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REALIZATION OF CHERN CLASSES BY SUBVARIETIES
WITH CERTAIN SINGULARITIES

HIROSHI MORIMOTO

§0. Introduction

In this paper we are concerned with subvarieties which realize Chern
classes of holomorphic vector bundles. The existence of these subvarieties
is known in some cases (for instance, see A. Grothendieck [2] for pro-
jective algebraic varieties and M. Cornalba and P. Griffiths [1] for Stein
manifolds). In the present paper we realize Chern classes by subvarieties
with singularities of a certain type. Our main theorem is as follows (see
Def. 1.1.3 for the definition of quasilinear subvarieties).

Main THEOREM. Let M be a paracompact complex manifold of dimen-
sion n and & = (E, 7, M) a holomorphic vector bundle of rank q with the
condition 2.2.1. Then, for any integer 1 < k < n, there exists a subvariety
V of M such that

(a) V realizes the k-th Chern class of &.

(b) V is quasilinear of degree R — 1 and can be desingularized by

means of o¢-processes.

(¢) In particular, V is non-singular for [n/2] < k < n.

As an application of Main Theorem, we show in §4.3 that Chern
classes of arbitrary holomorphic vector bundles over Stein manifolds can
be realized by quasilinear subvarieties.

The following is an outline of the proof of Main Theorem. Let @ be
a holomorphic map from M into the complex Grassmann manifold G, ,
which induces the bundle. We regard @ as a holomorphic map from M
into G,,,,, through an embedding G, ,,CG, ,.». Given a holomorphic map
f from the total space E into the complex euclidean space C?, we associate
to f a holomorphic map @, from M into G,,,». We deform @ into @, so
that @, is transversal to all the strata of the Schubert variety F, in G, ,, -
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Pulling back F, by @,, we obtain a quasilinear realization of the (g — p
+ 1)-th Chern class of &.

The author wishes to express his hearty thanks to Professor Yoshihiro
Shikata for his introducing to this subject and for his helpful advice for
preparing this paper. '

§1. Quasilinear subvarieties

1.1. Definition of quasilinear subvarieties
Let M(p, g) denote the set of all p X g complex matrices. For integers
D, q and r such that p < q, we define

MAp, @) = {A e Dp, q); corank (4) > r},

where corank = p — rank.
Let M be a complex manifold of dimension n, and let

1.1.1) V,ioV,D..-DV,
be a sequence of subvarieties of M.

DerFINITION 1.1.2. The sequence (1.1.1) is said to be quasilinear of
degree m if it satisfies the following:
(a) For any integer 2 < k < p, V, consists of all the singular points
of V,_,. And V, is non-singular.
(b) V, has the regular stratification;

Vi—-WUW,=V)u---uV,.

(c) For any integer 1 < 2 < p and any point x,¢ V, — V,,, (where
we set V,,, = ¢), there is a triple (¢, U, W) such that U is an open
neighbourhood of x, in M, W is that of (0;0) in

Mk, m + k) X C° (s=n-—k(im4+ k),
and ¢ is a biholomorphic map from U onto W such that

o(x) = (0;0),
AUNV)=Wn WMk, m + k) X C)

for any integer 1 < r < k.
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The triple (p, U, W) is called a quasilinearity at x,, Notice that the
condition (c) yields both (a) and (b). If the sequence (1.1.1) is quasilinear
of degree m and V, is not empty for any 1< k < p, then V, has the
codimension k(m + k) in M.

DerFiniTiON 1.1.3. A subvariety V of M is said to be quasilinear of
degree m if there is a quasilinear sequence (1.1.1) of degree m such that

V.= V. In this case, the sequence is called the associated sequence with
V.

In particular, any non-singular subvariety of codimension m + 1 is
quasilinear of degree m. In view of this, M itself is also said to be quasi-
linear.

1.2. Examples of quasilinear subvarieties

In this section we show that Schubert varieties have a natural quasi-
linear structure and that transversality to Schubert varieties yields quasi-
linearity as in Proposition 1.2.6.

Let

A:(%’ ﬂ), o =@y, B=©0), ¢=(), 2=,
¢ 9

where AeM(p,q) (p<q) and L cPT(p — k,p — k). We define a kX
(@ — p + k) complex matrix J,(A) = (di(A)) by

b

di(A) =

where t = p — k. With this notation, we have

Lemma 1.2.1. Suppose that </ is non-singular. Then, for any integer
1<r<k,

corank (A) > r & corank (9,(4)) > r.

For the proof of the above lemma, it suffices to consider only minor
determinants which contain all the components of /. Since
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where s =k — r 4+ 1, it follows that all (¢ 4+ s)-minor determinants of A
vanish if and only if all s-minor determinants of ,(4) vanish.

The above lemma gives us the following example of a quasilinear
sequence in IMN(p, q).

ProposiTION 1.2.2. For any pair of positive integers p < q, the sequence

Mo, @) D My(p, @) D -+ D 9:Rp«u(p, qQ = {0,,.}
is quasilinear of degree q — p in J(p, q).

Proof. Fix any 1<k <p, and let A, M (p, @) — M;...(p, q) (where
M,..(p,q) = ¢). We denote A, and each p X ¢ complex matrix A by

S ]
0 90 g 9

where 7, and & are (p — k) X (p — k) matrices. Since the corank of A,
is k, we may assume that .7, is non-singular. For any p X ¢ matrix A,
we define ¢(A) by the composition

A= <§ Z)H<g:(;fo ggj—k(f;)'_’(gjk(A);ai— ab, ay — ak, - )
= @A) e Mk, —p + k) X C*,

where s = pg — k(g — p + k). By Lemma 1.2.1, corank (Z,(A,) > k, that
is, 94(A,) is the & X (¢ — p + k) zero matrix. Hence

#(Ao)) = (Ox,q-p4x3 0) -

Since ./, is non-singular, a restriction of ¢ gives rise to a biholomorphic
map

o|lU.U—>WcC DUk,qg—p+ k) XC°,
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where U is an open neighbourhood of A, such that |«/| # 0 for any A€ U.
From Lemma 1.2.1, it follows that for any 1 < r < k&,

oUN M(p, @) =WnN WM(k,qg —p+Fk) XC).

Consequently, the triple (¢| U, U, W) makes a quasilinearity at A,.
Q.E.D.

We now investigate Schubert varieties. Let G, ,.. be the complex
Grassmann manifold of all g-planes in C? X C**™ through the origin. Sup-
pose p < q. For each integer 1 < k < p, we set

F, = {g-plane z € G, ,, »; codimension (r,(z]) > &k},

where |z| is the carrier of r in C? X C”*™ and =, is the projection of C”
X C*™ onto C?’. Thus we have the sequence of Schubert varieties in
GChP*"”L

(1.2.3) FODF,D>...DF,.
If we use the Schubert symbol, F, is represented by

p+m—-1--,p+m-—1Lp+m,---,p+m,

~
q—p+k y

with respect to the increasing sequence of linear subspaces {0} X C'C
xCc’c--.c{f}xCcr"cC'xC*"CcC*X CP*"C --- CCP X C™
Under the Poincaré duality isomorphism, the fundamental homology class
of F, in H (G, ,..) corresponds to the (g — p + 1)-th Chern class of the
universal vector bundle over G, ., (see W. T. Wu [5] for Schubert vari-
eties).

In order to show that the sequence (1.2.3) is quasilinear, we shall
use the following local charts of G, ,,,. Put C? X C**™ = (y', ---,y?; 2,
<o, 2™, Let

{sl’ Sy * "!sh} U {51, '§29 Tty gp—h} = {1’ 2a M ,p} ’
{tla t2’ . ',tq—h} U {zu iza * "9Zm+h} = {1, 29 e, g + m}

be arbitrary partitions for some integer 0 < 2 < q. We denote each (p +
m) X q complex matrix A by

where of € M(p — h, h). We define a holomorphic map
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SD(S‘, c 0y Sps tl) Tty tq-h): EIR(p + m, q) hd Gq,p+m
by letting each element A of I (p + m, q) correspond to the graph in
C? X C**™ of the linear map
( ¥ ) [y ]
¥ ¥

y'”:—'* =<;Q¢;ga) y

231 @ 2h

232 ztn

Em+n tg~n
L it J L 2" J

It is easily verified that this map makes a local chart of G, ,,, without
any restriction. We denote this local chart by

U(Sla 82y ** vy Sns tb tz’ Y tq—h) (;ED'C(p + m, CI)) .

Notice that G, ,., is covered with those charts.
From the definition of Schubert varieties, we have

LeMMA 1.24. For any integer 1 < k < p,

L C A b)) F N UGSy <o, 80585, 00y ty-n)
= {Ae M(p + m, q); corank (&) > k} .

In view of Proposition 1.2.2, this lemma implies

ProposiTiON 1.2.5. The sequence of Schbert varieties F, D F,> --.- D
F, is quasilinear of degree ¢ — p in G, ,, .-

From this proposition, we obtain quasilinear subvarieties in a complex
manifold M through holomorphic maps from M into G, ,,, as follows.

ProposiTiON 1.2.6. Let M be a complex manifold. If a holomorphic
map @ from M into G, ,., is transversal to all the strata of F,, then the
sequence

O (F) D0 Y(F,) D --- DOF,)
is quasilinear of degree q — p in M.

1.3. Resolution of singularities of quasilinear subvarieties
Given subvarieties V;, O V, of a complex manifold M such that V, is
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non-singular, we denote by
o:M—>M
the o-process centred in V, and by V, the closure of the set ¢-(V, — V).
For any pair of positive integers p < g, let
(1.3.1) M(p, q) D My(p,g) D -+ D M,_i(p, @)

be the sequence obtained from the sequence

Mp, @) D My(p, @) D -+ DMy, 4(p, @) D {0,,4}
by the g-process o: M(p, ) — M(p, q) centred at the zero matrix O, ,.

LEMMA 1.3.2. The sequence (1.3.1) is quasilinear of degree q — p in
M(p, q). In particular, M,_(p, q) is non-singular.

Proof. Since M(p, q) — 07%(0,,,) is biholomorphic to M(p, q) — O,
under o, it suffices to show the quasilinearity at any point x, in

O'—I(Op,q) ﬂ (gjtk(p’ Q) - SJjelu»l(p, q)) ’

for any integer 1< k< p— 1 (M,..(p,q) = ¢). By the definition of the
o-process, M(p, q) may be regarded as a complex submanifold of M(p, q)
X P??-! (where P??"' denotes the complex projective space of dimension
pqg — 1). Suppose that x, is represented as

%o = (Op,q; #(Hy) € DM(p, g) X Pt
where H, = (h{;) € M(p, ¢) and x(H,;) denotes the element of P?*~' with ho-

mogeneous coordinates hj,, Without loss of generality we may assume
hy = 1.
We denote by A[z] the matrix obtained from A = (a!) by replacing a}
with a complex number z. For any element A of IM(p, ¢), we set
1(A) = (ai- Al1]; x(A[1])) € M(p, @) X P,
Then
(1) (H[OD) = (0,05 6(Hy)) = x, .

Moreover, there is a neighbourhood W’ of H,[0] in IM(p, q) such that the
restriction of x to W’ is a local coordinate system of M(p, q) at x,. Set
U = (W’). Then, we have

r{Ae W;5a=+0,Allle M(p, P = MAp, ¢) N (U — 07(0,,0) ,
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for any 1 < r < k. Since A[l] does not contain the al-variable, we have
(2) H{Ae W Allle M(p, ) = U’ N M(p, @)

for any 1 <r <k
Denote H,[0] and each element A of W’ by

0 AL ---

H[0] = | P& R = (ﬂo %>, A= (y gg)’
L. o D ¢ 9

where &/, and & are (p — k) X (p — k) matrices. From (2), we may as-
sume that «/[1] is non-singular. For any element A of W’, we define
o(A) by the following composition
A:(d .@)H(&f—ﬂo .g;-%)
¢ 9 € — %, FLA[L]
— (F(AlLD); al, 0} — oy, 0} — as, -+ *)
— (A) e M(k,g —p+ k) X C',

where s = pq — k(@ — p + k). From (1), (2) and Lemma 1.2.1, it is easily
verified that a restriction of ¢ou™* to a sufficiently small neighbourhood
of x, gives a quasilinearity at x,. Q.E.D.

Remark 1.3.3. Note that ¢7(0,,,) is locally determined by a} = 0 and
M.(p, @) by the equations which do not contain the al-variable. There-
fore, ¢7(0,,,) is non-singular and transversal to all the strata of M,(p, q).

From this lemma, we can describe the behaviour of quasilinear se-
quences under g-processes as follows.

PropostrioN 1.34. Let VD V,D .- DV, be a quasilinear sequence
of degree m in a complex manifold M. Then, the sequence V, D V,D ---
D V,_, obtained from the above sequence by the o-process o: M — M centred
in V, is also quasilinear of degree m in M. In particular, V,_I is non-
singular.

Proof. From the quasilinearity, it suffices to prove the result for the
sequence
WMy(s, ) X C™ D My(s,5) X C™ D ++- D {0, } X C™

for arbitrary integers s, ¢ and m. In this case, the result is easily veri-
fied by Lemma 1.3.2. Q.E.D.
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By successive applications of this proposition, we obtain the following
desingularization of quasilinear subvarieties.

TuEOREM 1.8.5. A quasilinear subvariety can be desingularized by means
of o-processes.

Proof. Let VC M be a quasilinear subvariety, and VD> V,D ...
D V, the associated sequence with V. From Proposition 1.3.4, by induc-
tion on i, we can define a sequence

(Mo VL, VL -, V30 (0<i<p-—1)

such that
(@ M'=Mand V=V, for 1<k<p.
(b) The sequence ViD ViD ... D Vi, is obtained from the quasi-
linear sequence in M*"!

Vito Vito ... D Vi,
by the g-process ¢,: M* — M* ' centred in Vii,,.
Then, the restriction
01003000, 4| VI VI VI=V
gives a desingularization of V. Q.E.D.

As one of applications of this theorem, we show the existence of
“tubular neighbourhoods” around singularities of quasilinear subvarieties,
which will be used in §4.

Lemma 1.836. Let VD V,D ... DV, be a quasilinear sequence in a
compact complex manifold M. Then, there exists an open neighbourhood
U of V, in V, such that both inclusions V,—>U and V,— U— V, -V,
are homotopy equivalences.

Proof. With the notation of the proof of Theorem 1.3.5, we set
Ny =V, N,=02(V:?, Ny=o0;li00,5(VE, -,

N, = 0;2005%0 - 007 (V,) .

From Remark 1.3.3, it follows that IV,, IV, - . - and IV, are non-singular and
transversal to each other in M?-'. Moreover, the map g,00,0::-00,_;
carries N, — (W, U N, U --- U N,) onto V, — V, biholomorphically, and
NN, UN, U --- UN,) onto V, (not biholomorphically). Therefore,
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it suffices to construct a neighbourhood of N, N (N, U --- U N,) in N,
and to let it fall down into V, by the proper map g,06,0-+-00,_;.
Q.E.D.

§2. Fibre-directional singularities of holomorphic mappings

2.1. Fibrewise singular sets

Let M be a complex manifold of dimension n and & = (E, =, M) a ho-
lomorphic vector bundle of rank ¢ over M. From now on, we shall deal
with holomorphic maps from the total space E into the complex euclidean
space C?. M will be identified with the zero cross-section of the bundle.

Let f: E — C* be a holomorphic map. At each point x of M, we con-
sider the (C-linear) differential

dz(lea:): Tx(Fa:) i Tf(x)(Cp) H

where F, denotes the fibre over x and f|F, the restriction of f to F,.
The map f is said to be fibrewise regular at a point x, of M if the differ-
ential d,(f|F,,) has the maximum rank, that is, the differential is one to
one in case p > g or onto in case p < ¢q. In this case, the point x, is
called a fibrewise regular point of f.

Henceforth we shall suppose p < ¢q. For each integer 1 < k < p, we
define the k-th fibrewise singular set of f by

FS,(f) = {x € M; corank (d.(f| F)) > k} .

These fibrewise singular sets are subvarieties of M such that
FS(f) D FS(f) D --- D FS,(f) .
We shall denote any holomorphic map f from E into C? by
f=U4L1F ) E->Cr.
Take any local triviality of & at a point x, of M such that
v=(z0=, 250 D (U) > WX e X Ce,
P(x0) = (05 0) .

We denote this local triviality by (U, W, ). With respect to (U, W, ),
we define a holomorphic map f, from W into M(p, g) by

o) = (L —:0))
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For any integer 1 < k2 < p, a holomorphic map f: E — C? is said to
be in a general position of order k at a point x, of M if there is a local
triviality (U, W, ) of & at x, such that f, is transversal on W to all the
strata of M (p, q);

9;)’ee(l), q) - wel+1(py Q), g~Rl+l(p’ q) - Emuz(p, Q), ) Op,q

where £ =p — k + 1 (see Proposition 1.2.2 for this stratification). This
definition does not depend on the choice of local trivialities if we choose
a sufficiently small U. For any subset K of M, fis said to be in a general
position of order £ on K if it is so at any point of K. In case k=p, f
is said to be in a general position on K.

Remark 2.1.1. Regard the total space E as a complex manifold of di-
mension 7 4+ q. We can use the following local coordinate system in
place of local trivialities for the verification of the general position re-
quirement. Let (W, ) be a local coordinate neighbourhood of E at a
point x, of M such that

v=(z) = -, 2%, ,): W W, X W,C C* X C*

and such that (W N M) is a graph in W, X W, of a holomorphic map
7= 2() and (W N F,) is determined by z = 2(x) for any point x in
W N M. Then, a holomorphic map f from E into C? is in a general posi-
tion of order 2 on W N M if and only if a holomorphic map f, from W,
into M(p, g) defined by

) = (L tes 12)

is transversal to all the strata of M, ,..(p, q) on W,.

2.2. Relation between Schubert varieties and FS, (f)
Throughout this section, we shall suppose that a holomorphic vector
bundle & = (E, n, M) of rank ¢ satisfies the following condition:

(2.2.1) There exists, for some intéger m, a holomorphic map @ from M
into G,,,, such that & = 0*(y,..),

where 7,.,, = (E, n, T4ns Gy,n) denotes the universal vector bundle over G,,,,
whose total space consists of all pairs (¢, v) of a g-plane z in C**™ through
the origin and a vector v in |z|, and the equivalence means a holomorphic
equivalence as holomorphic vector bundles.
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Let ¢: E— E,,, be the lift of @ and ¢, , the holomorphic map from
E, . into C**™ which sends (¢, v) to v. We define
2.2.2) U= @uno®: E—C"™,
Note that ¥ is fibrewise regular at any point of M. Given a holomorphic
map f from E into C?, we define ¥, by
UV, =(,¥):E—~C? X C"*™,

Since ¥ is fibrewise regular on M, so is ¥,. Hence, the image of T.(F,)
by d.(¥;|F,) makes a g-plane in C? X C**™ for any point x of M. There-
fore, there is a holomorphic map

(2.2.3) O, M~ Gypom

which sends each point x of M to the g-plane in C? X C?*™ through the
origin which is parallel to the image of T.(F,) by d(¥,|F,). It follows
from the way of constructing @, that

(2.2.4) &= P¥(rgpem) »

where 7,,,, is the universal bundle over G, ,, .
Under the map 9,, fibrewise singular sets and Schubert varieties have
the following relation.

Lemma 2.2.5. Let f: E— C? be a holomorphic map. Then,

(a) FS«(f) = 97'(F,), for any integer 1 < k < p.

(b) The map f is in a general position on M if and only if @, is
transversal to all the strata of the Schbert variety F,.

Proof. Let x,e M. Take a local triviality of & at x, such that
"l’\/ = (zlr DR zn;cl’ DY Cq): ﬂ_‘(U,)'_’ W/ X cicct X Cq )
P(x) = (0;0) .

Put C? =(y', ---,y%) and C¥™ = (y', ---,3**™). We denote 7'c® briefly
by 7' for any integer 1 < i< q + m. Since ¥ is fibrewise regular at x,,
there is a subset {¢,, ¢, ---, ¢} of {1,2, ---, ¢ + m} such that the map

(77!1, 77!2’ ) ”tq): E_) Cq

is fibrewise regular at x,. Therefore, for some open subsets U C U’ and
W c W/, the map
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‘l" = (219 ] Z";v“, 77t2’ ) vtq):”—l(U)—) WX (o

is a local triviality at x,, We may assume {¢,¢, ---,¢t}=1{1,2, ---,q}
With respect to this local triviality, we have

(1) fia = (L4 0)

With the notation in §1.2, O(x) e U(;1,2, ---, q) (consider the case
{s;}=¢ and {t;,} ={1,2, ---, q}. Moreover,

s o)]

- oy’
(2) 07'G L2 -, Qo fy(2) = e
T (g, O)J

il

where 1 <i<p, 1<j<qgand 1< {<m. From Lemma 124, F, is de-
termined in U(;1, ---,q) by

o7'G1 -, FNUGT, -+, q)

(3) = {(:Z) € M(p + m, q); corank (%) > k} .
From (1), (2) and (3), the lemma follows. Q.E.D.

From this lemma and Proposition 1.2.6, we can describe the structure
of singularities of subvarieties FS, (f) as follows.

TaeoreEM 2.2.6. If a holomorphic map f from E into C? is in a general
position on M, then the sequence

FS(f) D FS{(f) > --- D FS,(f)

is quasilinear of degree ¢ — p in M.

§3. Approximation Theorems

Throughout this section, M will be a paracompact complex manifold
of dimension n and & = (E, r, M) a holomorphic vector bundle of rank ¢
with the condition 2.2.1, unless otherwise stated. M will be identified
with the zero cross-section of &.

3.1. Pseudonorms
Regard the total space E as a complex manifold of dimension n + g
and let {#".};c; be a locally finite covering of E such that each ¥, is
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a compact local coordinate neighbourhood of E with coordinates w, =
Wt Wi, - - -, wr*?). We shall fix this covering and define a pseudonorm
Il |l associated to an arbitrary compact subset L of E for holomorphic
maps from E into C? by

I1Fl = sup sup {1f*@w)) + >:| O (w)

i€I(L) wi€w; 3wi

2| @)

wiowy

where f= (', f% ---,f?) and I(L) is a finite subset of I defined by
IL)y={iel; LN W,+ ¢}.

Let K be a compact subset of M. Since K is also compact in L, a
pseudonorm || || is defined for holomorphic maps from E into C? by the
above definition. Note that | ||z measures not only distances on K but
also those on a compact neighbourhood of K in E.

Let xe M. Since the covering is locally finite, there is a compact
neighbourhood W of x in E such that I(x) =I(W). If we set U= WN M,
U is a compact neighbourhood of x in M. Thus, we have

LemmA 3.3.1. For any point x of M, there exists a compact neighbour-
hood U of x in M such that || |, =1 I

3.2. Preparatory lemmas for Approximation Theorems
We start with the following lemma.

LemMmA 3.22. Let f:E— C*? (p < q) be a holomorphic map and x,¢c
FS,_ .. (f) — FS,_;.(f) (FS,..(f) = ¢). Suppose that f is in a general posi-
tion of order k at x,. Then,

(a) f is already in a general position at x,.

(b) There is a compact neighbourhood U of x, in M and 6 > 0 such

that if a holomorphic map g: E — C? satisfies that ||f — glly < 6
then g is in a general position on U.

Proof. Take a local triviality of & at x, such that
Pv=(2;0):z(U)-> W, X C'CC"X C?, ¥(x,) = (0;0) .
Put £ =p — k+ 1. Since x,€ FS,(f) — FS,..(f), we have
f4(0) e Mp, @) — My.i(p, ) -

Since M,(p, q) is quasilinear of degree g — p from Proposition 1.2.2, there
is a quasilinearity (¢, V, W,) of M(p, q) at f,(0) such that
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VoW, CMU,q—p+HXC, of 0)=(0;0,
where s = pg — 4(g — p + ¢). Contracting W, to W, so that f(W,) C V,
we denote the composition ¢of, on W, by
pofo = (LD I

where (¥5[fD): Wy — (4, ¢ — p + ¢) and (y'[f]): W, — C".

Since f is in a general position of order %k at x,, f, is transversal to
Mp, q) — M,.«(p, ) at the origin in W, hence ¢of, is transversal to
O X C* at the origin. Therefore, there is a compact neighbourhood W < W,
of the origin such that, for any ze€ W, the differential d,((yi[f])) is onto.
Noticing that the ontoness of the differential implies the transversality of
@of, to all the strata of

%2,(6,q—p+5)>< CS,

we have (a). Set U= "(W). There is some d > 0 such that if ||f— g,
< 0 then g (W) C V and d,(y:[g])) is onto for any ze W. This proves
(b). Q.E.D.

From the above lemma, we have the following two lemmas.

LemMma 3.2.3. If a holomorphic map f: E— C? is in a general position
of order k on a subset K of M, then [ is in a general position on K N
FSp—k+1(f)'

This lemma is proved by applying (a) to points in each of
K N (FS(f) — FS;if), - -+, KN FS,(f) ,
where { =p — k + 1.

LEMMA 3.2.4. If a holomorphic map f: E— C® is in a general position
of order k on a compact subset K of M, then there exists 6 > 0 such that if

“f - g”K < 0
then g is also in a general position of order k on K.

Proof. For any xe K N FS,_,..(f), there exist, from (b) of Lemma
3.2.2 and Lemma 3.1.1, a compact neighbourhood U(x) of x in M and
d(x) > 0 such that if
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then g is in a general position on U(x).
For any ye K — FS,_;.,(f), there are d(y) > 0 and a compact neigh-
bourhood U(y) of y in M such that if

”f—' g“y (:—‘”f— g”U(y)) < 6(3’)

then U(y) N FS,_;..(8) = ¢ (hence g is in a general position of order &

on U(y)).
Since K is compact, we have

K< (U uw) U (Jwe))
for some points {x;} C K N FS,_;.(f) and {y,} € K — FS,_,..(f). Define
6 = min {3(x:), 6(y,)} -
Suppose that ||f — g|lx <. Then we have
If — gl <o(x), If—&ll, <y

for any 1 <i<s and any 1 <j<t Hence g is in a general position of
order k on K. Q.E.D.

In the following lemma, we show that given a holomorphic map h
from E into C? and a point x, of M, we can approximate A with a holo-
morphic map g which is in a general position of some order at x,, In
this case, we can make the approximation extend over an arbitrarily given
compact subset L of E.

Lemma 3.2.5. If a holomorphic map
=L - fPRE->C (k<p-—-1)

is fibrewise regular at a point x, of M, then there is a compact neighbour-
hood U(x,; f', % -+, ") of x, in M satisfying the following: Given a holo-
morphic map h from E into C? such that

h:(fl""fk’hk+1,"',hp)

(i.e. K =f" on E for any 1 <i < k), a compact subset L of E and ¢ > 0,
there is a holomorphic map g from E into C? such that

(@ g=(", - f"g", -, 8"

(b) g is in a general position of order k + 1 on U(x,; f*, - -, f9.

© 12— gllevvee r1,0ee,rm < &
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Remark 3.2.6. In case k = 0, the lemma asserts that for any point x,
of M there is a compact neighbourhood U(x,) of x in M satisfying the
following: Given a holomorphic map h: E— C?, a compact subset L of
E and ¢ > 0, there is a holomorphic map g in a general position of order
1 on U(x,) such that

h — 8llevven <€
Proof of Lemma 3.2.5. Denote the map ¥ of (2.2.2) by
vy=@,v, ..., 0" E—Cm

Since d,(¥'|F,,) is one to one and d,(f|F,,) is onto, there is a subset
{tiy by -+, 8.} of {1,2, ---, g + m} such that the map

(1) (ft, -+ fE, 0 ... Ut¥): B — CO
is fibrewise regular at x,, Without loss of generality, we may assume
{ty -ty ={1,2,---,q — k}.
Take a local triviality of & at x, such that
Vo=, 2 ) (U)W X X C,
and consider the following map
@&y 2 f e R, TR e (U) > WX CO

Because of the fibrewise-regularity of the map (1) at x, the above map
makes a local coordinate system (not necessarily a local triviality) of E
at x, within some neighbourhood W of x, in E. Denote this local coordi-
nate system by (W, ). We may assume that (W, ) satisfies the require-
ments of Remark 2.1.1. Let W,, W, and y be those in the remark with
respect to (W, ). Thus we have a biholomorphic map

wz(zl,_..,zn;fl’ "'afk’yﬂ: ‘..’W'q—k):w__) WIX chcnxcq

We may assume that W, W, and W, are compact.
Define

Ul fYy - -, f9=Wn M.

We show that this compact neighbourhood of x, in M is the required one.
Let h: E— C? be a holomorphic map such that

h=(fl"”,flc,hk+l,__‘,hp).
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For any (p — k) X (g — k) complex matrix & = (%), we consider
8. = (fl’ . "fk,g,:“’ T "g}')) ’
where gi*(i = 1,2, ---,p — k) are defined by
q-k
gi‘c+i p— hk+i _|__ Z E;w‘j .
i=1

Since ¥7 is holomorphic on £ for any j, g, is a holomorphic map from E
into C?. For any compact subset L of E and any ¢ > 0, there is some
& > 0 such that

max|ef| < = ||k — &ellour r1eemm < € -
57

There is a regular value &, = (¢;) e D(p — k,q — k) of a map which
sends each ze W, to

- (P @) e M — kg — )
such that max|e,| < 6. Define g = g,,. Then g satisfies (a), (b) and (c).
Q.E.D.
Notice that the determination of U(x,;f*, - - -, f*) does not depend on
functions {A**!, - .., h?} but only on {f', ---,f*}, and that we need not de-
form these {f!, ---,f*} when we turn A into g. Because of these, we can

extend the region where an approximating map g is in a general position
of some order to a certain extent as follows.

Lemma 8.2.7. Let f=(f', - -,f?): E— C? be a holomorphic map and
K a compact subset of M. If there is a subset {s,, s, - -+, 8} of {1,2, ---, p}
such that the map

(fxl’fsz’ “"f"‘):E_’)Ck

is fibrewise regular at any point of K, then for any compact subset L of E
and any ¢ > 0, there is a holomorphic map g: E — C? such that

(a) g is in a general position of order k 4+ 1 on K.

®) If — gllxuz <e.

Proof. Without loss of generality, we may assume that {81, -+, 8} =
{1,2,---,k}. Then the map

(s f)E>C?
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satisfies the assumption of Lemma 3.2.5 at any point x of K. For each
xe K, we let U(x;f?, ---,f*) be a compact neighbourhood of x in M given
in that lemma. From Lemma 3.1.1, we may assume

(1) Il =11 llows s

for any xe¢ K. Since K is compact, we have
N
Ko JU@;f, - f"

for some points {x,} in K.

We show the existence of a sequence {(g,,6,)} ¢ = 1,2, ---, N) of pairs
of holomorphic maps from E into C? and positive numbers such that, for
any 1 <i<N,

(a,i) g;1is in a general position of order 2 + 1 on U(x;;f*, ---,f").
(b,7) |18i-1 — &illxur < min{e, 8, 8, - -+, 0,}IN
where g, = f.
(C,i) gi':(f17"',fkag;,‘c+l,""gg)'
d,i)) If
lg: — Al <0

then h is in a general position of order £ + 1 on U(x;;f%, ---,f").

Suppose that this is verified. Then, g = g, satisfies (a) and (b) for the
following reason. For any 1< i< N — 1, from properties (b,7 + 1), - --
and (b, N), we have

”gz — 8w “n < az .

From this and (d,i), gy is in a general position of order %24 1 on
Uz f' --+,f) for any 1< i< N— 1. Therefore, from (a, N), gy is in
a general position of order £+ 1 on K. On the other hand, from (b, 7)
i=1,---,N), we have

If — 8xllxur <e.

By induction on i, we prove the existence of the above sequence.
Now suppose that there are (g, d), (g, 0,), - -- and (g,, d,) with the above
properties. Because of (c, r) and the property of U(x,.,;f', -- -, f*) asserted
by Lemma 3.2.5, we can turn
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8 = (fl» c 'sfk,g,;+1, . '9g£)

into
&ri1 = (fl’ v 'sfk’glrs:}’ o ’gfii)

with (@, r + 1) and (b, r + 1) (obviously with (¢, r + 1)). From (a,r + 1)
and Lemma 3.2.4, we obtain 4§,,, > 0 with (d,r 4+ 1). The existence of
(g,, 6, is similarly verified. Q.E.D.

3.3. Approximation Theorems

We are now in the position to prove two approximation theorems on
maps in a general position. The first theorem gives a semi-global ap-
proximation for paracompact manifolds. This theorem yields the second
one, which supplies a global approximation for compact manifolds. In
either case, & = (E, n, M) is supposed to satisfy the condition 2.2.1.

TuEOREM 3.3.1. Let f: E— C” (p < q) be a holomorphic map. Then,
for any compact subset K of M, any compact subset L of E and any ¢ > 0,
there is a holomorphic map g: E — C? such that

(a) g is in a general position on K.

®) If — gllxuz <e.

Proof. We show the existence of a sequence {g,} r=1,2, ---,p) of
holomorphic maps from E into C® such that for any 1 < r <p,

(a,r) g, is in a general position of order r on K.
&, 1) f — & llxuz < relp.

If we set g = g,, then g satisfies (a) and (b).
By induction on r, we prove the existence of the above sequence.
Applying Lemma 3.2.7 to the case & = 0, we have g, with (a, 1) and (b, 1).
We now suppose that there are g, g,, - -- and g, with the above pro-
perties. The remainder part will be devoted to a construction of g,.,.
From Lemma 8.2.3 and (a, k), g, is already in a general position on

KN FSp-k+l(gk) )

and hence on a compact neighbourhood A of K N FS,_;,(g;) in K (note
that K N FS,_;.,(g:) is compact). By Lemma 3.2.4, there is some 3(4) >0
such that

(1) If ||g;, — k|4 < 6(A), then A is in a general position on A.
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Let W be an open neighbourhood of K N FS,_,,,(g,) in K such that
Wc A, and put B= K — W. Then B is compact and K= A U B. Let
9t denote the set of all k-subsets of {1,2,--.,p}. Line up % in some
order, and denote the ¢/-th element of M by

{s:(0), (%), - - -, 5:(0)} .

Put N = $(N) = ,C.. Let V(¥) be the set of all the regular points in B
of a map

(g3, gg®, .-+, g3 E—C*.
Since B N FS,_;..(8) = ¢, {V(¥)} is an open covering of B. Contracting
each V(¢), we obtain a compact covering {U(¥)} of B such that U(¢) C V(¥)

for any 1 < £ < N. There is 6(4) > 0, for any integer 1 < £ < N, such
that

(2 If g — Plloey < 8(¢) then
(hsl(l)’ cee hsk(l)): E’ — Ck
is fibrewise regular on U(¥).

Define 4(B) = min {§(1), 6(2), - - -, 6(N)}.
We show that there is a sequence {(h, )} (¢ = 1,2, ---, N) of pairs
of holomorphic maps h,: E — C? and positive numbers §, such that for any

1< ¢ <N,
(a, ) h,is in a general position of order 2 + 1 on U(¥).
B, ) Nhyy — hyllgy < min{e/p, 6(A), d(B),d,,0,, - - +,0,-,}/N, where hy = g;.

(r,4) If||h, — hllye, < 8(£), then A is in a general position of order
k+ 1 on UW).

If this is verified, then g,,, = h, satisfies (a, 2 4+ 1) and (b, £ + 1) for the
following reason. By (B, *), we have

I8 — hulla < (A) .

This implies from (1) that A, is in a general position on A. For any
1<¢<N-—1, from 3,4+ 1), (B, ¢+ 2), --- and (8, N), we have

”hl - hN”U(l) < at .
'This implies by (7, ) that A, is in a general position of order £ + 1 on
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U@) for any 1< ¢ < N—1. By (a, N), hy is also in a general position
of order k+1 on U(N). Thus h, is in a general position of order k41
on K. Moreover, from (b, k) and (B, *), we have

If — hyllcur < (B 4+ Delp .

We now prove the existence of the above sequence, by induction on
£. Suppose that there are (h,,4,), (h,, d,), --- and (h,, §,) with the above
properties. From («, *), we have

18 — Pallvarn < (B) < od +1).
This implies by (2) that the map
(h@+d, ... p3a@sD): E s C*

is fibrewise regular on U(d + 1). From this and Lemma 3.2.7, it follows
that there is h,,, with (¢, d + 1) and (3,d + 1). By Lemma 3.24 and
(a,d + 1), we have §,,, >0 with (,d + 1). The existence of (h,,d,) is
similarly proved. Q.ED.

In case M is compact, setting K = L = M in the above theorem, we
have

THEOREM 3.3.2. Suppose that M is compact. Let f: E — C® be a holo-
morphic map. Then, for any ¢ > 0, there exists a holomorphic map g from
E into C? in a general position on M such that

If — &l <e.

3.4. An existence theorem
By successive applications of Theorem 3.3.1, we have the following
existence theorem.

THEOREM 3.4.1. For any integer 1 < p < q, there exists at least one
holomorphic map from E into C® in a general position on M.

Proof. Since E is paracompact, there is an increasing sequence {L,}
(k=1,2,---) of compact subsets of E such that L, N M is a non-empty
compact subset of M for any k. If we set K, = L, N M for each k, then
{K,} makes an increasing compact covering of M. Take any holomorphic
map f, from E into C®. By induction on k, we can define a sequence
{(fi, 0} (B=1,2, ---) such that for any &,
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(a, k) f, is in a general position on K,.
(0, k) fi-1 — fellze < min {1/2, 6,/2%, 8,/2"7Y, - -+, 6, ,/27)
(c, k) If ||f. — &llx, < &, then g is in a general position on K.
The existence of the above sequence is proved by applying Theorem 3.3.1

to (fi-,, Ky, L,) and by applying Lemma 3.2.4 to (f;, K.).
For any pair of positive integers k < ¢, we have, from (b, %),

(1) feer = fillze <lfemr — flle, < 1/2°.

ka - fz”Kk S “fk - flc+1”Lk+1 + -0+ er—l - fe”Le

(2) O[22+ ) =5,/2.

Define
f=limf:E—C?.
-0

From (1), this map is well-defined and holomorphic on E. Moreover, from
(2), we have

Ife = Fllxe < 8 -

This implies from (c, ) that f is in a general position on K, for any &,
hence on M. Q.E.D.

§4. Realization of Chern classes

4.1. Chern classes and fibrewise singular sets
H, and H* will be the singular homology and cohomology with co-
efficients Z.

Let M be a paracompact complex manifold of dimension n and V a
subvariety of M of codimension k. We define the fundamental cohomology
class {V} e H*(M) as follows (see [1], appendix A).

Let V'’ denote the set of all the singular points of V. There is a
closed tubular neighbourhood U of V— V’/ in M — V’. Then we have

HY(V — V') = H*(U, dU) (the Thom isomorphism)
=H*M—-V',M—YV)
=H*(M, M — V) (see [1])
— H*"(M) .
We denote by
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U H(V — V') — H*(M)

the homomorphism obtained by the composition of the above homomor-
phisms. Let {V,} be the connected components of V — V’ with inclusions
bn: Vu—> V-V, Let

o(V—-V)=3 0,(e H(V - V),

where o,, ¢ H(V,) is the canonical generator for each m. We define the
fundamental cohomology class of V in M by

{V} =¥Ho(V-V)).

DerintTION 4.1.1. A cohomology class c e H¥(M) is said to be realized
by a subvariety V if ¢ = {V}.

The following lemma shows that in the case of quasilinear subvarieties
in a compact complex manifold, the above definition coincides with the
usual one (that is, V realizes ¢ e H**(M) if and only if ¢ is the Poincaré
dual cohomology class of the fundamental homology class [V]e H,,_,.(M)).

LEMMA 4.1.2. Let V be a quasilinear subvariety of a compact complex
manifold M. Then {V} corresponds to [V] under the Poincaré duality iso-
" morphism.

Proof. Let VD V,D ... DV, be the associated sequence with V, ¢
the dimension of V and k its codimension in M. Because H,(V,)=
H,,_(V,) =0, we have H,(V) = H,(V,, V,). From Lemma 1.3.6, there is
an open neighbourhood U of V, in V, such that inclusions V, — U and
V., — U— V, — V, are homotopy equivalences. Therefore we have

H,(V) = H,(V,, V) = H(V,, U)
= H(V, - V,U—- V)
= u(V;_ V2)Vl_ V2_(‘/1._ U))
= HY(V, — U) (the Alexander duality)
= H(V,—- V).

The result comes from the following commutative diagram:

%
BV, — V) Y B

= s

(V) —> H(M). Q.E.D.
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The first fibrewise singular sets of maps in a general position have
the following relation with Chern classes.

THEOREM 4.1.3. Let M be a paracompact complex manifold and & =
(E, =, M) a holomorphic vector bundle of rank q with the condition 2.2.1.
If a holomorphic map f from E into C? is in a general position on M,
then the first fibrewise singular set of [ realizes the (q — p 4+ 1)-th Chern
class of &, that is,

{FSJ(f)} = Cq—p+1(§) .

Proof. Suppose that FS,(f) is not empty. Because FS,(f) is quasi-
linear of degree ¢ — p from Theorem 2.2.6, FS,(f) has the codimension
gq—p+1in M. Put k=q—p+1. Let 9,: M— G, ., be the holo-
morphic map defined in 2.2.3. By Lemma 2.2.5, we have

FS(f) = 07(Fy)

for any integer 1 < ¢ < p. Since f is in a general position on M, @; is
transversal to all the strata of F,. Therefore, we obtain the following
commutative diagram:

HYFS(f) — FS(f)) —> H™(M — FS(f), M — FS(f)) —> H™(M)

& o [os

HO(FI - Fz) -_—> HZk(Gq,p+m - F29 Gq,p+m - Fl)_—_) HZk(Gq,p+m) ’

where the commutativity of the left block comes from the transversality
of @, to F, — F,. From this diagram, we have that {FS,(f)} = @F ({F}}).
On the other hand, we have that C,(§) = @F(Cu(74,p+n)) from 2.2.4.
Because F, is quasilinear by Proposition 1.2.5, {F} is the Poincaré dual
class of [F,] by Lemma 4.1.2. Recall that [F,] is the Poincaré dual class
of Cyspim)- Then, we have {F}} = Cy(y,p.n). Consequently, we obtain
the equation {FS,(f)} = C.(&).
In case that FS|(f) is empty, we see that C,_,,,(¢) is equal to zero.
Q.E.D.

4.2. Proof of Main Theorem

Fix 1<k<n, and put p =qg — k 4+ 1. From Theorem 3.4.1, there
is a holomorphic map f from the total space E into the complex euclidean
space C? which is in a general position on M. Set V = FS|(f). From
Theorem 4.1.3, V realizes the (g — p + 1)-th Chern class of & This proves
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(a). From Theorem 2.2.6, V is quasilinear of degree ¢ — p in M. More-
over, from Theorem 1.3.5, V admits a desingularization by means of ¢-
processes. This proves (b). Because FS,(f) is empty or has the complex
codimension 2(q — p + 2) = 2(k + 1), FS,(f) is empty for [n/2] < k. Since
FS,(f) consists of all the singular points of FS(f), it follows that V is
non-singular for [n/2] < k. This proves (c) and completes the proof.

4.3. The case of Stein manifolds

Let us specialize Main Theorem to Stein manifolds. In case M is a
Stein manifold, we can show that an arbitrary holomorphic vector bundle
&= (E,n, M) of rank g satisfies the condition 2.2.1. Since E is also a
Stein manifold, there is a proper holomorphic embedding ¥ of E into
C**™ for some sufficiently large integer m. In particular, ¥ is fibrewise
regular on M. Therefore, the image of T.(F,) by d. (¥ |F, makes a g-
plane in C’*™ for any point x of M. By parallel transformations of these
planes, we obtain a holomorphic map from M into G, ,, which induces
the bundle £, Thus, from Main Theorem, we have

THEOREM 4.3.1. Let M be a Stein manifold of dimension n. Then,
all the Chern classes of an arbitrary holomorphic vector bundle & over M
can be realized by quasilinear subvarieties. In particular, the [n/2]-th Chern
class of & can be realized by a non-singular subuvariety.
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