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EXTENDED /-ORBITS ARE APPROXIMATED BY ORBITS

KEN SAWADA

Introduction

Let / be a Cr-diffeomorphism, r ^ 1, on a compact differentiable mani-
fold M with dim M ^ 2. In [9] F. Takens introduced the concept of
extended /-orbits and conjectured the following.

If / is an AS-diffeomorphism, then the set Ej of all extended /-orbits
is equal to the set Of of the closure of all /-orbits in C(M), where C{M)
is the metric space of all non empty closed subsets of M.

In this paper we give an affirmative answer for this conjecture.

§ 1. Definitions and the main Theorem

We fix a metric d on M induced by a Riemannian metric, and we
define a metric d on the set C(M) of all non empty closed subsets of M
as follows; for closed non empty subsets A and B of M,

d(A, B) — max (max d(a, B), max d{b, A))
A bβBa£A

where d(a, B) = minδe2J d(a, b). We identify a closed subset of M with an
element of C(M). Here Z denotes the integers, N the natural numbers.
For a diffeomorphism / and x e M, we define the f-orbit of x, Of(x), to be
the closure of {fn(x)\n e Z}. By definition, Of(x) e C(M). Then we denote
the closure of {Of(x)\x e M) in C(M) by Of. Of is a closed subset of C(M).
We say that a closed subset A c M is an ε-orbit of f, ε > 0, if there is a
s e q u e n c e { X j } j e z s u c h t h a t d(f(Xj), x j + 1 ) < ε f o r a n y j e Z a n d {Xj}jez i s

dense in A. We say that a closed subset A c Mis an extended f-orbit
if for any ε > 0 and δ > 0, there is an ε-orbit Ae of / such that d(A, Ae)
< δ. Note that extended /-orbits are identified with elements of C(M).
Let Ef be the set of all extended /-orbits. By definition, Ef is a closed
subset of C(M) and Of c Ef. See [9]. We recall that / is an AS-diffeo-
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morphism if / satisfies Axiom A and strong transversality condition. Then
our main result is

THEOREM. If f is an AS-diffeomorphίsm, then Ef = Of.

We shall prove Theorem in section 5.

§ 2. More definitions and a sketch of the proof

In this section we give some notations and definitions used through-
out the paper and give a sketch of the proof of Theorem.

The nonwandering set of a diίfeomorphism / is denoted by Ω{f) or Ω
and the set of the periodic points of / is denoted by Per (/). For xeM,
define a(x) = a{x, f) = {y e M: there is a sequence of integers nt —> oo such
that f'ni(x) -> y as i -> oo}. Let ω(x) = ω(x, f) — a(x, f ' 1 ) . The nonwander-
ing set of / satisfying Axiom A and no cycle property can be written as
a disjoint union of closed subsets Ω(f) = Ωx U U Ωm such that each
Ωt is invariant by /, and / is topologically transitive on each Ωt, Then
we call each Ωt a basic set and may define an order on the set {Ωu ,
Ωm} as follows:

Ωt ^ Ωj if WU(Ω%) Π WS(Ω3) Φ φ

where Wu{Ωt) and WS(Ω3) are the unstable manifold and the stable mani-
fold of Ωt and Ωs respectively. We may renumber Ωt such that Ω5 $ Ωi

if i < j . Henceforth we shall assume that Ωi is numbered as above for
any diffeomorphism / satisfying Axiom A and no cycle property.

We say that a sequence x = {xj*=α (α = — oo or b = + oo is per-
mitted) of points in M is an ε-pseudo orbit if

d(f(Xj), xj+i) < ε for any j e [a, 6-1].

A point x 6 M δ-shadows a sequence x if

d(f\x), xj+1) < δ for any j e [a, b].

See [1, Page 74].
We define a relation < on M, induced by /, as follows: x, y e M, then

x < y if and only if for any ε > 0, there is an ε-pseudo orbit {x^^ with
x0 = x9 xn = y and n^l. We define N(f) = {x e M\x < x}. Note that
x < fn(x) for any n ^ 1 and N(f) D Ω(f). See [9] for details.

Now let / be an AS-diffeomorphism and let A be an extended
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/-orbit with A ςzί Ω. Then there are A-points xteM such that A — Ω =

U*-i Unezfn(Xί) and such that ω(xτ) and <φ;ί+1) belong to the same basic set

ΩSi (1 ^ s0 < < sfc ^ m) by Proposition 3.6 in section 3. In section 4

we obtain that for ASi = A ί l ΩSi, any d > 0 and small ε > 0, there is an

ε-pseudo orbit x — {x,}J=α such that

d(ASί, closure of {*,}$.«) < δ .

By [1, Proposition 3.6], x is ^-shadowed by some zeΩH. We shall select

xf 6 M such that

5(0/*'), ASo U O/xO U AS1) < δ

so that we can select xe M such that d(Of(x), A) < δ by induction. Hence

A e O/. Since we obtain in section 5 that if A is an extended /-orbit

with A a Ω, then A e Of, therefore AeOf for any extended /-orbit A.

Since Of c #/, O, = ^ .

§3. Nonwandering sets and extended f-orbits

In this section we give some results about N(f) and extended /-orbits.

We recall that / has no C°-Ω-explosion if for each ε > 0, there is a neigh-

borhood U(f) of / in Diffr (M) with C°-topology such that Ω(g) c E7.(fl(/))

for any g e U(f), where Diffr (M) is the set of Cr-diffeomorphisms with

Cr-topology and ί7ε(.) is an ε-neighborhood of (.).

The following lemma is due to Z. Nitecki and M. Shub [6]. For the

proof, the hypothesis dim M ^ 2 is needed.

LEMMA 3.1. Suppose a finite collection {(pu q^ e MxM: ί = 1, , k)

of pairs of points on M is specified, together with a small positive constant

δ > 0 such that:

(i) For each i, d(pi9 qz) < δ

(ii) If i Φ j , then pt Φ p3 and qtΦ qj.

Then there exists a dίffeomorphism η:M-*M such that

(a) d(η(x), x) < 2πδ for every xeM

(b) η(Pi) = qι for i = 1, , A .

PROPOSITION 3.2. If f has no C°-Ω-explosion, then N(f) = Ω(f).

Proof. It is sufficient to show that N(f) c Ω(f). Let x e N(f) and
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ε > 0 be given. Since / has no C°-β-explosion, there is a neighborhood

U(f) of / in Diffr(M) with C°-topology such that Ω(g) c Uε(Ω(f)) for any

g e U(f). Take δ > 0 such that if d(g(x), f(x)) < δ for any x e M, then

g e £/(/). From definition of iV(/), there is a (<5/2ττ)-pseudo orbit {xj}%o

with x0 = # and xn = x. We may assume that x€ ̂  Xj if έ =£ j . By Lemma

3.1, there is a diffeomorphism η on M such that η{f{x3)) = xj+ί and d(η(x), x)

< £ for every xeM. Then the composition g = η°f is a diffeomorphism

on Λf such that

(a) d(g(x), /(*)) < ί for any x e M

(b) **(*) = (ψfr(χ0) = xn = x.

Hence g e U(f) and x e Per (g). Since x € fl(^) c U£Ω(f)) and β(/) is closed,

xeΩ(f).

If / satisfies Axiom A and no cycle property, then / has no C°-Ω-

explosion [8], Therefore we have

COROLLARY 3.3. If f satisfies Axiom A and no cycle property, then

N(f) = Ω(f).

We shall assume throughout the remainder of this section that /

satisfies Axiom A and no cycle property.

LEMMA 3.4.

(i) If fn(x) < y for any neN, then u < y for any u 6 ω(x).

(ii) For any x, y e Ωί9 x < y and y < x.

Proof. Let a e ω(x) and ε > 0 be given. Since f(a) e ω(x), d(f(a), fm(x))

< ε for some meN. Then there is an ε-pseudo orbit {xj}%0 with x£ = fm(x)

and x'n = y. Define a sequence {Xj}njt\ by

x0 = a, Xj = Xy_! for any 1 ̂  j <̂  n + 1.

Then {XjYjtl is an ε-pseudo orbit with x0 = u and xn+ί — y. As e is arbi-

trary, a <y.

(ii) By [1, page 72], Ωt = Xlti U U Xniti with XJ§i 's pairwise dis-

joint closed sets, f(Xjfi) = X/+ifί (X«i+i,i = Xitt) and fUi\Xjti topological

mixing i.e., for any open sets U, V of XjΛ (i.e. in Ω), there is k > 0 such

that C7 Π / fcxnί( V) ^ φ. Hence for any x, y e Ωu x < y and y < x.

LEMMA 3.5. If x, ye W*(Ωt) — Ωt and x < y, then fn(x) = y for some

neN.
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Proof. Suppose, on the contrary, that fn(x) Φ y for any n e N. Clearly

if x < y and f(x) Φ y9 then f(x) < y. Hence by induction, if x < y and

fn(x) ψ y for any n e N, then fn(x) < y. By Lemma 3.4 (i), we have

x < u < y < w for any u e ω(x) and any w e ω(y).

Since u e ω(x) C β έ and w e ω(y) c Ωi9

u < w , w < u by Lemma 3.4 (ii).

Hence y < w < u < y and y e N(f) = Ω(f), a contradiction.

PROPOSITION 3.6. For each AeEf such that A ςt Ω, there are k-poίnt

Xι e M (k < m — 1) such that

A-Ω = \JU f*(χt)
i = l πGZ

moreover there are s0, , sk (1 < s* <m) such that a(x^ a ΩSQ, ω(xk) C ΩSk

and both ω(Xi) and a(xi + 1) are contained in Ωs. for any 1 < i < k — 1.

Proof. We define an equivalence relation on M before we prove. For

x, x' e M, we say that x is orbitally related or O-related to xf (write x ~

x') if either fn(x) = xf or fn\xf) = x for some n, nf e N. Let A* = WS{Ω%)

(Ί (A - Ω). Since M = U?-i Ws(Ωt), A - Ω = UΓ=i A*. By definition of

extended /-orbits, if x, y e A, then either x < y or y < x. If x, y e A\

then x, y e Ws(Ωi) — Ωt. Hence by Lemma 3.5, if x, y e A\ then x ~ y.

Hence either A* = {fn(x)\neZ} for some xe A1 or A* = φ so that there

are /^-points xt of M (k ̂  m — 1) such that

A - β = U U fn(Xi) .

Let β s . be the basic set with ω(Xi) C ΩH and let β ί 4 be the basic set with

a(Xi) C Ωti. We may assume that ^ < s2 < < sk. If a{xt) and ̂ (x,/)

are contained in the same basic set, then xt — xό by Lemma 3.5 applied

to f'\ Hence Ωti Φ Ωt. (i Φ j). By the ordering on the basic sets, Ωti Φ

ΩSj for i ^ 7. Hence Ωtl Π O/(xi) = φ for i = 2, , k and Ωt2 Π O/(xί) =

^ for i = 3, , k. Therefore there is δ > 0 such that O/(xί) Π U2δ(Ωtl) =

φ for i = 2, , k and O/x*) Π f/2δ(βί2) = ^ for i = 3, , ft. We choose

γ > 0 such that U^f lJ c f(Uδ(Ωh)) Π ϋi(flt<) for i = 1, 2. Then there is

iV'eiV such that f-n(xx) e Uγ/2(Ωtl) and f-n(x2)eUΐ/2(Ωt2) for any n^N'.

Since iV(/) = β(/) and f-N'{Xi)$Ω(f) (i = 1,2), /"^(x,) <u, for any w,e
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Ωti. Hence there is ε' > 0 such that there exists neither ε'-pseudo orbit

{xj}%o with x0 = f~N'(xd and xn = ux nor ε'-pseudo orbit {xy}y'=0 with x0 =

f~N' (X2) and xn, = w2. Let ε = minfr/2, ε'/2} and let Ae = closure of {y3)j&z

be an ε-orbit of / such that d(Aε, A) < ε. Then there is n e Z such that

yn e C7fi(A (Ί β έ l). Suppose that there is i < n such that 3̂  6 Ur(Ωtt) and

y,_! $ Ur(Ωtl). Then ^_ x 6 17,(̂ 3̂ ) because /(y,_i) € U2r(Ωtl). Since 5(Ae, A)

< ε, there is £e A Π £7fi(^_i). Clearly 2$ Ur/2(Ωtl) and 2:6 U2δ(Ωtl). Since

O/x*) Π U^flJ = 0 for i = 2, , A, z = /-*(*,) for some p <iV/. Since

3>TO e Uε(A Π βfj), there is ut € A Π fl^ such that d(u1? yn) < ε. Now we

define a sequence {̂ }y-o (^ = P — N' + n — ί + 1) as follows;

(Zo, - , 2>) = (f~N/(x1)} ' '9f~
p'\Xi)9yi9 ,y»-i, Hi)

Then {̂ }y=0 is an ε-pseudo orbit with 2?0 = f~N'(x\) and ^ = z/lβ Since ε <

ε', {̂ }y=0 is an ε'-pseudo orbit with zQ = f'N(xd and ^ = u^ This con-

tradicts to the choice of e'. Hence ^ e Ur(Ωtl) for any j ^ n. Now if ΩtaΦ

Ω$1, then O/(xί) Π Ωt2 = φ for i = 1, 3, , k. We can assume that Of{xι)

Π U2δ(Ωt2) = φ for ί = 1, 3, , k. Then applying the same argument in

case of Ωtl9 we have that there is n ; e Z such that yά e Ur(Ωt2) for any j ^

nf. This contradicts to the fact that y3 e Ur(Ωtl) for any jt^n. Hence ΩH

= ΩSl. Similarly Ωh+1 = ΩSi. We write s0 for tx. Then a(xl) C Ωso, ω(xk)

C βSA. and ω(xt) U ̂ fe+i) C ΩH for any 1 ̂  i <ΞJ A — 1.

For simplicity, we write the Ωt for the ΩSi in Proposition 3.6. Through-

out the remainder of this paper we assume that there are ̂ -points xt of

M (k <: m — 1) such that

moreover a(xι) C Ωo, ω(xk) C Ωk and ω(Xi) U «(xt+i) C i2< for any 1 ̂  i ^

§4. Extended f-orbits in nonwandering set

Let A be an extended /-orbit. Then there are /^-points xt of M such

that A - Ω = U t i UnezΓ(*i) and w(xt) U α(x<+i) C β< and let A< = A Π

LEMMA 4.1. For any δ > 0 and ε > 0, ί/iere is 7- > 0 with 0 <γ < δ

such that for any 0 < γ' < γ, there is an ε-orbit Aβ of f; Aβ = closure of

z satisfying the fallowings;
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(1) 5 ( A , A β ) < r '

(2) if ym, yn € Ur,(At)9 then y5 e ϋi(A<) = for any m<j<n.

Proof. Let δ > 0 and ε > 0 be given. There is HeN such that fn(xt)

e Uδ/2{ω{xΐ)) and f~n(xi+ί) e Uδ/2((x(xi+1)) for any n^H. Then for any we

βi, fπ(Xi) < u and w -<f~H{xi+d- Since fH(Xι) and f~H(xi+i) are not elements

of β and iV(/) = β(/), w τ< /ff(x<) and f'H(xί+1) -A u. Therefore there is εx

> 0 such that there exists neither εj-pseudo orbit {Xj}y=0 with x0 = u and

xn = fH(Xi) nor εrpseudo orbit {xj}%0 with x'o = f~H(xί+1) and x'm = u. We

choose 7Ί > 0 such that for any pair (p, q) of points on M with d(p, g) <

r» d(f(p),f(q)) < eJ2. Let γ = min{a/2, ei/2, r>} and ε7 = min{ε, φ}. By

definition of extended /-orbits, for any 0 < f < γ9 there is an ε'-orbit Aε,

of /; Aε, = closure of {y^6z such that d(A, Ae/) < f. Suppose that there

are m, j and n with m <j < n such that yTO, yw 6 U^(At) and ^ φ Uδ(At).

Since d(A, A./) < / , there is 26 Uf{ya) Π A. Clearly 0^ Ua/2(Ai) because

UAVs) n ί/a/>(̂ i) = Φ Then either 0 -< fH(xt) or f~H(xί+1) < z. We can

assume that z < fH(xd without loss of generality. Then there is an ε7-

pseudo orbit {Xj}*=0 with xQ = z and xs = fH{x?). Since ^m e C7r/(A<), there

i sweAi such that d(ym, u) < / . Since f < TΊ, d(f(ym), f(u)) < εi/2. Hence

d(f(u)9yn+1) < d(f(u),f(ym)) + d(f(ym),ym+1) < eJ2 + ε' < ε,.

Now we define a sequence {̂ }y=o (L = jί — m + s + 1) as follows;

Then {̂ }̂ =0 is an εrpseudo orbit with z0 — u and zL — fH(Xi). This is a

contradiction.

By Lemma 4.1, for £ > 0, small f > 0 and small ε > 0, there is an

ε-orbit Ae of/; Ae = closure of {y^ez satisfying the followings;

(1) 5(A0, closure of {y^Jl.») < ί

(2) d(At9 {y^Ud <δ for any 1 £ i £ k - 1

(3) 3(Afc, closure of {y^rmk) < 3

where m* = min {7: yi 6 i7r/(A{)} for any 1 ^ i ^k, and ^ = max {j: ys e

Ur,(At)} for any 0 ^ £ ̂  k - 1.

We denote ymi by L^/, ε) and yni by L,-(/, ε).

LEMMA 4.2. J/ ^ and εn —> 0 as n—• 00, then the cluster points of the

sequence Lΐ{γ'n, en) are contained in ω(Xi).

Proof. Let Lt be the set of the cluster points of the sequence Lt{γf

m εn),



40 KEN SAWADA

y+ e Lt and a > 0 be given {a is sufficiently small). Now let || Txf\\ —

sup {|| Txf(v): v e TXM and | |υ| | <L 1} where | | . || is the Riemannian metric on

M. Let K = max {|| Txf\\, \\ TJ-'W}. Then there is i e N such that Lΐ(γ'£, ε£)

is in Ua(y+) and γ'e, εe < α/4ίΓ. For Lt(γf

£, ε£), there is TT̂  e Z such that ymi

e AH Π Ur>t(Ai) and ymί_i e A£, — U7^A^. Since ^ and e, are small, there

is p e ΛΓ such that /*(xt) 6 l7r;(yOT<-i). Then

diynt9f
p+1(xt)) < d{ymi,f(ynί-d) + <Hf(ymi^,f**\xι)) <h + Kγe < a/2.

Hence

d(y+,f*+1(xd) < d(y\ymi) + d(ymi, f^(Xί)) < a/2 + a/2 < a.

Since a is arbitrary y+ 6 ω(x*). Hence L?" C

Similarly the cluster points of the sequence Lϊ(γn9 εn) are contained

in a(xί+1).

LEMMA 4.3. For any δ > 0 and ε > 0, ίΛere is an ε-pseudo orbit {x)})=a

of f\Ωi9 a and b depend on i, such that

(1) 3(Ai9 closure of {xJJJ.J < δ

(2) x\ e ω(xt) for any 1 < i < k

(3) xl e a ( x i + 1 ) for any 0<i<k- 1.

Proof Let if be as in Lemma 4.2. For δ > 0 and e > 0, choose ^r

and ε' such that 0 < δ' < 3/2 and 0 < εf < ε - (1 + K)δ'. As stated above,

there is ^-pseudo orbit {y$-a s ^ch that

(i) 3(Ai9 closure of {y^-J < ^.

(α and 6 are depend on i). By Lemma 4.2, we may assume that ya e ω(xt)

and yb e a(xi+1). By (i), there is zά e At in Uy(ys) for any a<j<b. Then

we define a sequence {xj}5»α as follows; x\ = yβ, xι

6 = yδ and xj = zs for

any α < j < b. Since d(/(x}), f{y3)) < Kδ\

+ d(y)+u x)+1) <Kδ' + ε' + δ'<ε.

Since Uδ,(yό) C Ui(x% {̂ J}}βα is an ε-pseudo orbit of / l ^ satisfying (1), (2)

and (3).

For any 1 <̂  i <^k — 1, α and 6 are finite. If i is equal to 0, then

a = — oo. If i is equal to fe, then ί> = + °°.

§ 5. Proof of Theorem

Throughout it is assumed that / is an AS-diffeomorphism and let Ω(f)
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= Ω1 U U Ωm such that if ί < j , then Ωj $= β*. The stable manifold of

x is the set W'(x,f) = Ws(x) = {yeM: d(fn(x),fn(y))->0 as n-> 00} for

any x e M. Let W/(x) = {yeM: d(fn(x), fn(y)) < δ for any 71 ̂  0}. The un-

stable manifold of x is the set Wu(x,f) = W^xJ-1) and Wδ

u(x) = Wi(xJ-').

For small δ > 0 and xefl,

W7(s) = {yeM: d(fn(x), f\y)) < λnδ for any n ^ 0}

where Λ is a positive constant with λ e (0, 1). For small £ > 0 there is a

zz-disc family Wδ

u through a compact neighborhood Ut of β< in M which

reduces to Wδ

u at Ωt and semi-invariant in the sense that

W?(f{x)) c f(Wΐ{x)) for x e [/, Π /"X^) .

See [2]. For xeM, let 0}{x) = closure of {/n(x): rc ̂  0} and let Oj(x) =

closure of {/w(x):^^ 0}.

The following proposition is due to R. Bowen [1].

PROPOSITION 5.1. For any δ > 0, there is an ε > 0 so that every

ε-pseudo orbit of f\Ω is δ-shadowed by some zeΩ.

COROLLARY 5.2. Let A be an extended f-orbit with A a Ω. Then A

Proof. It is clear that A d Ω implies A C Ωt for some 1 ^ i ^ m.

By Lemma 4.3, for any δ > 0 and any ε > 0, there is an ε-pseudo orbit x

of /1 Ω such that

d(A, closure of x) < δ/2 .

By Proposition 5.1, taking sufficiently small ε > 0, x is (<5/2)-shadowed by

zeΩt. Hence

d(A, Of{z)) < d(A, closure of x) + d(Of(z), closure of x)

< δ/2 + δ/2 < δ.

Since δ is arbitrary and Of is closed, A e Of.

Remark 5.3. Let ze Ω ^-shadows ε-pseudo orbit {x7}5=α of f\ Ω. Then

we may assume that

(1) if a and b axe finite, then z e W?(xα) and fb~α(z) e Wα

s(xb) for small

α> 0

(2) if b = + 00, then ze W?(xα)

(3) if α = - 00, then ze W&x*). See [1].
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We shall need the following lemma before we prove Theorem.

LEMMA 5.4. Let yeΩute Wδ

s(y) (a(t) c Ωjy j Φ ί) and let / e ω(y), z e

Wδ

u(y') Π Ωι for small δ > 0. Then for any r > 0, any u-disc D which is

C'-close to Wu(t) Π Br{t) and any s-dίsc D' which is C'-close to Wδ

s(z) Π

Br(z), there is v e D such that fn(v) e Df for some neN. Moreover

d(fj(v), /'(«)) < 2δ for any 0<j<n

where Br(.) is an r-ball of (.), u = dim Tt(Wu(t)) and s = dim T,(Wi(z)).

Proof. We shall first prove that for any r > 0, there is v' e Wu(t) Π

Br(t) such that fn{υf) e Wδ

s(z) Π Br(z) for some neN. By generalized λ-

lemma [5, Proposition 2.3], there is w-dise D in Wu(t) Π Br{t) such that fn(D)

is enclose to Wδ

u(fn(y)) for large neN. Since fn(y) is near to / ( / e

ω(y)\ Wδ

u(fn(y)) is enclose to Wδ

u(y'). Hence fn(D) is enclose to W ( / )

so that fn(D) Π (W/(z) Π Br(z)) Φ φ. Taking sufficiently large n e N, there

is σ, 0 < (7 < r d such that W,tt(α) Π fn(D) = ^ for any a 6 W/»3 (/%)) -

WXfn(y)) because fn(D) is C'-close to Wδ

u(fn(y)). And there is q e Ws

σ(fn(y))

such that

W?(q) Π Γ φ ) Π (W?(e) Π Br(z)) Φ φ.

L e t v'ef-n(Wδ

u(q)) Π D Π f-%Ws

δ{z) Π B r ( « ) ) . T h e n /^( ι/) efJ(f'n(W?(q)) f o r

any 0 ^ j ^ n. By semi-invariance of w-disc family Wδ

u, fj(v') e Wδ

u(fj~n(q)).

Since t and / " % ) are in Wδ

s(y), d(fj(t),fj-n(q))< 3 for any O ^ j ^ n .

Hence d(/'(ι/), /^(ί)) < 2^ for any 0 ^ j ^ Λ.

Secondly by strong transversality, there is v e D and neN such that

f*(ϋ) e Df for any w-disc D which is C'-close to Wu(t) Π B r(0 and any

s-disc D' which is C'-close to Wi(z) (Ί i3r(0). Moreover d(f3(v), fj(t)) <

2<5 for any 0 <: j £ n.

Proof of Theorem. Since Of C £Jr, it is sufficient to show that Ef c

Of. If A is an extended /-orbit with AdΩ, then A € Of by Corollary 5.2.
Therefore we may assume that A is not contained in Ω. Then since AS-

diffeomorphisms satisfy Axiom A and no cycle property, by Proposition

3.6 there are ^-points xteM such that

A - Ω = U U Πxd

moreover a(x^ C i20, ω(xfc) C Ωk and ω ^ ) U < (̂xί+i) C ^ for any 1 ^ i ^
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k — 1. For small δ > 0, we choose a compact neighborhood Ut of Ωt such

that there is iz-disc family W} through Ut. Let At = A Π β«.

By Lemma 4.3 for any δ > 0 and small ε > 0, there is an ε-pseudo orbit

{x)))=a oΐ f\ Ωt (1 <L i <L k — 1, a and b depend on i, a and b are finite)

such that xi e ω(xt), χ\ e (xi+1) and 5(A,, {*}}*U) < δ/2. We denote 4 by y,

and x£ by y". By Proposition 5.1, taking sufficiently small ε > 0, {xJ}J.α

is 3/2-shadowed by ^ e β, with zt e Wd

u(y£, p-fa) e W?(y"). Hence

Similarly for Ao and Ak, there are zoeΩo with 20 e W?(y") (yΌ' e afa)) and

zte € i2fc with 2:fc e W?(yί) (yί e ω(xk)) such that

d(A0, closure of {fj(z0): j e ( - oo, 0]}) < 3

fc, closure of {fj(zk):j e [0, + oo)}) < δ .

And there is Mte N such that

(i) fn(xτ) e UUΦi)) for any n ^ Af,
(ii) f~n(xί+1) e Uδ/i{a{xί+ι)) for any n^M^

Similarly for αfo) and ω{xk), there are Mo, Mk e N such that

( i / /-"(xO € Uwiφi)) for any n ^ Mo

(iiy Λfe) e Um{Φ*)) for any n ^ M f c.

Then let tt = fMi(xτ) (1 £ i ^ A), and let w4 = f'Mi(xi+1) (0^i£k-ΐ) By

[3], there are yί and yj e Ωt such that tt e Wδ

s(yt) and wt e W?(yϊ). Since

ω(^) = ω{yt) and «(Λ:<+1) = α(y<"), y- 6 ©(yί) and y 7 e ^(yι

7). Hence by Lemma

5.4, for any r > 0, there is v e Wu(tτ) Π J3r(ίf) such that /πίO) e VF/fe) Π

Br(zt) for some ^eiV. Since fni(ϋ) e Ws

δ(zt) Π B rfe), fni+b-a(v) is near

to /δ"αfe) for sufficient small r > 0. Let uί.ι = aim Ttί{Wu(tτ)\ st =

dim Tei(Wi(zt)) and ^ = dim Tti(Wt(Zi)). Since w ^ + s< ̂  dim M by strong

transversality condition and ut + s< = dim M by the hyperbolicity of Ω,

Ut-i^Ut By generalized Λ-lemma, we know that there is a uf-disc Z) in

Wu(tt) Π S r(ί0 such that

/»«+*-«(£)) is enclose to W?(fb'a(zt)).

The stable manifold and the unstable manifold of / are the unstable mani-

fold and the stable manifold of f'1 respectively. Hence by Lemma 5.4

applied to f'\ there is υ' efnί+b'a(D) such that f % ' ) 6 Ws{w%) Π Br(wt)

(W'(Wi) C Ws(Ωi+ί)) for some n eiV. Hence there is a wΓdisc in Wu{t%) Π

Br(^) such that fm'(D) is enclose to Wu(wt) ΓΊ B r (^) , where mi = nt +
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b — a + n'i. Therefore

(1) fm\U) is enclose to Wu(Wi) Π Br{wύ for any z*rdisc D which is

CJ-close to D.

And if r is small, then
(2) d{O}{t%) U A, U O ίiiO, {f(p): 0 ^ j ^ m'}) < 25 for any peD.

We shall choose a point xeM such that S(A, 0/x)) < 25. For any

1 £ i ^ Jfe, let

= {y 6 M: dif'fa), fJ(y)) < δ for any - M , ^ 7 ̂  M,}.

Then there is rx > 0 such that

BrXQ c fMi(Qs(xd), Bri(Wi) c f-MiQδ(xί+ι).

By Lemma 5.4 applied to /~\ there is v e W?(z0) Π Br(z0) (r < rx) such that

/wo(u) 6 W5(M;O) Π Br(w0) for some n0 € N. Hence there is a uo-disc D'o in
W?(2b) Π Br(z0) such that /W0(JDί) is enclose to Wu(w0) Π Br(ιι;o). Since D'o c

3(A0, closure of {/'(//): - 00 < ^ 0 ) < 25 for any pf e D'Q.

Hence if r is small, then

(3) d(A0 U 07(^0), closure of {f (p7/): - 00 < ; ^ n0}) < 2δ for any p "

eDί.
If /no(Do) is sufficiently enclose to Wu(w0) Π Br(^o), then

/no+Jfo+Jfι(JDS) is enclose to Ww(0 Π J5 r (0.

Then by (1), there is a «Γdisc D, in f^^+M^(D'Q) such that

/W(1)(A) is enclose to ^ ( ^ 0 Π Br(^i)

(w(j) = n . + 1̂ 1 + n'i where |7,| = 6 — α as h = [a, 6]). Hence there is a

wrdisc Z)j in D[ such that

^ Ϊ I + » W ( D ] ) is enclose to W(^) Π Br(^i)

Therefore

O is enclose to Wu(t2) Π Br(4)

where M(j) = n0 + Mo + 2 Σ | : ί M, + ^ " ί m(i) + M j 4 By induction, there

is a Wfc_rdisc Dfc_i in W?(2b) Π Br(z0) such that

k^) is enclose to WM(4) Π Br(ί fc).
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By Lemma 5.4, there is yefMW{Dk.^) such that fnk(y) e Wδ

s(zk) Π Br(z,).

Hence

d(Ak, closure of {/'(y): 0 ^ j < + oo})< 2δ .

Let x = f~mk)(y). Since a e Wδ

u(z0) (Ί B r teλ

S(Λ, closure of {/'(*): - co < y £ nQ}) < 23

by (3). Since fM(i)'Mt(x)eQi(xi) for any i by the choice of rx and r < r,

dtf'ixt), fj(fmί)-Mi(x))) < δ for any - M ^ ^j^Mt.

By (2), for any 1 ̂  ί ^ A - 1,

5(O;(O U A, U 0/(11;,), \fKfu«\x)): O^j^ m(ΐ)}) < 2δ .

Hence d(A, 0f(x)) < 2δ. Since δ is arbitrary and 0 y is closed in C(M), A e

Oj. Hence Ef C 0f.

During the preparation of this paper, we heard that A. Morimoto

gave a proof of Theorem [4] but our proof is a different from his.

The author wishes to thank Professors Hiroshi Noguchi and Kenichi

Shiraiwa for helpful comments and suggestions and to thank Yoshio

Togawa for conversations helpful to this paper.
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