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EIGENSPACES OF THE LAPLACE-BELTRAMI OPERATOR
ON A HYPERBOLOID

JIRO SEKIGUCHI

§0. Introduction: Statement of the problem

Ever since S. Helgason [4] showed that any eigenfunction of the
Laplace-Beltrami operator on the unit disk is represented by the Poisson
integral of a hyperfunction on the unit circle, much interest has been
arisen to the study of the Poisson integral representation of joint eigen-
functions of all invariant differential operators on a symmetric space X
In particular, his original idea of expanding eigenfunctions into if-finite
functions has proved to be generalizable up to the case where X is a
Riemannian symmetric space of rank one (cf. [4], [5], [11]). Presently,
extension to arbitrary rank has been completed by quite a different for-
malism which views the present problem as a boundary-value problem for
the differential equations. It should be recalled that along this line of
approach a general theory of the systems of differential equations with
regular singularities was successfully established by Kashiwara-Oshima
(cf. [6], [7]).

It is then natural to ask that the success may also be extended to
the case of more general (not necessarily Riemannian) symmetric spaces.
Our specific problem which underlies this paper is this: Can any joint
eigen-hyperfunction of all invariant differential operators on X be repre-
sented by the Poisson integral of hyperfunctions on the "boundary" of X?
Furthermore, we are anxious to know whether the Kashiwara-Oshima
theory still plays a central role in this problem.

Our first try is in Oshima-Sekiguchi [14] where it was shown that the
answer was quite affirmative. The class of symmetric spaces treated in
[14] is, however, somewhat restricted so that we feel it advisable to pursue
this problem further. In order to attack this problem, it seems to us to
need to prepare some facts concerning the symmetric space or the
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representation theory and, by this reason, it may be difficult, at present, to
generalize the above mentioned result for all symmetric spaces of the non-
compact type.

Within the scope of this paper, our aim is less ambitious. We take
out three series of symmetric spaces:

SO0(p + 1
SU(p + 1,

Sp(p + 1,

, q + ί)ISO(p +
q + ϊ)IS(U(p +

a + ϊ)ISp(p + 1

i,g)

1,9)

. q) x

x TO)
Sp(ϊ)

with p,q ^ 1. These symmetric spaces are not contained in the class dealt
with in [6] and [14]. Let X be one of the above symmetric spaces. We
denote by Δ the Laplace-Beltrami operator on X corresponding to the G-
invariant pseudo-Riemannian metric induced by the Killing form of the
Lie algebra of G. Here G denotes the motion group of X. The main
result of this paper is Theorem 8.4 which says that the above problem is
affirmatively solved under a certain mild condition with respect to the
eigenvalue of Δ (see § 8).

The construction of this paper is as follows. In § 1, we shall describe
somewhat well-known, but rather important facts about the structure of
semisimple Lie groups and Lie algebras. The several decompositions
mentioned there may play an elementary role to the study of (not neces-
sarily Riemannian) symmetric spaces. In § 2, we deal with the concrete
description about the semisimple groups on which we study the eigenfunc-
tions later. We realize the symmetric space in a compact real analytic
manifold in § 3 and the Laplace-Beltrami operator is calculated in § 4.
Furthermore, the boundary values of eigenfunctions on the symmetric space
are defined by use of the Kashiwara-Oshima theory. In § 5, we define the
Poisson transformation to X. We shall mention the main result of [6] and
calculate a special case of Harish-Chandra's c-function in § 6. In order
to prove the Poisson transformation is surjective, a special eigenfunction
of Δ is investigated in § 7. § 8 is devoted to proving the main result. We
also remark about generalized zonal spherical functions on X.

It is a pleasure to thank Professor T. Oshima for useful discussion.
My thanks are also due to Professor M. Sato for his continual encourage-
ment.
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§ 1. Preliminaries

1.1. Let gbe a real semisimple Lie algebra and let ^ be a Cartan

involution of g. Then we have the Cartan decomposition g = ϊ + p, where

p = {Xeq;θ(X)=-X}.

Let σ be another (non Cartan) involution which commutes with θ. Then

we also have the decomposition, g = f + p', where

y r {Xem
p/ {Xeq;(X)= -X} .

We denote by a a maximal abelian subspace of p and put α0 — pf Π α.

Let us first recall the root system Σ of (g, α). The root system Σ is

given by

Σ = {λ; λ is a linear form on α such that λ Φ 0, a? Φ 0} ,

where

ga - { I e g; [H, X] = λ(H)X for He a} .

Let us choose a connected component of the set a! of regular elements

in α, and denote it by α+. Then we can introduce an ordering on Σ so

that β e Σ is positive if and only if /3(iϊ) > 0 for all H e α\ If we denote

n = Σ;3>o^> ft = 0(n) and m = {Xe ϊ; [if, X] = 0 for all i ϊ e α}, the well-

known decompositions read:

g = ϊ + α + n (Iwasawa decomposition) ,

g = n + m + α + n (Bruhat decomposition) .

Next we try to define the root system of the pair (g, α0). For any

linear form λ on α0, we set

Q(X) = {Xeq;[H,X] = λ(H)X for He α0}

and

ϋ'(αo) = {λ λ is a linear form on α0 such that λ Φ 0, g(̂ ) ^ 0} .

To be parallel to the preceding case, we need here the following assump-

tions for the pair (g, α0).

(AI) Σ(aQ) is a root system in αf, where α^ is the dual of α0.

(AΠ) m0 = {X e g [if, X] = 0 for any H e α0} is contained in f.
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It should be remembered that (All) at least does not hold in general,

but it will be shown that both of the assumptions are well met in the

cases that we treat in what follows.

Let us next put α£ = {Hea0; a(H) Φ 0 for all a e Σ(a0)} and choose a

connected component α0

+ in αj in such a way that α0

+ is contained in the

closure of the previous α+. Then we can introduce analogously an order-

ing on Σ(a0) so that a e Σ(a0) is positive if and only if a(H) > 0 for all

Heat. Denote n0 = 2] α > 0 Q(ά) (with aeΣ(a0)) and π0 = θ(n0). Then we

have the following decompositions:

( L 2 y 3 = f + α0 + n0

8 = π0 + m0 + α0 + n 0 .

1.2. We now proceed to mention a connected semisimple Lie group

G with finite center whose Lie algebra is g. Let A (resp. Ao), N (resp. iV0)

and N (resp. iV0) be the analytic subgroups of G corresponding to α (resp.

α0), n (resp. n0) and ft (resp. n0). We also use the notation A+ — exp α+

(resp. At = exp α0

+).

Let K be the maximal compact subgroup of G whose Lie algebra is ϊ.

We denote by M the centralizer of A in K. Then, as is known,

[DI] (Iwasawa decomposition)

The map K x A X iV-> G given by (k, a, n) -> kan (ke K, ae A, ne N)

is a surjective diffeomorphism.

[DΠ] (Cartan decomposition)

KA+K is an open dense subset of G such that KC£(A+)K = G, where

C^(A+) stands for the closure of A+ in A.

[DIΠ] (Bruhat decomposition)

NMAN is an open dense subset of G.

We now turn to take out a closed subgroup Kr of G whose Lie algebra

is f, this being the subgroup with which we are exclusively concerned in

this paper. Corresponding to M, we have Mo as the centralizer of AQ in

K'. In this case, corresponding to [DI], [DΠ], [DIΠ], we may have the

following:

[DΓ] The map Kf X Ao X No -> G given by (k\ α, τι) -> Kan (h! e if7,

α e AQ9 n € iV0) is an injective diffeomorphism and its image is open dense
in G.

[DΠ'] KAtKf is an open dense subset of G and G = KC£(AZ)Kf where

C£(AQ) denotes the closure of AQ in Ao.
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[DIΠ7] NQM0A0N0 is an open dense subset of G.

The first and the last of these decompositions are not necessarily

satisfied while the second holds in general (cf. [8]). It may be, however,

clear that the presence of such decompositions as these play a judicious

role in investigating the eigenfunctions on GfK'. In fact it will turn out

that these three give an insight into our problem and really hold in the

cases announced in the Introduction.

For any geG, we define nB{g) e No and HB(g) e α0 by

g = nB(g)m exp (HB(g))n

with me MQ and n e No. The existence and the uniqueness of nB(g) and

HB(g) is shown under the assumption of [DΠΓ]. This notation is used

later.

§2. Computation of decompositions

2.1. Let us denote by In the unit matrix of order n and introduce

the following matrices:

J-pq

- ! „
K' =

±7" _
•LPQ

Y±Jft

We define the following Lie algebras:

(2.1)
fll = {Xe 3l(p + q + 2, R); *Xΐvq + I'pqX = 0}

g2 = {Xe Sί(p + q + 2; C); <XΓpq + ΓpqX - 0}

Sl(2p + 2q + 4, C); ιXJv+q+2 + Jp+q+iX = 0,

K^ + K^X = 0} .

Throughout this paper we assume p, q (^1) and put r = p + q + 1.

We shall prove by case by case discussions that the assumptions (AI)

and (All) hold for pairs (qi9

 +ϊ ) and (g<, ~! ) for certain subalgebras +ϊ and

"ί of

2.1.1 Case I: &.

Let θ be a Cartan involution of & defined by 0(X) = — £X for X i n

Let σf be an involution of & defined by
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(2.2) σ?(X) = -%a 'X^Z for X in 8 l .

Let Ei} denote the matrix of order r + 1 whose (i, j) entry is 1 and others

are 0 (0 ̂  i, j ^ r). We define the following elements of g2:

H TTf 77!

0 — -E'OO — &rr >

f9n H^E^ + E^ ( i = l , . . . , / ) ,

X = E 4- ε E

Here

r 1 (1 ̂  7 ̂  /?)
and ^ = min (p, g) .

These matrices are obviously contained in g1# The involutions 0 and σf

commute with each other. We define ϊl9pl9

 ±l{,p/

1 as follows:

pί {Xeq1;θ(X)= -X} ,
±ϊ/ {Xe^

Then α = 2f=0 RHt is a maximal abelian subspace of p1 and α0 = RH0 is

a maximal abelian subspace of pt f]± p{ which is contained in α. Let a be a

linear form on α0 defined by a(H0) = 1. Then the root spaces of ±oc are

expressed as follows.

(2.5)

It is easy to prove that Σ(a0) = {or, -α} is a root system of type Ax. Fur-

thermore, m0 = {XeQii [H,X] — 0 for J5Γeα0} is contained in ±ϊί. Hence

(AI) and (All) hold for the pairs (&, +i() and (&, 'ϊί).

Take α+ = {ΣU UH,; t0 > tx > > t4] and α0

+ = {tH0; t>0} as the

positive Weyl chambers in a' and a'o in order to define orderings on Σ and

(̂cΓo), respectively. We put n0 = §(a) and π0 = g(—a). Then we have the

following decompositions:

(2.6) 9 = +ϊί + αo + n0

= -f + α, + n,.
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2.1.2. Case II: g2.

Let θ be a Cartan involution of g2 defined by Θ(X) = — ιX for Z i n g2.

Let at be an involution of g2 defined by

(2.7) tfί(X) = - *I£ ιX %>q for X in g2 .

Using the same notation 2? ,̂ i as in 2.1.1, we define the following matrices.

x; - ^=1(^0 - e^) o* = l, , r - l)

Xo = V — 1 -ErO

.7 — Λj

Yo = ' X"o

Then, as is easily seen, Ht (0 £ i £ £), Xo, Yo, Xj, X'j, Yj> Yj 0-^J £P + θ)

are contained in g2. For later convenience, we put Xu = X}, X2} = Xj,

Yί} = γjt F2. = y; (l ^ j £ p + g ) . We define ϊ2, p2, *%, % as follows:

We also use the notation α, α0, α as in 2.1.1. Then the root spaces of

± α , ±2α are

2 p+?

β<-«) = Σ Σ
i-U-i

β(-2α) =

In this case, 2Xα0) = {α, 2α, — α, —2a:} is a root system of type BCΊ. Fur-

thermore mo = {Zeg2; [X, H] = 0 for He α0} is contained in Hi. Hence (AI)

and (AΠ) hold for the pairs (g2,
 +%) and (g2, ~ίζ). We put n0 = g(α) + g(2α)

and n0 = θ(n0).

2.1.3. Case III: g8.

Let θ be a Cartan involution of g3 defined by Θ(X) ~ —ιX for X i n g3.

Let #3* be an involution of g3 defined by

(2.10) σt{X)= -*K£'X*K£.
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Retain the notation ε, ί in 2.1.1. In this case, we denote by Ei3 the

matrix of order 2(r + 1) whose (ι, j)-entry is 1 and others are 0 (0 <̂  i, j <;

2r + 1). Define the following matrices:

Ho = Eoo — Err + Er+Ur+1 — E2r+h2r+ί

Ht = Eir + Er_ifί — Er+ί+if2r+i-i — E2r+1_i>r+ί+i (i = 1, , £)

Y2. = V — 1 (EOj — BjEjr — Er+hr+1+j + ejEr+i+j>2r+i)

* S j ~ - ^ Ό , r + ί + j ~\~ ά j + l t r + l 4 " ε j - ^ J 2 r + l-j,r + £ j ^ 2 r + \,r-j

Y4j = V — 1 (EOfr + 1 + J + Ej + h r + 1 — εjE2r + 1_jtr — SjEzr + ^r-j)

( i = l , . . . , r ~ l )

yol = V —1 (27Or — E2r+hr+1)

Yθ2 — -CΌ.r + l &2r + l,r

Yo3 = V — 1 (EOtr+i — E2r+1>r)

Xk3 = Ύkj (* = 0,1, 2, 3, y = 1, , r - 1) .

These are obviously contained in g8. We define ϊ3, p3,
 ±Ϊ3, ±|)3 as follows:

' *« = {X6β,;σf(X) = X},

= - X } .

We take α = Σ'_o -Rί/j (resp. α0 = iϊiϊo) as a maximal abelian subspace

of p3 (resp. ps Π
 ±ϊΌ. Let α be a linear form on α0 denned by a(H0) = 1.

Then the root spaces of ±a, ±2α are expressed as follows:

g(2α) =
(2.12)

Σ

In this case, ^(OQ) = {a, 2a, —a, —2a} is a root system of type BClt

Furthermore, m0 = {Xe g3; [X, H] = 0 for i ϊ e α0} is contained in *%. Hence

(AI) and (All) hold for the pairs (g3,
 +!0 and (g3, '%). We put n0 and π0

as in (2.1.2).
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2.2. We next investigate the structure of connected linear semisimple

Lie groups whose Lie algebras are one of which we defined in 2.1. We

first define the following Lie groups:

G, = The identity component of {geSL(r + 1, R); cgΓpqg = Γpq) ,

(2.13) G2 = {ge SL(r + 1, C); 'gl'^g = I'pq} ,

G3 = {geSL(2r + 2; C); ' g j r + l ί = Jr+U

 ιgKf

pqg = K'vq) .

Let Kt be the maximal compact subgroup of Gέ whose Lie algebra is

f. (i = i9 2, 3). Furthermore we define the following closed subgroups of Gt:

(2.14) *Kί = {g e G2; '

We remark that Gx ^ SO0(p + 1, q + 1), G2 ̂  SU(p + 1, g + 1) and

G3 = Sp(p +l,q+ 1), furthermore + ^ s SO(p + 1, g), " ^ ^ SO(p, qr + 1),
+Kί ^ S(U(p +l,q)X U(ΐ)), -Kί = S(U(p, q + 1) X 17(1)), + ^ ^

Sp(p + 1, g) X Sp(ΐ), -Kζ = Sp(p, q + 1) X Sp(l).

Let Ao = exp α0 and Mo be the centralizer of Ao in ±iίΐ

/.

Our objective in this paragraph is to compute the concrete expressions

for the decompositions [DΓ] and [DIIΓ] in the previous section for the pairs

(Gt,
 +K0 and (Gt9 ~Kl).

2.2.1. Case I: Gx.

In the sequel, we use the following notation. An element geGx is

written by

(1) The decomposition [DΓ].

A direct calculation implies that g = {gi3) e Gx is expressed in the form

k'an with k' e ±K(, a e Ao, ne No if and only if g00 ± gr0 Φ 0, and then

a = Diag(ao,/r_!, ô"1)

with

α 0 = |goθ ± grθ\

and
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n =

[1 x —^xl^x
I — I ιx
J pq J-pq xv

with

where

x =
hf ± h"

gθθ ± grθ

# = (ftl, '".ft.r-i)

λ" = (£H, ,gr,r-l)

(2) The decomposition [DΠΓ]

First remark that Po = MoAoiVo is a maximal parabolic subgroup of G.

Hence the decomposition of this type is well-known. For later convenience

we shall derive the concrete expression. A direct calculation implies that

g = (gtj) e G is contained in NQM0A0NQ if and only if gOo Φ 0 and that, if

g00 φ 0, then g = nman with TieN0, meMo, aeA0, neN0 and in particular

a = Diag(|£ool, Jr-i, lέTooΓ1)

1

where

^ = (gιol\goo\, '-,gP + q,ol\goo\) .

2.2.2. Case II: G2.

We always write ^ = {gi3)o^i,j^r for g e G 2 as in 2.2.1.

(1) The decomposition [DΓ]

If g = (g^) e G2 is expressed in the form k'an with fe' e ±Kζ, a e Λo,

n e No, then g00 ± gr0 ^ 0, and

a = Diag(α0,/p + c, αo"1)

- I M ' S

with
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z =

= \gθθ ± grθ\

h! ± h"

x = Im

where ft' and ft" are defined as in 2.2.1.

(2) The decomposition [DΠΓ]

By the same reason as in 2.2.1, N0MQAQN0 is open dense in G2.

Actually, g = (g^) e G2 is contained in N0MQA0N0 if and only if g00 Φ 0. If

goo Φ 0> g = nman with n € Λ̂ o, m e Λf0, α e Ao, n e No, and

α = Diag(|gΌol,jΓp+β, \goo\~1)

1

n = •ip + q

*Z = (giolgoo, ' ", gP + q,olgoo)

where

2.2.3. Case III: G3.

In this case, we shall always write

g == \gij)θ^i,jS2r + l € G 3 .

(1) The decomposition [DΓ].

If g = έ'αn, with ^ e ±Kζ9 aeA0, ne No, then ^00 ± gr0 Φ 0, or

gr+i,o ± ftr+1,0 ̂  0. In this case,

a = Diag (α0, 7 p + ?, aΰ\ a^\ Ip+q9 aQ)

^ΛX — (zlvq

 ιz + wlpq

 tw)

•*-p±q

-J^Λx - («7pβ

 ιz

with
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= (\gθ

X =

where

± grθ) + (K

rXfoo ± ?rθ) +

± grθ) + (K

,2r + l)(gθθ ± gro)

glr + l,2r + ί)\gr + 1,0 i t |?2r + l,0/ 5

ί' = (gn, --,gr,r-l)

2 = = (^0,r + 2> ' * ' 9 gr,2r)

2 : = : \ ^ r , r + 2> * * * 9 gr,2r)

' > gr + l,2r)

(2) The decomposition [DDT].

By the same reason as in 2.2.1, N0M0A0N0 is open dense in G3. An

element g — (gtj) e Gz is contained in N0M0A0N0 if and only if g00 Φ 0. In

this case, if we put g = nman with TieNθ9 me Mo, aeA0, neNo, then

a = Diag (\goo\, Ip+q, \goo\-\ \gOo\'\ IP+Q9 \gw\)

i •;;

where

V

w

-v

(glθlgθθ9 ' , g P + qlgθθ)

— i(lzIpqZ + *WlpqW) = gJgoO

ιwlpqw)

= (gr + 2,θlgθθ9 ' ' ,g2r,θlgθθ)
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We have already remarked in Section 1 that the decomposition [DIΓ]
holds for the pairs discussed in this paragraph. Hence we obtain the fol-
lowing.

PROPOSITION. The decompositions [DΓ], [DIΓ], [DΠΓ] hold for the pairs
{Gu

 +Kl) and (Gί9 ~Kΐ) (ί = 1, 2, 3).

§3. A realization of GJ+Kί and GJ'Kί

We shall construct a real analytic manifold in which GJKί and Gil'Ki
are realized as an open set. This realization is useful in our study to
formulate the problem as the boundary value problem with regular
singularities.

We first construct a real analytic manifold X in somewhat general
situation. Let G be one of Gt and let Po = M0A0N0. Furthermore we write
+K' (and -K') in place of +K[ (and ~K ) for simplicity. We denote by X
the product manifold G X R. Then G acts on X in the natural way:
(g, (£'> y)) -+ (ggΊ y) for ^ / e G and y e R. For z = (g, y) in X, we define
sgn z, a(z) and P(z) as follows:

ί 1 ify>0

sgn z = I 0 if y = 0

ί - 1 i f ; y < 0

= fexp ( - i (log |y |)£Γ0) if y Φ 0

\l (the identity element) if y = 0

if y > 0

iίy<0

DEFINITION 3.1. For any z = (g, y) and z' = (g7, / ) in X, we define
the equivalence relation z — zr if and only if sgn 2 = sgn 27 and ga(z)P(z)

in

Let X — X/~ be the quotient space of X by this equivalence relation
~ and π the projection of X onto X. For each ^ in G, we put ί/? =
π(gN0 X Λ) and define the following sets:

U; = {π(gn, y); n e No,y > 0} ,

U°g ={π(gn,0);fi6N<>},

U; = {ττ(̂ n, y); n e Nθ! y < 0} .
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Our aim in this section is to prove the following theorem.

THEOREM 3.2. The space X satisfies the following properties.

( i ) X is a connected, compact, real analytic manifold.

(ii) X=UgeσUg.

(iii) The action of G on X is real analytic and, for any zeX, the G-

orbit of π(z) coincides with G/P(z). In particular there exist three orbits

X+ = U,6β Ug

+, X° = UgβG U°g, X- = UgeG U;. X+, X-, X° are isomorphίc

to GΓK', G\-K\ G/Po, respectively.

In order to prove this, we introduce a coordinate system on each local

chart Ug. In the sequel, we use the notation in § 2. First we examine

the case I: G = Gx. In this case, we identify No with Rp+q by the follow-

ing map:

Denote by ιx = (xu , xp+q) an element of Rp+q. Then

(3.2) n(x) = exp (Σ
V-i

in other words

-'xlpqx -VΎ'xI^ 1

Under this identification, we can define a map Φg of Rp+q X R to Ug:

Φg:R
p+q X R > Ug

(3.3) Φ Φ

(x, y) i > π(gn(x), a(y)) .

Here a(y) = exp (—£ (log 13/ |)-Hζ>) if y 9̂  0, and α(0) = 1. The decompositions

[DΓ] and [DΠΓ] show that Φg is a bijection.

In the other cases, Φg is analogously defined as in Case I. We now

only define the identification of No with Rd (d = dim No).

Case II: G = G2.

Denote by Λ = (αcn, x21, , Xi,p+g, x2,P+q, Xo) an element of i?2p+2?+1. Then

(3.4) n(x) = exp

Case III: G = G3.

an element of jp*+*«+8. Then
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(3.5) n(x) = exp (Σ Σ 2 * ^ , + Σ 2xOjXoj) .

LEMMA 3.3. Put d = dim JV0. Then, for any gx and g2 in G, the mapping

(3.6) Φ~l o φgi: Φ;lφgχ Π Ug) — > φ-tf/,, Π t/,2)

defines an analytic isomorphism between the open subsets of Rd+ί.

Proof First we put g^gi — g. We define the functions (x\ / ) of (x, y)

by

We shall prove that (x\ y') depend analytically on (x, y).

We treat the case I: G — Gx. If y > 0, this equation means that

gn(x)a(y) is contained in n{x')a{yfyK[. Hence, using the result in 2.2.1,

we have

(3.7) lfc+™-*-
h H

Here

h ~ \^lθ> * ' * > έ>r-l,θ)

h — \§lr> ' ' 'igr-l,r)

On the other hand, if y = 0, f̂ή(x) is contained in ^(xOΛ Then, by the

same reason as obtaining (3.7), we have

(3 8) /2V =
+ ^Γϊh'-x- ('xlpqx)gro

When y < 0, we obtain the same equation as (3.7).

The equation (3.7) easily implies that x' and / are real analytic func-

tions of x, y if y Φ 0, and are naturally extended to Φ~g

ιJJJgχ Π Ug). The

restriction of (3.7) to y = 0 reads the equation (3.8). This means that the

map (x, y) —> Φ~l o Φgi(x, y) is real analytic. Hence Lemma 3.3 is proved in

this case.

In the remainder cases, the claim is also proved by the argument similar

to the case I. Hence we omit it. Q.E.D.
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This lemma has an easy corollary.

COROLLARY 3.4. Using the notation in Lemma 3.3, we have

(3.9) W
dy y=0

Proof. In Case I, (3.9) is a direct consequence of (3.7) and the result

in 2.2.1. A direct calculation implies the result for the remainder cases.

Proof of Theorem 3.2. The definition of X obviously implies (ii) and

(iii). Since Lemma 3.3 implies that {Ug;geG} forms a system of local

charts of X, X is a real analytic manifold. The decompositions [DΓ] and

[DΠΓ] in § 1 derive that Ug = Rd+1 is an open dense subset of X. Hence,

for any two points x9 x
r in X, there exist g, gf in G such that g'x and gV

are contained in Ug, This implies that X is connected. Since the decom-

position [DIΓ] shows that π(K X [—1,1]) is compact and open dense in

X, X is equal to π(K X [—1,1]) and is compact. Q.E.D.

Remark. Our method of the realization deeply depends on that in T.

Oshima [13].

§4. The invariant differential operators on X

Let Qc be the complexification of g and let £/(g) be the universal

enveloping algebra of gc. Let ϊc and *% be the complexifications of ΐ

and ± F, respectively. The Casimir operator ω of g is an element in the

center of U(§) which is defined as follows. Let Xu , Xn be a base of g

and put hυ = B{XU Xs) (1 ^ i, j ^ ή). Here B(X, Y) denotes the Killing

form on g. Then the matrix Qii^itj^n is non-singular and if (hiJ) denotes

its inverse, we have

(4.1) ω == ±
As is well-known, the Casimir operator ω induces the Laplace-Beltrami

operator Δ on G/K' corresponding to the G-invariant pseudo-Riemannian

metric induced by the Killing form of g. Our objective of this section is

to derive the concrete expression for Δ on each local chart defined in the

last section and to prove that Δ is naturally extended to X and that Δ

has a regular singularity along X0 in the weak sense. Furthermore, we

shall define the boundary value of eigenfunctions of Δ on X+ and X".

First we remember that
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Case I: B(X, Y) = (p + q) Tr XY for X, Ye g,

(4.2) Case Π: B(X, Y) = 2(p + q + 1) Tr XY for X, Y e g2

Case HI: £(X, Y) = 2(p + q + 3) Tr XY for X, Ye g3 .

LEMMA 4.1. 77ιe concrete expression of the Casimir operator ω is as

follows:

(1) Case I:

(4.3) 2(p + q)ω = Wa+ g (X, Y, + X,Y,) mod

(2) Case II:

(4 4 )

- 2(X0Y0 + Y0X0) mod

(3) Case III:

8(p + q+ 3)ω = H! + PΣ {(Vis + ΪΊίXii)

(4.5) + Σ {(̂ y,i + rA) -

0I + YoιXol) + 2(ΛO2YO2 + 0̂2X02)

- 2(Z03Y03 + Y03X03) mod J7(g3) *% .

These are proved by direct calculation from the definition (4.1) of ω.

If we permute p and q9 then X+ is changed to X~ and X" to X+.

Hence, we may treat one of X+ and X~ without loss of generality. In the

sequel, we mainly deal with X+ = G/+K;.

We identify £/(g) with the totality of left G-invariant differential

operators on G as follows:

For any f(g) in &(G) and Y in g,

(4.6) (Yf)(g) =

Here &(G) denotes the space of hyperfunctions on G.

LEMMA 4.2. Let Δ denote a differential operator on X which is expressed

on Ug as follows:

(1) Case I:

(4.7) Δ = 4(y -fX - 2(p + g)y J - - y ( g ε
\ dy / dy \j=i dx
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(2) Case II :

<4 8> - / f {{> - ,,x » )' + ( ' + , Λ > )•} + y *

(3) Case ΠI:

By I By

d d

dx01 dx02

+ (JL- + εjXu-l- +

*«—)

+ Xv
\dx2j dx01

 4jdxΰ2

\ dx3j dxQ1 dx02 d x 0 3 1xQ1 dx02 dx0

Then Δ commutes with the action of G and the restriction of Δ to X+

and X~ are equal to the Laplace-Beltrami operator on X+ and X~ cor-

responding to the G-invariant pseudo-Riemannian metric (up to a constant

factor), respectively.

Proof. For any ue@(GI+Kf), we put

(4.10) u*(x,y) = u(π(gn(x\y)) on Ug

+ .

We shall calculate the local expression for ω on Ug by use of this

coordinate system. We only examine the case II because the expressions

in the other two cases are obtained by the argument similar to this case.

A direct calculation derives that

4(p + q + 2)ω = HI + 2(p + q + ΐ)H0

( 4 < 1 1 ) + 2 Σ {Xι,Yu - XM - 4X0y0 mod C7(g2) X .

Since Xo + YQ9 Yυ + ε3Xυ, Y2j — εόX2j are contained in +f2, we get

4(p + q + 2)ω = H2

Q + 2{p + q + ί)H0

( 4 1 2 ) - 2 Σ Έ tjXϊj + 4X0

2 mod U(Q2) % .
i l j \
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On the other hand, the definitions (4.6) and (4.10) imply that

(HΰUη(x,y) = -2yJ-u*(x,y) ,
dy

(XijUη{x,y) = 1
V 2

(4.13)
(X2Juη(x,y) = *

v 2

The equations (4.12) and (4.13) yield (4.8). This means that the re-

striction of Δ to X+ is equal to the Laplace-Beltrami operator on X+ with

respect to the G-invariant pseudo-Riemannian metric. The restriction of

Δ to X~ is also satisfied with the property mentioned in the lemma. Hence

Δ is defined globally on X and obviously commutes with the action of G.

Q.E.D.

If we denote J* the centralizer of *&' in J7(g), then !*/(/* ΓΊ Σ7(g) ±ϊ/)

is generated by ω (mod [/(g) ±ϊ/) by Theorem 8 in [3]. Hence every invariant

differential operator on G^K' is a polynomial of Δ\x±, and therefore every

differential operator on X which commutes with the action of G is a

polynomial of Δ.

We shall study the following differential equation on G/+K' = X+:

(4.14) JCS: Ju=(s+ OT' + 2 /

Here mι = dim &(ά) and /n2 = dim &(2a).

LEMMA 4.3. The differential equation Jί's has a regular singularity

along Xo in the weak sense. The characteristic exponents of Δ are

λ(s+ ™. + 2mΛ and l ( _ s + m1 + 2mΛ
2\ 2 / 2\ 2 /

Proof. This follows from the expressions (4.7), (4.8), (4.9) and Definition

4.3 in [7]. Q.E.D.

Let us denote by 38{fi\K': Jίs) the space of hyperfunctions on G\K'

which are solutions of Jί,. (We write G/K' for G\*K' since we mainly

treat Gj*K'.) Furthermore we define

/Λ @(GIP0; s) = {f(g) e @(G);f(gman) = figy-^+ww*
(4.15)

for ge G, me Mo, ae Ao, neNo} .
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For any ue@(GIK';J(t), we put (πs(g)u)(g') = u{g~ιgf). Since Δ

commutes with the action of G,πs(g)u is also contained in @(G\Kf\Jίϊ).

Likewise we put (τs(g)f)(g/) = f(g'ιg') for any / in ^(G/Po; s).

We shall define a G-homomorphism of @{G\Kf\Jί^ to ^(G/P0;s). If

2s §Z, for any u e 8${fi\K!' Jif

s) we can take the boundary values of u\v+

corresponding to the characteristic exponents i(—s+ (m^ + 2m2)/2) (ge G)

by Corollary 4.7, Corollary 4.4 in [4] and Lemma 4.3. In the local chart

Ug, let us denote by βfug the boundary value of u corresponding to the

exponent J(—s + {mx + 2m2)/2). Then, it follows from Definition 4.8 and

Definition 5.7 in [4] that there exists a hyperfunction F?(x) on U°g such

that

(4.16) β*u* = F?(x)yl(-s+(mi+2m*)/2) .

Since the notion of the boundary value does not depend on the local co-

ordinate systems by Theorem 5.8 in [4], we have for any g9 gr in G,

on Ug Π Up, where (x, y) (resp. (x/, y;)) denotes the local coordinate system

on Ug (resp. Ug) used in § 3 and the correspondence between (x, y) and

(x\ yf) are defined by

(4.18) <gn(x\ y) = π(g'n{x!), /) .

Then (4.17) and Corollary 3.4 imply that

(4.19) Ff(n) = FfXnB(gf^gn)) exp {(s - m> + 2

for n in JV0P0 ΓΊ g-χg'NQPQ. Here we identify F*(x) (resp. FfW)) with

Ff(n(x)) (resp. Ff{n{xf))). Using Ff(n), we shall define a hyperfunction F s

on G by

(4.20) % ) = Fi(nB(g>->g) exp {(β - J^L

if ^0 is contained in gN0P0.

LEMMA 4.4. Under the assumption 2s § Z, Fs is independent of the

choice of g and belongs to &(G/P0;s).

Proof. In order to prove that (4.20) is independent of the choice of g,

it is sufficient to prove that, for any g, g' in G, and g0 in ^ΐV0P0 Π g'N0P0,
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exp Us - m i + 2mήcc(HB(g-%))\

(4.21)

But (4.21) follows from (4.20) and an elementary property of the decom-

position [Dili']. The rest of the statement is now obvious. Q.E.D.

We put F$ — βsιι and call βsu the boundary value of u corresponding

to the characteristic exponent |-(—s + (mx + 2m2)/2).

LEMMA 4.5. // 2s $ Z, τs(g)(βsu) = βs(πs(g)u).

for any u in 3l{G\Kf Jίs) and g in G.

Proof. Retain the above notation. We may examine on ϋi without loss

of generality (1 denotes the identity element in G). Let (x, y) be the local

coordinate system on Ux. For any g e G, let (# ' ,/) be the local coordinate

system of Ug. Then,

(πs(g-1)u1)(x,y)= u'(x,y),

which implies that

exp {(s -

On the other hand, it follows from (4.21)

F.(gn) = Fl{nB{gn)) exp [(s - m '

This equation implies the result. Q.E.D.

THEOREM 4.6. // 2s $ Z, βs defines a G-homomorphism of @(β\Kr Jί^)

to a(GIP0;s).

Proof. This is obvious from Lemmas 4.4 and 4.5. Q.E.D.

§ 5 The Poisson transformation

We shall begin by defining a left i^-invariant section of &(G/PQ s):

-(m 1 + 2m,)/2)t Jf g = fa^ £

(5.1) hs(g) =
[0 iΐg§KΆ0N0.

for g in G. Here we have defined at = exp (tH0).
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LEMMA 5.1. hs(g) is a hyperfunction on G with a meromorphic para-

meter s and defines a left Kf-invariant section of &(GjPQ s). The poles of

hs(g) is contained in

—— i , — o , — o, > yi^ase i)

{r - 2, r - 4, r - 6, •} (Case II)

{2r - 3, 2r - 5, 2r - 7, •} (Case III) .

Proof. Let us first note that the expressions for hs(g) are concretely

calculated by use of the decomposition [DΓ] realized in § 2 as follows:

Case I : hs(g) = \gQ0 + gro\s-{r~l)/2

(5.2) Case II: hs(g) = \g0Q + gro\"r

Case III: hs(g) = (\g00 + gr0\
2 + \gr+ι,0 + g2r^\Ψs'2r'l)

Then we have the following:

Π*|*-(r-1)/2 (Case I)

hs(g) is locally identified with \\x\ + xψs~r) (Case II)
If 9 • 9 i 9 i 9 ll./ o Oi* 1 ^ / f*\ TΓT"T"\

\\x{ + xl + Xi + x\\^s~2 υ (Case III)

by suitable coordinate transformations, because, in Case I, #Oo and gr0 are

real variables, on the other hand, in Case Π, g00 and gr0 are complex

variables and further in Case III, in addition to g00 and gro,gr+i,o and

S2r+i,o are also complex variables. As is known, \x\s (resp. \x\ + x\\s/2 and

\x\ + xl + xl + oci\sβ) defines a hyperfunction whose poles are contained in

the set {-1, - 3 , - 5 , •} (resp. {-2, - 4 , - 6 , •} and {-4, - 6 , - 8 , •})

(see, for example [2]). Hence the last half is proved. The rest of the

statement is obvious from the definition. Q.E.D.

By virtue of (5.1), we safely define the following function on G:

(5.3) Ps(g) = hs(g->) ,

which we hereafter call the Poisson kernel on G/K': We always choose

5 so that Ps is free from the poles in the s-plane. Then Ps satisfies

LEMMA 5.2.

j P = ( s + "*' T *'"*Λls - "h ^ *"H )PS on

Proof. In the local coordinate system (x, y) on Uu Ps(π(n(x), y)) takes

respectively in the forms:
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Case I: Ps(π(n(x),y)) = ^ L g ( ? , W 2 -

Case II: Ps(;r(n(*), y))

= \ (y + Σί-i Σ?if M W + 4J£ /

Case ΠI: P.(Λ(TΪ(X), y))

= / |yj yc.+»+*+3>
v w ^ Z-iί=i Z-ji=i εjxij) \ ^ Z J J = I *OJ /

In each case, at least if Re (s + (/r̂  + 2m2)/2) < — 4, Ps(ττ(n(x), ,y)) is of class

C2 so that we are allowed to operate Δ on the C2 function Ps(π(n(x), y)).

Direct calculation by use of (4.7), (4.8), (4.9) shows

(5.5) ΔPs(π(n(x), y)) = (s + - m ' + 2 m »)( g - I!b^L^pχπ(n(x)9 y)).

Equation (5.5) is analytically continued to hold for general s outside of

the poles of Ps. Since Δ commutes with the action of G, (5.5) therefore

holds globally on X+ = Gj+K'; hence the assertion. Q.E.D.

DEFINITION 5.3. The Poisson transformation &s is the integral trans-

formation of &(G/P0;s) into @(G\Kr) defined by

(5.6) ψj)(g) = ί f{k)Ps(k-'g)dk for / in @(G/PQ; s) .
J K

Here dk denotes the Haar measure on K normalized by

f dk = 1 .
JK

THEOREM 5.4. 0>s is a G-homomorphism of @(G/P0; s) into @(G\Kr\ Jίs).

Proof. It follows from Lemma 5.2 that &,f is contained in 0S(G\K! \ Jfs)

f o r / i n &(GIP0;s).

On the other hand

(5.7) &.(

because

(5.8) Ψd){g) = f f{gk)Ps(k-Wk

for / in &(G/P0;s). The formula (5.8) is an easy consequence of [16,

Lemma 7.7.6]. Q.E.D.
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§6. c -function

This section is devoted to a review on the main result in [6] and a
remark about Harish-Chandra's c-function.

Let G be one of the Lie groups as defined in § 2, where we defined
an ordering in the root system Σ of (g, α). We put

βGΣ,β>0

Let A, N, N be the analytic subgroups in G corresponding to α, n, ft
respectively. We denote by α* and c$ the dual of α and its complexifica-
tion. Furthermore, we put P = MAN. Then P is a minimal parabolic
subgroup of G which contains Po. We define as usual (cf. [6])

Λ(G/P; L,) = {/e a(G);f(gman) = /(g) exp {(J - ,) (log α)}
for g e G, meM, aeA, neN}

for >l in α|. Here /> denotes a linear form on α defined by

(6.2) 2p(H) = tr ad (H) |n f o r f l e c .

As a prototype of (5.6), we here need the Poisson transformation ^
of ^(G/P; Lλ) into J/(G/K) as follows.

(6.3) QPJK8) = ί f(gk)dk
JK

for / in ^(G/P; Lλ).
Let D{GjK) denote the algebra of invariant differential operators on

GjK. For any algebra-homomorphism χ of D{GjK) into C, we denote by
s/(GIK;JZ(χ)) the space of all analytic functions on G/K satisfying the
system of the differential equations

(6.4) Jf(χ): Du = χ(D)u for any D e D(G/K) .

We define the following functions on α#,

where

and
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Here Γ(x) (resp. JB(X, y)) is the Gamma (resp. Beta) function and ma is the

multiplicity of the root a in Σ. Then we have the following theorem.

THEOREM 6.1 (Kashiwara-Kowata-Minemura-Okamoto-Oshima-Tanaka

[6]). Assume λ in a% satisfies the condition e(λ) Φ 0. Then £Pλ is a G-

isomorphism of &(G/P; Lλ) onto sό(G\K\ Jί(χ$) where χλ is the algebra-

homomorphism of D(GjK) into C which is uniquely determined by λ.

Let βx be an inverse of &λ subjected to

&λβλ = c(λ)I.

We remark that c(λ) is Harish-Chandra's c-function.

We now restrict our attention to a special case of c(λ) the case being

deeply connected with our aim. Let us define a linear form et on a by

(6.5) et(Hj) = δtJ (δu is Kronecker's delta) .

Then

t

α* = Σ Cet and αo% = Ce0 ,
ΐ = 0

where αo*c denotes the complexification of the dual of α0. We also denote

a, = Σ RHt and α*f(7 = Σ ^ .
ί=l i= l

Corresponding to (6.2), we can define a linear form ρ0 on α0 by

(6.6) 2pQ(H) = tr ad (H)L for H e α0 .

Then a direct calculation implies

P = γ Σ {̂ i + 2^2 - 2(m2 + 1 ) ^

(6.7) χ "°
^0 = —(m! + 2m2)e0 .

In view of this, we put specifically

(6.8) λ(s) = se0 + l Σ {m, + 2m2 - 2(m2 + l)f}β4

2 i = l
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for seC. Then there follows a natural imbedding

(6.9) #(G/P«; s) c SS(β\P; λ(s)) .

Furthermore

LEMMA 6.2. ( i )

c(λ(s)) = 2(mi+2ma>/2"*

X Γί(l+ΐ)(m2 + ί)\

(6.10)

2 + (m2 + ΐ)]p - q\

(ii) J/ 2s eZ, ί/ie/i e(̂ (5)) 9̂  0.

Proo/. First we remark that the positive roots of Σ are in the forms:

We write the table of roots and their multiplicities.

Table I

roots

et ±βj (iΦ j)

ei

2e,

multiplicity

1 + m2

(1 + rn2) \p - q\

m2

(In this table, we assumed that, if the multiplicity is zero, the corre-

sponding root does not exist.)
We suppose first that m2 and p — q are not equal to zero. Then the

definition of I{λ) and (6.8) imply that ί(λ(s)) is equal to

B
0dr + (continued)
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(6.11) X Π [B( m 2 + 1 , s + M + m2 - (m2 + l)i \

X B(m<ι + X, s - JMI- M2 + (m2 + ϊ)i\\

up to a constant factor. (6.11) is easily changed to

Γ(8)Γ(i(28 + (m2 + l ) |p - q\))Γ(i(s - \mx + 1))

(6.12) + {Γ(i(2s + (m2 + 1) \p - qr|))Γ(Kβ + \mx + m2))

X Γ(i(s - \{m2 + 1) |p - q\ + 1))} .

Hence, by the dublication formula of the Gamma function, we get

13) X Γ ( s ) Γ ( i ( s ~ i n i ί + 1 ) }

+ {Γ($(2s + (m2 +ϊ)\p-q\ + 2))ΓQ(s + \mγ + m2))

with a constant c0 independent of s. Due to /? = λ{(mx + 2m2)j2), we

obtain (i) under the assumption m2 Φ 0 and p φ q. In case when p = q

or m2 = 0, the formula (6.13) also holds by an easy modification. Hence

the equation (i) is completely proved.

The claim (ii) is proved easily by use of the expression (6.10) and the

definition of e(X). Q.E.D.

§7. A special eigenfunction on G\Kf

We here prepare a theorem concerning the left i£-invariant eigen-

function in @ϊ{G\Kf\Jl^. This theorem is useful in the next section in

which we will examine the relation between βs and &8. We use the

notation p1 = m2(p + 1) + p and qr = m2(q + 1) + q in the sequel.

First we take into account of the image by &s of a left i£-invariant

section hf(g) of &(G/PQ; s) with the condition hf(ί) = 1. Put

(7.1) Ψs(g) = ί hf(g)Ps(k->g)dk .
J K

Our aim in this section is to prove the following theorem.

THEOREM 7.1. Under the assumption 2s §Z, we have

1 ) / 2 ) Γ ( K S + "»• + * - ^ + g W (continued)
Γ((m2 + 1)/2)Γ(K« + ! + ( « ' - Pθ/2)) V '
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(7.2) X
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(7.3)

l i m eap'+q')/2+s)tφs(at) = 2s+{p/+q' )/2

lim

i/ Re s > 0 .

Here we put at = exp (tH0) and F(a, β, γ; x) denotes the Gaussian hypergeo-

metric function.

In order to prove this theorem, we prepare two lemmas.

LEMMA 7.2. We fix a = at (t Φ 0). Then

2(p' + qf + 2m2)ω = i?0

2 + (p' coth ί + q' tanh ί)£Γ0

( 7 ' 4 ) modϊα-1C7(g)+ C7(g)f .

Proof. Let us prove (7.4) only when G — G2 (Remaining are also

provable by the argument similar to what follows). We make use of the

notation introduced in § 2.

Since

Xι} — Yι} e ϊ 2

,, Ad (o->χyu - X,,)] - -e-fli
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for 1 <^ j <̂  p + q, we obtain

(7.6) Xfj = - e~l Ho mod If"1
 U(Q2) +

By the same token

(7.7) Xij = - β " _,ff 0

for 1 ^ j ^ p + g. Furthermore, it is easy to see that

(7.8) Xo = ~e~UJr(Y° ~ Z°) + „ 1 u A d ^" 'X 7 '

K,Ad(σ-'XY,-

Hence

(7.9) - X Ό Ξ - ^ -̂Ho mod:

e — e~

These results as well as (4.4) combine to give

- q + 2)ω = ϋo2 + 2(p + q -\

(7.9) F e* - e-' e* + e~ι e2t - e"

modϊΓ1tf(G2) +

= fl? + (P' coth ί + q[ tanh ί)£Γ0 . Q.E.D.

Let u(g) be a left ^-invariant and right ^-invariant real analytic

function on G. We mainly consider the restriction of u(g) on AQ. Since

(7.10) (Hou)(at) - 4-Φt+s)

we have the following expression for ω by Lemma 7.2.

l\ at
; coth ί + ^ tanh4 ) + (P coth ί + ^ tanh ί ) f

at / at

Let us produce the differential equation:
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cothί -V

(7-12)

where p' and #' are subjected to p' + q' = mt + 2τn2. If we put 0

(tanhί)2 and f(z) = (coshί)s+<p'+ί')/2«(α8), then (7.12) is transformed into

(7.13)
dz

This is a hypergeometric differential equation which just governs

Another independent solution of (7.13) is not real analytic in a neigh-
bourhood of z = 0 under the condition p' Ξ> 1. Hence

„/«,) = ( c o s h ί ) — < ^ ' > , 2 > F ( |

is the unique real analytic solution of the equation (7.12) up to a constant

factor. Applying the following well-known formulas

(7.15) lim (1 - x)

we obtain

rlim

β, γ;x) =

f R e T > 0
Re (α + β - γ) > 0 ,

' " 90/2 + 1 -
if Re s < 0



LAPLACE-BELTRAMI OPERATOR 181

(7.16) \ lim

if Re s > 0 .

The decomposition [DIΓ] in § 1 guarantees that us is uniquely extended

to a real analytic function on G by defining us{kak!) = us(a) for k e K,

aeA0, k'eK'.

LEMMA 7.3. // u(g) is contained in 8%(β\K!' \ Jί^) and is left K-ίnvariant,

then u(g) is real analytic and is a constant multiple of us(g).

Proof. Since the Casimir operator ω is contained in the center of

U(Q), we may regard u(g) as a function which is an eigenfunction of the

Laplace-Beltrami operator on K\G. Then u(g) must be real analytic

because the Laplace-Beltrami operator on K\G is elliptic. Furthermore,

it is easy to see that u(at) satisfies the differential equation (7.12). Since

we have already proved that us(at) is the unique analytic solution of (7.12)

up to a constant factor, we get u(at) = cus(at) with a constant c. Q.E.D.

Proof of Theorem 7.1. Since φs(g) satisfies the assumption of Lemma

7.3,

(7.17) φs(g) = cus(g)

with a constant c. On the other hand, (6.9) shows that hs is contained

in 8${β\P\ Lλ(s)) and therefore φXg'1) can be regarded as the Poissin

transform of hs to GjK. Hence, under the assumption 2s § Z, Theorem 6.1

implies

(7.18) lim ew+q/)/2-s)tψs(at) = c(λ(s)) if Re s > 0 ,

because Lemma 7.3 shows that <ps(at) satisfies the assumption of Theorem

5.14 in [7] and because Lemma 6.2 shows that e(λ(s)) Φ 0. The equations

(7.18), (7.16), (6.10) determine the constant c. Q.E.D.

§8. Integral representation

Let δ(kM0) be Dirac's delta function on K/Mo supported at the origin.

Furthermore, put

(8.1) δs(g) = 3(kM0) exp {(* - ^±1
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for g = kman with ke K, me Mo, aeA0, ne No. Then δs(g) is contained

in J3(G/P0;S).

LEMMA 8.1. Assume 2s $ Z. If f(g) e ΰt(GjPQ\ s) has the property

fimang) = f(g) exp { ( £ ± ^ - + s)a (log a)}
(8.2) VΛ A / J

for geG, man e Po,

then f(g) is equal to δs(g) up to a factor.

This lemma is proved by the argument similar to the proposition in

[6, Appendix I]. Hence we omit the proof.

We put

φ ) = 2s+(p'+q')/2

(8.4)

LEMMA 8.2. βsPs = c(s)δs if 2s e Z.

Proof. Since Lemma 4.5 shows that βsPs satisfies the condition (8.2),

we conclude by Lemma 8.1 that

βsPs = cds

with a constant c. In order to determine the constant c, it is sufficient

to take the boundary value of φs. From the definition of φs, Lemma 4.5

also shows

= ββs{hf)

= ί τs(k)(βsPs)dk
J K

= ί cτs(k)δsdk
JK

On the other hand, since <ps(at) is expressed in terms of the hypergeometric

function (see Theorem 7.1), the assumption of Proposition 5.14 in [7] is

fulfilled for φs(g) under the condition 2s $ Z and furthermore
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(8.5) c = lime(s-(ί)'+ί''/2)VX«ί) if R e s < 0 .
ί-o.

Then by Theorem 7.1, we can conclude c — c(s). Q.E.D.

LEMMA 8.3. βs is injectiυe if 2s $ Z.

Proof. For any u in ^{GjKf J£s), we consider the integral

(8.6) Ug(g') = ί u(gkg')dk
JK

in order to prove this lemma. Since Ug is contained in @(G\Kr ^s) and

left if-invariant, Lemma 7.3 and Theorem 7.1 yield

(8.7) Ug(g') = υ(g)φs(g')

with a constant v(g) only depending on g. Taking the boundary value

of Ug corresponding to the characteristic exponent j(—s + (pr + </)/2), we

get

v(g)c(s)hf = v(g)βsφs

= βsUg

= f τs((gk)->)(βsu)dk
JK

(As to the definition of hf, see § 7.) Hence we obtain the integral repre-

sentation of v(g):

(8.8) c(s)v(g) = f (βsu)(gk)dk .
J K

We remark that this equation also holds if we replace s by — s.

We now assume that βsu = 0 for a u in @(G\K'\Jέ^. Then (8.8)

shows v(g) = 0 because c(s) Φ 0 under the assumption 2s $ Z. Hence, by

the above remark, we get

(8.9) f (β_su)(gk)dk = 0.
JK

Since the left hand side of (8.9) is regarded as the Poisson transform of

β_sιι to GjK, (8.9), (6.9) and Theorem 6.1 imply

(8.10) β.su = 0 .
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Hence all the boundary values of u vanish and therefore we can conclude

u = 0 from Proposition 2.15 in [14] and the G-equivariance of the map

ft. Q.E.D.

THEOREM 8.4. // 2s $Z, the Poisson transformation &s is a G-iso-

morphism of &(G/P0;s) onto

Proof. This theorem is an easy consequence of Lemmas 8.2 and 8.3.

Actually for any u in @(G\R' Jίr

s) we consider uί = u — {ljc{s))^sβsu.

Then Theorem 5.4 shows that υl is contained in 3$(β\K!\ Jίs) and βsu
f = 0

from its definition. Hence Lemma 8.3 implies υ! = 0. This means that

c(s)u — ̂ sβsu. This and Lemma 8.2 shows that &s and βs are mutually

inverse mappings up to a non-zero constant factor. Hence the theorem.

PROPOSITION 8.5. Let us define

@κ(GjKf]Jίs) = {ue &(GIK';Jί9); πs(k)u = u for any k e K*} .

If 2s $ Z, then

dim c @

Proof. Let M be a function of 0&κ,(β\Kr \Jί^). Then Theorem 8.4

implies that u = 0>gf for an element fe&(GIP0;s). Since the map βs is

G-equivariant, we have τs(k)f = / for any & 6 i^ . Then Lemma 5.1 shows

that / is equal to hs up to a factor. Hence the proposition.

Remark. A function u of g$κ>(G\Kf Jί^) is an analogue of the notion

of a zonal spherical function on GjK.

Added in proof. Recently Professor T. Oshima announced without

proof that a similar result as Theorem 8.4 is obtained for an arbitrary

affine symmetric space in T. Oshima, "Poisson transformations on affine

symmetric spaces", Proc. of Japan Acad. 55, Ser. A (1979).
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