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ON THE STRUCTURE OF THE IDELE GROUP

OF AN ALGEBRAIC NUMBER FIELD

KATSUYA MIYAKE

The purpose of this paper is to present the results of E. Artin and
Furtwangler, with which they proved the principal ideal theorem, as a
structure theorem of the idele group of an algebraic number field. Such
treatment may be helpful to clarify the Arithmetic nature these results
possess.

§1

Let F be an algebraic number field (of finite degree over Q), and let
KjF and LjK be both finite abelian extensions. Suppose that L is a Galois
extension of F, and that K is the maximal abelian extension of F con-
tained in L. Then G = Gal (LjF) is metabelian, and G' = Gal (LjK) is
the commutator subgroup of G.

Let us denote the Artin maps of KjF and LjK by [ , KjF] and [ , LjK]
respectively. That is, for a prime ideal p of F which is unramified in KjF,
[p, K/F] is the Frobenius automorphism of p in Gal (KjF).

Let α be an ideal of F. Then the extension of α to an ideal of K is
a - Oκ where Oκ is the maximal order of K.

THEOREM (Artin-Furtwangler). Let L be a Galois extension of F, and
suppose that G = Gal (L/F) is metabelian. Let K be the maximal abelian
extension of F contained in L, and Oκ the maximal order of K. Then, if
an ideal a of F is unramified in K/F, [a Oκ, L\K\ is trivial

E. Artin showed that the map of G/C = Gal (K/F) to Gf = Gal (LjK)
which gives

[a,KjF]>—>[a OK9LIK]

is the transfer (Verlagerung) VQ^G* of GjGr to G'. Then Furtwangler proved

that VG_G> is the trivial homomorphism of GjGr to G'. (See [1] and [3].)
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It may be worth to point out that this theorem is proved without using
class field theory.

§2.

For an algebraic number field F, the ring of adeles of F is denoted
by FΛ, and the idele group of F by F£. Let Fab be the maximal abelian
extension in the algebraic closure F of F, and put %F = Gal (Fab/F) and
®F = Gal(F/F). Let Fi = F?-F* be the decomposition of F£ into the
product of its non-Archimedean part F? and its Archimedean part F*.
Let F*+ be the connected component of the unity of F£, and F# the
topological closure of Fx-F*+ in F%. Here and after, F and Fx are con-
sidered to be diagonally embedded in FA and F£ respectively.

By class field theory, Artin map or canonical morphism

[.,F]:Fϊ—*VF

is an open, continuous and surjective homomorphism whose kernel is F*.
Our basic reference on class field theory is Weil's book [8] though the
notation slightly differs.

Let K be a finite Galois extension of F. Then Gal (K/F) = ®F/®K

where ®κ = Gal (F/K). The ring of adeles of K is naturally identified
with the tensor product K (g)F FA = KA. Then the natural action of ©F

on KA is the one defined through the if-factor of the product.

Let ©^ be the commutator subgroup of ®κ. Then 2ί# = Gal (Kab/K) =
®jr/®i: Since Qόκ is a normal subgroup of ©F, this ©F acts on &κ through
inner automorphisms of ®F, and also on 2ί̂  = ©#/©#. More precisely,
let ξ be an element of © .̂ Then for λ e %Fy the action of λ on ξ mod ©^
is defined by

(ξ mod®^y = λ-'-ξ'λ mod©^ .

THEOREM 1. For x e K£ and λ e ®F,

[x\ K] = [x, X]̂

[ , i ί ] : KX -> SÎ  = Gal (KJK) is Artin map for K.

This theorem is well known. But a proof will be given in § 6 for the
completeness.

§3.

Now our intended result is ready to be shown. Generalization will
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be done in the next section. Note that K does not have to be an abelian

extension of F in this theorem.

THEOREM 2. Let F be an algebraic number field and K a finite Galois

extension of F. If an open subgroup U of K% satisfies

( i ) UZ)K*

(i i) U = U for any σ e Gal (K/F)

(iii) U.NΪ}F(F*) = KX

then U 3 FjS

Here Nκ/F: K% —> JPjf is the norm map of K over F.

Proof. First we reduce the theorem to the case that K is an abelian

extension of F. Let M be the maximal abelian extension of F contained

in K. Then

Put V — Mx -NK/M(U). Then V is an open subgroup of M£, and con-

tains M\ It is obvious that Vτ = V for τ e Gal (M/F). Since

= F*.NK/F(U) =

it is easy to see that

It follows, moreover, from (i) and (ii) that [/ contains V as a subgroup.

Hence it is sufficient to show that V contains F%. Therefore we may

assume that K itself is an abelian extension of F.

Now let L be the class field of K corresponding to U. Then

U=K* NLIK(LΪ).

By Theorem 1, condition (ii) implies that L is a Galois extension of F.

From (iii), it follows that K is the maximal abelian extension of F con-

tained in L.

For a prime ideal ψ of K, let Oκ>% be the $β-adic completion of Oκ,

and OjΓ,* the group of units of OK>Ψ Then O£^ is canonically regarded

as a subgroup of K%. Since Z7 is open, the number of such prime ideals

Sβ that 0%,% K U is finite. Let S be the set of all such prime ideals of

K. For each ϊβ e S, fix an integer e($β) such that
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and

us = U80i* x ΓΠi + Ψ™Όκ,y) x κ*+

Kim = the subgroup of K% generated by Us and all K$ for Sβ $ S

3ft = γ[ ψw χ product of all infinite places of K

IL(S) = the group of ideals of L prime to 3ft

IK(S) = the group of ideals of K prime to 3ft

<3X(M) = the Strahl ideal class group modulo 3ft.

Here K% is the ^β-adic completion of K, and K£ is its multiplicative group.

For prime P of L, let LP be the P-adic completion, and Lp the multipli-

cative group of Lp. Put

L$iS) = the subgroup of L% generated by l\pnκes OliP and all L$ for

p n K e s.
For idele x of if (resp. of L, of F), denote the corresponding ideal of

K (resp. of L, of F) by Sx(x) (resp. SL(x), *fF(x)). Then we have exact

sequences

Furthermore, for xeL$iS) Π N^iK^),

and, for x e F ] Π iζί ( S ),

Sχ(x)'= SF(X)ΌK.

Now apply Artin-Furtwangler theorem to this case. Then, (by Hubert

theory), one can easily conclude that, for xeF% Π K^S), there exist ae

Kg and y 6 L$(S) Π N£fc(Kϊ{8)) such that

Therefore

x = a NL/κ(y)-u

with some u e Us. Since U contains all of K$, NL/K(L%) and USi it has
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been shown that

Fϊ Π l Q U c U.

Because S is a finite set of prime ideals of K, one can easily see by Chi-
nese remainder theorem that (F% ΓΊ K^S))-FX = F$. Since U contains Fx,

Fϊ = (F£ Π Kϊ(8)).F* c U F- = C7.

The proof is done.

§ 4. Generalization

THEOREM 3. Let F be an algebraic number field, and K a finite Galois
extension of F. For an open subgroup U of K% satisfying

( i ) U 3 K*
(ii) U< =U for any a e Gal (KjF)

put m = [Kϊ: U N^/F(F% Then

(F*)m = {am\aeF£} c U.

Proof. Let L be the abelian extension of K corresponding to U- Nχ}-F(F*).
Then m=[L: K], and

K* NL/K(LX)= TJ.N

Put V=Nzfκ(U). Then

since

F*-NLIF(Lϊ) = F* NκίF{K* NL/κ{LΪ))

= F--NUF(V).

Obviously L is a Galois extension of F. Theorem 2, therefore, is appli-
cable to LjF and V, and implies that V Z) F%. Hence for any aeF%

am = NL/κ(a)eU.

The proof is completed.

COROLLARY. The notation and the assumptions being as in the theorem,
let n be the largest common divisor of m and the degree [K: F], Then
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(U-N MF*)) Π Fϊ = (UX) Π

where X={xe N^F(F*)\xn e U] .

Therefore especially

Π F2 = C/ίΊFl

*/ rc is prime ίo ZΛe ίmfex [U-Nκ/F(F*): U].

Proo/. Put d = [K: F]. For α e (U-N£/F(F*)) Π Fj<, choose u e U and

i; e Nχ}F{F*) so that a= u v. Then α<* = i V ^ α ) = Nκ/F(u) Nκ/F(v). Con-

dition (ii) implies that Nκ/F(ύ) e U. Since Nκ/F(v) e F\ we conclude that

ad e U Π F$. It follows from the theorem that am belongs to U Π F£.

Therefore an belongs to U Π F% where n = (m, d). Since an = un- vn, we

see that veX. The proof is done.

§5. Remarks on F*

Let F be an algebraic number field of finite degree d over Q, and

d = Γi + 2 r2 where rλ is the number of real Archimedean primes of F.

Put r = rt + r2 — 1. Let JE+ be the multiplicative group of all the totally

positive units of F. (We exclude the roots of 1 in F from E+ when rx =

0.) Then E+ is a free Z-module of rank r.

Let E+f be the projection of E+ to the non-Archimedean part F f

x of

F4, and E+f the topological closure of E+f in F f

x .

PROPOSITION 1. The closure JF* 0/ Fx-F*+ in F£ is equal to

F x

+ . Moreover\ for every positive integer n,

F* = Fx-{xn\xeF*}.

(See Shimura [7], 2.2.)

PROPOSITION 2. (1) Fx f] {xn\xe F*} = {αw|a e F x } .

(2) For xeF\ xn = l^xeFX FX

+.

(See [6], 3.1.)

PROPOSITION 3. As topological groups, E+f is isomorphic to the direct

product of r copies of Z — Πp,Prime Zp where Zv is the ring of p-adic integers.

Proof. By Chevalley [2], the topology induced on free Z-module E+f

of rank r is the one defined by taking all the subgroups of finite index



ALGEBRAIC NUMBER FIELD 123

as the basis of the neighbourhood of 0. Therefore E+f is isomorphic to

the completion Zr.

PROPOSITION 4. Let K be a finite extension of F (not necessarily Galois).

Then

N£yiχ) = Nκ/F(Kϊ) Π FXINK/F(KX).

Proof. Put N=NK/F, and d=[K: F]. First we see N

•F*. For x e N-\F*), choose a e Fx and be F* by Prop. 1 so that N(x) =

abd. Put y = xb~\ Then N(y) = a e Fx, and x = y 6.

Next we show iV"1(Fx) (Ί 2<Γ# = ϋΓx (iV-1(l) Π if#) Obviously the right

is contained by the left. For z e K\ suppose that N(z) eFx. By Prop. 1

for K, choose u e Kx and i; e if* so that z=u υ*. Then N(v)d = iV(z)

e F x . Therefore by Prop. 2, (1), we can find a e F x such that Λ î;)

Then z = ( i / a ) ^ " 1 ^ ) with u-aeKx and N(a-ιvd) = 1. Now

n
) n

Π FX/N(KX).

The proof is done.

§ 6. Proof of Theorem 1

Let ϋΓ be a finite Galois extension of an algebraic number field JP.

Let the notation and the situation be as in § 2. We have to prove that

canonical homomorphism [, K]: K£ -> %κ = Gal (Kab/K) of class field theory

is compatible with the action of ®F = Gal (F/F) (modulo Qόκ).

Let p be a prime divisor of F, Fp the completion of F at $>, and Fp

the algebraic closure of Fp. Fix an isomorphism * of F into a subfield c(F)

of Fp, which is identical on F. Put i £ = c(K)-Fp. This is a Galois exten-

sion of ί;. Put ©„ = Gal (FJFP) and @ = Gal (Fp/^). The latter is a normal

subgroup of the former. Note that Fp = ^ - F , , , Fp,α δ = c(Fab) Fp, and ^ α δ

= c(Kab)-K where FPtΛb and i?αδ are the maximal abelian extension of Fp

and K in F p respectively. Hence the restriction of the action of &p on

c(F) gives an isomorphic embedding of %p into co%Forι. Let Qp be the

subgroup of ®F corresponding to ®p. That is, c o gp o ί"1 = © r We also have
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where ©£ and ©' are the commutator subgroups of ©p and © respectively.

Fix a set of representatives S = {σί9 , σg} of the left cosets of 8**®*

in ©*>. (Remember that ©^ acts on both of KA and %κ from the right.)

For σe®F, the representative in S of QP'®κ-σ is denoted by [σ]. Put

c(σ) = co[σ]-1 (σe®r).

Then (̂σ) depends only on the coset 8p ©#•(?. The family of pairs {(c(σ), K)\

σeS} is a set of all non-equivalent proper embeddings of K above Fp.

That is, for any proper embedding (λ, L) of K above Fpy there are σ eS

and isomorphism p of L over F p into K such that (̂cx) = poX. (See Weil

[8], p. 51, Cor. 2.) Fix a set of representatives R = fo, , ̂ } of ©,/© =

Gal (K/Fp) where pt e ®p. Then for any two elements σ, τ of ®F, there is

a unique element p(σ, τ) of R such that, restricted to K,

c(σ) oτ\κ = p(σ> r) o ̂ στ" 1)!^

For σ and τ e ®F9 define ζ(σ9 τ) e %p ®κ by

Then

p(σ, τ ) Ξ ί o ζ((7, r)" 1 o r1 modulo ® .

For each σ e S, put

@σ = (7 o " 1 o © o ̂  o (j"1 = "1 o [(^ o (j"1 o j""1) ® (;o(;o ^"Όl ° ^

Then &σ is a subgroup of ©^ and is a conjugate of 3» Π ®κ in ®^ It is

easy to see that the commutator subgroup ®̂  of ®σ coincides with ®σ Π

©i. Put

This is considered as a subgroup of 2IX = ©x/©^. The action of ®F on

%κ maps the family {Sί^,σ|<7eS} onto itself. Each 2I^,σ is isomorphic to

Let us now consider the p-part of KA. It is naturally identified with

K (x)F Fp. Take copies of K indexed by S. That is, put Kσ — K for each

σeS. Then the map e(σ): K-> Kσ for σ e S gives an i^-linear isomorphism
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of K®FFP onto the direct product γ[σesKσ.

For σ, τ e ®F, and for aeK,

t{σ)(aτ) = (c(σ) o r)(α) = (p(σ, τ) o

Therefore it is easy to see the following:

For xeK®FFp, let ηp{x) = (xσ)σes e Π Kσ
a

Then for τ e %F,

y. = ( ^ t - . ] ) " ( < " r )

Let χ be a (linear) character of ®κ. It is automatically considered
as a character of 2ίx = %κl®'κ = Gal (KJK). For ^ 6 ®p, define a character
t of ©„ by

jtfr) = χtfril-1) ( r e ® , ) .

Since ©π is normal in (S ,̂ this is well defined. Note that χλ depends only
on λ modulo %κ.

For χ, we can associate characters χσ(σ e S) of 2ί# = ®/®' = Gal (Kab/K)
through the isomorphisms of 21̂  onto 2!^, established above. Namely for
μe®,

la(μ) = χiσoΓ'oμocoσ-1)

For a character χ of ®κ, and for xeK®FFp with ^(x) = (xjσe5
a

the canonical pairing (χ, x)KtP is defined by

(χ, χ)κ,p = Π (%̂  ^ ) ^ ,

where each (χff, x,)g is the canonical pairing of local class field theory for

Kσ = K

Let λ be an element of ®F. For x e if (g)̂  F p with 57/x) = (xσ)σes, we

had ^(xθ = (yσ) with yσ = (*E.i-i])'("a) O n t h e o t h e r hand, (χθtf(/^) =

Tp-\cι'°μo0 for μ e ®. Since σ^"1 = ζ(σ,
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= %ίai~ι'~\ζ(σ, λY' irΌμoi).ζ(σ,

= Z>J"I]"ι(C(ff, λ)orioμaCoζ(σ, λY

= χ^-χrιop(σ,χYι°μ°p(σ,λ)

~ Xi.i-iibKσ, t)~'°μ°p(σ> X))

= Xi.i-4ifo> X) μ pif, X)'1)

= OfW-. ]) ' ( ' flC«)

Therefore

Since ^(σ, A) e ®p ~ Gal (FJFP), and since ^ is a Galois extension of FP9 we
have X'c a) = K.
Therefore

(See Weil [8], p 223, Cor. 5.) This shows that

Since this is true for any prime divisor of F>

(χ\ oc% = (χ, x)κ

for x e iΓ^, J! e ©F and a character χ of &κ. Here (χ, Λ:)̂  is the canonical
pairing of K.

The canonical morphism

[;K]:Kϊ—>Vtx = ®κl®'κ - Gal(KJK)

is defined so that

(X, X)κ = Z([x,

for any xeKi and any χ. For each [x,K]e%κ, choose [x, K]* e ®κ so
that [x, K]* modulo ®'κ is [x, K]. Then for ί e ®F,

Therefore

for any χ. This implies that
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[x, K] = λ-[x\ K]*λ-' modulo ©i .

Equivalent to say,

λ'1 [*, if]* Λ ΞΞ [x\ if]* modulo ©i .

This is what Theorem 1 claims. The proof is done.
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