\gamma}^{(+)}$. Hence one can see

$$\bigwedge_{n}\bigvee_{k=0}^{\infty}S_{(n-k)\ell}^{f}lpha\leq\bigwedge_{n}S_{s}^{f} ilde{\zeta}^{(+)}\equiv ilde{\zeta}_{\infty}^{(+)}$$
 .

Since there exists a sequence of partitions $\{\alpha_n\}$ of W increasing to ϵ such that $\log \tilde{d}(w; \partial \alpha_n)$ are integrable, $\pi(S_t^f) \leq \tilde{\zeta}_{\infty}^{(+)}$. If $\alpha \geq \beta$, then $\zeta_a^{(+)} \geq \Pi^{-1}\zeta^{(\epsilon)} \equiv \{\Pi^{-1}\gamma^{(\epsilon)}; \gamma^{(\epsilon)} \in \zeta^{(\epsilon)}\}$, since $\alpha^{(\epsilon)}$ generates $\zeta^{(\epsilon)}$. For any $\epsilon > 0$ and for almost every w, $\{S_{-kt}^f w; k \geq 0\}$ visits the set $Y_{\epsilon} = \{(x, v) \in W; u - \epsilon < v < u, (x, u) \in \bigcup_{j} \partial Y_j\}$ infinitely many times, since S_t^f is ergodic. Hence $\zeta_a^{(+)} = \bigvee_{k=0}^{\infty} S_{-kt}^f \alpha \geq \tilde{\zeta}^{(+)}$ if $\alpha \geq \beta$ and if $\log \tilde{d}(w; \partial \alpha)$ is integrable. Hence one obtains

$$\pi(S_t^f) = \pi(\{S_s^f\}) = \bigwedge_s S_s^f \tilde{\zeta}^{\scriptscriptstyle (+)}$$
.

Thus (i) is proved. The second assertion (ii) is obvious by definition and § 3. The third assertion (iii) comes from the theorem of Rohlin and Sinai [10] and a theorem of Abramov [1]. For almost every y in M and for a sufficiently small neighbourhood $U_{\epsilon}(y)$, there exists a quartet $\{y, y_1, y_2, y_3\}$ in $U_{\epsilon}(y)$ such that y_1 in $\gamma^{(c)}(y)$, y_2 in $\gamma^{(e)}(y_1)$, y_3 in $\gamma^{(c)}(y_2)$ and y in $\gamma^{(e)}(y_3)$. Then one can define a mapping Ψ of $\Pi^{-1}(y)$ by

$$\Psi w = \bar{\gamma}^{(-)}(\bar{\gamma}^{(+)}(\bar{\gamma}^{(-)}(\bar{\gamma}^{(+)}(w) \cap \Pi^{-1}(y_1)) \cap \Pi^{-1}(y_2)) \cap \Pi^{-1}(y_3)) \cap \Pi^{-1}(y)$$

for w in $\Pi^{-1}(y)$. Obviously, there exists a real number $a = a(y, y_1, y_2, y_3)$ such that

$$\Psi(y, u) = (y, u + a)$$

for (y,u) in the domain of Ψ . If $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are not mutually integrable, then there exists a subset Y of positive measure such that for all $\delta>0$ and all y in Y one can choose a quartet $\{y,y_1,y_2,y_3\}$ with $0<|a(y,y_1,y_2,y_3)|<\delta$. Put $\tilde{\zeta}^{(-)}_{-\infty}\equiv \wedge S^f_t\tilde{\zeta}^{(-)}$ and let h(w) be a $\tilde{\zeta}^{(+)}_{\infty}\wedge \tilde{\zeta}^{(-)}_{-\infty}$ measurable bounded function. Since $\tilde{\zeta}^{(+)}_{\infty}\wedge \tilde{\zeta}^{(-)}_{-\infty}$ is $\{S^f_t\}$ -invariant, $h_b(w)=\frac{1}{b}\int_0^b h(S^f_tw)dt$ is again $\tilde{\zeta}^{(+)}_{\infty}\wedge \tilde{\zeta}^{(-)}_{-\infty}$ -measurable. Then $h_b(y,u)$ is continuous in u and $h_b(w)$ converges to h(w) a.e. w as $b\to 0$. There exist measurable functions $h_b^{(+)}(w)$ and $h_b^{(-)}(w)$ such that $h_b(w)=h_b^{(+)}(w)=h_b^{(-)}(w)$ for a.e. w and that $h_b^{(+)}(w)$ is constant on $\tilde{\Gamma}^{(+)}$ and $h_b^{(-)}(w)$ is constant on $\tilde{\Gamma}^{(-)}$. Since canonical mappings $\Psi^{(c)}$ and $\Psi^{(c)}$ are absolutely continuous, one can choose

 y, y_1, y_2, y_3 such that $h_b(y_i, u) = h_b^{(+)}(y_i, u) = h_b^{(-)}(y_i, u)$ for almost every u in $[0, f(y_i)), i = 0, 1, 2, 3$ with $y_0 = y$. Hence one can obtain

$$h_b(y, u) = h_b(y, u + a)$$

for almost every u in $[\delta, f(y) - \delta]$ with small $\delta > 0$. Since δ can be taken arbitrary small and $h_{\delta}(y, u)$ is continuous in u, $h_{\delta}(y, u)$ is constant in u. Hence $h_{\delta}(y, u)$ is constant in a subset with positive measure. Since b and b are arbitrary, one can see that the partition $\tilde{\zeta}_{\infty}^{(+)} \wedge \tilde{\zeta}_{-\infty}^{(-)}$ contains an element of positive measure. Since $\{S_{i}^{f}\}$ is ergodic and $\tilde{\zeta}_{\infty}^{(+)} \wedge \tilde{\zeta}_{-\infty}^{(-)}$ is invariant under $\{S_{i}^{f}\}$, the partition $\zeta_{\infty}^{(+)} \wedge \zeta_{\infty}^{(-)}$ is trivial. Thus (iv) was proved. Suppose that $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are mutually integrable and that $\tilde{\zeta}_{\infty}^{(+)} \wedge \tilde{\zeta}_{-\infty}^{(-)}$ is not trivial. Since $\int_{k} T_{k}^{k} \zeta_{\infty}^{(c)} \wedge \tilde{\zeta}_{-\infty}^{(-)}$ is the trivial partition, the factor flow of $\{S_{i}^{f}\}$ with respect to $\tilde{\zeta}_{\infty}^{(+)} \wedge \tilde{\zeta}_{-\infty}^{(-)}$ is a circle flow. Hence $\{S_{i}^{f}\}$ has a point spectrum.

It is very difficult to check that $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are not mutually integrable for general cases.

LEMMA 5.1. For a K-quadrilateral G, put

$$v_f(G) \equiv \int_{r_a} f^{\scriptscriptstyle (+)} darphi + \int_{r_b} f^{\scriptscriptstyle (-)} darphi - \int_{r_c} f^{\scriptscriptstyle (+)} darphi - \int_{r_d} f^{\scriptscriptstyle (-)} darphi \; .$$

- (i) If $v_f(G) = 0$ for any G whose lateral sides are segments of $\{\gamma^{(e)}\}$ and $\{\gamma^{(e)}\}$, then $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are mutually integrable.
- (ii) If $v_f(G) > 0$ for any G in an open set whose lateral sides are segments of $\{\gamma^{(e)}\}$ and $\{\gamma^{(e)}\}$, then $\{\tilde{\gamma}^{(+)}\}$ and $\{\tilde{\gamma}^{(-)}\}$ are not mutually integrable.

COROLLARY 5.2 ([12]). A Sinai billiard system is a K-system.

Proof. Since $f(x) = -\tau(x)$, it holds that

$$\frac{1}{\chi^{(c)}(x)}\frac{\partial f}{\partial r}+\frac{\partial f}{\partial \varphi}=\frac{1}{\chi^{(c)}(x)}\sin\varphi(x)-\frac{1}{\chi^{(c)}(x_1)}\sin\varphi(x_1)\frac{d\varphi_1}{d\varphi},$$

and hence $f^{(+)}(x) = \sin \varphi/\chi^{(c)}(x)$ (cf. [5]). Similarly one has $f^{(-)}(x) = -\sin \varphi/\chi^{(e)}(x)$. Hence

$$v_f(G) = -\int_{\tau_a} \sin \varphi dr - \int_{\tau_b} \sin \varphi dr + \int_{\tau_c} \sin \varphi dr + \int_{\tau_a} \sin \varphi dr = \frac{1}{\nu_0} \nu(G)$$
.

Corollary 5.3. The flow $\{S_t^f\}$ in § 3 has expanding and contracting

transversal fibres. Further if $\{S_t^f\}$ has no point spectrum, then $\{S_t^f\}$ is a K-system.

§.6. Bernoulli flow

A flow $\{S_t\}$ is called a Bernoulli flow if every S_t $(t \neq 0)$ is a Bernoulli shift.

Theorem 5. Under the assumptions (H-1) \sim (H-3) and (f-1) \sim (f-3), if $\{S_t'\}$ is a K-system and α is a finite partition such that $\log \tilde{d}(w; \partial \alpha)$ is integrable, then α is very weakly Bernoullian for S_t^f ($t \neq 0$). Furthermore $\{S_t^f\}$ is a Bernoulli flow.

Proof. For $\varepsilon > 0$, choose sufficiently small $\delta > 0$. Let δ_1 be a positive number with $\mu(E_1) > 1 - \delta$ where $E_1 \equiv \{w \in W; \ \tilde{d}(w; \partial \alpha) > \delta_1\}$. Fix a positive t. Then S_i^f is an ergodic transformation, since $\{S_i^f\}$ is a K-system by the assumption. Hence by Birkhoff's ergodic theorem, there exist a set E_2 with $\mu(E_2) > 1 - \delta$ and a natural number N_1 such that for all w in E_2 and all $n \geq N_1$

$$rac{1}{n}\sum\limits_{k=0}^{n-1}I_{E_{1}^{c}}(S_{-kt}^{f}w)\leq2\delta$$

where $I_{E_1^c}$ is the indicator function of E_1^c . Then there exists a δ_2 with $\mu(E_3) > 1 - \delta$, where $E_3 \equiv \{w \in W; \inf_{0 \le k \le N_1 - 1} \tilde{d}(S_{-kt}^f w; \partial \alpha) > \delta_2\}$. Denote by $C^{(+)}(w)$ and $C^{(-)}(w)$ the connected components of w in the elements of $\bar{\zeta}^{(+)} \vee \zeta_{\alpha}^{(+)}$ and $\bar{\zeta}^{(-)} \vee \zeta_{\alpha}^{(-)}$ respectively, where $\zeta_{\alpha}^{(+)} = \bigvee_{k=0}^{\infty} S_{-kt}^f \alpha$, $\zeta_{\alpha}^{(-)} = \bigvee_{k=0}^{\infty} S_{kt}^f \alpha$ and $\bar{\zeta}^{(+)}$ (resp. $\bar{\zeta}^{(-)}$) is the partition into curves $\{\bar{\gamma}^{(+)}\}$ (resp. $\{\bar{\gamma}^{(-)}\}$). By the same reason in the proof of Theorem 3, there exists a positive number δ_3 such that $\mu(E_4) > 1 - \delta$ where $E_4 \equiv \{w \in W; \bar{\theta}(\Pi(C^{(+)}(w)); \Pi(w)) > \delta_3, \bar{\theta}(\Pi(C^{(+)}(w)); \Pi(w)) > \delta_3, \bar{\theta}(\Pi(C^{(-)}(w)); \Pi(w)) > \delta_3$ and $\bar{\theta}(\Pi(C^{(-)}(w)); \Pi(w)) > \delta_3$. There exists a positive δ_4 ($<\delta$) such that $1/\delta_4 > \sup_{x \in E_5} \{|f^{(+)}(x)| + |f^{(-)}(x)|\}$ with $E_5 \equiv \{x \in M; |\cos \varphi(x)| > \delta_1\}$. Note that $\Pi^{-1}(E_5)$ is a subset of E_5 .

For any x not in $\bigcup_{i=-\infty}^{\infty} T_*^i S$, there exists $\varepsilon_3 = \varepsilon_3(x) > 0$ such that for any y in ε_3 -neighbourhood $U_{\varepsilon_3}(x)$

$$|f^{(+)}(x)-f^{(+)}(y)|<\delta_4\delta,\,|f^{(-)}(x)-f^{(-)}(y)|<\delta_4\delta \ |f(x)-f(y)|<\delta_2\delta \qquad ext{and}\;\left|rac{\cosarphi(y)}{\cosarphi(x)}
ight|<1+\delta\;.$$

Let $\ell_0 = \ell_0(\delta, 1, 1/4)$, $m_0 \geq \ell_0$ and $\epsilon_2 = \epsilon_2(x, m_0)$ be as in the proof of Theorem

2. Then for any $w=(\bar{\iota},\tilde{r},\tilde{\varphi},\tilde{v})$ in E_3 and for any $\delta_0>0$, there exists a subset \tilde{G} of W which is constructed as follows: There exists a K-quadrilateral G in $U_{\epsilon_3}(\tilde{\iota})\cap U_{\epsilon_2}(\tilde{\iota})$ with $\tilde{\iota}\equiv(\bar{\iota},\tilde{r},\tilde{\varphi})=\Pi(w)$ such that $T_*^{-m_0}$ and $T_*^{m_0}$ are continuous on G, $T_*^{-m_0}G$ and $T_*^{m_0}G$ are K-quadrilaterals, $\gamma_a(G)$ (resp. $\gamma_b(G)$) is a segment of the fibre $\gamma^{(c)}(\tilde{\iota})$ (resp. $\gamma^{(c)}(\tilde{\iota})$), and

$$\theta(\gamma_a(G)) = \theta(\gamma_b(G)) < \min \{\delta_0, \delta_1, \delta_2, \delta_3\}/(1+c_2).$$

Put $\tilde{\gamma}_a \equiv \bar{\gamma}^{(+)}(w) \cap \Pi^{-1}(G)$. For \overline{w} in W, put

$$D(\overline{w}) \equiv egin{cases} 1 - \delta \leq rac{arphi - ar{arphi}}{r - ar{r}} rac{1}{\chi^{(c)}(x)} \leq 1 + \delta \ & \ f^{(+)}(ilde{x}) - \delta \leq rac{v - ar{v}}{arphi - ar{arphi}} \leq f^{(+)}(ilde{x}) + \delta \end{cases}$$

with $\overline{w} = (\overline{\iota}, \overline{r}, \overline{\varphi}, \overline{v})$. Define \tilde{G} by

$$ilde{G} = igcup_{-a \leq s \leq a} S^f_s igcup_{\overline{w} \in \overline{\tau}_b} D(\overline{w}) \, \cap \, II^{-1}\!(G) \; ,$$

with $a = \theta(\gamma_a(G))$. As stated in § 3, there exist subsets $G^{(c,\delta)}$ and $G^{(e,\delta)}$ of G which satisfy (C-1), (C-2) and (C-3). Put

$$ilde{G}^{(c,\delta)} \equiv \left\{ w \in arPi^{-1}\!(G^{(c,\delta)}) \, \cap \, ilde{G}; \; ilde{ au}^{(+)}\!(w) \, \cap igcup_{|s| \leq a} S^f_s ilde{ au}_b
otin \phi
ight\}.$$

Then one can see the inequality

$$\mu(ilde{G}^{(c,\delta)}\,\cap\, arPi^{-1}\!(G^{(c,\delta)}))\geq (1+2\delta)^{-4}\!(1-2\delta)\mu(ilde{G})$$
 ,

since $1 - \delta \le \chi^{(c)}(x)/\chi^{(c)}(\tilde{x}) \le 1 + \delta$ for x in G. By the covering theorem of Vitali, there exists a finite family \mathscr{G} of \tilde{G} 's which satisfies

$$egin{aligned} \mu(E_1 \, \cap \, E_2 \, \cap \, E_3 \, \cap \, E_4 \, \cap \, ilde{G}) &\geq (1 - \, \delta) \mu(ilde{G}) \; , \ &II^{-1}(E_5) \supset ilde{G} \; , \ &\mu\Big(E_1 \, \cap \, E_2 \, \cap \, E_3 \, \cap \, E_4 \, \cap \, II^{-1}(E_5) - igcup_{ ilde{G} \in \mathscr{F}} ilde{G}\Big) < \delta \; , \ & ilde{G} \, \cap \, ilde{G}' = \phi \qquad ext{if} \; ilde{G}
eq ilde{G}' \; . \end{aligned}$$

Put

$$E(\tilde{G}) \equiv \{w \in \tilde{G}^{(c,\delta)}; \ \tilde{\gamma}^{(+)}(w) \cap E_4 \cap \tilde{G} \neq \phi\}$$
.

Then $B \cap E(\tilde{G})$ is $\tilde{\zeta}^{(+)}|_{\tilde{G}}$ -measurable for every element B of $\bigvee_{k=N'}^{N''} S_{-kt}^f \alpha$ with $N'' > N' \geq 0$. By Lemma 3.1, the estimate

$$egin{aligned} \mu(B \,\cap\, E(ilde{G}) \,\cap\, arPi^{-1}(G^{(e,\delta)}))/(1+\delta) \ &\leq \int_{arpi_a(G)\,\cap\, G^{(e,\delta)}} d
ho(\gamma) \int_{ar{v}-a-\delta}^{ar{v}+a+\delta} dt \int_{B\cap E(ilde{G})\,\cap\, S^{I}_{-t\gamma_b(G)}} -\, \mu_0 \cos arphi d\sigma(arphi) \ &\leq \mu(B\,\cap\, E(ilde{G})\,\cap\, arPi^{-1}(G^{(e,\delta)}))/(1-\delta) \end{aligned}$$

is obtained. Moreover, for y in $\gamma_a(G) \cap G^{(e,\delta)}$

$$1-\delta < rac{\int_{ar{v}-a-2\delta}^{ar{v}+a+2\delta}dt\int_{B\cap E(ar{G})\cap S^{ar{L}}_{tT}^{(e)}(y)}\cosarphi darphi}{\int_{ar{v}-a-\delta}^{ar{v}+a+\delta}dt\int_{B\cap E(ar{G})\cap S^{ar{L}}_{tT}^{(e)}(y)}\cosarphi darphi} < 1+\delta$$

is obtained. Therefore, there exists a $((1+\delta)^3-1)$ -measure preserving mapping ϕ from $\bigcup_{\tilde{G}\in\mathscr{I}}(E(\tilde{G})\cap H^{-1}(G^{(e,\delta)}))\cap B$ to $\bigcup_{\tilde{G}\in\mathscr{I}}(E(\tilde{G})\cap H^{-1}(G^{(e,\delta)}))$ such that ϕ maps $E(\tilde{G})\cap H^{-1}(\gamma^{(e)}(x))\cap B$ to $E(\tilde{G})\cap H^{-1}(\gamma^{(e)}(x))$ for x in $\gamma_a(G)\cap G^{(e,\delta)}$. Let $\ell_i(w)$ be the name function of S_{it}^f α . For z in $E_1\cap E_2\cap E_3\cap E(\tilde{G})\cap B$

$$\ell_i(z) = \ell_i(\phi z)$$
 for $1 \le i \le N_i - 1$

and for $n \geq N_1$

$$\frac{1}{n}\sum_{i=1}^{n}e(\ell_{i}(z)-\ell_{i}(\phi z))\leq2\delta$$

hold, since

$$egin{align} ilde{d}(S^f_{-kt}z;\,\partiallpha) > \delta_2 & ext{for } 1 \leq k \leq N_1-1 \;, \ & rac{1}{n} \sum_{k=0}^{n-1} I_{E^q_1}(S^f_{-kt}z) \leq 2\delta \;, \end{aligned}$$

(distance of $S_{-kt}^f z$ and $S_{-kt}^f \phi z$) $\leq \min(\delta_1, \delta_2, \delta_3)$

for $k \geq 0$. On the other hand, there exist an N_2 and a set E_6 such that $\mu(E_6) > 1 - \delta$ and for all N', $N'' \geq N_2$ and all B in $\bigvee_{k=N'}^{N''} S^f_{-kt} \alpha$, $B \subset E_6$,

$$|\mu(E_1 \cap E_2 \cap E_3 \cap E(\tilde{G})) - \mu(E_1 \cap E_2 \cap E_3 \cap E(\tilde{G})|B)| \leq \delta \mu(\tilde{G})$$

holds, since S_t^f is a K-system. Hence

$$egin{aligned} \mu\Big(igcup_{ ilde{G}\in\mathscr{I}}(E_{_1}\cap E_{_2}\cap E_{_3}\cap E(ilde{G})\cap B)\Big) \ &\geq \sum\limits_{G\in\mathscr{I}}\mu(E_{_1}\cap E_{_2}\cap E_{_3}\cap E_{_4}\cap ilde{G})\mu(B)-\delta\mu(B) \ &\geq (1-\delta)\mu\Big(igcup_{G\in\mathscr{I}} ilde{G}\Big)\mu(B)-\delta\mu(B) \end{aligned}$$

$$\geq (1 - \delta)(\mu(E_1 \cap E_2 \cap E_3 \cap E_4 \cap \Pi^{-1}(E_5)) - \delta)\mu(B) - \delta\mu(B) \\ \geq [(1 - \delta)(1 - 6\delta) - \delta]\mu(B).$$

Therefore by Lemma 2.4, the partition α is very weakly Bernoullian.

Since there exists an increasing sequence of finite partitions $\{\alpha_n\}$ such that $\log \tilde{d}(w; \partial \alpha_n)$ is integrable and α_n increases to ϵ as $n \to \infty$, S_t^f is a Bernoulli shift for fixed $t \neq 0$.

COROLLARY 6.1. A Sinai billiard system is a Bernoulli flow.

COROLLARY 6.2. If $\{S_i^f\}$ has no point spectrum, then $\{S_i^f\}$ is a Bernoulli flow.

THEOREM 6. The flow $\{S_t\}$ given in § 3 is a Bernoulli flow, if the assumptions (H-1) ~ (H-3) are fulfilled and if $\{S_t\}$ has no point spectrum.

Appendix

The properties of the partitions $\alpha^{(e)}$ and $\alpha^{(e)}$ have been shown in [5]. Now some of them will be stated. Under the suitable numbering the followings are true, here denote as $\alpha(j) = O(j^b)$ if

$$0<\lim_{\overline{j
ightarrow\infty}}|a(j)|j^{-b}\leq\overline{\lim_{j
ightarrow\infty}}|a(j)|j^{-b}<\infty:$$

- (i) $T_*X_j^{(e)}=X_j^{(c)}$,
- (ii) $\tau(x) = O(j)$ for $x \in X_j^{(e)}$ (resp. $X_j^{(e)}$).

Further the following figure is also true.

Fig. 2

These show that $\log d(x; \partial \alpha^{(e)})$ is integrable. The condition (f-1) and (i) imply that the distance between w = (x, v) in $\Pi^{-1}(X_j^{(e)})$ and the

boundary W^* is greater than $O(j^{-1/2})d(x; \partial \alpha^{(e)})^{1/2}(f(x) - v)$ if $f(x) - v \leq O(j^{1/2})d(x; \partial \alpha^{(e)})^{1/2}$. Moreover,

$$\sup_{x,y\in X_{i}^{(a)}} (f(x) - f(y)) \le O(j)$$

is shown. Hence one can easily obtain that $\log \tilde{d}(w; \partial \beta)$ is integrable.

REFERENCES

- [1] L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959),
 873-876.=Amer. Math. Soc. Transl. (2) 49 (1966), 167-170.
- [2] N. A. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1970), 365-394.
- [3] G. Gallavotti and D. S. Ornstein, Billiards and Bernoulli schemes, Commun. math. Phys. 38 (1974), 83-101.
- [4] Sh. Ito, H. Murata and H. Totoki, Remarks on the isomorphism theorems for weak Bernoulli transformations in general case, Publ. RIMS, Kyoto Univ. 7 (1972), 541-580.
- [5] I. Kubo, Perturbed billiard systems I. The ergodicity of the motion of a particle in a compound central field, Nagoya Math. J. 61 (1976), 1-57.
- [6] —, The ergodicity of the motion of a particle in a potential field, International symposium on mathematical problems in theoretical physics, Jan. 1975 Kyoto Japan, 141-148.
- [7] D. S. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339-348.
- [8] —, Imbedding Bernoulli shifts in flows, Lecture Notes in Math. 160 [L. Sucheston (editor): Contribution to ergodic theory and probability] Springer-Verlag (1970), 178-218.
- [9] D. S. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math. 14 (1973), 184-198.
- [10] V. A. Rohlin and Ya G. Sinai, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041.=Soviet Math. Dokl. 2 (1961), 1611-1614.
- [11] Ya. G. Sinai, On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl. Akad. Nauk SSSR 153 (1963), 1261-1264.=Soviet Math. Dokl. 4 (1963), 1818-1822.
- [12] —, Dynamical systems with elastic reflections, Uspehi Math. Nauk 25 (1970), 141-192.=Russian Math. Surveys 25 (1970), 137-189.

Nagoya University Hiroshima University