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ON A CRITERION FOR THE CLASS NUMBER OF

A QUADRATIC NUMBER FIELD TO BE ONE

MASAKAZU KUTSUNA

§0.

G. Rabinowitsch [3] generalized the concept of the Euclidean algorithm
and proved a theorem on a criterion in order that the class number of an
imaginary quadratic number field is equal to one:

THEOREM. It is necessary and sufficient for the class number of an

imaginary quadratic number field Q(V D), D = 1 — 4m, m > 0, to be one

that x2 — x + m is prime for any integer x such that 1 < x < m — 2.

Rabinowitsch mentions there nothing on the case of real quadratic
number fields. So, we shall give a similar result by applying his method
to real quadratic number fields (Theorem 2, Cor. 1).

In § 1, we shall define stόrend fractions and give a criterion for the
class number of a real quadratic number field to be one (Theorem 2). In
§ 2, we shall treat real quadratic number fields whose genus number is
equal to one and give a table of such real quadratic number fields together
with the effect of our criterion.

Notations. We denote by Latin letters a, b,c, , rational integers
and by Greek letters a, β, γ, , integers of a real quadratic field K =
Q(V D) where D is a positive rational square-free integer. Θκ is the ring
of integers of K,

At first we give the following necessary and sufficient condition for
the class number of K to be one:

THEOREM 1. It is a necessary and sufficient condition for the class

number of K to be one that for any integers a, β of K, (a/β, β/a & Θκ), there

exist two integers ξ,η of K such that
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(1) 0<\N(aξ-βη)\<\Nβ\.

For the proof of Theorem 1, we need the following

LEMMA 1. // the class number of K is bigger than one, there exist an

indecomposable integer π and an integer a of K such that

( 2 ) a = a&i, π I a, π)(ai9 at 6 Θκ , (/ = 1, 2) .

Proof. If the class number of K is bigger than one, there is an

integer a of K such that

a = 7ζ{K2 τck = OΊ<72 ai ,

where πi9 (1 < i < h), and σj9 (1 < j < £), are distinct and indecomposable

integers. Put π = πl9 then πJfσj9 (1 < j < £). Therefore, if πJ(σ2 σ£, then

a^ = σj and a2 = σ2 σt satisfy (2). If π \ σ2 σ£, then there exists a natural

number m, (2 < m < i — 1), such that π\σmσm+ί σ£ and πj(σm+1 σe.

Then «! = σm and Λ2 = σm+1 σ£ satisfy (2).

Proof of Theorem 1. Sufficiency: Suppose that the class number of

K is bigger than one. By Lemma 1, there exist an indecomposable integer

π and an integer a of K which satisfies (2). Let a = λΛ be the integer such

that the norm is the smallest among those integers satisfying (2) where

π is fixed. By the assumption of Theorem 1, there exist two integers ξ and

η of K such that

\N(πξ - λη)\ < \Nπ\ , \N(πξ - λη)\ < \Nλ\ .

Here, put μ = πξ - λη, then π\μA, π){μ, π\A and \N(μA)\ < \N(λA)\. This

is a contradiction.

Necessity: Let a, β be two integers of K such that ajβ & ΘK9 β\a & Θκ.

Here, we consider two ideals (a) and (β). Put (γ) = (<x, β), then (α) = (r)(^o),

(β) = (ϊ)(βo) a n ( i («o> βo) = l There exist integers ξ and η oϊ K such that

«of — i8o9 = 1. Then we have

\N(aξ - βτj)\ = \Nγ\ < \Nβ\ .

DEFINITION. Let ajβ be any fraction in K such that ajβ & Θκ and β\a

g 0K. Then, we call ajβ stόrend if there exist no integers ξ9η of K such

that 0<\N(alβ ξ-τj)\<l.

According to this definition, Theorem 1 is also expressed as follows:
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THEOREM V. It is a necessary and sufficient condition for the class

number of K to be one that there exist no stδrend fractions in K.

LEMMA 2. 1°. If a\β is stδrend, then for any integer ξ of K, a/β + ξ

and a/β ξ ( & Θκ) are also stδrend.

2°. Any rational fraction ajb(&Z) is not stδrend.

Proof. 1° is obvious by the definition.

To prove 2°, put a = bq + r, 0 < r < b. Then we have

0 < N(a/b - q) = r2\b2 < 1 .

PROPOSITION 1. If the class number of K is not equal to one, then there

exists a stδrend fraction (a — #)/p such that 0 < a < p, where p is a rational

prime and

(D ΞΞ 2, 3 mod 4) .

Proof. If the class number of K is not equal to one, then by Theorem

1/ there is a stδrend fraction a/β in K. Here, we rationalize the denomi-

nator of a/β. Then we have a stδrend fraction (A + C<9)/p, where A, C, p

e Z, (A, C,p) = 1 and p is a rational prime, by Lemma 2. Furthermore

we can take C such that (C,p) = 1. Therefore, there exist two rational

integers x and y such that Cx — py = — 1. Hence (A + C$)/p-x — yS =

(Ax — #)/p is a stδrend fraction by Lemma 2. Let α be a rational integer

such that Ax~a(moάp) and 0 < α < p , then (a — $)/p is a desired

fraction.

Hereafter we put D = 1 + Am when D = 1 (mod 4).

PROPOSITION 2. J/ α fraction (a — <9)/p is stδrend and 0 < α < p, then

we have

(D = l mod 4) ,

(Z)ΞΞ2,3mod4).

Proo/. Since the absolute value of the norm of any stδrend fraction

is not smaller than one, we have

]a2 — a — m\ (D ΞΞ 1 mod 4) ,

Hence

p2 < \N(a --9)1=,
V D I (D ΞΞ 2, 3 mod 4) .
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— a ~f* a H~ m Ĉ m (Σ) ΞΞ 1 mod 4) ,

- α + D<^ D ( D Ξ 2 , 3 mod 4) ,

since 0 < a < p.

Proposition 1 is modified by Proposition 2 as follows:

PROPOSITION 3. If the class number of K is bigger than one, then there

exists a stδrend fraction (α — -9)/p such that p is a rational prime and

(VΊn (DΞΞI mod 4) ,
0 < a<p<I

~ ^-{VD (Z>ΞΞ2,3mod4).

We next consider the condition for a fraction (a — -9)/p of K not to

be stδrend.

PROPOSITION 4. // N(a — -9) is relatively prime to p or if there exists

a rational integer k such that \N(a + kp — -9)\ <Cp2, then (a — 9)jp is not

stδrend.

Proof. If N(a — -9) is relatively prime to p, then there exist rational

integers x and y such that N(a — #) x — yp — 1. Then we have

where 5 denotes the conjugate of -9 in K. Hence, (α — $)jp is not stδrend

by Lemma 2.

If IN(a + kp - 9)\< p\ then (a + kp - £)/p is not stδrend. Therefore

(α — #)/p is not stδrend.

From Proposition 3 and Proposition 4, we obtain immediately a cri-

terion for the class number of a quadratic field K = Q(V D) to be one:

THEOREM 2. Case 1. D = 1 (mod 4), (Z> = 1 + 4m).

I/, /or any gii eft rational prime p such that 1 < p < <s/~m and for any given

rational integer a such that 0 < a < p, either N(a — 9) is relatively prime

to p or there exists a rational integer k such that \N(a + kp — 9)\ < p2, then

there exists no stδrend fraction in K, and hence the class number of K is

equal to one.

Case 2. D = 2,3 (mod 4).

If, for any given rational prime p such that 1 < p < V D and for any given

rational integer a such that 0 < a < p, either N(a — -9) is relatively prime

to p or there exists a rational integer k such that \N(a + kp — #)| < p2, then
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there exists no stδrend fraction in K, and hence the class number of K is

equal to one.

COROLLARY. In case of D ~ 1 (mod 4), (D = 1 + Am).

1°. If —x2 + x + m is a rational prime for any rational integer x such

that 1 < x < V m — 1, then the class number of Q(V D) is equal to one.

2°. If m is odd and if (D/£) = — 1 for any rational prime £ such that 2 <

t < V m, then the class number of Q(V D) is equal to one.

Proof. 1° is trivial by Theorem 2, Proposition 3 and Proposition 4.

2° is proved as follows: If p = 2 then a = 0,1 and N(a — -9) = m is rela-

tively prime to p. If p > 2, then (D/p) = — 1. On the other hand,

N(a -9) = 0 (modp) 4=φ D = (2α - I)2 (modp) <=φ (D/p) # - 1 .

Therefore iV(α — #) is relatively prime to p. Hence the class number of

Q(\/D) is equal to one by Theorem 2.

Remark. There exist following nine values of D smaller than 2,000

which satisfy the assumption of Cor. 1° or 2°:

D = 5, 13, 21, 29, 53, 77, 173, 293, 437 .

§2.

In this section we investigate a quadratic number field Q(V D) whose

genus number is one.

LEMMA 3. Case 1. D = 1 (mod 4), φ = 1 + Am).

For any rational prime p and any rational integer a such that 0 < a <

(p — l)/2, (α — #)/p is stδrend if and only if (p + 1 — a — #)/p is stδrend.

Case 2. D Ξ 2 , 3 (mod 4).
For any rational prime p and for any rational integer a such that 1 < a <

(p — l)/2, (a — S)jp is stδrend if and only if (p — a — S)jp is stδrend.

Proof. Case 1. Since N(s + t9) = N(s + t - £9), we have

N((a - 9)lp-(s + W) + u + υ&)

= N((p + 1 - a - <9)lp'(s + t- W) - (s + t+ u+ v) + (t

Therefore, lemma is obtained from Lemma 2.

Case 2. Since N(s + t&) = N(-s + t&), we have

N((a - 9)IP'(s +t&)+ U+ V$)

- N((p - a - $)IP (S + t&)- s - u + (t+ ϋ)9) .
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Therefore, lemma is obtained from Lemma 2.

PROPOSITION 5. Case 1. D = £ = 1 (mod 4) prime, (D = 1 + 4m).

Let p be any rational prime such that Kp < <y/~m, and suppose that frac-

tions (a — S)lp9 0 < a < p, are not stδrend except at most one. Then all

of them are not stδrend.

Case 2. D — q or 2q, q = 3 (mod 4) prime.

Fractions (a — #)/2, α = 0,1, are not stδrend. Let next p be any rational

prime such that 2 < p < \ΓD, and suppose that fractions (a — #)/p, 0 < a

< p, are not stδrend except at most one. Then all of them are not stδrend.

Proof. Case 1. Since p < *J~m < D, we have p\Ό i.e. (D/p) Φ 0.

Hence, if there exists a rational integer a such that N(a — 3) = 0 (mod/?)

and 0 < a < p, then there exist two rational integers a such that N(a — <&)

Ξ 0 (modp) and 0 < a <p. From the assumption of Proposition 5 and

Lemma 3, both of two fractions (a — $)jp are not stδrend for such two

values of a.

Case 2. In case of p == 2, it is well-known (Perron [2] p. 109) that the

Diophantine equation x2 — Dy2 = ± 2 is solvable when D = q ov 2q where

q is a rational prime such that q = 3 (mod 4). From this fact, it is easy

to prove that fractions (α — #)/2, α = 0,1, are not stδrend. In case of

p > 2, lemma is proved similarly to Case 1.

Table 1

K — Q(VD), D = £ = 1 + 4m prime,p prime s.t. 1 <p < Vm, h class

number of K (*) means the effect of the criterion (Theorem 2, Propo-

sition 5) by 0

D

5

13

17

29

37

41

53

m

1

3

4

7

9

10

13

P

2

2

2,3

2,3

2,3

α = 1

4

7

9

10

13

-N(a

2

2

7

8

11

3

3

4

4 5 6 7 8

-2

9

(*)

0

0

0

0

0

0

0

h

1

1

1

1

1

1

1
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D

61

73

89

97

101

109

113

137

149

157

161

173

193

197

229

233

241

257

m

15

18

22

24

25

27

28

34

37

39

40

43

48

49

57

58

60

64

P

2,3

2,3

2,3

2,3

2,3,5

2,3,5

2,3,5

2,3,5

2,3,5

2,3,5

2,3,5

2,3,5

2,3,5

2,3,5,7

2,3,5,7

2,3,5,7

2,3,5,7

2,3,5,7

15

18

22

24

25

27

28

34

37

39

40

43

48

49

57

58

60

64

Table 1

-N(a

13

16

20

22

23

25

26

32

35

37

38

41

46

47

55

56

58

62

9

12

16

18

19

21

22

28

31

33

34

37

42

43

51

52

54

58

(continued)

-9)

3

6

10

12

13

15

16

22

25

27

28

31

36

37

45

46

48

52

= -

-2

2

4

5

7

8

14

17

19

20

28

29

37

38

40

44

-α
2
 + a

-6

—3

-2

4

7

9

10

18

19

27

28

30

34

-5

-3

-2

6

7

15

16

18

22

+ m

-8

1

2

4

8

-15

-14

-12

-8

(•)

0

0

0

0

0

0

0

0

0

0

0

0

h

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

1

1

3
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