ON A CRITERION FOR THE CLASS NUMBER OF A QUADRATIC NUMBER FIELD TO BE ONE

MASAKAZU KUTSUNA

§ 0.

G. Rabinowitsch [3] generalized the concept of the Euclidean algorithm and proved a theorem on a criterion in order that the class number of an imaginary quadratic number field is equal to one:

Theorem. It is necessary and sufficient for the class number of an imaginary quadratic number field $\boldsymbol{Q}(\sqrt{D}), D=1-4 m, m>0$, to be one that $x^{2}-x+m$ is prime for any integer x such that $1 \leq x \leq m-2$.

Rabinowitsch mentions there nothing on the case of real quadratic number fields. So, we shall give a similar result by applying his method to real quadratic number fields (Theorem 2, Cor. 1).

In § 1, we shall define störend fractions and give a criterion for the class number of a real quadratic number field to be one (Theorem 2). In § 2, we shall treat real quadratic number fields whose genus number is equal to one and give a table of such real quadratic number fields together with the effect of our criterion.

Notations. We denote by Latin letters a, b, c, \cdots, rational integers and by Greek letters $\alpha, \beta, \gamma, \cdots$, integers of a real quadratic field $K=$ $\boldsymbol{Q}(\sqrt{D})$ where D is a positive rational square-free integer. \mathcal{O}_{K} is the ring of integers of K.

§ 1.

At first we give the following necessary and sufficient condition for the class number of K to be one:

Theorem 1. It is a necessary and sufficient condition for the class number of K to be one that for any integers α, β of $K,\left(\alpha / \beta, \beta / \alpha \notin \mathcal{O}_{K}\right)$, there exist two integers ξ, η of K such that

Received March 20, 1979.

$$
\begin{equation*}
0<|N(\alpha \xi-\beta \eta)|<|N \beta| . \tag{1}
\end{equation*}
$$

For the proof of Theorem 1, we need the following
Lemma 1. If the class number of K is bigger than one, there exist an indecomposable integer π and an integer α of K such that

$$
\begin{equation*}
\alpha=\alpha_{1} \alpha_{2}, \pi \mid \alpha, \pi \nmid \alpha_{i}, \alpha_{i} \in \mathcal{O}_{K}, \quad(i=1,2) . \tag{2}
\end{equation*}
$$

Proof. If the class number of K is bigger than one, there is an integer α of K such that

$$
\alpha=\pi_{1} \pi_{2} \cdots \pi_{k}=\sigma_{1} \sigma_{2} \cdots \sigma_{\ell},
$$

where π_{i}, $(1 \leq i \leq k)$, and $\sigma_{j},(1 \leq j \leq \ell)$, are distinct and indecomposable integers. Put $\pi=\pi_{1}$, then $\pi \nmid \sigma_{j},(1 \leq j \leq \ell)$. Therefore, if $\pi \nmid \sigma_{2} \cdots \sigma_{\ell}$, then $\alpha_{1}=\sigma_{1}$ and $\alpha_{2}=\sigma_{2} \cdots \sigma_{\ell}$ satisfy (2). If $\pi \mid \sigma_{2} \cdots \sigma_{\ell}$, then there exists a natural number $m,(2 \leq m \leq \ell-1)$, such that $\pi \mid \sigma_{m} \sigma_{m+1} \cdots \sigma_{\ell}$ and $\pi \nmid \sigma_{m+1} \cdots \sigma_{\ell}$. Then $\alpha_{1}=\sigma_{m}$ and $\alpha_{2}=\sigma_{m+1} \cdots \sigma_{\ell}$ satisfy (2).

Proof of Theorem 1. Sufficiency: Suppose that the class number of K is bigger than one. By Lemma 1, there exist an indecomposable integer π and an integer α of K which satisfies (2). Let $\alpha=\lambda A$ be the integer such that the norm is the smallest among those integers satisfying (2) where π is fixed. By the assumption of Theorem 1, there exist two integers ξ and η of K such that

$$
|N(\pi \xi-\lambda \eta)|<|N \pi|, \quad|N(\pi \xi-\lambda \eta)|<|N \lambda| .
$$

Here, put $\mu=\pi \xi-\lambda \eta$, then $\pi \mid \mu \Lambda, \pi \nmid \mu, \pi \nmid \Lambda$ and $|N(\mu \Lambda)|<|N(\lambda \Lambda)|$. This is a contradiction.

Necessity: Let α, β be two integers of K such that $\alpha / \beta \notin \mathcal{O}_{K}, \beta / \alpha \notin \mathcal{O}_{K}$. Here, we consider two ideals (α) and (β). Put $(\gamma)=(\alpha, \beta)$, then $(\alpha)=(\gamma)\left(\alpha_{0}\right)$, $(\beta)=(\gamma)\left(\beta_{0}\right)$ and $\left(\alpha_{0}, \beta_{0}\right)=1$. There exist integers ξ and η of K such that $\alpha_{0} \xi-\beta_{0} \eta=1$. Then we have

$$
|N(\alpha \xi-\beta \eta)|=\left|N_{\gamma}\right|<|N \beta|
$$

Definition. Let α / β be any fraction in K such that $\alpha / \beta \notin \mathcal{O}_{K}$ and β / α $\notin \mathcal{O}_{K}$. Then, we call α / β störend if there exist no integers ξ, η of K such that $0<|N(\alpha / \beta \cdot \xi-\eta)|<1$.

According to this definition, Theorem 1 is also expressed as follows:

Theorem 1'. It is a necessary and sufficient condition for the class number of K to be one that there exist no störend fractions in K.

Lemma 2. 1°. If α / β is störend, then for any integer ξ of $K, \alpha / \beta+\xi$ and $\alpha / \beta \cdot \xi\left(\notin \mathcal{O}_{K}\right)$ are also störend.
2°. Any rational fraction $a / b(\notin Z)$ is not störend.
Proof. 1° is obvious by the definition.
To prove 2°, put $a=b q+r, 0<r<b$. Then we have

$$
0<N(a / b-q)=r^{2} / b^{2}<1
$$

Proposition 1. If the class number of K is not equal to one, then there exists a störend fraction $(a-\vartheta) / p$ such that $0 \leq a<p$, where p is a rational prime and

$$
\vartheta=\left\{\begin{array}{cl}
\frac{1+\sqrt{D}}{2} & (D \equiv 1 \bmod 4), \\
\sqrt{D} & (D \equiv 2,3 \bmod 4) .
\end{array}\right.
$$

Proof. If the class number of K is not equal to one, then by Theorem 1^{\prime} there is a störend fraction α / β in K. Here, we rationalize the denominator of α / β. Then we have a störend fraction $(A+C \vartheta) / p$, where A, C, p $\in Z,(A, C, p)=1$ and p is a rational prime, by Lemma 2. Furthermore we can take C such that $(C, p)=1$. Therefore, there exist two rational integers x and y such that $C x-p y=-1$. Hence $(A+C \vartheta) / p \cdot x-y \vartheta=$ $(A x-\vartheta) / p$ is a störend fraction by Lemma 2. Let a be a rational integer such that $A x \equiv a(\bmod p)$ and $0 \leq a<p$, then $(a-\vartheta) / p$ is a desired fraction.

Hereafter we put $D=1+4 m$ when $D \equiv 1(\bmod 4)$.
Proposition 2. If a fraction $(a-\vartheta) / p$ is störend and $0 \leq a<p$, then we have

$$
p \leq \begin{cases}\sqrt{m} & (D \equiv 1 \bmod 4) \\ \sqrt{D} & (D \equiv 2,3 \bmod 4)\end{cases}
$$

Proof. Since the absolute value of the norm of any störend fraction is not smaller than one, we have

$$
p^{2} \leq|N(a-\vartheta)|= \begin{cases}\left|a^{2}-a-m\right| & (D \equiv 1 \bmod 4) \\ \left|a^{2}-D\right| & (D \equiv 2,3 \bmod 4)\end{cases}
$$

Hence

$$
p^{2} \leq \begin{cases}-a+a+m \leq m & (D \equiv 1 \bmod 4) \\ -a+D \leq D & (D \equiv 2,3 \bmod 4)\end{cases}
$$

since $0 \leq a<p$.
Proposition 1 is modified by Proposition 2 as follows:
Proposition 3. If the class number of K is bigger than one, then there exists a störend fraction $(a-\vartheta) / p$ such that p is a rational prime and

$$
0 \leq a<p \leq \begin{cases}\sqrt{m} & (D \equiv 1 \bmod 4) \\ \sqrt{D} & (D \equiv 2,3 \bmod 4)\end{cases}
$$

We next consider the condition for a fraction $(a-\vartheta) / p$ of K not to be störend.

Proposition 4. If $N(a-\vartheta)$ is relatively prime to p or if there exists a rational integer k such that $|N(a+k p-\vartheta)|<p^{2}$, then $(a-\vartheta) \mid p$ is not störend.

Proof. If $N(a-\vartheta)$ is relatively prime to p, then there exist rational integers x and y such that $N(a-\vartheta) \cdot x-y p=1$. Then we have

$$
\frac{a-\vartheta}{p} \cdot(a-\bar{\vartheta}) x-y=\frac{1}{p},
$$

where $\bar{\vartheta}$ denotes the conjugate of ϑ in K. Hence, $(a-\vartheta) / p$ is not störend by Lemma 2.

If $|N(a+k p-\vartheta)|<p^{2}$, then $(a+k p-\vartheta) / p$ is not störend. Therefore $(a-\vartheta) / p$ is not störend.

From Proposition 3 and Proposition 4, we obtain immediately a criterion for the class number of a quadratic field $K=\boldsymbol{Q}(\sqrt{D})$ to be one:

Theorem 2. Case 1. $D \equiv 1(\bmod 4),(D=1+4 m)$.
If, for any given rational prime p such that $1<p \leq \sqrt{m}$ and for any given rational integer a such that $0 \leq a<p$, either $N(a-\vartheta)$ is relatively prime to p or there exists a rational integer k such that $|N(a+k p-\vartheta)|<p^{2}$, then there exists no störend fraction in K, and hence the class number of K is equal to one.

Case 2. $\quad D \equiv 2,3(\bmod 4)$.
If, for any given rational prime p such that $1<p<\sqrt{D}$ and for any given rational integer a such that $0 \leq a<p$, either $N(a-\vartheta)$ is relatively prime to p or there exists a rational integer k such that $|N(a+k p-\vartheta)|<p^{2}$, then
there exists no störend fraction in K, and hence the class number of K is equal to one.

Corollary. In case of $D \equiv 1(\bmod 4),(D=1+4 m)$.
1°. If $-x^{2}+x+m$ is a rational prime for any rational integer x such that $1 \leq x \leq \sqrt{m}-1$, then the class number of $\boldsymbol{Q}(\sqrt{\bar{D}})$ is equal to one. 2°. If m is odd and if $(D / \ell)=-1$ for any rational prime ℓ such that $2<$ $\ell \leq \sqrt{m}$, then the class number of $\boldsymbol{Q}(\sqrt{\bar{D}})$ is equal to one.

Proof. 1° is trivial by Theorem 2, Proposition 3 and Proposition 4. 2° is proved as follows: If $p=2$ then $a=0,1$ and $N(a-\vartheta)=m$ is relatively prime to p. If $p>2$, then $(D / p)=-1$. On the other hand,

$$
N(a-\vartheta) \equiv 0(\bmod p) \Longleftrightarrow D \equiv(2 a-1)^{2}(\bmod p) \Longleftrightarrow(D / p) \neq-1
$$

Therefore $N(a-\vartheta)$ is relatively prime to p. Hence the class number of $\boldsymbol{Q}(\sqrt{\bar{D}})$ is equal to one by Theorem 2.

Remark. There exist following nine values of D smaller than 2,000 which satisfy the assumption of Cor. 1° or 2° :

$$
D=5,13,21,29,53,77,173,293,437
$$

§ 2.

In this section we investigate a quadratic number field $\boldsymbol{Q}(\sqrt{D})$ whose genus number is one.

Lemma 3. Case $1 . \quad D \equiv 1(\bmod 4),(D=1+4 m)$.
For any rational prime p and any rational integer a such that $0 \leq a \leq$ $(p-1) / 2,(a-\vartheta) / p$ is störend if and only if $(p+1-a-\vartheta) / p$ is störend.

Case 2. $\quad D \equiv 2,3(\bmod 4)$.
For any rational prime p and for any rational integer a such that $1 \leq a \leq$ $(p-1) / 2,(a-\vartheta) / p$ is störend if and only if $(p-a-\vartheta) / p$ is störend.

Proof. Case 1. Since $N(s+t \vartheta)=N(s+t-t \vartheta)$, we have

$$
\begin{aligned}
& N((a-\vartheta) / p \cdot(s+t \vartheta)+u+v \vartheta) \\
& \quad=N((p+1-a-\vartheta) / p \cdot(s+t-t \vartheta)-(s+t+u+v)+(t+v) \vartheta)
\end{aligned}
$$

Therefore, lemma is obtained from Lemma 2.
Case 2. Since $N(s+t \vartheta)=N(-s+t \vartheta)$, we have

$$
\begin{aligned}
& N((a-\vartheta) / p \cdot(s+t \vartheta)+u+v \vartheta) \\
& \quad=N((p-a-\vartheta) / p \cdot(s+t \vartheta)-s-u+(t+v) \vartheta) .
\end{aligned}
$$

Therefore, lemma is obtained from Lemma 2.
Proposition 5. Case 1. $D=\ell \equiv 1(\bmod 4)$ primé, $(D=1+4 m)$. Let p be any rational prime such that $1<p \leq \sqrt{m}$, and suppose that fractions $(a-\vartheta) / p, 0 \leq a<p$, are not störend except at most one. Then all of them are not störend.

Case 2. $D=q$ or $2 q, q \equiv 3(\bmod 4)$ prime.
Fractions $(a-\vartheta) / 2, a=0,1$, are not störend. Let next p be any rational prime such that $2<p \leq \sqrt{D}$, and suppose that fractions $(a-\vartheta) / p, 0 \leq a$ $<p$, are not störend except at most one. Then all of them are not störend.

Proof. Case 1. Since $p \leq \sqrt{m}<D$, we have $p \nmid D$ i.e. $(D / p) \neq 0$. Hence, if there exists a rational integer a such that $N(a-\vartheta) \equiv 0(\bmod p)$ and $0 \leq a<p$, then there exist two rational integers a such that $N(a-\vartheta)$ $\equiv 0(\bmod p)$ and $0 \leq a<p$. From the assumption of Proposition 5 and Lemma 3, both of two fractions $(a-\vartheta) / p$ are not störend for such two values of a.

Case 2. In case of $p=2$, it is well-known (Perron [2] p. 109) that the Diophantine equation $x^{2}-D y^{2}= \pm 2$ is solvable when $D=q$ or $2 q$ where q is a rational prime such that $q \equiv 3(\bmod 4)$. From this fact, it is easy to prove that fractions $(a-\vartheta) / 2, a=0,1$, are not störend. In case of $p>2$, lemma is proved similarly to Case 1 .

Table 1

$K=\boldsymbol{Q}(\sqrt{D}), D=\ell=1+4 m$ prime, p prime s.t. $1<p \leq \sqrt{m}, h$ class number of $K(*)$ means the effect of the criterion (Theorem 2, Proposition 5) by 0

D	m	p	$-N(a-\vartheta)=-a^{2}+a+m$										h
			$a=1$	2	34	5	6	7	8	9			
5	1										0		1
13	3										0		1
17	4	2		2							0		1
29	7	2	7								0		1
37	9	2,3	9	7	3						0		1
41	10	2,3	10	8	4-2						0		1
53	13	2, 3	131								0		1

Table 1 (continued)

References

[1] Nagel, T., Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. U. Hamburg 1 (1922), 140-150.
[2] Perron, O., Die Lehre von den Kettenbrüchen, 2. Auf. Chelsea.
[3] Rabinowitsch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. reine angew. Math. 142 (1913), 153-164.

Department of Liberal Arts,
Gifu Technical College

