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A PRIME DECOMPOSITION SYMBOL FOR A NON-ABELIAN
CENTRAL EXTENSION WHICH IS ABELIAN
OVER A BICYCLIC BIQUADRATIC FIELD

YOSHIOMI FURUTA

Introduction

In a previous paper [6] we had some criteria for the prime decomposi-
tion in certain non-abelian extensions over the rational number field @,
and as its special case we had a reciprocity of the biquadratic residue
symbol. The reciprocity was obtained by using a descent method of the
prime decomposition for a central extension over @ which is abelian over
a biquadratic field Q(v'—1, 4/ ¢). In the present paper we study on the
case over a biquadratic field Q(vd,, ¥d,) in general. We define a symbol
[d,, d;, p] which expresses the decomposition law of a rational prime p in
a central extension mentioned above.

In 1939, L. Rédei [12] defined a symbol {a,, a,, a;} which expresses the
prime decomposition in a certain non-abelian extension over @ of degree
8, and found its multiplication and inversion properties. In 1960, A.
Frohlich [2] defined a symbol [a,, a,, a,],, where ¢ is a factor system class
associated with a group of order 8. Rédei’s symbol is essentially the same
as this symbol for a certain fixed value of c. Multiplication and inversion
formulas and further an explicit expression of the symbol are also stated
in [2] without proof. Though the explicit expression is not so simple, but
it is remarkable that the expression is given in terms of values of rational
residue characters associated with certain rational ternary quadratic forms.
Rédei’s symbol and Frohlich’s symbol are defined as a quadratic residue
symbol in the quadratic field Q(v/@,) or in the biquadratic field Q(v«,, va,).

In the present paper we define a symbol [d,, d,, d;] by treating certain
large abelian extensions of Q(+vd,, vd,) which are central over @ Then
our symbol is also essentially the same as Rédei’s and Fréhlich’s up to a
part associated with abelian extensions over Q. Using a descent method

Received February 19, 1979.
79



80 YOSHIOMI FURUTA

stated in our previous paper [6], we can express the value of the symbol
explicitly and rather simply in computable® formula (Theorem 5.1). This
explicit formula implies a simple inversion formula (Theorems 6.2 and 6.3,
Remark 6.4 which contains a conjecture). The explicit formula implies
also other formulas related with rational biquadratic residue symbols
(Theorems 5.4 and 6.1).

§1. General treatment of [d,, d,, a]

For an algebraic number field F, we denote by J, F* and U, the
group of ideles, principal ideles and unit ideles of F respectively. Denote
by F) the multiplicative group of non-zero elements of the completion F,
of F at a prime p, and by U, the group of units of F,, which are embedded
in J, as usual. For a divisor m of F, denote by m, its p-part: m = [], m,.
Denote by Ug(m) the group of elements u of U, whose p-component u, =
I1mod.” m,, For an extension L/k of finite degree, we put H(L/k) =
kXN, J;, where N,, stands for the norm map.

Let L be a Galois extension of k, and M be a Galois extension of L
which is normal over k. Let M, be the maximal abelian extension over
k contained in M. We denote by L%, the genus field of L with respect
to M[k, namely L}, = LM, We denote further by L{, the central class
field of L with respect to M/k, which is, by definition”, the maximal field
L’ such that LS I’ &M and Gal(L//L) is contained in the center of
Gal (I’/k). It follows from class field theory that

(1) H(L} k) = k*N,, HMJL) ,
(2) H(L,/L) = JHMIL) ,

where 4 = A(L/k) is the submodule generated by 1 — ¢ of the group ring
of Gal (L/k) over the ring of integers, ¢ running over Gal (L/k).

When the ground field % is the rational number field @, we denote
simply by L} and L§ instead of L}, and L$, respectively. Our purpose
in this paper is to study the decomposition criteria of prime ideals in
LY /L%, when L is a bicyclic biquadratic field Q(vd,, ¥d,). For this purpose
we define a symbol [d,, d,, a] as follows at first.

0) In §7 we add a table of values of the symbol, which are computed by machine.

1) When p is an infinite prime, the congruence u, = 1 mod. p stands for u, > 0

or up #+ 0 according as p is real or complex.
2) See [5].
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DeriniTiON 1.1. Let d,,d, be a pair of rational integers such that
L = Q(Wd,, ¥d,) is biquadratic over @, and let p be a rational prime. We
call the symbol [d,, d,, p] is defined (in primitive sense), when there exists
a ray class field R over L in narrow sense® such that R is normal over
Q, LY D L%, and a prime divisor p of p in L} is of degree 1 and unramified
in LY/L%. When that is the case, we set [d,, d,,p] =1 or —1 according

. L(l) /L* . . .
as the Artin symbol (—%&) is equal to the identity or not.

For the sake of simplicity, we identify hereafter the Artin symbol and
its character when the extension is quadratic. Then we have

[d,, dy, p] = (JJ%L_?) .

For a rational integer a with the prime decomposition a = =+ [] p%,
we put

[db dz, a] = l_[ [du d29 pi]“ )
when [d,, d,, p,] is defined for each prime p,.

Remark 1.2. For any bicyclic biquadratic field L = Q(vd,, ¥d,), we
have LY 2 L% if R is sufficiently large (c.f. S. Shirai [13, Theorem 29]),
and when that is the case, LY is quadratic over L.

Remark 1.3. Suppose that [d,, d,, p] is defined. Then its value does
not depend on the choice of a ray class field R. In fact, for i = 1, 2, let
R, be a ray class field over L in narrow sense defined by f{, such that R,
is normal over @ and L$) 2 L%, Let §, = [] p¢»* be the prime decomposi-
tion for i = 1, 2, and let f, be the least common multiple of {, and f,: {, =
[T 9%+, where e,; = Max (e, ,e,,). Let R, be the ray class field over K
defined by f, in narrow sense. For a prime divisor p of L, denote by U,(e)
the group of local units u at p such that’ u = 1mod. p°, and denote by
N, the local norm map. Then since H(R,/L) = L*U,(f,), we have H(L},/Q)
= Q"N,,U,(f) = @[] N, ,U,(e..) for i =1,2,3. Moreover since we can
suppose that f, contains a real infinite prime if there is such one, we have
H(L%,/Q) N H(L%,/Q) = H(L%,/Q). Hence L% = L% L%. Thus R, 2 LY D
LPL%, 2 L. This implies LY = L§L¥, and LE) 2 Lk, because (L$: L%)
< 2. Similarly LE = L% L§. Hence L{ = LPLY. Now assume that p

3) This means that R is defined by a divisor which contains all infinite primes of
L (or equivalently, all real infinite primes of L).
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has prime divisors p, resp. p, of degree 1 in L¥ resp. L%, and unramified
in L@/L¥, resp. LY/L%,. Then p has also a prime divisor p, of degree 1 in
L%, and unramified in L$)/L¥,. Therefore we have

() - o

for i = 1,2.
The following proposition follows immediately from the definition.
ProposritioN 1.4. Suppose that [d,, d,, a] is defined. Then

[dl, d2’ a] = [d29 db a],
[dy, i, a] = [d,, d.d% a]l  for any integer d,
d,, d,, a] = [d,, d.d,, a].

As a special case of [6, Proposition 5.1], we have

ProposriTiON 1.5. Let L = Q(/d,, ¥d,) be a bicyclic biquadratic field,
and K be a quadratic field contained in L. Let M be an abelian extension
of K which contains L and is normal over Q. Let % be an ideal of L} =
K3, and a be the norm of A to K. Assume that a is prime to the conductor
of M/K. Let b be an ideal of K such that 5°-' = a mod. H(M/K), where o
is the non-trivial automorphism of K over Q, and $(M|K) is the congruent
ideal group corresponding to M|/K. Then

LPILE\ _ ( LIK
(55) = (%)

Remark 1.6. Let L, R,LY be as in Definition 1.1, and K be any quad-
ratic field contained in L. Then since Gal (L$’/L) is contained in the center
. of Gal (LY/Q), it is also contained in the center of Gal (L§/K). Now since
L is cyclic over K, LY is abelian over K.

THEOREM 1.7. We have
[dn d21 a] [dl’ daa a] = [dl, d2d37 a]’
when the symbols are all defined.

Proof. Put d, = d,d,((d,, d,)". Let L, = Q(Wd,, ¥d)) and K, = Q(Wd,d)
for i = 2,3,4. Moreover let R, be a ray class field over L, in narrow sense
such that R, is normal over Q and L®» D L}, where L{ resp. L} is the
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central class field resp. the genus field of L, with respect to R,/Q. Put K
= Q(v/d,). Then each L{" is abelian over K by Remark 1.6. To prove
the theorem, it is sufficient to treat only the case where a is a rational
prime p. Let p be a prime divisor of p in K, and p, be prime divisors of
pin L¥ for i = 2,3,4. Let b be an ideal of K such that

57! = p mod. H(LPLPLP(K) ,

where ¢ is the non-trivial automorphism of K over Q. The existence of
such b follows from definedness of the symbols [d,, d,, p]. Then Proposition
1.5 implies

0 = (B2 - ()

since LY is abelian over K. Now we have

— (HE) - @, dd, 1 -

ProposrTioN 1.8. Let d be the greatest common divisor of d, and d,,

and put d, = dd; and d, = dd;. Then
[dl’ dz’ a] - [d{’ da a][dla d;, a]

when the above symbols together with [d,, d, a] are all defined.

Proof. It follows from Proposition 1.4 and Theorem 1.7 that

[d19 dz’ a] = [dly d: a‘][dl, d;» a] = [dd;’ d; a][dl’ d;, a]
= [dZdi’ d, a][du d;: a] = [d{a d’ a][dl’ d;’ (1] .

§2. Restricted treatment of [d,, d,, a]

Let L, R, K and LY be as in Remark 1.6. We shall show that the symbol
[d,, d;, a] is defined by means of a ray class field S over K not only a ray
class field R over L when some restriction to a is added. Let | be the
conductor of R/L. Then we have

H(LZ[K) = K*N. (H(LP|L)) 2 K*N,,(H(R/L))
= KNy (L*U(f)) = K*Ny(UA7)) -

Let fx be a divisor of K such that N, (U;(f)) 2 Ux(ix), and let S be the
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ray class field over K in narrow sense with the conductor {;. Then
H(LY|K) 2 K*Uy(fx) = H(S/K). Since LY is abelian over K, we have
LY < S. This implies LY 2 LYL¥ D L¥ 2 LE. Moreover LY = LYL¥,
because (LY: L¥) < 2. Now assume that a rational prime p has a prime
divisor 8 resp. p in L% resp. L¥ of degree 1. Then we have

[d,, dy, pl = (L%%Lﬁ) _ <LE€;/L§‘ ) .

Conversely we have the following

ProposITION 2.1. Let L = Q(v/d,, ¥d,) be a bicyclic biquadratic field,
and K be a quadratic field contained in L. Let S be a ray class field over
K in narrow sense such that S is normal over Q, S22 L and L§ D L%.
Let p be a rational prime, and assume that p has a prime divisor p in L¥
of degree 1. Then the symbol [d, d,, p] is defined and

[d,, dy, p] = (_p/’;) .

Proof. Let f; be the conductor of S/K. Then since {; is a multiple
of the conductor of L/K, there is¥ a divisor {, of L such that N, U,(,)
= U(fg). Let R be the ray class field mod. {, over L in narrow sense.
We can take f, so that R is normal over @. Then we have L} = L%.
In fact, it follows from (1) that H(L%/Q) = Q*N,,H(R/L) = Q*N,,o(L*U({.))
= QXNL/Q UL(fL) = QXNK/QNL/K UL(TL) = QXNK/QUK(fK) = QXNK/Q(KX UK(fK)) =
Q*Ny,oH(S/K) = H(K¥/Q) = H(L¥/Q). Hence L¥ = L%. We have further
LY = LY. Because it follows from (2) that H(LY/L) = JIH(R/L) =
JAL*U,(f,), where 4 = A(L/Q). Hence

H(LP|K) = K*N_xH(LR|L) = K*Np/xJi- Ny UL(fL)
= KXNL/KJg‘ UK(TK) = NL/KJ;."H(S/K) .

On the other hand we have H(L{’/L) = J{H(S/L) and further H(LY(/K) =
K*.N,, H(L{|L) = K*-Ny/xJi-Ny,xH(S|L) = N.,xJ?-H(S/K). Hence we
have H(LY|K) = H(L§/K). This implies LY = L§’, for they are both
abelian over K by Remark 1.6. Now the proposition follows at once from
the definition of the symbol and Remark 1.3.

When Proposition 2.1 is satisfied, we proceed to express the symbol
[d, d,, a] by a rational quadratic symbol. Let a be a square free integer

4) See H. Hasse [7].
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and e¢ = [[ p; be the prime decomposition of a. Put
L=QWd,vd) and K= Q(Vdd,).

Suppose that there is a ray class field S over K such that S contains L,
L 2 L%, S is normal over @ and each p, has a prime divisor, say $,, of
degree 1 in L¥. Put A = [] B;. Then Proposition 2.1 implies

[d,, duy @] = ] [ds, doy ] = [| (—L—?B/L—) - ().

Since K is cyclic over @, we have L¥ = K¥ = K{, which we denote also
by S,. Denote by $(S/K) the congruent ideal group corresponding to S
over K. Let ¢ be the non-trivial element of Gal (K/Q) and b be an ideal
of K such that

b = Ny, % mod $(S/K)

by some ideal % of S,, and no prime divisor of b is ramified in L/K. Then
Proposition 1.5 implies

) (M) = ()= (%)= (%)

A b b b
where (b) = Ng,0. Let f be the conductor of S/K. Then by the same
way as in [6, §1.3], we get a relation between e and b as follows. Put
a = Ng,x%. Then (@) = Nga. There exists an element « of K such that
a = 1mod. { and (&) = ab'~" = ab?/Ny,eb = (B)/(b), where (p) = ab>. We can

assume that g has no rational divisor, and we have

(4) ab® = Ngp, b= mod.f.

Conversely let a be a rational integer such that a = Ng,a with some
integral ideal a of K, and suppose that @ satisfies (4) with a rational integer
b and an integer § of K which has no rational divisor. Then by con-
sidering the prime ideal decomposition of the both sides of (4), we have
(B) = ab* with some integral ideal b of K such that (b) = Ng,b. Moreover
we have

(5) ab'= = (B)/Nx/eb = (B/b) .
This is contained in the ray mod.{. Thus we have

ProposITION 2.2. Let L = Q(Wd,, ¥d,) be a bicyclic biquadratic field.
Put K = Q(Wd,d,) and D be the discriminant of K/Q. Let f be a module
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of K and S be the ray class field mod. f over K in narrow sense. Suppose
that S is normal over Q, contains L, and LY 2 L¥. Let a be a square free
rational integer such that any prime divisor of a in L¥ is of degree 1. Then

we have
b= (%)= (3).

where b is any integer such that (b, ) = 1 and the following relations hold
with some rational integers x and y:

x* — Dy* — 4ab* =0,
x+y/D)=b mod.f,
(b, x,y)=1.

§3. Condition of LY D L¥
Put L = Q(vd, vd), K, = QWd), K, = QWd,) and K = Q(vd,d;). Let

S be a ray class field over K in narrow sense. In order to get the value
of the symbol [d,, d,, p] explicitly, we determine the condition that S is
normal over Q, S2 L and L{ D L¥.

Denote by | the conductor of S/K, and by I.(f) or briefly I, the group
of fractional ideals of K prime to f. Denote by (L/K) and H(S/K) the
subgroups of I, corresponding to L and S by class field theory respectively.
Denote further by £“(S/K) or briefly 8 the group of ideals a of I.(f) such
that a’ = amod. §(S/K), ¢ being the non-trivial element of Gal (K/Q).
Then by [6, Proposition 5.1] we have

(6) Gal (LY/L¥) = I/Y(LIK)R(S/K) .

Since (Iz: H(L/K)) = (L: K) = 2, it is necessary and sufficient for LY 2
L¥ that @(S/K) < H(L/K).

ProrositioN 3.1. Let K be a cyclic extension of an algebraic number
field k with Galois group G of order finite. Let g be a generator of G and
f be a divisor of K which is o-invariant. Denote by S (f) the group of the
ray mod. | in K. Let & be the group of all ideals a of K such that a° = a
mod. Si(f) and let &, be the group generated by all ideals a of K such that
a’ = a and by principal ideals (&) of K such that a° = a mod. {. Denote by
©x the ray class group mod.{ of K, and denote by C(R) resp. C(R,) the sub-
groups of S, which consist of all classes represented by elements of & resp.
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of 8. Denote further by E, resp. E, the group of units of k resp. K. Then
we have the following exact sequence

1—> C(&) —> C(®) —> (B, N Si())/Nx(Ex N Sk(P) ,

where Ny, stands for the norm map of K to k.

Proof. Let ae &, then there exists « in Si(f) such that a'-* = (a) and
Ny e E, N Si(f), and Ny mod. N, ((Ex N Sk(])) is uniquely determined
by a. This induces a homomorphism ¢ from C(®) to (E, N S,(N)/Nx.(Ex
N Sk(f). The kernel of ¢ is equal to C(],). In fact, suppose that ae &
and the class of a is contained in the kernel of ¢. Then N,,x = Ng,E
with Ee Ex N Si(f). This implies « = Ey'~°, where y ¢ K and y* = y mod. {.
Put b = a(y)"*. Then b° = b, which is to be required.

CororLARY 3.2. Let K/Q be a cyclic extension of a prime degree and o
be a generator of Gal (K/Q). Let T be a divisor of K such that {° = { and
assume that every real infinite prime divisors are contained in §. Let S be
the ray class field mod. | of K. Then R“(S/K) is generated by all ideals a
of I.() such that a is a prime ideal of K ramified in K/Q or a is a prin-
cipal ideal (o) of K satisfying «° = a mod. {.

Proof. In Proposition 3.1, we have E, N S,() = {1}, since £ = Q. Then
C(®,) = C(®), which implies (S/K) = & = &,. On the other hand, if «a is
an ideal of K such that a’ = a, then a is a product of prime ideals of K
ramified in K/Q and of ideals of @, because K/Q is cyclic of prime degree.
Thus we have the corollary.

Now let L = Q(Wd,, vd,) and K = Q(Wd,d,) as before. Let ¢ be the
non-trivial element of Gal (K/@Q), and { be a module of K such that {* = f.
Then we have.

ProrosrtioN 3.3. Notation being as above, let S be the ray class field
mod. f of K in narrow sense. Then S contains L and LY 2 L¥ if and only
if T satisfies the following conditions:

(i) T is divisible by the conductor of L/K.

(i) The conductor of S over K is divisible by all prime divisors p of K
such that 9 is ramified in K/Q and is not decomposed completely in L/K.

(iii) A principal ideal () of K is contained in S(L/K) if a° = a mod. f,
(o, 1) = 1 and « is totally positive.

Proof. It follows from the formula (6) that S contains L and Ly 2 L}
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if and only if { is divisible by the conductor of L/K and “(S/K) < $(L/K).
Hence the proposition follows from Corollary 3.2 immediately.

The rest of this section is devoted to get an explicit formula for | to
satisfy the conditions of Proposition 3.3. Notation d,, d,, L and K being
as above, assume that d,, d, are square free. Let further d = (d,,d,) and
dd, = d,d*. Let D, = 4**d,, the discriminant of Q(vd,) for u = 0,1, 2.
Thus #u) = 0 or 1 according as d, = 1 mod. 4 or not. Then we have

(7) D1D2=Dofz’

where f is a rational integer, which coincides with the conductor of L/K,
up to the infinite primes by the theorem of conductor and discriminant.
Clearly

(8) f=24d,

where ¢t = #(1) + #2) — #0). Let 4 be the set of all odd rational primes
p such that p divides d, and satisfies both (d,/p) # 1 and (d,/p) + 1. Put
(9) M=1]»p,

pEA
where p is the prime divisor of p in K. Then the set of these primes p
coincides with the set of odd primes which satisfy the condition (ii) of

Proposition 3.3. Denote by [ the prime divisor of 2 in' K when 2 is ram-
ified in K. We put

(10 fo = 200°dM ,

where 6 =0 or 1 and § = 1 only when the following condition (11) is
satisfied for both d, and d, at once:

(11) t=0, dyx1mod.4, d, =1 mod.8 and d,z=1 mod.8.

Then the case of d = 1 occurs only when the prime divisor of 2 in K
satisfies the condition (ii) of Proposition 3.3 and f is odd. Thus in order
that | satisfies the condition (ii), it is necessary that { is a multiple of f,.

Now denote by d; and d, either one and the other of d, and d,, We
separate the type of the pair (d, d;) by the following table, in which the
module f, is given by (10) and we define a module f, of K according to
the type.
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Table 1
Type Condition for d, and d, T fo
A d,=d,=1 mod. 4 I I
B d;=1mod. 8, d;=1 mod.4
CS d,=5mod.8, d,%1mod4, dd,<0
e s % - 0O 2 < M | dm
CT d;=5mod. 8, d;#*1mod. 4, dd,>0
DS d=d,= —1 mod. 4 4dIMN
4dMm
DT | d;=—1mod. 4, d;,=2 mod.4 2dIMN
ES di=d,=2 mod.4, d,=1 mod. 4 4dMN 4dIN
ET | di=d, =2 mod. 4, d,= —1 mod. 4 2dIm | 2ldIN

ProrositioN 3.4. Let d, and d, be mutually different square free inte-
gers, and put d = (d,, d,), d,d, = d,d®. Let L = Q(Wd,, vd,) and K = Q(+/d,).
Define modules M and §, of K by (9) and Table 1. Let further { be a module
of K invariant by Gal (K/Q), and S be the ray class field mod.§ of K in
narrow sense. Then S 2 L and LY 2 L¥ if and only if | is divisible by
f, and the prime divisor of 2 in K is ramified in S except the case A and B.

Proof. It is necessary and sufficient for S 2 L and L 2 L¥ that f
satisfies the conditions (i), (ii) and (iii) of Proposition 3.3. It was sufficient
for the condition (i) and necessary for the condition (ii) that f is divisible
by f4. Let us show that the condition (iii) is satisfied if { is divisible by
f. Let a be an integer of K, («,f) = 1, and ¢ be the non-trivial element
of Gal (K/Q). Then it is easy to see that a° = @ mod. j, if and only if «
is expressed as follows with some rational integers x and y.

(x + dyvdy)/2, x=y mod.2 for the type A;
a = {x + dyvd, for the type B, C;
x + 2dyvd, for the type D, E .

Then since d,d, = d,d?, we have

(x* — dd,y)/4, x =y mod.?2 for the type A;
No = {x* — d.d,y* for the type B, C;
x* — 4d,d,y* for the type D, E;
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where N stands for the norm from K to Q. We claim (d;/Na) = 1 for all
the types. For the type A, B or C, we have d; = 1 mod. 4. Hence (d,/Na)
= (Ne/d;) = 1. For the type D, we have (f,2) #1. Hence (o, f) =1
implies (x,2) =1 and x* =1 mod. 8. Hence Na = 1 mod. 4, which implies
(d,/Na) = (Ne/d) = 1. Finally for the type E, we have d, = 2d; with
(d,2) = 1. Moreover we have Na = 1 mod. 8 by the same way as for the
type D. Then (d,/Na) = (2/Na)(d;/Na) = (Ne/d;) = 1. Thus we have proved
that f satisfies the condition (iii) of Proposition 3.3, if { is divisible by f,.
Except for the type DT and ET, we have f, = {,. Hence it is also neces-
sary for S2 L and LY 2 L¥ that | is divisible by f,. We claim that it
is necessary also for the type DT and £7. First we treat of the type DT.
Then 2=1*in K. Put { = [*"dIR with ¢ < 4. Then « being as above, we
have «° = « mod. {' if and only if y =0 mod.d. Thus Na = x* — d,d,)"
When both x and y are odd, we see that No = —1 mod. 4. Then we have
(d;/Ne) = —(Na/d;) = —1, which does not satisfy the condition (iii) of
Proposition 3.3. Hence it is necessary that g > 4. Next we treat of the
type ET. We have also 2 =1? in K. Put { = 2dI. Then as above, we
see that a° = @ mod. |’ if and only if y = 0 mod. d, and then Na = 5 mod. 8
for odd x and y. This implies (d,/Ne) = —1. Hence the condition of the
theorem is necessary.

Remark 3.5. There does not necessarily exist a ray class field over
K with conductor . We have to pay special attension to the type CT
that there does not necessarily exist a ray class field S over K with a
conductor * when g < 3 and (Eg: Ex N S(I#) = 2+,

§4. Genus field in a ray class field of an abelian field

In order to get an explicit expression for the value of [d,, d;, p] we
need to know the genus field L¥ explicitly. For the sake of convenience
we treat of the genus fields in general at first (c.f. [4]).

Let & be any algebraic number field of finite degree, and k&, its com-
pletion at a prime p. For a non-negative integer m we denote by U,(m)
as before the group of all units « of &, such that « = 1 mod. p». Then
U,0) is the group of all units of %, which we denote also by U,. Let K
be an abelian extension of k of finite degree, and P be a prime divisor of
pin K. Let T be the ramification group of  in K/k. For se T let

12) Ug(0) = Max {i|e’ = « mod. B**! for all integer « of K} .
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Then the inverse function ¢g' of Hasse’s function ¢, is defined by
1) ga'() = (3 min {os(0), )

where e is the order of T.

Denote by N; the norm map from K, to £, Then it is well-known®
that

(14) NgB Ugs(m) = NgB Ug!; ﬂ Up(i) )
when ¢u(0 — 1) < m < oy(i).
Now [4, Proposition 2] is generalized as follows.

THEOREM 4.1. Let k be an algebraic number field of finite degree and
K be a class field over k corresponding to an idele group H of k. Let | =
[T B™ be a divisor of K, and S be the ray class field mod. f over K. Assume
that S is normal over k. Denote by S, the maximal abelian extension of k
contained in S, and by H* the idele group of k corresponding to S,. Then
we have

H*=Fk[[(HN UG,

where k* denotes the principal idele group of k, and i, is the integer deter-
mined by

oui, — 1) < my < 4G -
Proof. Since H(S/K) = K* [[4 Ug(my), we have
H* = k*Ny, H(S|K) = k* [!;[ NyUg(my) .
Moreover since H N U, = N,U,, we have NyUy(my) = N U, N UG,) = H
N U, by (14), which is to be proved.

When %k = @, the rational number field, we have more explicitly the
following theorem.

TaHEOREM 4.2. Let K be an abelian extension of Q of finite degree. Let
f= T]s %™ be a module of K which is invariant by Gal (K/Q), and S be
the ray class field mod.{ over K in narrow sense. Let i, be the integer
such that ¢g(i, — 1) < my < ¢4(,), and put f= [[,p’». Then the genus

5) C.1. for instance, S. Iyanaga [9, Ch. V, § 2].
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field K¥ of K with respect to S/Q is given by
K¢ = KQ(fp.) ,

where K}¥ is the genus field of K in absolute sense and Q(fp.) is the ray
class field mod. f over Q in narrow sense.

Proof. Let H* be the idele group of @ corresponding to K. Then
H* = Q[ H N U,@)0,.0)

by Theorem 4.1. Clearly

@ I HN VN0, (1) < @ [TEN U, () 0 @ [T Un(@,) Uy (D) -
On the other hand, let

@ feQ, uellHNU),.M, vell UE)U0,.01)
and au = fv. Then since
@ NI 600 ={1},

we have

u=a'pve @ 1;[ U,i,)U, (1) N 1;[ HnN U, 1) S l;I U,(i,)U,..(1).

Hence
H* =@ [ (HN U)U,. (1) N Q LI U, U, (D) .

p

This implies the theorem by [4, Proposition 2].

Let us determine f of Theorem 4.2 explicitly when K = Q(+/d,), where
d, is a square free integer. In this case we have by (12), for a non-trivial
element ¢ of T,

0 if 42 and Pld, ,
Ug(o) = 41 if |2 and d, = —1 mod. 4,
2 if B|2 and 2|d, .
Hence by (13),

v when T = {1},

(v + Min {0, v}) when p # 2 and p|d,,

(v + Min {1, v}) when p =2 and d, = —1 mod. 4,
(v + Min {2, v}) when p = 2 and 2|d,.

o3'(V) =
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Now we have

TurEOREM 4.3. Let K = Q(Wd,) be a quadratic field and f = [[ $™* a
module of K which is invariant by Gal (K/Q). Let S be the ray class field
mod. | over K in narrow sense, and K¥ be the genus field of K with respect
to S/Q. Let p be the rational prime divided by B and put

(15) f=1lp",
where i, is determined as follows:
i, =m, when p is unramified in K/Q ;
i, =m, when m, = 1;
i, =m, when p = 2, 2|d, and m, = 2;
m,2 < i, < (m, + 2)/2 when p #+ 2 and p|d, ;
(m, + D21, < (m, + 3)[2 when p=2,d,= —1 mod.4 and m, > 1;
(m, + 220, < (m, + 4)2 when p = 2, 2|d and m, > 2.

Then we have
¥ = K}Q(fp..) ,

where K} is the genus field of K in absolute sense, and Q(fp..) is the ray
class field mod. f over Q in narrow sense.

§5. Explicit expression for [d, d,, a]

TueEOREM 5.1. Let d,,d, be a pair of square free integers. Let d =
d,, dy), dd, = d,d* and K = Q(v/d,). Denote by A = A(d,, d,) be the set of
odd prime divisors p of d, which satisfy both of (d,)p) + 1 and (d./p) + 1.
Put

m=1][p.

ped
We separate the type of the pair (d,, d,) by Table 1 in §3, and put
f = 2dm ,
where v is given by
0 for the type A, B ;

(16) y =12 for the type CS, DS, ES ;
3 for the type CT, DT, ET .

Let D, be the discriminant of Q(Wd,) for i =0,1,2, and let D, = [] q* be
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the decomposition of D, to prime discriminants®.

For a square free positive integer a, the symbol [d,, d,, a] is defined when
each rational prime divisor p of a satisfies the following conditions:

(i) (dip) = 1 when p is not a divisor of D,, for i =0, 1, 2.

(ii) (g¥/p) =1 for all qF such that p + q;.

(iii) p=1 mod.f.

When the conditions are satisfied, we have

0.6, (%)= (%),

where b is any solution of the followiﬁg Diophantine equations, provided
that (b, 2°dd,) = 1, (b,x,y) =1 and m, is any integer such that mm, =1
mod. 8d:

4ab* = (2b + dmx)* — d,d,y* for the type A ;
ab® = (b 4+ dmx)* — dd,y* for the type B ;
ab’ = (b + 2dmx)* — 4d,d,y* for the type CS;
ab® = (b + 4dmx)* — 16d,d,y* for the type CT, DT, ET;
ab® = (b + 2dm(2x 4+ m,y))* — 4d.d,y* for the type DS, ES .

Proof. Let p= 0 for the type A or B; p =1 for the type CS; and
u¢ = 2 for other type. Define divisors It and f of K by

M=%, f=2dMm,

where 8 runs over all the distinct prime divisors of p in K for pe A.
Let S be the ray class field mod.{ over K in narrow sense. First we
claim that L} = K;*Q(fp..), where K} is the absolute genus field and Q(fp..)
is the ray class field mod. f over @ in narrow sense. Let {= [] $™» be
the prime decomposition of { in K and i, be the integer determined from
m, by Theorem 4.3. If p + 2, then m, =1 or 0 and hence i, =1 or 0
according as p|f or not. If p = 2 we have the following table for m, and i,

Type m, i,
A, B 0 0
CS, DS 2 2
CT, DT 4 3
ES 3 3
ET 6 4
6) This means that q;‘ =(—-1)9-/%q for a prime q;+2 and ¢ =—4 or 8 for

q; =2 (c.f. Hasse [8]).
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Regarding 2|d only for the type ES or ET, we have [] p» = 2°dm, hence
L¥ = K¥XQ(fp..) by Theorem 4.3.

It is easy to see that K} D Q(2) except the case CS. This implies
that the prime divisor of 2 is ramified in S except the case A and B, and
Proposition 3.4 implies L’ 2 L¥, because { is divisible by f,.

Now the conditions (i), (i) and (iii) of the present theorem is equiv-
alent” to that p is decomposed in L¥ in prime divisors of degree 1.
Moreover the condition (iii) implies (p,{) = 1, since f is divisible by f.
Therefore the symbol [d,, d,, p] is defined when p satisfies the conditions
(i), (i1) and (iii) of the theorem. When that is the case for every prime
divisors p of q, it follows from Proposition 2.2 that

st (4) - (%)

where b is any integer for which there exist integers u and v such that

v 4ab* = w* — D@,

(18) Hu+v/D)=b mod. {
and

(19) (b,u,v)y=1.

Let us reduce the condition (18) to a rational expression.
First we treat of the case d, = 1 mod. 4. Then since I |+/d,, the con-
dition (18) is equivalent with © — 2b = 0 mod. m and

%(u—%——v)—i—vli{g"—zo mod. 2¢d .

Moreover it is easy to see that the condition is equivalent with v = 2¢dy,
u — 2b = mt and mt = 2*dy mod. 2**'d with some integers y and ¢ Let
m, be an integer such that mm, = 1 mod. 2**'d. Then mt = 2*dy mod. 2**'d
if and only if ¢ = m2dy + 2***dx with an integer x. Hence the condition
(18) is equivalent with v = 2*dy and u = 2b + 2*dm(m,y + 2x). Since d’d,
= d,d,, we have 4ab* = (2b + 2*dm(2x + m,y))* — 4*d.d,y*, and this implies
the theorem for the type A, DS and ES.

Secondly we treat of the case d, = 1 mod.4. Then since D, = 4d,,
replacing u by 2u, the condition (17) and (18) are equivalent with ab* =

7) C.1. Hasse [8].
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W — dy* and u + v/d, = b mod. f. The last congruence is equivalent with
v=0 mod.2*d and u = b mod. 2"dm. Put u = b + 2*dmx and v = 2+dy
with integers x and y. Then we have ab® = (b + 2*dmx)*? — 4*d,d,y. This
implies the theorem for the type B, C, DT and ET, and now the proof of
the theorem is completed.

DerFiniTION 5.2. For a triple of integers d,, d, and a, we call [d,, d,, a]
is strictly defined (in the sense of Theorem 5.1), if the square free parts
of d, and d, satisfy the conditions (i), (ii) and (iii) of Theorem 5.1.

Remark 5.3. There are triples d,, d,, @ for which the symbol [d,, d,, a]
is not defined strictly in the sense of Theorem 5.1, but defined in primitive
sense (Definition 1.1). Especially by reason of Remark 3.5, it can offen
occur for the type CT. In fact, let K = Q(Wd,d, and suppose that
(Ex: Ex N Sg(I*)) < 2¢7* in the notation of Remark 3.5. Then [d,, d,, a] is
defined in primitive sense even if the condition v = 3 is replaced by v = 2
for the type CT in Theorem 5.1. When that is the case, the value of
[d, d,, a] is obtained by replacing the Diophantine equation by ab®=
(b 4+ 2dmx)* — 4d,d,y* in Theorem 5.1. For instance [3, 13, 61] is not defined
strictly in the sense of Theorem 5.1, but it is defined in primitive sense
and [3, 13, 61] = —1. In this case, the fundamental unit of Q(v3-13) is
25 + 44/3-13, which is congruent to 1 mod. 4.

When the special case where d, = —1, we can express the value of
the symbol by means of biquadratic residue symbols as follows.

THEOREM 5.4. (i) Let p and q be rational primes such thatp = q =1
mod. 4 and (q/p) = 1. Then [—1, q, p] is defined, and we have

o= (2)(2).

(ii) Let p be a rational prime such that p = 1 mod. 8. Then [—1, 2, p]
and [—1,p, 2] are both defined and we have

(-12p = [-Lp2 = (2) (2)
2/4\p /4
where (p[2), is defined by setting its value 1 or —1 according as p =1 or
—1 mod. 16.
(iii) Let p be a rational prime such that p = 1 mod. 4. Then [—1, p, p]
is defined and we have
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unn= (5.~ ().
b/ p
Proof. It is clear by Theorem 5.1 that the symbols are all defined.
(i) This follows from the explicit formula of the symbol in Theorem
5.1 and [6, Proposition 5.4]*. Another direct proof from the definition of
the symbol is as follows. Let L = Q(+/—1, 4/ q) and B be the subfield of
the ray class field in narrow sense mod. g over @ of degree 4. Let A be
the subfield of L(*4/¢)B which is quadratic over L and different from both
of L(*4/q) and LB. Then / is non-abelian central over @, and we have
A=LY 2D Lf =L Moreover let K= Q(,/—¢q) and f be as in Theorem
5.1 for a pair (—1,q). Then f=1 or 4 according as ¢ =1 or 5 mod. 8.
Let S be the ray class field mod. f in narrow sense over K. Then we have
A< S. Now let p be a prime divisor of p in L¥, which is of degree 1
since the symbol [—1, g, p] is defined. Let further P be the prime of L
divisible by p. Then we have

o - (BI) - (41

- (PRI - ().
P P p/i\q/s
(ii) Let L = Q(v—1,+/2), and B be the cyclotomic field of the 16-th
roots of unity. Let A be the subfield of L(*+/ 2)B which is quadratic over
L different from both of L(*4/2) and LB. Then A is non-abelian central
over @, and we have 4 = LP 2 L¥ = L. Moreover let K = Q(v—2) and

f be as in Theorem 5.1 for a pair (—1,2). Then f = 8. Let S be the ray
class field mod. f over K in narrow sense. Then we have 4 & S. Now

let 9 be a prime divisor of p in L¥, and P be the prime of L divisible by
p. Then we have

- () - (48) - (4P

We have further ((B/L)/P) = 1 if and only if p = 1 mod. 16, which is equiv-
alent, by definition, that (p/2), = 1. Hence [—1, 2, p] = (2/p){p/2),. The
formula [—1, p, 2] = 2/p).(p/2), is proved in the same way as (i).

(iii) Theorem 5.1 implies [—1, p, p] = (p/b), where b is a solution of
Diophantine equations pb* = x* 4 py* or pb®* = x* + 4py* according as p=1

8) C.f. also E. Lehmer [11] and P. Kaplan [10].
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or 5 mod. 8, provided that (b,x,y) =1 and b # 2. These equations are
equivalent with b* = px? + »* or b* = px + 4y* by setting x = px,. Hence
we have (p/b) = (b/p) = (b*[p),, which is equal to (¥*/p), = (y/p) = (pfy) =1
or (4y*/p). = 2/p)y/p) = 2/p) = —1 according as p = 1 or 5 mod. 8.

§6. Inversion law

We shall show in this section that a simple relation holds between
[d,, d,, d,] and [d,, d,, d;], when both of them are defined. First we prepare
the following

THEOREM 6.1. Let a and d be two positive square free odd integers
relatively prime. Suppose that (q*/p) = 1, (@*/q) = 1 and (d/p) = 1 for all
primes p dividing a and for all primes q dividing d, where m* = (—1)™""2m
for any odd integer m. Then we have the following formulas.

d*
(ﬁ) when a =1 mod. 4,
(i) fla5d4a={ "
(9——>4 when a = —1 mod. 4 and d = 1 mod. 4.

d
(ii) 0. 2d, o] = (ﬁ) ’ if‘p‘ E 1 mod. 8 for all primes p
a /s dividing a .

d

if d=1 d.8and p=1 d. 8
) (2. d, 2] (_z_a_) , if mod. 8 and p mo
4

for all primes p dividing a .

Proof. (i) By Theorem 5.1, we have [a*, d*, a] = (a*/b) = (d*/b),
where b is a solution of the Diophantine equation 4ab®* = x* — a*d*y’.. Put
¢ = a*/a and x = ax,. Then the above equation is replaced by 4&® = ax?
—ed*y’. Suppose ¢ =1 mod. 4. Then ¢ = 1 and we have (¢*/b) = (bja) =
(b’fa), = (—4d*y*|a), = (—1/a)(2/a)(d*[a)(y/a) = (d*/a)(aly) = (d*/a), Next
suppose that ¢ = —1 mod. 4. Then e = —1 and d = 1 mod. 4. Hence we
have (d*/b) = (b/d)=(b’[d), = (4axi/d), = (2[d)a/d)(x,/d) = (—1/d)(a/d)(d[x,)
= (a*/d),.

(ii) Assume that ¢ =1 mod.8. Then by Theorem 5.1, we have
[a, 2d, a] = (a/b), where ab* = x* — 2day* with integers x and y. Put x =
ax,. Then b* = ax} — 2dy*, and we have (a/b) = (b/a) = (b*/a), = (—2dy*|a),
= (~1/a)(2d/a)(y/a) = (2d]a)(aly) = (2d]a),.

(iii) Assume that d =1 mod.8. Then Theorem 5.1 implies that
[—2a, d, 2a] = (d/b), where b is any solution of Diophantine equation 2ab*
= x* 4+ 2ady?, provided (b,x,y) =1 and b # 2. Put x = 20x,, Then »* =
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2ax? + dy,. This implies (d/b) = (b*/d), = (2ax}/d), = (2a/d),(x,/d) and further
(x,/d) = (d|x) = 1. Hence we have [—2q,d, 2a] = (2a/d),, On the other
hand [2q, d, 2a] = [—2q, d, 2a][—1, d, 2][—1, d, a], and Theorem 5.2 implies
[—1,4d,2] = (d/2),2/d), and [—1,d,a] = (d/a),(a/d),., Hence we have
[2a, d, 2a] = (2a/d)(d[2),(2/d)(d|a)(a/d), = (2a/d)(d/2a), = (d/2a),. Thus the
theorem is proved.

Now we have the following inversion formula.

THEOREM 6.2. Let p,, p, and p, be odd prime numbers which are rela-
tively prime. Suppose that p, = p, = 1 mod. 4. Then we have

(1) [ipbpzap?,] = [ipl,p:i’pz] )
(ii) {ipsappr] = [ips;pz,px] >

when the both sides are defined strictly in each formula.

Proof. (i) Put p¥ = p, or —p, according as p, =1 mod.4 or not.
Put further A, = [p,, p,, p:l, B, = [p;, ¥, s, A: = [py, ¥, P, B, = [py, Py P,
and B,, = [p, p.p¥, p.p,]. If A, and A, are both defined strictly, then B,
B, and B,, are also defined strictly, and A,B,A,B, = B,; by Theorems 5.1
and 1.7. Moreover Theorem 6.1 implies B, = (p,/p,). or (p¥/p,). according
as pf = p, or not, and B, = (p,/p,).. In the same way we have B, =
(p:/p.p2); or (p,p¥[p,), according as pf = p, or not. Hence B,B; = B,, or
Bza(p1/p2)4(p2/p1)4 according as p;;k =p, or not. Since (p1/p2)4(p2/P1)4 =
[P, —1, p.] by Theorem 5.4, it follows from Theorem 1.7 that [p,, p,, p,] =
[p1, D3y o). If [—py, P2y ps] is defined strictly, then necessarily p, = 1 mod. 4.
Hence

[—py, D2, Pl = [—1, Py, Pl D1, P2, 5] = [—1, Py, PP, Doy P2] = [— D1, Py, 2] -

() Put A, =[-p,p,pl, B, =[—pyp,0l, A =[—Ds P, 0, By =
[—ps, D2, P2l and B,; = [—p,, p,p., D:p.]. Suppose that A, and A, are defined
strictly. Then B, B, and B,, are also defined strictly by Theorem 5.1, and
we have A,B,A,B, = B;,, Moreover B, = (—py/p,),, By = (—ps/p,), and B,
= (—ps/p:p.)s by Theorem 6.1. Hence A,A, =1, namely [—p,, p,p.] =
[—ps, Py, p]. Moreover [—1, p,, p.] is defined strictly and equal to [—1, p,, p.]l.
Hence Theorem 1.7 implies [p, pi, p.] = [Py, 22, D1

When one of p, is 2, we have the following theorem in the same way
as Theorem 6.2 by applying (ii) and (iii) of Theorem 6.1.
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TaEOREM 6.3. Let p, and p, be mutually different odd prime numbers.
Then we have

(1) [£2,p,p] =[£2,psp],
(ii) [ipu 2,p2] = [ipu Ds, 2] s

when the both sides are defined strictly in each formula.

Remark 6.4. Theorems 6.2 and 6.3 cover the possible inversion formulas
except the case where only one of p, (i = 1, 2, 3) is congruent to 1 mod. 4.
For the exceptional case, say p, =1 and p, = p, = —1 mod. 4, it is con-
jectured with numerical evidence® that the formula [—p,, p;, p;] =
[—p,, Ps, pi] holds, which is only the possible case. However the author
has no proof as yet.

§7. Table of [d,, d,, p]

In the following we give a table of the values of the symbols [d,, d,, p]
for small numbers d,, d, and p, which are computed according to Theorem
5.1. In order to get the values, it is fundamental by Theorem 1.7 and
Proposition 1.8 to have the values of [—1, p,, p], and [£p,, £p,, ps] for
prime numbers p,, p, and p,. In the following table we have the values
of the symbols which are defined strictly, p, running over the prime numbers
smaller than 50 for i =1, 2, 3.

We use the following notation:

d, d,, p = prime number with sign +1 or d, = —1.
R = [d,, d,, p], which is equal to (d,/q), ¢ determined as below .
m = |df*d$?|, where e, = 1 when (d;/d) + 1 for i #j (i,j = 1, 2),
and e, = 0 otherwise .
g, x,y = the solution of the following Diophantine equation such
that y is the smallest positive possible integer and q is the
smallest possible prime number for this y, provided ¢ < 3571.

4pg* = (29 + mx)* — d.d,y* for the type A,
rq* = (@ + mx)’ — d,d.y* for the type B,
pq* = (q + 2mx)* — 4d.d,y* for the type CS,
pq® = (g + 4mx)* — 16d.d,y* for the type CT or DT,
pq* = (@ + 2m(2x + m,y))* — 4d,d,y" for the type DS,

9) C.1. Table of §7.
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1 mod. 8, (g, x,y) = 1 and (q, 2’d,d,) = 1, provided § = 0 for

where mm,

1 otherwise.

the type A or B, and ¢

Type m

R

41

31

47

17

—23
-31

41

—47

11
11
13
19
11

23
-31
—47

—10

20

47
—47

17
17
—23

—16

19

31

28
—17

41

23
—23
—23

11
31

41

47

30
=17
—14

41

31
—31
—-31

13
29

41

47

37
37
—23
—47

13

—11

13
37

13

CS

29

DS

CcS

29

DS
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Type m

R

d,

DS

—41
—11
—19

11

11

29
—29

11

CS

11
17

CS

DS

—31

88

31

41
—41

13
11

CS

41
—41
—19

11

31

DS

13
17
11

CS

11
—11

CS

31
-31

19
31
—31

66
104

41

59

41

—31
—47

11

-31

11
145

53

—47

37

11

—11
—19

11
11

19
38

37

14

47

11

37

-11

DS

13
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Type m

R

CcS

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
.13

13
—13

12

17

DS

17
—17

10

13

DS

CS

29
—29
—13

DS

41

DS

13
23
—23

27

13

DS

11

CcS

43
—43

11

29

17
—17

13
13
—13
—13

58

53
19

CcS

33

17
—17
—23

DS

13
13
13
—13
—13

240 12

23

29
—29

14
14
30
44
52
21

37
37

CcS

CS

29
—29
—43

23

DS

17

13
17
17
—23

43
—43

13
11
61

53
26

29
—43

CcS

23

DT

17

DT

CS

17
17

13
—13

DS

38

13
13

17
17
17
17

17
—17

18
14
22
12

DS

17
—-17

31

DT

17

17
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Type m

R

46

DT

17
17
17
17
17

—17

DT

19
—19

14
10
18
70

11

41

CT
DT

43
—43

CcT
DT

89

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

47
—47

288

43

17
—-17

13
13
—13
—13

16
32
36
448
—32

19
19
43

(O]

17
—17

DS

19

CT

43
—43

13
13
17
17
17
17
17
17
—19
—19
—43

23

27

19
—19

11

29

43
—43

37
440

16

19
53
29

47
—47

268

CcS

43

—13

29

CcS

47

80

71

CcS

47

19
19
19
19
19

—19
—31
—19
—31
—-19

30

11

54
17
13

11.

17

13

76

23

23
23
23
23

18
14
19

—23

41

29
—23
—23

11

23
23

-11

17
178

13
13

23

23

29
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Yy

Type m

R

23
23

—43

13
—23
—23

70
250

11
59

29

14

23
23

41
—43

158

23

41

62

29

CcS

29

14
—16

11
11

DS

29

DS

29

15
94
34

CS

29 —

13
—13

53

17

19

DS

29

CcS

29 —

29
—29

DS

29

83

29
29

29
—29

11
11
148

cS

(O]

29

29
—29

25

17

DS

29

29

23
—23
—29

29

17

DS

29

23

29 —

29
—29
—23

15
41

11

29

29

13
13
13
—13
—13
—23

25

29

29
—29

17
17
48

53
53
11
11

(ON]

29

CcS

29

29
—29

DS

29

36

29

29

22

31

—23
-31

24
16

31

31

41

15

31

34

11

31

—-31
—43
—11

31

17

31
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Type m

R

25

31

-31

38

31

41

34
1014

41 31 —

—23
-31

6

113

31

41
—43

177

23

31

41

13
19
137

DS

37
37
37
37
37
37

CS
DS

37
—37

33

197

10

41
—41

DS

12
17

CS

17

DS

37
37
37
37
37

11
—11
—37

17

CS
DS

60

37
47
—47

11

DS

23

37

13
27

37
37
37

11
37
—47

424 12

47

37

37
47
41
—41

—-11
—11

23
13
269

CS

37
37

196
—116

37
37
—37
—37

21

CS

37
37
37
37

117
911
—25

31

41
—41
—47

19 47

31

DS

37

17 19 10
17 23

DT

41

DT

41

CS

41

15
27

11
19

DS

CcS

41

37
—37

DS

41
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Y
20

Type m

R

308

61

41

41
—41

DS

41

CcT

41

11

DT

CcS

41

DT

41

61

413

DT

41 —

23
—23

24
19

41

13

DT

41

31
—31

41

38

41

41
—41

13

DT

41

34
331

41

41
—41

37

29

DT

41

29

DT

41

43
—43

11

CcT

41

83
11

DS

41

23
—23

20

41

15
205

CcT

41

31
—31

19

41

35

41

41
—41

15
30
71

11

CcS

41

11

41

41
—41

10

DS

41

66

263

DS

41

43
—43

10

29

19

cT

41

29
326
456

41

31

43

41 41

23
—23

16

59
41

41

41
—43

17
282

CS

41

23

41 41

31
—31

40

20

1412

113

41

41
—43

23

CcS

41

31

32

73
31

41 41

—41

37

46

CcS

41

37
—37

92

31

41

41
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d, d, P R Type m q z Y
—37 —41 41 -1 DS 1 83 215 10
41 43 41 -1 B 1 11 71 1
41 —43 41 -1 A 1 19 85 5
-3 -7 43 -1 A 3 5 19 3
-3 13 43 1 A 1 43 366 54
-3 —19 43 1 A 3 7 50 18
-3 —43 43 -1 A 3 2 13 3
-7 —43 43 1 A 7 11 46 18
13 17 43 -1 A 1 5 62 2
13 —43 43 1 A 1 17 138 6
17 —19 43 -1 A 1 3 29 1
17 —43 43 -1 A 1 7 29 3
41 —43 43 —1 A 1 19 177 3
2 17 47 1 B 1 47 1090 187
2 —23 47 1 B 1 31 168 11
2 —31 47 -1 B 1 3 16 1
2 —47 47 1 B 1 7 40 1
—11 37 47 1 A 1 3 2 2
17 —19 47 -1 A 1 3 31 1
17 —43 47 -1 A 1 3 25 1
17 —47 47 1 A 1 53 270 22
—23 —-31 47 -1 A 23 11 6 2
—23 —47 47 1 A 23 71 190 134
37 —47 47 -1 A 1 31 361 1
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