CORRIGENDA

ON A CLASSIFICATION OF THE FUNCTION FIELDS OF ALGEBRAIC TORI

(Nagoya Math. J. 56 (1975), 85-104)

SHIZUO ENDO AND TAKEHIKO MIYATA

There are some errors in Theorems 3.3 and 4.2 in [2]. In this note we would like to correct them.

1) In Theorem 3.3 (and [IV]), the condition (1) must be replaced by the following one;
(1) $I I$ is (i) a cyclic group, (ii) a dihedral group of order $2 m, m$ odd, (iii) a direct product of a cyclic group of order q^{f}, q an odd prime, $f \geqq 1$, and a dihedral group of order $2 m, m$ odd, where each prime divisor of m is a primitive $q^{f-1}(q-1)$-th root of unity modulo q^{f}, or (iv) a generalized quaternion group of order $4 m, m$ odd, where each prime divisor of m is congruent to 3 modulo 4.

Further replace the condition (1') in p. 96 by the following one:
(1') Π is (i^{\prime}) a cyclic group, or (ii') a direct product of a cyclic group of order n, n odd, $n \geqq 1$, and a group with generators ρ, τ and relations $\rho^{m}=\tau^{2 d}=1$ and $\tau^{-1} \rho \tau=\rho^{-1}, m$ odd, $d \geqq 1$, where each rational prime dividing m is a prime in $Z\left[\zeta_{n 2}\right]$.

If the unit group $U\left(Z / n 2^{d} Z\right)$ is not cyclic, then any rational prime is not prime in $Z\left[\zeta_{n 2}\right]$. This observation shows that (1) is equivalent to (1^{\prime}).

Now, let Π be a metacyclic group as in (ii'). Denote by σ an element of Π of order $n m$ and put $\mu=\sigma \tau^{2}$. Let $m^{\prime}\left|m\left(m^{\prime}>1\right), n^{\prime}\right| n$ and $0 \leqq d^{\prime} \leqq$ $d-1$, and put $b=n^{\prime} m^{\prime} 2^{d^{\prime}}$. Suppose that m^{\prime} is not a prime power. Then we see that $Z\left[\zeta_{b}\right]=Z[\mu] /\left(\Phi_{b}(\mu)\right)$ is unramified over $Z\left[\zeta_{n^{\prime} 2^{4}}, \zeta_{m^{\prime}}+\zeta_{m^{\prime}}^{-1}\right]$. Since

[^0]$Z \Pi /\left(\Phi_{b}(\mu)\right)$ is a crossed product of $Z\left[\zeta_{b}\right]$ and a cyclic group of order 2, this shows that $Z \Pi /\left(\Phi_{b}(\mu)\right)$ is a maximal, separable $Z\left[\zeta_{n^{\prime} 2^{\prime}}, \zeta_{m^{\prime}}+\zeta_{m^{-1}}^{-\frac{1}{2}}\right]$-order in $\boldsymbol{Q} \Pi /\left(\Phi_{b}(\mu)\right)$.

Noting this fact, the implication $\left(1^{\prime}\right) \Rightarrow(2)$ can be proved along the same line as in [2]. The implication (2) \Rightarrow (3) is evident. Hence we have only to prove the implication (3) $\Rightarrow\left(1^{\prime}\right)$.

Assume that Π does not satisfy the condition (1^{\prime}). Now we will prove that $T(\Pi)$ is not a finite group. By virtue of (1.5) and (2.3), it suffices to show this in the case where every Sylow subgroup of Π is cyclic and $i(\Pi) \leqq 2$. If $T(\Pi)$ is a finite group, then, for any normal subgroup Π^{\prime} of $\Pi, T\left(\Pi \mid \Pi^{\prime}\right)$ is a finite group. Therefore we may suppose that
$\left(^{*}\right) \Pi$ is a metacyclic group with generators σ, τ and relations $\sigma^{n p}=$ $\tau^{2 d}=1, \tau^{-1} \sigma^{n} \tau=\sigma^{-n}$ and $\sigma^{p} \tau=\tau \sigma^{p}$, where $d \geqq 1, n$ is an odd integer and p is an odd prime with $(p, n)=1$ which is not a prime in $Z\left[\zeta_{n 2 d}\right]$.

The case $d=1$. Write $b=n p$, and let $\Lambda=Z \Pi /\left(\Phi_{b}(\sigma)\right)$. Then Λ is a trivial crossed product of $Z\left[\zeta_{b}\right]$ and $\langle\tau\rangle$. Let $R=Z\left[\zeta_{b}\right]=Z[\sigma] /\left(\Phi_{b}(\sigma)\right)$ and $R_{0}=Z\left[\zeta_{n}, \zeta_{p}+\zeta_{p}^{-1}\right]$, and let $\mathfrak{U}=\left(\zeta_{p}-1\right) \subseteq R$. Both R and \mathfrak{A} can be regarded as Λ-modules, and we have $\Lambda \frac{(z)}{} 0, R \frac{(z)}{(z)} 0, \mathcal{X}_{(z)} 0$ and $\Lambda \cong$ $R \oplus \mathscr{H}$ as Λ-modules. Since p is not a prime in $Z\left[\zeta_{n}\right]$, we can find an ambiguous prime ideal \mathfrak{F} of R such that $\mathfrak{N} \sqsubseteq \mathfrak{F}$. By localizing Λ, R, \mathfrak{U} and \mathfrak{B} at $\mathfrak{R} \cap R_{0}$, it can be shown that the genus of \mathfrak{R} is different from those of R and \mathfrak{A}. We note that, if $T \in \boldsymbol{S}_{\Pi}, \Lambda T \cong R^{(u)} \oplus \mathfrak{A}^{(v)}$ for some u, $v \geqq 0$. Now suppose that $\left(\mathfrak{P}^{*}\right)^{(j)} \frac{-}{\left(_{2}\right)} 0$ for $j>0$. Then there is an exact sequence

$$
0 \longrightarrow S^{\prime} \longrightarrow S \longrightarrow \Re^{(j)} \longrightarrow 0
$$

of Π-modules with $S^{\prime}, S \in S_{\Pi}$. Tensoring this with Λ over $Z \Pi$ and eliminating the torsion parts, we get $\mathfrak{B}^{(j)} \oplus \Lambda S^{\prime} \cong \Lambda S$ and so $\mathfrak{B}^{(j)} \oplus R^{(u)} \oplus$ $\mathfrak{H}^{(v)} \cong R^{\left(u^{\prime}\right)} \oplus \mathfrak{A}^{\left(v^{\prime}\right)}$ for some $u, v, u^{\prime}, v^{\prime} \geqq 0$, which is a contradiction. This shows that $\left(\Re^{*}\right)^{(j)}-\underset{(z)}{-} 0$ for any $j>0$. Thus $T(\Pi)$ is not finite.

The case $d \geqq 2$. We first assume that $n=1$. As is easily seen, p is not a prime in $Z[i]$ if and only if $p \equiv 1 \bmod 4$, and, for $d \geqq 3, p$ is not a prime in $Z\left[\zeta_{2^{d}}\right]$. We now write $\mu=\sigma \tau^{2}$. Suppose that $p \equiv 1 \bmod 4$, and let $\Lambda=Z \Pi /\left(\Phi_{2 p}(\mu)\right)$. Then $\Lambda=Z\left[\zeta_{p}, \tau^{\prime}\right]$ where $\tau^{\prime 2}=-1$ and $\tau^{\prime-1} \zeta_{p} \tau^{\prime}=\zeta_{p}^{-1}$, and $R_{0}=Z\left[\zeta_{p}+\zeta_{p}^{-1}\right]$ is the center of Λ. Since $\Lambda /\left(\zeta_{p}-1\right)=\boldsymbol{F}_{p}[i]=\boldsymbol{F}_{p} \oplus \boldsymbol{F}_{p}$ and $R_{0} /\left(\zeta_{p}+\zeta_{p}^{-1}-2\right)=\boldsymbol{F}_{p}, \Lambda$ is a non-maximal, hereditary R_{0}-order in $\boldsymbol{Q} \Lambda$. Let \mathfrak{M} be a maximal ideal of Λ containing $\zeta_{p}-1$. Then the genus of \mathfrak{M}
is different from that of Λ. Note that, for $T \in S_{I}, \Lambda T \cong \Lambda^{(u)}$ for some $u \geqq$ 0 . Using this fact we see that $\left(\mathfrak{M}^{*}\right)^{(j)}-\frac{r_{(z)}}{(z)} 0$ for any $j>0$, which shows that $T(\Pi)$ is not finite. Suppose that $p \equiv 3 \bmod 4$ and $d=3$, and let A $=\boldsymbol{Z} \Pi /\left(\Phi_{4 p}(\mu)\right)$. Then $\Lambda=\boldsymbol{Z}\left[\zeta_{p}, i, \tau^{\prime}\right]$ where $\tau^{\prime 2}=i$ and $\tau^{\prime-1} \zeta_{p} \tau^{\prime}=\zeta_{p}^{-1}$, and $R_{0}=Z\left[\zeta_{p}+\zeta_{p}^{-1}, i\right]$ is the center of Λ. Since $\Lambda /\left(\zeta_{p}-1\right)=\boldsymbol{F}_{p}\left[\zeta_{8}\right]=\boldsymbol{F}_{p^{2}} \oplus \boldsymbol{F}_{p^{2}}$ and $R_{0} /\left(\zeta_{p}+\zeta_{p}^{-1}-2\right)=F_{p}[i]=F_{p^{2}}, \Lambda$ is a non-maximal, hereditary R_{0}-order in $\boldsymbol{Q} A$. Note that, for $T \in \boldsymbol{S}_{\Pi}$, we have $\Lambda T \cong \Lambda^{(u)}$ for some $u \geqq 0$. Then, in the same way as in the case $p \equiv 1 \bmod 4$, we can show that $T(\Pi)$ is not finite.

Next, we assume that $n>1$. We only need to consider the case where $p \equiv 3 \bmod 4$ and $d=2$. If p is not a prime in $Z\left[\zeta_{n}\right]$, then $T\left(\Pi \mid\left\langle\tau^{2}\right\rangle\right)$ is not finite as shown in the case $d=1$, and so $T(\Pi)$ is not finite. Hence we may assume that p is a prime in $Z\left[\zeta_{n}\right]$. Write $\mu=\sigma \tau^{2}$ and let $\Lambda=$ $Z \Pi /\left(\Phi_{2 n p}(\mu)\right)$. Then $\Lambda=Z\left[\zeta_{n}, \zeta_{p}, \tau^{\prime}\right]$ where $\tau^{\prime 2}=-1, \tau^{\prime-1} \zeta_{n} \tau^{\prime}=\zeta_{n}$ and $\tau^{\prime-1} \zeta_{p} \tau^{\prime}$ $=\zeta_{p}^{-1}$, and $R_{0}=Z\left[\zeta_{n}, \zeta_{p}+\zeta_{p}^{-1}\right]$ is the center of Λ. We see that $\Lambda /\left(\zeta_{p}-1\right)$ $\boldsymbol{F}_{p}\left[\zeta_{n}, i\right]=\boldsymbol{F}_{p}\left[\zeta_{n}\right] \oplus \boldsymbol{F}_{p}\left[\zeta_{n}\right]$ and $R_{0} /\left(\zeta_{p}+\zeta_{p}^{-1}-2\right)=\boldsymbol{F}_{p}\left[\zeta_{n}\right]$. This shows that Λ is a non-maximal, hereditary R_{0}-order in $\boldsymbol{Q} \Lambda$. Therefore, along the same line as in the case $n=1$, it can be shown that $T(I I)$ is not finite. This completes the proof of (3) $\Rightarrow\left(1^{\prime}\right)$.

The implication $\left(1^{\prime}\right) \Leftrightarrow(3)$ can also be proved by Theorem 3.1 in [1]. But Dress' result does not immediately show the implication (1^{\prime}) \Rightarrow (2).

The argument on p. 96 in [2] is incorrect for non-cyclic groups. A detailed and rectified proof of the implication $\left(1^{\prime}\right) \Rightarrow(2)$ will be given in a more general form in a forthcoming paper.
2) In Theorem 4.2, the condition (1) must be replaced by the following one:
(1) $I I$ is one of the following groups: (i) a cyclic group of order n where for every $n^{\prime} \mid n$ any prime ideal of $Z\left[\zeta_{n^{\prime}}\right]$ containing n is principal. (ii) a dihedral group of order $2 m, m$ odd, where for every $m^{\prime} \mid m$ any prime ideal of $Z\left[\zeta_{m^{\prime}}+\zeta_{m^{-1}}^{-1}\right]$ containing m is principal. (iii) a direct product of a cyclic group of order q^{f}, q an odd prime, $f \geqq 1$, and a dihedral group of order $2 m$, m odd, where any prime divisor of m is a primitive $q^{f-1}(q-1)$-th root of unity modulo q^{f}, for every $1 \leqq f^{\prime} \leqq f$ any prime ideal of $Z\left[\zeta_{q f^{\prime}}\right]$ containing 2 is principal, and for every $0 \leqq f^{\prime} \leqq f$ and every $m^{\prime} \mid m$ any prime ideal of $Z\left[\zeta_{q f^{\prime}}, \zeta_{m}+\zeta_{m^{\prime}}^{-1}\right]$ containing $q m$ is principal. (iv) a generalized quaternion group of order $4 m, m$ odd, where any prime divisor of m is con-
gruent to 3 modulo 4 and for every $m^{\prime} \mid m$ any prime ideal of $Z\left[\zeta_{m^{\prime}}+\zeta_{m^{-1}}^{-1}\right]$ containing $2 m$ is generated by a totally positive element.

It should be noted that, for a finite group Π satisfying the condition (1) in the part 1), the converse of (4.1), (1) is true. Then we can prove Theorem 4.2 in the same way as in [2].

References

[1] A. W. M. Dress, The permutation class group of a finite group, J. of Pure and Applied Algebra, 6 (1975), 1-12.
[2] S. Endo and T. Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J., 56 (1975), 85-104.

Tokyo Metropolitan University
Osaka City University

[^0]: Received May 24, 1979.

