M. Kutsuna Nagoya Math. J. Vol. 79 (1980), 123-129

ON A CRITERION FOR THE CLASS NUMBER OF A QUADRATIC NUMBER FIELD TO BE ONE

MASAKAZU KUTSUNA

§0.

G. Rabinowitsch [3] generalized the concept of the Euclidean algorithm and proved a theorem on a criterion in order that the class number of an imaginary quadratic number field is equal to one:

THEOREM. It is necessary and sufficient for the class number of an imaginary quadratic number field $Q(\sqrt{D})$, D = 1 - 4m, m > 0, to be one that $x^2 - x + m$ is prime for any integer x such that $1 \le x \le m - 2$.

Rabinowitsch mentions there nothing on the case of real quadratic number fields. So, we shall give a similar result by applying his method to real quadratic number fields (Theorem 2, Cor. 1).

In § 1, we shall define *störend* fractions and give a criterion for the class number of a real quadratic number field to be one (Theorem 2). In § 2, we shall treat real quadratic number fields whose genus number is equal to one and give a table of such real quadratic number fields together with the effect of our criterion.

Notations. We denote by Latin letters a, b, c, \dots , rational integers and by Greek letters $\alpha, \beta, \gamma, \dots$, integers of a real quadratic field $K = Q(\sqrt{D})$ where D is a positive rational square-free integer. \mathcal{O}_{κ} is the ring of integers of K.

§1.

At first we give the following necessary and sufficient condition for the class number of K to be one:

THEOREM 1. It is a necessary and sufficient condition for the class number of K to be one that for any integers α , β of K, $(\alpha | \beta, \beta | \alpha \notin \mathcal{O}_K)$, there exist two integers ξ, η of K such that

Received March 20, 1979.

MASAKAZU KUTSUNA

(1)
$$0 < |N(\alpha \xi - \beta \eta)| < |N\beta|$$
.

For the proof of Theorem 1, we need the following

LEMMA 1. If the class number of K is bigger than one, there exist an indecomposable integer π and an integer α of K such that

$$(2) \qquad \qquad \alpha = \alpha_1 \alpha_2, \ \pi \mid \alpha, \ \pi \nmid \alpha_i, \ \alpha_i \in \mathcal{O}_K \ , \qquad (i = 1, 2) \ .$$

Proof. If the class number of K is bigger than one, there is an integer α of K such that

$$\alpha = \pi_1 \pi_2 \cdots \pi_k = \sigma_1 \sigma_2 \cdots \sigma_\ell,$$

where π_i , $(1 \le i \le k)$, and σ_j , $(1 \le j \le \ell)$, are distinct and indecomposable integers. Put $\pi = \pi_1$, then $\pi \nmid \sigma_j$, $(1 \le j \le \ell)$. Therefore, if $\pi \nmid \sigma_2 \cdots \sigma_\ell$, then $\alpha_1 = \sigma_1$ and $\alpha_2 = \sigma_2 \cdots \sigma_\ell$ satisfy (2). If $\pi \mid \sigma_2 \cdots \sigma_\ell$, then there exists a natural number m, $(2 \le m \le \ell - 1)$, such that $\pi \mid \sigma_m \sigma_{m+1} \cdots \sigma_\ell$ and $\pi \not\mid \sigma_{m+1} \cdots \sigma_\ell$. Then $\alpha_1 = \sigma_m$ and $\alpha_2 = \sigma_{m+1} \cdots \sigma_\ell$ satisfy (2).

Proof of Theorem 1. Sufficiency: Suppose that the class number of K is bigger than one. By Lemma 1, there exist an indecomposable integer π and an integer α of K which satisfies (2). Let $\alpha = \lambda \Lambda$ be the integer such that the norm is the smallest among those integers satisfying (2) where π is fixed. By the assumption of Theorem 1, there exist two integers ξ and η of K such that

$$|N(\pi \xi - \lambda \eta)| < |N\pi| , \qquad |N(\pi \xi - \lambda \eta)| < |N\lambda| .$$

Here, put $\mu = \pi \xi - \lambda \eta$, then $\pi | \mu \Lambda$, $\pi \nmid \mu$, $\pi \nmid \Lambda$ and $|N(\mu \Lambda)| < |N(\lambda \Lambda)|$. This is a contradiction.

Necessity: Let α , β be two integers of K such that $\alpha/\beta \notin \mathcal{O}_K$, $\beta/\alpha \notin \mathcal{O}_K$. Here, we consider two ideals (α) and (β). Put (γ) = (α , β), then (α) = (γ)(α_0), (β) = (γ)(β_0) and (α_0 , β_0) = 1. There exist integers ξ and η of K such that $\alpha_0\xi - \beta_0\eta = 1$. Then we have

$$|N(lpha \xi - eta \eta)| = |N \gamma| < |N eta| \; .$$

DEFINITION. Let α/β be any fraction in K such that $\alpha/\beta \notin \mathcal{O}_K$ and $\beta/\alpha \notin \mathcal{O}_K$. Then, we call α/β störend if there exist no integers ξ, η of K such that $0 < |N(\alpha/\beta \cdot \xi - \eta)| < 1$.

According to this definition, Theorem 1 is also expressed as follows:

124

THEOREM 1'. It is a necessary and sufficient condition for the class number of K to be one that there exist no störend fractions in K.

LEMMA 2. 1°. If α/β is störend, then for any integer ξ of K, $\alpha/\beta + \xi$ and $\alpha/\beta \cdot \xi \ (\notin \mathcal{O}_K)$ are also störend.

2°. Any rational fraction $a/b \ (\notin Z)$ is not störend.

Proof. 1° is obvious by the definition. To prove 2° , put a = bq + r, 0 < r < b. Then we have

$$0 < N\!(a/b-q) = r^{\scriptscriptstyle 2}/b^{\scriptscriptstyle 2} < 1$$
 .

PROPOSITION 1. If the class number of K is not equal to one, then there exists a störend fraction $(a - \vartheta)/p$ such that $0 \le a < p$, where p is a rational prime and

$$artheta = egin{cases} rac{1+\sqrt{D}}{2} & (D\equiv 1 \ \mathrm{mod}\ 4)\ , \ \sqrt{D} & (D\equiv 2, 3 \ \mathrm{mod}\ 4) \end{cases}$$

Proof. If the class number of K is not equal to one, then by Theorem 1' there is a störend fraction α/β in K. Here, we rationalize the denominator of α/β . Then we have a störend fraction $(A + C\vartheta)/p$, where A, C, $p \in \mathbb{Z}$, (A, C, p) = 1 and p is a rational prime, by Lemma 2. Furthermore we can take C such that (C, p) = 1. Therefore, there exist two rational integers x and y such that Cx - py = -1. Hence $(A + C\vartheta)/p \cdot x - y\vartheta = (Ax - \vartheta)/p$ is a störend fraction by Lemma 2. Let a be a rational integer such that $Ax \equiv a \pmod{p}$ and $0 \leq a < p$, then $(a - \vartheta)/p$ is a desired fraction.

Hereafter we put D = 1 + 4m when $D \equiv 1 \pmod{4}$.

PROPOSITION 2. If a fraction $(a - \vartheta)/p$ is störend and $0 \le a < p$, then we have

$$p \leq egin{cases} \sqrt{m} & (D \equiv 1 mod 4) \ \sqrt{D} & (D \equiv 2, 3 mod 4) \ \end{pmatrix}$$

Proof. Since the absolute value of the norm of any störend fraction is not smaller than one, we have

$$|p^2\leq |N\!(a-artheta)|=egin{cases} |a^2-a-m|&(D\equiv 1moded 1moded)\ |a^2-D|&(D\equiv 2,3moded 1moded)\ . \end{cases}$$

Hence

MASAKAZU KUTSUNA

$$p^2 \leq egin{cases} -a + a + m \leq m & (D \equiv 1 mod 4) \ -a + D \leq D & (D \equiv 2, 3 mod 4) \ , \end{cases}$$

since $0 \le a < p$.

Proposition 1 is modified by Proposition 2 as follows:

PROPOSITION 3. If the class number of K is bigger than one, then there exists a störend fraction $(a - \vartheta)/p$ such that p is a rational prime and

$$0 \leq a$$

We next consider the condition for a fraction $(a - \vartheta)/p$ of K not to be störend.

PROPOSITION 4. If $N(a - \vartheta)$ is relatively prime to p or if there exists a rational integer k such that $|N(a + kp - \vartheta)| < p^2$, then $(a - \vartheta)/p$ is not störend.

Proof. If $N(a - \vartheta)$ is relatively prime to p, then there exist rational integers x and y such that $N(a - \vartheta) \cdot x - yp = 1$. Then we have

$$\frac{a-\vartheta}{p} \cdot (a-\bar{\vartheta})x - y = \frac{1}{p},$$

where $\overline{\vartheta}$ denotes the conjugate of ϑ in K. Hence, $(a - \vartheta)/p$ is not störend by Lemma 2.

If $|N(a + kp - \vartheta)| < p^2$, then $(a + kp - \vartheta)/p$ is not störend. Therefore $(a - \vartheta)/p$ is not störend.

From Proposition 3 and Proposition 4, we obtain immediately a criterion for the class number of a quadratic field $K = Q(\sqrt{D})$ to be one:

THEOREM 2. Case 1. $D \equiv 1 \pmod{4}$, (D = 1 + 4m).

If, for any given rational prime p such that 1 and for any given $rational integer a such that <math>0 \le a < p$, either $N(a - \vartheta)$ is relatively prime to p or there exists a rational integer k such that $|N(a + kp - \vartheta)| < p^2$, then there exists no störend fraction in K, and hence the class number of K is equal to one.

Case 2. $D \equiv 2, 3 \pmod{4}$.

If, for any given rational prime p such that $1 and for any given rational integer a such that <math>0 \le a < p$, either $N(a - \vartheta)$ is relatively prime to p or there exists a rational integer k such that $|N(a + kp - \vartheta)| < p^2$, then

126

there exists no störend fraction in K, and hence the class number of K is equal to one.

COROLLARY. In case of $D \equiv 1 \pmod{4}$, (D = 1 + 4m). 1°. If $-x^2 + x + m$ is a rational prime for any rational integer x such that $1 \leq x \leq \sqrt{m} - 1$, then the class number of $Q(\sqrt{D})$ is equal to one. 2°. If m is odd and if $(D/\ell) = -1$ for any rational prime ℓ such that $2 < \ell \leq \sqrt{m}$, then the class number of $Q(\sqrt{D})$ is equal to one.

Proof. 1° is trivial by Theorem 2, Proposition 3 and Proposition 4. 2° is proved as follows: If p = 2 then a = 0, 1 and $N(a - \vartheta) = m$ is relatively prime to p. If p > 2, then (D/p) = -1. On the other hand,

 $N(a - \vartheta) \equiv 0 \pmod{p} \Longleftrightarrow D \equiv (2a - 1)^2 \pmod{p} \Longleftrightarrow (D/p) \neq -1$.

Therefore $N(a - \vartheta)$ is relatively prime to p. Hence the class number of $Q(\sqrt{D})$ is equal to one by Theorem 2.

Remark. There exist following nine values of D smaller than 2,000 which satisfy the assumption of Cor. 1° or 2°:

$$D = 5, 13, 21, 29, 53, 77, 173, 293, 437$$
.

§2.

In this section we investigate a quadratic number field $Q(\sqrt{D})$ whose genus number is one.

LEMMA 3. Case 1. $D \equiv 1 \pmod{4}$, (D = 1 + 4m). For any rational prime p and any rational integer a such that $0 \le a \le (p-1)/2$, $(a - \vartheta)/p$ is störend if and only if $(p + 1 - a - \vartheta)/p$ is störend. Case 2. $D \equiv 2, 3 \pmod{4}$.

For any rational prime p and for any rational integer a such that $1 \le a \le (p-1)/2$, $(a-\vartheta)/p$ is störend if and only if $(p-a-\vartheta)/p$ is störend.

Proof. Case 1. Since $N(s + t\vartheta) = N(s + t - t\vartheta)$, we have

$$\begin{split} N&((a-\vartheta)/p\cdot(s+t\vartheta)+u+\upsilon\vartheta)\\ &=N&((p+1-a-\vartheta)/p\cdot(s+t-t\vartheta)-(s+t+u+\upsilon)+(t+\upsilon)\vartheta)\,. \end{split}$$

Therefore, lemma is obtained from Lemma 2.

Case 2. Since $N(s + t\vartheta) = N(-s + t\vartheta)$, we have

$$N((a - \vartheta)/p \cdot (s + t\vartheta) + u + v\vartheta)$$

= $N((p - a - \vartheta)/p \cdot (s + t\vartheta) - s - u + (t + v)\vartheta)$

Therefore, lemma is obtained from Lemma 2.

PROPOSITION 5. Case 1. $D = \ell \equiv 1 \pmod{4}$ prime, (D = 1 + 4m). Let p be any rational prime such that 1 , and suppose that frac $tions <math>(a - \vartheta)/p$, $0 \le a < p$, are not störend except at most one. Then all of them are not störend.

Case 2. D = q or 2q, $q \equiv 3 \pmod{4}$ prime.

Fractions $(a - \vartheta)/2$, a = 0, 1, are not störend. Let next p be any rational prime such that $2 , and suppose that fractions <math>(a - \vartheta)/p$, $0 \le a < p$, are not störend except at most one. Then all of them are not störend.

Proof. Case 1. Since $p \leq \sqrt{m} < D$, we have $p \nmid D$ i.e. $(D/p) \neq 0$. Hence, if there exists a rational integer a such that $N(a - \vartheta) \equiv 0 \pmod{p}$ and $0 \leq a < p$, then there exist two rational integers a such that $N(a - \vartheta) \equiv 0 \pmod{p}$ $\equiv 0 \pmod{p}$ and $0 \leq a < p$. From the assumption of Proposition 5 and Lemma 3, both of two fractions $(a - \vartheta)/p$ are not störend for such two values of a.

Case 2. In case of p = 2, it is well-known (Perron [2] p. 109) that the Diophantine equation $x^2 - Dy^2 = \pm 2$ is solvable when D = q or 2q where q is a rational prime such that $q \equiv 3 \pmod{4}$. From this fact, it is easy to prove that fractions $(a - \vartheta)/2$, a = 0, 1, are not störend. In case of p > 2, lemma is proved similarly to Case 1.

Table 1

 $K = Q(\sqrt{D}), D = \ell = 1 + 4m$ prime, p prime s.t. 1 class number of K (*) means the effect of the criterion (Theorem 2, Proposition 5) by 0

D	m	р	$-N(a-\vartheta)=-a^2+a+m$									(*)	h
			a = 1	2	3	4	5	6	7	8	9		
5	1											0	1
13	3											0	1
17	4	2	4	2								0	1
29	7	2	7									0	1
37	9	2, 3	9	7	3							0	1
41	10	2, 3	10	8	4	-2						0	1
53	13	2, 3	13	11								0	1

128

QUADRATIC NUMBER FIELD

Table 1 (continued)

D	m	р		,	N(a ·	- <i>9</i>)	= -	$-a^{2}$ -	+ a -	+ <i>m</i>		(*)	h
61	15	2, 3	15	13	9	3						0	1
73	18	2,3	18	16	12	6	-2					0	1
89	22	2,3	22	20	16	10	2					0	1
97	24	2,3	24	22	18	12	4	-6					1
101	25	2, 3, 5	25	23	19	13	5					0	1
109	27	2, 3, 5	27	25	21	15	7	-3				0	1
113	28	2, 3, 5	28	26	22	16	8	-2				0	1
137	34	2, 3, 5	34	32	28	22	14	4					1
149	37	2, 3, 5	37	35	31	25	17	7	-5			0	1
157	39	2, 3, 5	39	37	33	27	19	9	-3			0	1
161	40	2, 3, 5	40	38	34	28	20	10	-2			0	1
173	43	2, 3, 5	43	41	37	31						0	1
193	48	2, 3, 5	48	46	42	36	28	18	6	-8			1
197	49	2, 3, 5, 7	49	47	43	37	29	19	7			0	1
229	57	2, 3, 5, 7	57	55	51	45	37	27	15	1	-15		3
233	58	2, 3, 5, 7	58	56	52	46	38	28	16	2	-14	0	1
241	60	2, 3, 5, 7	60	58	54	48	40	30	18	4	-12		1
257	64	2, 3, 5, 7	64	62	58	52	44	34	22	8	-8		3

References

- [1] Nagel, T., Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. U. Hamburg 1 (1922), 140-150.
- [2] Perron, O., Die Lehre von den Kettenbrüchen, 2. Auf. Chelsea.
- [3] Rabinowitsch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. reine angew. Math. 142 (1913), 153-164.

Department of Liberal Arts, Gifu Technical College