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A PRIME DECOMPOSITION SYMBOL FOR A NON-ABELIAN

CENTRAL EXTENSION WHICH IS ABELIAN

OVER A BICYCLIC BIQUADRATIC FIELD

YOSHIOMI FURUTA

Introduction

In a previous paper [6] we had some criteria for the prime decomposi-
tion in certain non-abelian extensions over the rational number field Q,
and as its special case we had a reciprocity of the biquadratic residue
symbol. The reciprocity was obtained by using a descent method of the
prime decomposition for a central extension over Q which is abelian over
a biquadratic field Q(\Γ^Λ, V^) In the present paper we study on the
case over a biquadratic field Q(Vdu Vd2) in general. We define a symbol
[d19 d2ίp] which expresses the decomposition law of a rational prime p in
a central extension mentioned above.

In 1939, L. Redei [12] defined a symbol {al9 α2, α3} which expresses the
prime decomposition in a certain non-abelian extension over Q of degree
8, and found its multiplication and inversion properties. In 1960, A.
Frohlich [2] defined a symbol [au α2, α3]c, where c is a factor system class
associated with a group of order 8. Redei's symbol is essentially the same
as this symbol for a certain fixed value of c. Multiplication and inversion
formulas and further an explicit expression of the symbol are also stated
in [2] without proof. Though the explicit expression is not so simple, but
it is remarkable that the expression is given in terms of values of rational
residue characters associated with certain rational ternary quadratic forms.
Redei's symbol and Frόhlich's symbol are defined as a quadratic residue
symbol in the quadratic field Q(Vαϊ) or in the biquadratic field Q(^a^, V^).

In the present paper we define a symbol [dl9 d2, d3] by treating certain
large abelian extensions of Q(Vdl9 \/d2) which are central over Q. Then
our symbol is also essentially the same as Redei's and Frδhlich's up to a
part associated with abelian extensions over Q. Using a descent method

Received February 19, 1979.

79



80 YOSHIOMI FURUTA

stated in our previous paper [6], we can express the value of the symbol

explicitly and rather simply in computable0) formula (Theorem 5.1). This

explicit formula implies a simple inversion formula (Theorems 6.2 and 6.3,

Remark 6.4 which contains a conjecture). The explicit formula implies

also other formulas related with rational biquadratic residue symbols

(Theorems 5.4 and 6.1).

§ 1. General treatment of [d19 d2, a]

For an algebraic number field F, we denote by JF, Fx and UF the

group of ideles, principal ideles and unit ideles of F respectively. Denote

by F* the multiplicative group of non-zero elements of the completion F9

of JF at a prime p, and by Up the group of units of Fp, which are embedded

in JF as usual. For a divisor m of F, denote by mp its p-part: m = Π*™*-

Denote by UF(m) the group of elements u of UF whose ^-component np =

1 mod.υ mp. For an extension Ljk of finite degree, we put H(Ljk) =

kxNL/kJL9 where NL/k stands for the norm map.

Let L be a Galois extension of k, and M be a Galois extension of L

which is normal over k. Let Mo be the maximal abelian extension over

k contained in M. We denote by L%/lc the genus field of L with respect

to M/k, namely L%/k = LMQ. We denote further by L^llc the central class

field of L with respect to M/k, which is, by definition50, the maximal field

ΊJ such that L Q L'QM and G&l (U/L) is contained in the center of

Gal (L'/k). It follows from class field theory that

H(L*/kjk) = k*NL/kH(M/L) ,

( 2 ) H(L$/kIL) =

where Δ = d(L/k) is the submodule generated by 1 — σ of the group ring

of Gal (L/k) over the ring of integers, σ running over Gal (L/k).

When the ground field k is the rational number field Q, we denote

simply by L% and L$ instead of L%/Q and L$/Q respectively. Our purpose

in this paper is to study the decomposition criteria of prime ideals in

L$IL$, when L is a bicyclic biquadratic field Q(\/dl9 Vd2). For this purpose

we define a symbol [d19 d2, a] as follows at first.

0) In § 7 we add a table of values of the symbol, which are computed by machine.
1) When p is an infinite prime, the congruence np = 1 mod. p stands for it* > 0

or Up Φ 0 according as p is real or complex.
2) See [5].
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DEFINITION 1.1. Let dl9 d2 be a pair of rational integers such that

L = Q(Vdu Vd2) is biquadratic over Q, and let p be a rational prime. We

call the symbol [du d2, p] is defined (in primitive sense), when there exists

a ray class field R over L in narrow sense3) such that R is normal over

Q, Lg} 2 L%, and a prime divisor p of p in L% is of degree 1 and unramified

in &gjL%. When that is the case, we set [dl9 d2}p] = 1 or — 1 according

( r ( i ) / r * \
— R ' R I is equal to the identity or not.

P '
For the sake of simplicity, we identify hereafter the Artin symbol and

its character when the extension is quadratic. Then we have

(
For a rational integer a with the prime decomposition a = ± f] pf,

we put

[dl9 d2, a] = Π [dud^PίY* ,

when [eίj, <22, A ] is defined for each prime pt.

Remark 1.2. For any bicyclic biquadratic field L = Q(Vdu Vd2), we

have US ^ L% iΐ R is sufficiently large (c.f. S. Shirai [13, Theorem 29]),

and when that is the case, Lg} is quadratic over L%.

Remark 1.3. Suppose that [dί9 d29p] is defined. Then its value does

not depend on the choice of a ray class field R. In fact, for i = 1, 2, let

Rt be a ray class field over L in narrow sense defined by \t such that i?^

is normal over Q and L% 2 ί^r Let f̂  = f] p^ * be the prime decomposi-

tion for i = 1, 2, and let f3 be the least common multiple of ^ and f2: f3 =

f] |Df 3, where eίf8 = Max(etfl,et>2). Let i?3 be the ray class field over K

defined by f3 in narrow sense. For a prime divisor p of L, denote by Up(e)

the group of local units u at p such that υ u = 1 mod. pe, and denote by

2V, the local norm map. Then since H(RJL) = LxC/L(fί), we have H(L%JQ)

= QxNL/QUL(\i) = Qx Π NPtUPt(ettί) for i = 1, 2, 3. Moreover since we can

suppose that f 4 contains a real infinite prime if there is such one, we have

H(L%JQ) Π H(L*JQ) = i/(L*3/Q). Hence L*3 = L*XL*2. Thus R3 3 Lg> 2

WXL%* 2 Lί,. This implies Lg> = Lg>LS, and Lg> 2 £S3> because (Lg: L*3)

^ 2. Similarly Lg> = L*JL% Hence Lg> = LgJLgJ. Now assume that p

3) This means that R is defined by a divisor which contains all infinite primes of
L (or equivalently, all real infinite primes of L).
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has prime divisors pt resp. p2 of degree 1 in L%t resp. L%i9 and unramified

in L(

R

V)JL%1 resp. L(£)JL%2. Then p has also a prime divisor p8 of degree 1 in

L%3 and unramified in L(^)JL%3. Therefore we have

for i = 1,2.

The following proposition follows immediately from the definition.

PROPOSITION 1.4. Suppose that [dί9 d2, a] is defined. Then

[dl9 d2, a] = [d29 dl9 α],

[dl9 d2, a] = [d19 d2d\ a] for any integer d ,

[dί9 d29 a] = [dl9 dxd29 a].

As a special case of [6, Proposition 5.1], we have

PROPOSITION 1.5. Let L = Q(Vdί9 Vcζ) be a bicyclic biquadratic field,

and K be a quadratic field contained in L. Let M be an abelian extension

of K which contains L and is normal over Q. Let 21 be an ideal of L% =

K$9 and a be the norm of 21 to K. Assume that a is prime to the conductor

of MjK. Let b be an ideal of K such that h*'1 = αmod. $Q(M\K)9 where σ

is the non-trivial automorphism of K over Q, and $Q{MJK) is the congruent

ideal group corresponding to MjK. Then

-(Llκ)
21 / V E> /

Remark 1.6. Let L, R9 Lg be as in Definition 1.1, and K be any quad-

ratic field contained in L. Then since Gal (Lg/L) is contained in the center

of Gal (L^jQ), it is also contained in the center of Gal (L^jK). Now since

L is cyclic over K9 L^ is abelian over K.

THEOREM 1.7. We have

[d19 d2, a] [dί9 dz, a] = [d19 d2dZ9 a],

when the symbols are all defined.

Proof. Put dA = d2dj(d29 dz)\ Let Lt = QWdu VcQ and Kt = Q(*Jd,d%)

for i = 2,3,4. Moreover let Rt be a ray class field over Lt in narrow sense

such that Rt is normal over Q and Lf} 2 Lf, where Z4υ resp. Lf is the
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central class field resp. the genus field of Lt with respect to RJQ. Put K

= Q(Vd^). Then each L^ is abelian over K by Remark 1.6. To prove

the theorem, it is sufficient to treat only the case where a is a rational

prime p. Let j) be a prime divisor of p in K, and pt be prime divisors of

p in Lf for i = 2, 3,4. Let b be an ideal of K such that

b - 1 = p mod.

where σ is the non-trivial automorphism of K over Q. The existence of

such b follows from definedness of the symbols [dί9 di9p]. Then Proposition

1.5 implies

since Lf} is abelian over K. Now we have

PROPOSITION 1.8. Let d be the greatest common divisor of dx and d2,

and put d1 = dd[ and d2 = dc?2. Then

[d19 d29 a] = [dί, d, α][d1? dί, α]

when the above symbols together with [d19 d, a] are all defined.

Proof. It follows from Proposition 1.4 and Theorem 1.7 that

[du d2, a] — [dly d, a][dl9 d'2, a] = [dd[, d, a][dl9 d'2, a]

= [d*d'l9 d, a][dί9 d'2, a] = [dί, d, α M , c«, σ] .

§ 2. Restricted treatment of [dl9 d2, a]

Let L, R, K and Lg} be as in Remark 1.6. We shall show that the symbol

[dj, d29 a] is defined by means of a ray class field S over JK" not only a ray

class field R over L when some restriction to a is added. Let f be the

conductor of R/L. Then we have

WL2IK) = K*NL/K(H(L$IL)) 2 KXNL/K(H(R/L))

= K^NL/K(L-UM = ίΓxiVL/x(C7L(f)) .

Let ftf be a divisor of if such that NL/K(UL(\)) 2 ίTκ(fjf), and let S be the



84 YOSHIOMI FURUTA

ray class field over K in narrow sense with the conductor \κ. Then

H(L$/K) 2 K*UK(\K) = H(S/K). Since L$ is abelian over K, we have

Lg> g S. This implies Lg> 3 Lg'Lf 2 L* D L*. Moreover Lψ = Lg>L|,

because (L^: L|) <̂  2. Now assume that a rational prime p has a prime

divisor Sβ resp. p in L | resp. L | of degree 1. Then we have

Conversely we have the following

PROPOSITION 2.1. LeZ L = Q(Λ/CLU Vd2) be a bicyclic biquadratic field,

and K be a quadratic field contained in L. Let S be a ray class field over

K in narrow sense such that S is normal over Q, S 2 L and L^ 2 £*

Let p be a rational prime, and assume that p has a prime divisor p in L |

of degree 1. Then the symbol [du d2,p] is defined and

Proof. Let \κ be the conductor of S/K. Then since \κ is a multiple

of the conductor of L/K, there is4' a divisor \L of L such that NL/KULC\L)

= U(\κ). Let R be the ray class field mod. fL over L in narrow sense.

We can take fL so that R is normal over Q. Then we have L£ = L | .

In fact, it follows from (1) that H(L%IQ) = Q*NL/QH(RIL) = QXNL/Q(L* UL{\ J)

= QXNL/QUL(\L) = Q*NK/QNL/KUL(\L) = Q*Nκ/QUκ(ϊκ) = QXNX/^KXU^K)) =

QXNK/QH(SIK) = H(K$IQ) = H(L|/Q). Hence L | = L*. We have further

Lg» = LS>. Because it follows from (2) that H(L$/L) = JIH(RIL) =

JIL*UL(\L), where Δ = J(L/Q). Hence

fl(L2>/JO = K*NL/KH(L$IL) = K*NL/κJί-NL/κUL{\L)

= K*NuxJi Uκ(\κ) = NL/κJt-H(S/K) .

On the other hand we have H(L^/L) = JJ

LH(SIL) and further Hφi>lK) =

if- NLIKH{LflL) = K«- NL/κJi • NL/KH(SIL) = NL/KJ[ • HfflK). Hence we

have H{L$IK) = H{LψjK). This implies Lg> = !£>, for they are both

abelian over K by Remark 1.6. Now the proposition follows at once from

the definition of the symbol and Remark 1.3.

When Proposition 2.1 is satisfied, we proceed to express the symbol

[du d2, a] by a rational quadratic symbol. Let a be a square free integer

4) See H. Hasse [7].
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and a = l\ Pi be the prime decomposition of a. Put

L = Q(VJU VJ2) and K = Q(Vd

Suppose that there is a ray class field S over K such that S contains L,

L^ 2 Lf, S is normal over Q and each pi has a prime divisor, say ψί9 of

degree 1 in Lf. Put 2ί = f] *&. Then Proposition 2.1 implies

Since K is cyclic over Q, we have Lf = iff = Kg\ which we denote also

by So. Denote by ξ>(S/if) the congruent ideal group corresponding to S

over K. Let σ be the non-trivial element of Gal (K/Q) and b be an ideal

of K such that

b - 1 ΞΞ iV5o/xSI mod %(S/K)

by some ideal 21 of So, and no prime divisor of b is ramified in L/K. Then

Proposition 1.5 implies

m / L̂VL* \_(L/K\ (dΛ (dΛ

where (6) = Nκ/Qb. Let f be the conductor of S/ίΓ. Then by the same

way as in [6, §1.3], we get a relation between a and b as follows. Put

α = NSQ/κyί. Then (α) = Nκ/Qa. There exists an element a of K such that

a ΞΞ 1 mod. f and (α) = αb 1^ = aί)2/Nκ/Qh = (/3)/(6), where (β) = cώ2. We can

assume that β has no rational divisor, and we have

(4) ab2 = iN /̂Qi8 , 6 Ξ J 3 mod. f .

Conversely let a be a rational integer such that a = Nκ/Qa with some

integral ideal α of if, and suppose that a satisfies (4) with a rational integer

b and an integer β oϊ K which has no rational divisor. Then by con-

sidering the prime ideal decomposition of the both sides of (4), we have

(β) = ab2 with some integral ideal b of if such that (b) = Nκ/Qb. Moreover

we have

( 5 ) ab*-= (β)INκ/Qb = (β/b) .

This is contained in the ray mod. f. Thus we have

PROPOSITION 2.2. Let L = Q(Vdu Vd2) be a bίcyclic biquadratic field.

Put K = Q{^dxd2) and D be the discriminant of KjQ. Let f be a module
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of K and S be the ray class field mod. f over K in narrow sense. Suppose

that S is normal over Q, contains L, and L^ 2 Lf. Let a be a square free

rational integer such that any prime divisor of a in Lf is of degree 1. Then

we have

tt. <.*-(-£-)_ (A),

where b is any integer such that (b, f) = 1 and the following relations hold

with some rational integers x and y:

(x2 - Dy2 - 4ab2 = 0 ,

b mod.f,

% 3. Condition of L^ 2 L*

Put L = Q(VS;, V3λ Kx = QWdJ, K2 = Q(Vd~2) and K = Q(V5^). Let

S be a ray class field over K in narrow sense. In order to get the value

of the symbol [du d2, p] explicitly, we determine the condition that S is

normal over Q, S 2 L and L^ a Lf.

Denote by f the conductor of S/K, and by Iκ(\) or briefly Iκ the group

of fractional ideals of K prime to f. Denote by ^(L/K) and $(S/K) the

subgroups of Iκ corresponding to L and S by class field theory respectively.

Denote further by ®{1)(S/K) or briefly $ ( 1 ) the group of ideals a of Iκ(\) such

that aσ Ξ α mod. $(S/K), σ being the non-trivial element of Gal (K/Q).

Then by [6, Proposition 5.1] we have

( 6 ) Gal (LφILt) - Ir/«(L/JE)ft(1)(S/«) .

Since (Iκ:^{LjK)) = (L: K) = 2, it is necessary and sufficient for L^ 2

L£ that St{1)(SIK) g

PROPOSITION 3.1. Lei K be a cyclic extension of an algebraic number

field k with Galois group G of order finite. Let σ be a generator of G and

\be a divisor of K which is σ-ίnvariant Denote by Sκ{\) the group of the

ray mod. f in K. Let ® be the group of all ideals a of K such that aσ = a

mod. Sztf) and let ®0 be the group generated by all ideals a of K such that

aσ — a and by principal ideals (a) of K such that a° = a mod. f. Denote by

<3K the ray class group mod. f of K, and denote by C(®) resp. C(®0) the sub-

groups of (£>κ which consist of all classes represented by elements of ® resp.
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of ®0. Denote further by Ek resp. Eκ the group of units of k resp. K. Then

we have the following exact sequence

i _ > c w —•* cm — • (Ek n smiNκ/k(Eκ n sκφ),

where Nκ/k stands for the norm map of K to k.

Proof Let αefi, then there exists a in Sκ(\) such that a1'" = (a) and

Nκ/]ca e Ek (Ί Sfc(f), and Nκ/ka mod. Nκ/k(Eκ Π S*(f)) is uniquely determined

by α. This induces a homomorphism 9 from C(®) to (Ek Π Sk(
s\))/Nκ/k(Eκ

Π S^(ΐ)). The kernel of p is equal to C(ί£0) In fact, suppose that α e S

and the class of α is contained in the kernel of φ. Then Nκ/ka = Nκ/kE

with Ee Eκ Π S*(f). This implies α = l^1"*, where γ e K and γσ = ^ mod. f.

Put b = α(^)"1. Then bσ = b, which is to be required.

COROLLARY 3.2. Let K/Q be a cyclic extension of a prime degree and a

be a generator of Gal (K/Q). Let f be a divisor of K such that \σ = f and

assume that every real infinite prime divisors are contained in f. Let S be

the ray class field mod. f of K. Then ®ω(S/K) is generated by all ideals a

of IK^) such that a is a prime ideal of K ramified in K/Q or a is a prin-

cipal ideal (a) of K satisfying aσ = a mod. f.

Proof In Proposition 3.1, we have Ek Π Sfc(f) = {1}, since k = Q. Then

C(β0) = C(β), which implies ®{ι)(S/K) = ® = ®0. On the other hand, if α is

an ideal of K such that aσ = a, then α is a product of prime ideals of K

ramified in K/Q and of ideals of Q, because K/Q is cyclic of prime degree.

Thus we have the corollary.

Now let L = Q(Vdu Vd2) and K — QiVd^) as before. Let a be the

non-trivial element of Gal (K/Q), and f be a module of K such that fσ = f.

Then we have.

PROPOSITION 3.3. Notation being as above, let S be the ray class field

mod. \ of K in narrow sense. Then S contains L and L^ 2 £* if and only

if f satisfies the following conditions:

( i ) f is divisible by the conductor of L/K.

(ii) The conductor of S over K is divisible by all prime divisors p of K

such that p is ramified in K/Q and is not decomposed completely in L/K.

(iii) A principal ideal (a) of K is contained in $(L/K) if aσ = a mod. f,

(a, f) = 1 and a is totally positive.

Proof. It follows from the formula (6) that S contains L and Lψ 2 £*
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if and only if f is divisible by the conductor of LjK and ®(1)(S/iQ g $(L/K).

Hence the proposition follows from Corollary 3.2 immediately.

The rest of this section is devoted to get an explicit formula for f to

satisfy the conditions of Proposition 3.3. Notation d19 d2, L and K being

as above, assume that dl9 d2 are square free. Let further d = (du d2) and

dxd2 = dod\ Let Du = 4t{u)du, the discriminant of QWd~u) for u = 0,1, 2.

Thus t(u) = 0 or 1 according as du = 1 mod. 4 or not. Then we have

(7) AA = A/2,

where / is a rational integer, which coincides with the conductor of L/K9

up to the infinite primes by the theorem of conductor and discriminant.

Clearly

(8) / = 2 ' d ,

where t = t(ΐ) + t(2) — ί(0). Let A be the set of all odd rational primes

p such that p divides d0 and satisfies both (djp) Φ 1 and (djp) Φ 1. Put

(9) 3TC=Πί>,

where p is the prime divisor of p in K. Then the set of these primes p

coincides with the set of odd primes which satisfy the condition (ii) of

Proposition 3.3. Denote by I the prime divisor of 2 in K when 2 is ram-

ified in K. We put

(10) f # = 2Ψdm ,

where δ = 0 or 1 and 5 = 1 only when the following condition (11) is

satisfied for both dx and d2 at once:

(11) t = 0 , d0 =έ 1 mod. 4 , cίj =έ 1 mod. 8 and d2 Ξ£ 1 mod. 8 .

Then the case of δ = 1 occurs only when the prime divisor of 2 in K

satisfies the condition (ii) of Proposition 3.3 and / is odd. Thus in order

that f satisfies the condition (ii), it is necessary that f is a multiple of f*.

Now denote by dt and d5 either one and the other of d1 and d2. We

separate the type of the pair (du d2) by the following table, in which the

module f* is given by (10) and we define a module f0 of K according to

the type.
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Type

A

B

CS

CT

DS

DT

ES

ET

Condition for d, and d2

di = d2 = 1 mod. 4

d ( Ξ l mod. 8, dj φ. 1 mod. 4

d j Ξ δ mod. 8, d̂  ^ 1 mod. 4, djd2 < 0

ί/jΞδ mod. 8, d} φ.1 mod. 4, djd2 > 0

dt = d2= — 1 mod. 4

d t = — 1 mod. 4, d̂  = 2 mod. 4

d, Ξ dj Ξ 2 mod. 4, d0 = 1 mod. 4

d, = d2 = 2 mod. 4, d0 = — 1 mod. 4

f*

dm

um

4dm

2dm

4dm

2dm

fo

dm

ίdm

4dm

4dm

2um

PROPOSITION 3.4. Let dx and d2 be mutually different square free inte-

gers, and put d = {du d2), dxd2 = d0d
2. Let L = Q(Vdu Vcζ) and K = Q(Vd0).

Define modules Wl and f0 of K by (9) and Table 1. Let further f be a module

of K invariant by Gal {KjQ), and S be the ray class field mod. f of K in

narrow sense. Then S 2 L and L^ 2 •£* if and only if f is divisible by

f0 and the prime divisor of 2 in K is ramified in S except the case A and B.

Proof. It is necessary and sufficient for S 3 L and L{P 2 L* that /
satisfies the conditions (i), (ii) and (iii) of Proposition 3.3. It was sufficient
for the condition (i) and necessary for the condition (ii) that f is divisible
by f*. Let us show that the condition (iii) is satisfied if f is divisible by
f0. Let a be an integer of K, (a, f) = 1, and σ be the non-trivial element
of Gal (KjQ). Then it is easy to see that aσ = a mod. f0 if and only if a
is expressed as follows with some rational integers x and y.

a =

(x + dyVdo)/2 , x ΞΞ y mod. 2

x +
x +

Then since dxd2 = d0d
2, we have

(x
2
 - d&y

2
)/! , x = y mod. 2

x
2
 —

x
2
 -

for the type A;

for the type B, C;

for the type D, E .

for the type A;

for the type B, C;

for the type D, E;
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where N stands for the norm from K to Q. We claim (dJNa) = 1 for all

the types. For the type A, B or C, we have dt = 1 mod. 4. Hence (dJNa)

= (Noc/di) = 1. For the type I), we have (f0, 2) ψ 1. Hence (a, f0) = 1

implies (x, 2) = 1 and x% = 1 mod. 8. Hence JVα = 1 mod. 4, which implies

(dJNa) = (Najdt) = 1. Finally for the type E, we have d, = 2d[ with

(c^, 2) = 1. Moreover we have Net = 1 mod. 8 by the same way as for the

type D. Then (dJNa) = (2INa)(d/JNa) = (iVα/d,') = 1. Thus we have proved

that f satisfies the condition (iii) of Proposition 3.3, if f is divisible by f0.

Except for the type DT and ET, we have f* = f0. Hence it is also neces-

sary for S 2 L and L& 2 Lf that f is divisible by f0. We claim that it

is necessary also for the type DT and ET. First we treat of the type DT.

Then 2 = ί2 in K. Put f = lμdWl with μ < 4. Then α being as above, we

have a0 = a mod. f if and only if y = 0 mod. d. Thus iVα = x2 — dxd^γ.

When both x and y are odd, we see that Not. = — 1 mod. 4. Then we have

(dJNa) = —(Na/di) = — 1, which does not satisfy the condition (iii) of

Proposition 3.3. Hence it is necessary that μ^A. Next we treat of the

type ET. We have also 2 = ί2 in K. Put f = 2dm. Then as above, we

see that aσ = α mod. f7 if and only if y = 0 mod. d, and then Na ~ 5 mod. 8

for odd Λ and y. This implies (dJNa) = •— 1. Hence the condition of the

theorem is necessary.

Remark 3.5. There does not necessarily exist a ray class field over

K with conductor f. We have to pay special attension to the type CT

that there does not necessarily exist a ray class field S over K with a

conductor V when μ < 3 and (Eκ: Eκ Π S^I")) = 2f-\

§ 4. Genus field in a ray class field of an abelian field

In order to get an explicit expression for the value of [dί9 d29 p] we

need to know the genus field Lf explicitly. For the sake of convenience

we treat of the genus fields in general at first (c.f. [4]).

Let k be any algebraic number field of finite degree, and kp its com-

pletion at a prime p. For a non-negative integer m we denote by Up(m)

as before the group of all units a of kp such that a = 1 mod. pm. Then

£7/0) is the group of all units of kp, which we denote also by Up. Let K

be an abelian extension of k of Άnite degree, and fβ be a prime divisor of

p in K. Let T be the ramification group of fβ in K/k. For σ e T let

(12) iλβfa) =5 Max{i\cf = a mod. ψ+1 for all integer α of K} .
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Then the inverse function φ^1 of Hasse's function φ^ is defined by

(13) φi\v) = - ( Σ min {u,(<j), v}) ,

where e is the order of T.

Denote by N% the norm map from K% to kp. Then it is well-known5>

that

(14) ΛΓ,J7,(m) = iV,[7, Π

when φ$(i — 1) < m ^ ^(O

Now [4, Proposition 2] is generalized as follows.

THEOREM 4.1. Let k be an algebraic number field of finite degree and

K be a class field over k corresponding to an ίdele group H of k. Let f =

17 φm» be a divisor of K9 and S be the ray class field mod. f over K. Assume

that S is normal over k. Denote by So the maximal abelian extension of k

contained in S, and by H* the ίdele group of k corresponding to So. Then

we have

where kx denotes the principal ίdele group of k9 and ίp is the integer deter-

mined by

Proof. Since H(SjK) = Kx Π$ U*(m*)9 we have

H* - k*Nκ/kH(S/K) = k*U tf,[

Moreover since H Π Up = N$U%, we have N%U%(m%) = N%U% Π Ufa) = H

Π Up(ip) by (14), which is to be proved.

When k = Q, the rational number field, we have more explicitly the

following theorem.

THEOREM 4.2. Let K be an abelian extension of Q of finite degree. Let

f = [] 5p $pm» be a module of K which is invariant by Gal (K/Q), and S be

the ray class field mod. f over K in narrow sense. Let ip be the integer

such that <p%(ip — 1) < m% <; <p%(ip), and put f= \\pp
ίp. Then the genus

5) C.f. for instance, S. Iyanaga [9, Ch. V, §2].
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field Kf of K with respect to S/Q is given by

K$ = K*Q(fpJ),

where K^ is the genus field of K in absolute sense and Q{fpJ) is the ray

class field mod. / over Q in narrow sense.

Proof. Let i ϊ* be the idele group of Q corresponding to Kg. Then

H* = Q*γ\(Hn U9(i9))U9JL) ,
P

by Theorem 4.1. Clearly

QX π ( H n ujn,))u,jy)gQx
 Π ( H n UP)UPJD Π Q X Π uβp)upji).

P V V

On the other hand, let

a, β € Qx , ueYliHΠ U,)UPm(l), v e Π Up(i9)U9m(l)
P P

and αw = j8ι;. Then since

Qx n π u,u,SD = {i},

we have

u = α - > e Qx Π U,(i,)UpJX) f)U(Hf] Up)UpJΐ) e Π UΆ)^J1)
2> P P

Hence

H* = QX π (H n 1^)^.(1) n QX π ^ ( ϋ ^ J i ) .

This implies the theorem by [4, Proposition 2].

Let us determine / of Theorem 4.2 explicitly when K = Q(Vd0), where

d0 is a square free integer. In this case we have by (12), for a non-trivial

element σ of T,

jΌ if 3βJ2 and

^ ( σ ) = j i if φ | 2 and d0 = - 1 mod. 4 ,

[2 if φ | 2 and 2\d0 .

Hence by (13),

(v when Γ = {1} ,

ϋ + Min {0, v}) when p Φ 2 and /? | d0 >

ι; + Min {1, v}) when p = 2 and d0 = — 1 mod. 4 ,

,i(ι; + Min {2, u}) when p = 2 and 21 d0 .
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Now we have

THEOREM 4.3. Let K = Q(V3o) be a quadratic field and f = Π* *Pm* a

module of K which is invariant by Gal (K/Q). Let S be the ray class field

mod. f over K in narrow sense, and Kg be the genus field of K with respect

to S/Q. Let p be the rational prime divided by ψ and put

(15) /=ΠP ί f .

where ίp is determined as follows:

ip — mp when p is unramified in K/Q

ip = mp when mp = 1

ip = nip when p = 2, 21 dQ and mp = 2

mPβ ύh < QnP + 2)/2 when p Φ 2 and p\d0;

(mp + l)/2 5g ip < (πtp + 3)/2 when p = 2, d0 = — 1 mod. 4 and mp > 1

(τnp + 2)/2 ̂  ip < (mp + 4)/2 when p = 2, 2 | d and m,, > 2 .

Then we have

#̂* is the genus field of K in absolute sense, and QifpJ) is the ray

class field mod. / over Q in narrow sense.

§ 5. Explicit expression for [dl9 d2, a]

THEOREM 5.1. Let du d2 be a pair of square free integers. Let d =

(dίf do), dxd2 = d0d
2 and K = Q(Vd0). Denote by A = Λ{du d2) be the set of

odd prime divisors p of d0 which satisfy both of (djp) Φ 1 and (d2/p) Φ 1.

Put

m= UP
peΛ

We separate the type of the pair (d19 d2) by Table 1 in § 3, and put

f = 2vdm ,

where v is given by

Ό for the type A, B

(16) v = -2 for the type CS, DS, ES

3 for the type CT, DT, ET .

Let Ώi be the discriminant of Q(Vdi) for ί = 0,1, 2, and let Do = f] qf be
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the decomposition of Do to prime discriminants^.

For a square free positive integer α, the symbol [d19 d2, a] is defined when

each rational prime divisor p of a satisfies the following conditions:

( i ) (djp) — 1 when p is not a divisor of Du for i = 0,1, 2.

(ii) (qf/p) = 1 for all qf such that p Φ qό.

(iii) p = 1 mod. /.

When the conditions are satisfied, we have

'*•*•«-(•*)-(•£)•

where b is any solution of the following Diophantine equations, provided

that (b, 2vdxd2) = 1, (6, x, y) = 1 and mx is any integer such that mmx = 1

mod. 8d:

4ab2 = (26 + dmx)2 — dxd2y
2 for the type A

ab2 = (6 + dmx)2 - d,d2y
2 for the type B

ab2 = (6 + 2dmx)2 - Ad&f for the type CS

ab2 = (b + 4dmx)2 - lβd&y2 for the type CT, DT, ET

ab2 = (b + 2dm(2x + mxy))2 - 4d,d2y
2 for the type DS, ES .

Proof. Let μ = 0 for the type A or B; μ = 1 for the type CS; and

μ = 2 for other type. Define divisors Wl and f of K by

arc = Π $ , f =
where $β runs over all the distinct prime divisors of p in K for pe A.

Let S be the ray class field mod. f over K in narrow sense. First we

claim that Lf = K^Q(fp^), where K£ is the absolute genus field and Q{fp^)

is the ray class field mod. / over Q in narrow sense. Let f = Π ̂ mp ^ e

the prime decomposition of f in K and ip be the integer determined from

mp by Theorem 4.3. If p Φ 2, then mp = 1 or 0 and hence ip = 1 or 0

according as p \f or not. If p = 2 we have the following table for mp and ip

Type mp ip

A,B 0 0
CS, DS 2 2
CΓ, JDΓ 4 3

£S 3 3
ET 6 4

6) This means that qf = (-l)<«-»/«g for a prime ĝ  ̂  2 and g^ = - 4 or ±8 for
— 2 (c.f. Hasse [8]).
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Regarding 21 d only for the type ES or ET, we have Π Pip = 2vdm, hence

L* = K*Q(fpJ by Theorem 4.3.

It is easy to see that K^ 2 Q(2V) except the case CS. This implies

that the prime divisor of 2 is ramified in S except the case A and B, and

Proposition 3.4 implies L(i} 2 L%, because f is divisible by f0.

Now the conditions (i), (ii) and (iii) of the present theorem is equiv-

alent^ to that p is decomposed in L | in prime divisors of degree 1.

Moreover the condition (iii) implies (p, f) = 1, since / is divisible by f.

Therefore the symbol [du d2, p] is defined when p satisfies the conditions

(i), (ii) and (iii) of the theorem. When that is the case for every prime

divisors p of α, it follows from Proposition 2.2 that

«..,_ (A).(A.).

where 6 is any integer for which there exist integers u and υ such that

(17) 4ab2 = u2 - D0v
2 ,

(18) \(u + iVA) = b mod. f

and

(19) (6, u, v) = 1 .

Let us reduce the condition (18) to a rational expression.

First we treat of the case d0 = 1 mod. 4. Then since 9JI \ VdQ, the con-

dition (18) is equivalent with u — 26 = 0 mod. m and

λ(u _ 26 - v) + v1 + ^d° ΞΞ 0 mod.
Δ Δ

Moreover it is easy to see that the condition is equivalent with v = 2μdy,

u — 26 = mt and mt = 2μdy mod. 2μ+1d with some integers y and Z. Let

mι be an integer such that mm1 = 1 mod. 2μ+1d. Then mi = 2μdy mod. 2^+1d

if and only if t = m^dy + 2^+1rfx with an integer x. Hence the condition

(18) is equivalent with u = 2μdy and w = 26 + 2μdm(m1y + 2x). Since d2d0

— d^d2, we have 4α62 = (26 + 2μdm(2x + mλy))2 — 4μdλd2y
2, and this implies

the theorem for the type A, DS and ES.

Secondly we treat of the case d0 ^ 1 mod. 4. Then since Do = 4dQ,

replacing u by 2u, the condition (17) and (18) are equivalent with ab2 —

7) C.f. Hasse [8].
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u2 — d0v
2 and u + vVdQ = b mod. f. The last congruence is equivalent with

i; = 0 mod. 2μd and u = b mod. 2μdm. Put u = b + 2μdmx and v = 2μdy

with integers x and y. Then we have αδ2 = (b + 2μdmx)2 — Aμdλd2y. This

implies the theorem for the type B, C, DT and 1?T, and now the proof of

the theorem is completed.

DEFINITION 5.2. For a triple of integers d19 d2 and a, we call [dl9 d2, a]

is strictly defined (in the sense of Theorem 5.1), if the square free parts

of dx and d2 satisfy the conditions (i), (ii) and (iii) of Theorem 5.1.

Remark 5.3. There are triples dl9 d2, a for which the symbol [dl9 d2, a]

is not defined strictly in the sense of Theorem 5.1, but defined in primitive

sense (Definition 1.1). Especially by reason of Remark 3.5, it can offen

occur for the type CT. In fact, let K = Q(Vdχd2) and suppose that

(Eκ: Eκ (Ί Sκ(ίμ)) < 2μ~ι in the notation of Remark 3.5. Then [d19 d2, a] is

defined in primitive sense even if the condition v = 3 is replaced by v = 2

for the type CT in Theorem 5.1. When that is the case, the value of

[du d2, a] is obtained by replacing the Diophantine equation by ab2 =

(6 + 2dmx)2 — 4d1d2y
2 in Theorem 5.1. For instance [3, 13, 61] is not defined

strictly in the sense of Theorem 5.1, but it is defined in primitive sense

and [3, 13, 61] = — 1. In this case, the fundamental unit of Q(VS1S) is

25 + 4Λ/3 13, which is congruent to 1 mod. 4.

When the special case where dt = —1, we can express the value of

the symbol by means of biquadratic residue symbols as follows.

THEOREM 5.4. ( i ) Let p and q be rational primes such that p = q = 1

mod. 4 and (q/p) = 1. Then [— 1, q,p] is defined, and we have

(ii) Let p be a rational prime such that p = 1 mod. 8. Then [—1, 2,p]

and [— l,p, 2] are both defined and we have

where (p/2)4 is defined by setting its value 1 or — 1 according as p = 1 or

- 1 mod. 16.

(iii) Let p be a rational prime such thatp = 1 mod. 4. Then [~-l,p,p]

is defined and we have
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Proof, It is clear by Theorem 5.1 that the symbols are all defined.

( i ) This follows from the explicit formula of the symbol in Theorem

5.1 and [6, Proposition 5.4]8). Another direct proof from the definition of

the symbol is as follows. Let L = Q(V — 1, */~q) and B be the subfield of

the ray class field in narrow sense mod. q over Q of degree 4. Let A be

the subfield of L(^~q)B which is quadratic over L and different from both

of L(i

Λ/~q) and LB. Then A is non-abelian central over Q, and we have

A = L^ ^ L^ — L. Moreover let K — Q{^/—q) and / be as in Theorem

5.1 for a pair (—1, q). Then / = 1 or 4 according as g Ξ 1 or 5 mod. 8.

Let S be the ray class field mod. / in narrow sense over K. Then we have

A Q S. Now let p be a prime divisor of p in Lf, which is of degree 1

since the symbol [—l,q,p] is defined. Let further P be the prime of L

divisible by p. Then we have

\ _ (q\ (p

(ii) Let L = QiV^, VT), and J3 be the cyclotomic field of the 16-th

roots of unity. Let A be the subfield of L(*\Γ2)B which is quadratic over

L different from both of L(*\Γ2) and LB. Then A is non-abelian central

over Q, and we have A = L^ 2 £* = £. Moreover let if = Q(Λ/^2) and

/ be as in Theorem 5.1 for a pair (—1, 2). Then / = 8. Let S be the ray

class field mod. / over K in narrow sense. Then we have A Q S. Now

let p be a prime divisor of p in Lf, and P be the prime of L divisible by

p. Then we have

r B/L \

We have further {{BjL)jP) = 1 if and only if p = 1 mod. 16, which is equiv-

alent, by definition, that (p/2)4 = 1. Hence [—1, 2,p] = (2/p)4(p/2)4. The

formula [—l,p, 2] = (2/p)4(p/2)4 is proved in the same way as (i).

(iii) Theorem 5.1 implies [—l,p,p] = (pjb), where b is a solution of

Diophantine equations pb2 = x2 + p y2 or p62 = x2 + 4py2 according as p = 1

8) C.f. also E. Lehmer [11] and P. Kaplan [10].
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or 5 mod. 8, provided that (6, x, y) = 1 and b Φ 2. These equations are

equivalent with b2 = px\ + y2 or b2 = px\ + Ay2 by setting x = pjc1# Hence

we have (p/b) = (6/p) = (62/p)4, which is equal to (y2/p\ = (j/p) = (p/y) = 1

or (4;y2/p)4 = (2/p)(y/p) = (2/p) = — 1 according as p = 1 or 5 mod. 8.

§6. Inversion law

We shall show in this section that a simple relation holds between

[du d2, d3] and [d19 d3, d2], when both of them are defined. First we prepare

the following

THEOREM 6.1. Let a and d be two positive square free odd integers

relatively prime. Suppose that (q*/p) = 1, (a*/q) = 1 and (d/p) = 1 for all

primes p dividing a and for all primes q dividing d, where m* = (— l) ( m '1 ) / 2m

for any odd integer m. Then we have the following formulas.

when a Ξ 1 mod. 4 ,
i \ a /4

( i ) [σ*, d*9 a] = t _
when a = — 1 mod. 4 and d~l mod. 4.

y.. x r , / «^ v if p ~ 1 mod. 8 /or αZZ primes p
(n) [a,2d,a] = ( — ) »

V σ /4 dividing a .

,...v r , , / <2 \ if d ~ 1 mod. 8 αracί p = l mod. 8
(m) [2a,d,2a] = h r - ) .

\ zα /4 /or α// primes p dividing a .

Proo/. ( i ) By Theorem 5.1, we have [a*, d*, a] = (α*/6) = (d*/6),

where 6 is a solution of the Diophantine equation 4ab2 = x2 — α*d*y2. Put

e = α*/α and a; = αxj. Then the above equation is replaced by 4ό2 = axf

—εd*y2. Suppose a = 1 mod. 4. Then £ = 1 and we have (α*/6) = (6/α) =

(62/α)4 = (-4d*/M) 4 = (-llaU2/a)(d*/aUy/a) = (d*laUa/y) = (d*/α), Next

suppose that α Ξ — 1 mod. 4. Then ε = — 1 and d Ξ l mod. 4. Hence we

have (d*/6) - (bld) = (b*ld)< = (4α*J/d)4 = (2/d)(α/d)4(x1/d) = (-W<(ald)<(dlxd

(ii) Assume that α = 1 mod. 8. Then by Theorem 5.1, we have

[α, 2d, a] = (α/6), where α62 = x2 — 2dα/ with integers x and 3/. Put x =

ax,. Then 62 = ax\ - 2d/, and we have (a/b) = (6/α) = (62/α)4 = (-2dy2/a\

- (-l/α)4(2d/α)4(3>/α) = (2d/α)4(α/j) = (2d/α)4.

(iii) Assume that d = l mod. 8. Then Theorem 5.1 implies that

[—2a, d, 2a] = (cf/6), where 6 is any solution of Diophantine equation 2α62

=* x2 + 2ady2, provided (6, x, y) = 1 and 6 ^ 2 . Put x = 2a^. Then 62 =
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2axl + dy2. This implies (d/b) = (b2jd\ = (2ax\jd\ = (2α/d)4(x1/d) and further

(xjd) = (dlxλ) = 1. Hence we have [—2α, d, 2a] = (2α/d)4. On the other

hand [2a, d, 2a] = [-2α, d, 2a][-l, d, 2][-l , d, a], and Theorem 5.2 implies

[—1, d, 2] = (d/2)4(2/d)4 and [-1, d, α] = (d/α)4(α/d)4. Hence we have

[2α, d, 2α] - (2α/d)4(d/2)4(2/d)4(d/α)4(α/rf)4 = (2a/d)(d/2a\ = (d/2α)4. Thus the

theorem is proved.

Now we have the following inversion formula.

THEOREM 6.2. Let pup2 and p3 be odd prime numbers which are rela-

tively prime. Suppose that px = p2 = 1 mod. 4. 7%era w e Λαi e

(i) [±

when the both sides are defined strictly in each formula.

Proof, (i) Put pf ~ pz or — pz according as J ) 3 Ξ 1 mod. 4 or not.

Put further A2 = [pί9p2,pz], B2 = [pl9P*,Pzl A, = [p»pf,p2], Bz = [pup2,p2]

and JB23 = [p19pzp*9Pd>i]- If ^2 and A3 are both defined strictly, then B2,

B2 and JB23 are also defined strictly, and A2B2ASB3 = JB23 by Theorems 5.1

and 1.7. Moreover Theorem 6.1 implies B2 = (pjps\ or (pf/p^ according

as pf — pz or not, and Bz = (Pi/p2X I n the same way we have B2Z =

(Pi/p2P3)4 or {p2pfjpd± according as p3* = p 3 or not. Hence JB2B3 = J523 or

Bn(jpJp2\(j>2lPd* according as pf = pz or not. Since (pjp2),(pjpλ =

[pj, — l,p2] by Theorem 5.4, it follows from Theorem 1.7 that [Pi,p2,p3] =

[Pi>P3>P2]. If [— Pi,P2,Pzϊ is defined strictly, then necessarily pz ΞΞ 1 mod. 4.

Hence

[-Pi,P2,P3] = [-lJP2,P3][Pi,P2,P3] = [-l,p3,p2][Pi7P3 ?P2] = [-Pi,P3,P2] .

(ii) Put A2 = [ - ^ , ^ ^ 2 ] , B2 = [-p8,A,Pi], Λ = [-P3,P2 5Pi], ΰ 3 =

l—PziP^Pά and JB23 = [—p3,PiP2,PiP2]. Suppose that A2 and A3 are defined

strictly. Then B2, Bz and ΰ 2 3 are also defined strictly by Theorem 5.1, and

we have A2J32A3JB3 = J323. Moreover B2 = (—p3/Pi)4, B3 = (—p3/p2)4 and B23

= (—P3/PiP2)4 by Theorem 6.1. Hence A2A3 = 1, namely [—p3JPi,p2] =

[—P3?P2>Pi] Moreover [— l,Pi,p2] is defined strictly and equal to [— I,p 2,pj.

Hence Theorem 1.7 implies [p3,Pi,p2] = [p3)p2,Pi].

When one of pt is 2, we have the following theorem in the same way

as Theorem 6.2 by applying (ii) and (iii) of Theorem 6.1.
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THEOREM 6.3. Let px and p2 be mutually different odd prime numbers.

Then we have

(i) [±2,A,pJ

(ii) [±pί92,p2] = [±pl9p292] ,

when the both sides are defined strictly in each formula.

Remark 6.4. Theorems 6.2 and 6.3 cover the possible inversion formulas

except the case where only one of pt (i = 1, 2, 3) is congruent to 1 mod. 4.

For the exceptional case, say px = 1 and p2= p3 = —1 mod. 4, it is con-

jectured with numerical evidence9) that the formula [— p29 Pu Ps] =

[—p2,Pz,Pi] holds, which is only the possible case. However the author

has no proof as yet.

§7. Table of [dί9d29p]

In the following we give a table of the values of the symbols [dί9 d2f p]

for small numbers d19 d2 and p, which are computed according to Theorem

5.1. In order to get the values, it is fundamental by Theorem 1.7 and

Proposition 1.8 to have the values of [— l9p2,pz]9 and [±pu ±p2,P3] for

prime numbers pί9p2 and p3. In the following table we have the values

of the symbols which are defined strictly, pt running over the prime numbers

smaller than 50 for i = 1, 2, 3.

We use the following notation:

dί9 d2,p = prime number with sign ± 1 or dλ — — 1 .

R = [dί9 d29p], which is equal to (djq)9 q determined as below .

m = Idfrfl2!, where et = 1 when (d,/cQ Φ 1 for i Φj (ί,j = 1, 2),

and et = 0 otherwise .

q9 x,y = the solution of the following Diophantine equation such

that y is the smallest positive possible integer and q is the

smallest possible prime number for this y9 provided q <ΞJ 3571.

4pq2 = (2q + mxf — d&y2 for the type A ,

PQ2 = (Q + mx)2 — dtd2y
2 for the type B ,

pq* = (q + 2mxf - 4d1d2y
ί for the type CS ,

pq* = (q + 4mx)2 - 16dxd2y
2 for the type CT or DT,

pq* = (q + 2m(2x + m.y))2 - 4:d,d2y
2 for the type DS ,

9) C.f. Table of §7.
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where mm1 = 1 mod. 8, (q, x, y) = 1 and (q, 2δd1d2) = 1, provided <5 = 0 for

the type A or J3, and δ — 1 otherwise.

di d2 p R Type m q x y

-1
^

2

2

— 2

2

2

2

-2

2

-7

7

7

17

17

-23

23

-23

-23

31

-31

-31

-3

-3

-11

13

37

-1
-1

-1

-1

17

41

-7

17

17

-23

-31

41

41

-47

23

-31

-47

47

-47

31

41

41

47

41

41

47

13

37

37

-23

-47

5

-5

29

-29

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

5

5
5

5

1

-1

1

-1

-1

1
_i

-1

1

1

-1

-1

1
_1

_\

-1
_ ] _

1

-1

-1

-1

-1

1

-1

-1

-1

-1

1

1

-1

B

B
B

B

B

B
B
B

B

B

B
B

B

B

A
B

B

A
B

B

A
B

A

A
A
A

A

CS
DS
CS

DS

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

5

3

47

5

5

7

3

7
7
11

11

13

19

11

19

3

11

31

7

13

29

2

7

13

5

13

3

29

5

7

-2

-2
-1

31
_^

-3

-1

7
-3

-5

-2

-6

-10

20

-9

-16

28

-17

-2

30

-17

-14

-1

-2

-6

-9

-9

1

9

-1

3

1

1
1

7
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1



1\)Z

dt

-1
-1
5
5
5
5

-5
-5
5
5
5

-5
-5
11

-11
19
31

-31

2
2
2

-3
-3
-3
g

-7
-7
37

5
5

-7
-11

d2

41
-41
-11
-19
29

-29
29

-29
-31
41

-41
41

-41
-19
31

-31
41
41

-7
-31
-47
-7
-19
-31
37
29
37

-47

-11
-19
37

37

V

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

7
7
7
7
7
7
7
7
7
7

11
11
11
11

R

-1
1

-1
1

-1
1

-1
-1
-1
1

-1
-1
J

-1
-1
-1
_ ] _

1

-1
_ 1
-1
-1
_ ] _

1
-1
-1
-1
1

-1
_ J
-1

1

YOSHIOMI FURUTA

Type

B
DS
A
A
A
CS
CS
DS
A
A
CS
B
DS
CS
CS
B
B
A

B
B
B
A
A
A
A
A
A
A

A
A
A
A

m

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
3
3
3
1
1
1
1

1
1
1

1

Q

3
5
2
11
2
11
11
17
3
31
13
11
31
13
17
11
7
59

3
3
5
5
2
7
2
3
5
53

2
2
5

47

X

-1
3
1
8
11
-3
-3
7

_-±
88
-4
9
11
-5
-4

66
104

4
-2
4
6
3
11
_g
1
11
145

7
5
19

38

V

1
1
1
4
1
1
1
1
1
4
1
1
1
1
1
1
2
4

1
1
1
2
1
3
1
1
1
3

1
1
1

14

- 1 3 13 - 1 DS
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- 1
J

- 1
J
i

- 1

3

- 3
3

3

- 3

- 3

13
13

- 1 3

- 1 3

13

13
13

- 1 3

- 1 3

13

17
17

- 2 3

23

- 1

- 1

- 1

- 1
^

- 1
2
2

- 2

d2

13
- 1 3

17
- 1 7

29

- 2 9

- 1 3
13
23

- 2 3

43

- 4 3

17

- 1 7

17

- 1 7

- 2 3

29

- 2 9

29

- 2 9

- 4 3

43

- 4 3

29

- 4 3

2

- 2

13

- 1 3

17

- 1 7

17

- 1 7

17

V

13
13

13

13
13

13

13

13

13

13
13
13

13

13
13
13

13

13

13

13
13

13
13
13
13

.13

17

17
17
17

17

17

17
17

17

R

- 1

1

- 1

1
_ ] _

1
_ ] _

_ ] _

1

- 1

1

- 1
- 1

1

1

1

1
1

- 1

- 1
- 1

1
- 1

1

- 1

- 1

_ ] _

- 1
- 1
- 1

1
1

- 1
1

- 1

Type

cs
DS
B
DS
CS
DS
DS
A
DS
B
CS
A
A
CS
B
DS
A
A
CS
CS
DS
A
B
A
A
CS

DT
DT
CS
DS
B
DS
B

DT

B

m

1

1

1

1

1

1

3
1

3

1

1

3
1
1
1

1

1
1

1

1
1

1
1
1
1

1

1

1

1

1

1

1
1

1

1

Q

7

17

3

13
3

5

41

2

13

5

7

2

5

53

19

7

3

23

37

37
23

17
5

13
11

61

3

7

7

3

13
13

3

31

5

X

3

12

7

10
- 1

4

4

9

- 4

11

2

11

29

58

33

8

7

240

14

14
30

44

52

21

53

26

2

6

9

4

38

18

14

22

12

y

3
3

1

3
1

1

3

1

27
1

1

3
1

3

3
1

1

12

3

3

3

4
2

3

1

3

1

2

2

2

4

8

2

2

2



1D4

-2
-2
-2
2
o

2
2
13
13

-13
-13
13
13
17
17
17
17
17
17

-19
-19
-43

-3
-3
5
5
17

2
2
2

-7
-11
13
13

d2

-17
19

-19
43

-43
47

-47
17

-17
17

-17
43

-43
19

-19
43

-43
47

-47
43
47
47

-19
-31
-19
-31
-19

-7
-23
41
29

-23
-23
29

V

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

19
19
19
19
19

23
23
23
23
23
23
23

R

1
-1
1
1

-1
1

-1
1

-1
1

-1
-1
1

-1
-1
-1

1
1

-1
-1
-1

-1
-1
1

-1
-1

1
-1
-1
-1
-1
1
1

YOSHIOMI FURUTA

Type

DT
DT
CT
DT
CT
DT
B
A
CS
B
DS
CT
A
B
A
B
A
B
A
CS
CS
CS

A
A
A
A
A

B
B
B
A
A
A
A

m

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

3
3
1
1
1

1
1
1
1
11
1
1

Q

3
7
11
41
5
89
5
43
19
19
43
5
23
7
3
5
7
19
53
29
29
71

2
11
11
3
3

23
5
3
3
7
3
23

X

46
2
14
10
18
70
2

288
16
32
36
448
-32
27
11
29
37
440
268
3

-13
80

5
30
54
17
13

76
18
14
19
5
17
178

y

8
1
2
4
2
1
2
8
2
4
2
19
8
1
1
1
1
16
8
2
2
2

1
6
6
1
1

13
1
1
1
1
1
2
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d2 p R Type m q x y

13
-23
-23
41

-1
-1
-1
-1
-1

-1
-1
_ ] _

5
5

-5
-5
-7
-7
7

-7
-7
13

13
13

-13
-13

-23

2
2

2

-3
-3
-3
5

-43
29
41

-43

5
-5

7

-7
13

-13
29

-29
29

-29

29
-29
23

-23
-29
29

-29

-23

29
-29

29

-29
29

-23

-31
41
5

-31
-43
-11

23

23
23

23

29
29

29
29
29
29
29
29
29
29

29
29
29

29
29
29
29
29

29
29

29

29
29

31

31
31
31

31
31

31

-1
-1
1
1

1
-1
-1
-1
-1

1
-1
1

-1

-1
1

_ ] _

-1
1

-1
-1
1

-1

-1
1
1
1

-1

-1
1

-1
-1
-1
-1
-1

A
A
A
A

cs
DS
DS
B
CS
DS
CS
DS
A
CS
CS
DS
B
A
DS
A
B
A
A
CS
CS
DS
A

B
B
B
A
A
A
A

1

1
1
1

1
1

7
7
1
1
1
1
1
1
1
1
1

7
7
1

7
1
1
1
1
1

1

1
1
1

15
3
3
1

5
11

59
23

29
11

11

3
7

17
19
5
2

7

7
17
3
2
17
3
11
5
2

53
53
11
11

5

7
3
2
11
2

2

-2

70
250
158

62
14

-16
2
15
94
34
6
83
11
11

148
7
3

_ ] _

23
15

41
25

17
17
48

36

22

24
16
1

34
7

17

2
2

14
2

7
7
5
2
1
53
5
1

7
1
1

25
1
1
1
1

7
1
1

7
7
5

4

1

3
1

3
2
1
1



5
5

-23
-31
41

-1
-1
-1
-1
-1
-3
-3
3
3
3

-3
3
3

-7
-7
7

-11
-11

37
37

-37
-37
37

-1
-1
-1
-1
-1
-1

-31
41
41

41
-43

3
37

-37
41

-41

7
-7
11

-11
-37
37
47

-47
11

37
-47
37
47
41

-41
41

-41
-47

2
-2

5
-5

37
-37

V

31
31
31

31
31

37

37
37
37

37
37
37
37
37
37

37
37
37

37
37
37
37
37

37
37
37
37

37

41
41
41

41

41

41

R

-1
-1
_i

1
1

1
-1
1

-1
1

-1

-1
-1
-1
1

-1
-1
-1

1
1
1

-1
1
1
1

-1

1
1

-1
-1
-1
-1

YOSHIOMI FURUTA

Type

A
A
A
A
A

DS
CS
DS
B
DS
CS
A
DS
CS
DS
A
DS
B
B
A
B
A
CS
A
CS
B
DS
A

DT
DT
CS
DS
CS
DS

m

1
1
1
1
1

3
1
1
1
1
1
3
3
1
3
1

3
1
1
1
1
1
1
1
1
1
1
1

1
1
1

1
1
1

Q

3
3
7

113
23

13
19

137
3

5

5
5
17
7
7

7
5
5
3

5
3

47
23

13
269
31
19
31

17
17
3
11

19

3

X

25
38
34

1014

177

4
9

197
10

7

12
17
-1

17
1

60
5
23
13

27
-̂

424
4

196
-116
117
911
-25

19
23

7
15
27

7

y

1
2
2
6
3

1

9
33
2
1
1
1
7
1
1

4
11
1
1

3
1

12

3
4
21

3
47
9

10
1
2

2
8

2
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d2 p R Type m q x y

-1
-1
2
2

-2
-2
2
2
2
2
2
2

_2
-2
-2
-2
-5
-5
5
5
5
5

-5
-5
-5
-5
-23
23

-23
23
31

-31
31
37
37

-37

41
-41

5
-5
5

-5
23

-23
31

-31
41

-41
41

-41
43

-43
23

-23
31

-31
41

-41
41

-41
43

-43
31
41
41

-43
41
41

-43
41

-41
41

41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41

1
1

-1
-1
-1
1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1

-1
-1
1

-1
1

-1
1
1

-1
-1
1
1
1
1
1
1
1

-1
1

B
DS
CT
DT

cs
DT
DT
B
DT
B
B
DT
B
DT
DT
CT
DS
B
CT
A
A
CS
B
DS
DS
CT
B
B
A
CS
B
A
CS
A
CS
B

1
1
5
5
5
5
1
1
1
1
1
1
1
1
1
1
5
5
1
1
1
1
1
1
5
5
1
1
1
1
1
1
1
1
1
1

61
5
3
11
7
3
3
5
13
3
3
13
7
29
29
5
83
11
7
19
3
11
11
3

263
19
7
43
59
41
5

113
23
73
31
31

308
9
1
1
3
1

413
24
19
8
38
7
34
331
-5
11
1
20
15
205
35
15
30
71
66
29
29
326
456
17
282
20
-2

1412
46
92

20
2
1
5
4
1
61
2
1
2
4
2
2
37
5
1
8
8
1
1
1
2
4
10
2
10
1
8
16
4
8
40
2
32
2
4



-37
41
41

-3
-3
-3
-3
-7
13
13
17
17
41

2
2
2
2

-11
17
17
17

-23
-23
37

-41
43

-43

-7
13

-19
-43
-43
17

-43
-19
-43
-43

17
-23
-31
-47
37

-19
-43
-47
-31
-47
-47

V

41
41
41

43
43
43
43
43
43
43
43
43
43

47
47
47
47
47
47
47
47
47
47
47

R

-1

-1

-1
1
1

-1
1

_ ] _

1
-1
-1
-1

1
1

-1
1
1

-1
-1
1

-1
1

-1

YOSHIOMI FUEUTA

Type

DS
B
A

A
A
A
A
A
A
A
A
A
A

B
B
B
B
A
A
A
A
A
A
A

REFERENCES

m

1
1
1

3
1
3
3
7
1
1
1
1
1

1
1
1
1
1
1
1
1
23
23
1

q

83
11
19

5
43
7
2
11
5
17
3
7
19

47
31
3
7
3
3
3
53
11
71
31

X

215
71
85

19
366
50
13
46
62
138
29
29
177

1090
168
16
40
2
31
25
270
6

190
361

V

10
1
5

3
54
18
3
18
2
6
1
3
3

187
11
1
1
2
1
1
22
2

134
1
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