EXTENDED f-ORBITS ARE APPROXIMATED BY ORBITS

KEN SAWADA

Introduction

Let f be a C^{r}-diffeomorphism, $r \leqq 1$, on a compact differentiable manifold M with $\operatorname{dim} M \geqq 2$. In [9] F. Takens introduced the concept of extended f-orbits and conjectured the following.

If f is an $A S$-diffeomorphism, then the set E_{f}^{-}of all extended f-orbits is equal to the set O_{f} of the closure of all f-orbits in $C(M)$, where $C(M)$ is the metric space of all non empty closed subsets of M.

In this paper we give an affirmative answer for this conjecture.

§ 1. Definitions and the main Theorem

We fix a metric d on M induced by a Riemannian metric, and we define a metric \bar{d} on the set $C(M)$ of all non empty closed subsets of M as follows; for closed non empty subsets A and B of M,

$$
\bar{d}(A, B)=\max \left(\max _{\alpha \in A} d(a, B), \max _{b \in B} d(b, A)\right)
$$

where $d(a, B)=\min _{b \in B} d(a, b)$. We identify a closed subset of M with an element of $C(M)$. Here Z denotes the integers, N the natural numbers. For a diffeomorphism f and $x \in M$, we define the f-orbit of $x, O_{f}(x)$, to be the closure of $\left\{f^{n}(x) \mid n \in Z\right\}$. By definition, $O_{f}(x) \in C(M)$. Then we denote the closure of $\left\{O_{f}(x) \mid x \in M\right\}$ in $C(M)$ by $O_{f} . \quad O_{f}$ is a closed subset of $C(M)$. We say that a closed subset $A \subset M$ is an ε-orbit of $f, \varepsilon>0$, if there is a sequence $\left\{x_{j}\right\}_{j \in Z}$ such that $d\left(f\left(x_{j}\right), x_{j+1}\right)<\varepsilon$ for any $j \in Z$ and $\left\{x_{j}\right\}_{j \in Z}$ is dense in A. We say that a closed subset $A \subset M$ is an extended f-orbit if for any $\varepsilon>0$ and $\delta>0$, there is an ε-orbit A_{ε} of f such that $\bar{d}\left(A, A_{\epsilon}\right)$ $<\delta$. Note that extended f-orbits are identified with elements of $C(M)$. Let E_{f} be the set of all extended f-orbits. By definition, E_{f} is a closed subset of $C(M)$ and $O_{f} \subset E_{f}$. See [9]. We recall that f is an $A S$-diffeo-
morphism if f satisfies Axiom A and strong transversality condition. Then our main result is

Theorem. If f is an AS-diffeomorphism, then $E_{f}=O_{f}$.
We shall prove Theorem in section 5.

§ 2. More definitions and a sketch of the proof

In this section we give some notations and definitions used throughout the paper and give a sketch of the proof of Theorem.

The nonwandering set of a diffeomorphism f is denoted by $\Omega(f)$ or Ω and the set of the periodic points of f is denoted by $\operatorname{Per}(f)$. For $x \in M$, define $\alpha(x)=\alpha(x, f)=\left\{y \in M\right.$: there is a sequence of integers $n_{i} \rightarrow \infty$ such that $f^{-n_{t}}(x) \rightarrow y$ as $\left.i \rightarrow \infty\right\}$. Let $\omega(x)=\omega(x, f)=\alpha\left(x, f^{-1}\right)$. The nonwandering set of f satisfying Axiom A and no cycle property can be written as a disjoint union of closed subsets $\Omega(f)=\Omega_{1} \cup \cdots \cup \Omega_{m}$ such that each Ω_{i} is invariant by f, and f is topologically transitive on each Ω_{i}. Then we call each Ω_{i} a basic set and may define an order on the set $\left\{\Omega_{1}, \cdots\right.$, $\left.\Omega_{m}\right\}$ as follows:

$$
\Omega_{i} \leqq \Omega_{j} \quad \text { if } W^{u}\left(\Omega_{i}\right) \cap W^{s}\left(\Omega_{j}\right) \neq \phi
$$

where $W^{u}\left(\Omega_{i}\right)$ and $W^{s}\left(\Omega_{j}\right)$ are the unstable manifold and the stable manifold of Ω_{i} and Ω_{j} respectively. We may renumber Ω_{i} such that $\Omega_{j} \neq \Omega_{i}$ if $i<j$. Henceforth we shall assume that Ω_{i} is numbered as above for any diffeomorphism f satisfying Axiom A and no cycle property.

We say that a sequence $\bar{x}=\left\{x_{j}\right\}_{j=a}^{b}(a=-\infty$ or $b=+\infty$ is permitted) of points in M is an ε-pseudo orbit if

$$
d\left(f\left(x_{j}\right), x_{j+1}\right)<\varepsilon \quad \text { for any } j \in[a, b-1] .
$$

A point $x \in M \delta$-shadows a sequence \bar{x} if

$$
d\left(f^{j}(x), x_{j+1}\right)<\delta \quad \text { for any } j \in[a, b]
$$

See [1, Page 74].
We define a relation \prec on M, induced by f, as follows: $x, y \in M$, then $x \prec y$ if and only if for any $\varepsilon>0$, there is an ε-pseudo orbit $\left\{x_{j}\right\}_{j=0}^{n}$ with $x_{0}=x, x_{n}=y$ and $n \geqq 1$. We define $N(f)=\{x \in M \mid x \prec x\}$. Note that $x \prec f^{n}(x)$ for any $n \geqq 1$ and $N(f) \supset \Omega(f)$. See [9] for details.

Now let f be an $A S$-diffeomorphism and let A be an extended
f-orbit with $A \not \subset \Omega$. Then there are k-points $x_{i} \in M$ such that $A-\Omega=$ $\bigcup_{i=1}^{k} \bigcup_{n \in Z} f^{n}\left(x_{i}\right)$ and such that $\omega\left(x_{i}\right)$ and $\alpha\left(x_{i+1}\right)$ belong to the same basic set $\Omega_{s_{i}}\left(1 \leqq s_{0}<\cdots<s_{k} \leqq m\right)$ by Proposition 3.6 in section 3. In section 4 we obtain that for $A_{s_{i}}=A \cap \Omega_{s_{i}}$, any $\delta>0$ and small $\varepsilon>0$, there is an ε-pseudo orbit $\bar{x}=\left\{x_{j}\right\}_{j=a}^{b}$ such that

$$
\bar{d}\left(A_{s_{i}}, \text { closure of }\left\{x_{j}\right\}_{j=a}^{b}\right)<\delta
$$

By [1, Proposition 3.6], \bar{x} is δ-shadowed by some $z \in \Omega_{s_{i}}$. We shall select $x^{\prime} \in M$ such that

$$
\bar{d}\left(O_{f}\left(x^{\prime}\right), A_{s_{0}} \cup O_{f}\left(x_{1}\right) \cup A_{s_{1}}\right)<\delta
$$

so that we can select $x \in M$ such that $\bar{d}\left(O_{f}(x), A\right)<\delta$ by induction. Hence $A \in O_{f}$. Since we obtain in section 5 that if A is an extended f-orbit with $A \subset \Omega$, then $A \in O_{f}$, therefore $A \in O_{f}$ for any extended f-orbit A. Since $O_{f} \subset E_{f}, O_{f}=E_{f}$.

§3. Nonwandering sets and extended f-orbits

In this section we give some results about $N(f)$ and extended f-orbits. We recall that f has no $C^{0}-\Omega$-explosion if for each $\varepsilon>0$, there is a neighborhood $U(f)$ of f in $\operatorname{Diff}^{r}(M)$ with C^{0}-topology such that $\Omega(g) \subset U_{s}(\Omega(f))$ for any $g \in U(f)$, where $\operatorname{Diff}^{r}(M)$ is the set of C^{r}-diffeomorphisms with C^{r}-topology and $U_{\varepsilon}($.$) is an \varepsilon$-neighborhood of (.).

The following lemma is due to Z. Nitecki and M. Shub [6]. For the proof, the hypothesis $\operatorname{dim} M \geqq 2$ is needed.

Lemma 3.1. Suppose a finite collection $\left\{\left(p_{i}, q_{i}\right) \in M \times M: i=1, \cdots, k\right\}$ of pairs of points on M is specified, together with a small positive constant $\delta>0$ such that:
(i) For each i, $d\left(p_{i}, q_{i}\right)<\delta$
(ii) If $i \neq j$, then $p_{i} \neq p_{j}$ and $q_{i} \neq q_{j}$.

Then there exists a diffeomorphism $\eta: M \rightarrow M$ such that
(a) $d(\eta(x), x)<2 \pi \delta \quad$ for every $x \in M$
(b) $\eta\left(p_{i}\right)=q_{i} \quad$ for $i=1, \cdots, k$.

Proposition 3.2. If f has no $C^{0}-\Omega$-explosion, then $N(f)=\Omega(f)$.
Proof. It is sufficient to show that $N(f) \subset \Omega(f)$. Let $x \in N(f)$ and
$\varepsilon>0$ be given. Since f has no $C^{0}-\Omega$-explosion, there is a neighborhood $U(f)$ of f in $\operatorname{Diff}^{r}(M)$ with C^{0}-topology such that $\Omega(g) \subset U_{\Delta}(\Omega(f))$ for any $g \in U(f)$. Take $\delta>0$ such that if $d(g(x), f(x))<\delta$ for any $x \in M$, then $g \in U(f)$. From definition of $N(f)$, there is a ($\delta / 2 \pi)$-pseudo orbit $\left\{x_{j}\right\}_{j=0}^{n}$ with $x_{0}=x$ and $x_{n}=x$. We may assume that $x_{i} \neq x_{j}$ if $i \neq j$. By Lemma 3.1, there is a diffeomorphism η on M such that $\eta\left(f\left(x_{j}\right)\right)=x_{j+1}$ and $d(\eta(x), x)$ $<\delta$ for every $x \in M$. Then the composition $g=\eta \circ f$ is a diffeomorphism on M such that
(a) $d(g(x), f(x))<\delta \quad$ for any $x \in M$
(b) $g^{n}(x)=(\eta \circ f)^{n}\left(x_{0}\right)=x_{n}=x$.

Hence $g \in U(f)$ and $x \in \operatorname{Per}(g)$. Since $x \in \Omega(g) \subset U_{\epsilon}(\Omega(f))$ and $\Omega(f)$ is closed, $x \in \Omega(f)$.

If f satisfies Axiom A and no cycle property, then f has no $C^{0}-\Omega$ explosion [8]. Therefore we have

Corollary 3.3. If f satisfies Axiom A and no cycle property, then $N(f)=\Omega(f)$.

We shall assume throughout the remainder of this section that f satisfies Axiom A and no cycle property.

Lemma 3.4.
(i) If $f^{n}(x) \prec y$ for any $n \in N$, then $u \prec y$ for any $u \in \omega(x)$.
(ii) For any $x, y \in \Omega_{i}, x \prec y$ and $y \prec x$.

Proof. Let $a \in \omega(x)$ and $\varepsilon>0$ be given. Since $f(a) \in \omega(x), d\left(f(a), f^{m}(x)\right)$ $<\varepsilon$ for some $m \in N$. Then there is an ε-pseudo orbit $\left\{x_{j}^{\prime}\right\}_{j=0}^{n}$ with $x_{0}^{\prime}=f^{m}(x)$ and $x_{n}^{\prime}=y$. Define a sequence $\left\{x_{j}\right\}_{j=0}^{n+1}$ by

$$
x_{0}=a, x_{j}=x_{j-1}^{\prime} \quad \text { for any } 1 \leqq j \leqq n+1
$$

Then $\left\{x_{j}\right\}_{j=0}^{n+1}$ is an ε-pseudo orbit with $x_{0}=u$ and $x_{n+1}=y$. As ε is arbitrary, $a \prec y$.
(ii) By [1, page 72], $\Omega_{i}=X_{1, i} \cup \cdots \cup X_{n_{1}, i}$ with $X_{j, i}$'s pairwise disjoint closed sets, $f\left(X_{j, i}\right)=X_{j+1, i}\left(X_{n_{i+1, i}}=X_{1, i}\right)$ and $f^{n_{i}} \mid X_{j, i}$ topological mixing i.e., for any open sets U, V of $X_{j, i}$ (i.e. in Ω), there is $k>0$ such that $U \cap f^{k \times n_{i}}(V) \neq \phi$. Hence for any $x, y \in \Omega_{i}, x \prec y$ and $y \prec x$.

Lemma 3.5. If $x, y \in W^{s}\left(\Omega_{i}\right)-\Omega_{i}$ and $x \prec y$, then $f^{n}(x)=y$ for some $n \in N$.

Proof. Suppose, on the contrary, that $f^{n}(x) \neq y$ for any $n \in N$. Clearly if $x \prec y$ and $f(x) \neq y$, then $f(x) \prec y$. Hence by induction, if $x \prec y$ and $f^{n}(x) \neq y$ for any $n \in N$, then $f^{n}(x) \prec y$. By Lemma 3.4 (i), we have

$$
x \prec u \prec y \prec w \quad \text { for any } u \in \omega(x) \text { and any } w \in \omega(y) .
$$

Since $u \in \omega(x) \subset \Omega_{i}$ and $w \in \omega(y) \subset \Omega_{i}$,

$$
u \prec w, \quad w \prec u \quad \text { by Lemma } 3.4 \text { (ii). }
$$

Hence $y \prec w \prec u \prec y$ and $y \in N(f)=\Omega(f)$, a contradiction.
Proposition 3.6. For each $A \in E_{f}$ such that $A \not \subset \Omega$, there are k-point $x_{i} \in M(k \leq m-1)$ such that

$$
A-\Omega=\bigcup_{i=1}^{k} \bigcup_{n \in \boldsymbol{Z}} f^{n}\left(x_{i}\right)
$$

moreover there are $s_{0}, \cdots, s_{k}\left(1 \leq s_{i} \leq m\right)$ such that $\alpha\left(x_{1}\right) \subset \Omega_{s_{0}}, \omega\left(x_{k}\right) \subset \Omega_{s_{k}}$ and both $\omega\left(x_{i}\right)$ and $\alpha\left(x_{i+1}\right)$ are contained in $\Omega_{s_{i}}$ for any $1 \leq i \leq k-1$.

Proof. We define an equivalence relation on M before we prove. For $x, x^{\prime} \in M$, we say that x is orbitally related or O-related to x^{\prime} (write $x \sim$ x^{\prime}) if either $f^{n}(x)=x^{\prime}$ or $f^{n^{\prime}}\left(x^{\prime}\right)=x$ for some $n, n^{\prime} \in N$. Let $A^{i}=W^{s}\left(\Omega_{i}\right)$ $\cap(A-\Omega)$. Since $M=\bigcup_{i=1}^{m} W^{s}\left(\Omega_{i}\right), A-\Omega=\bigcup_{i=1}^{m} A^{i}$. By definition of extended f-orbits, if $x, y \in A$, then either $x \prec y$ or $y \prec x$. If $x, y \in A^{i}$, then $x, y \in W^{s}\left(\Omega_{i}\right)-\Omega_{i}$. Hence by Lemma 3.5, if $x, y \in A^{i}$, then $x \sim y$. Hence either $A^{i}=\left\{f^{n}(x) \mid n \in Z\right\}$ for some $x \in A^{i}$ or $A^{i}=\phi$ so that there are k-points x_{i} of $M(k \leqq m-1)$ such that

$$
A-\Omega=\bigcup_{i=1}^{k} \bigcup_{n \in \mathbb{Z}} f^{n}\left(x_{i}\right) .
$$

Let $\Omega_{s_{i}}$ be the basic set with $\omega\left(x_{i}\right) \subset \Omega_{s_{i}}$ and let $\Omega_{t_{i}}$ be the basic set with $\alpha\left(x_{i}\right) \subset \Omega_{t_{i}}$. We may assume that $s_{1}<s_{2}<\cdots<s_{k}$. If $\alpha\left(x_{i}\right)$ and $\alpha\left(x_{j}\right)$ are contained in the same basic set, then $x_{i} \sim x_{j}$ by Lemma 3.5 applied to f^{-1}. Hence $\Omega_{t_{i}} \neq \Omega_{t_{j}}(i \neq j)$. By the ordering on the basic sets, $\Omega_{t_{i}} \neq$ $\Omega_{s_{j}}$ for $i \leqq j$. Hence $\Omega_{t_{1}} \cap O_{f}\left(x_{i}\right)=\phi$ for $i=2, \cdots, k$ and $\Omega_{t_{2}} \cap O_{f}\left(x_{i}\right)=$ ϕ for $i=3, \cdots, k$. Therefore there is $\delta>0$ such that $O_{f}\left(x_{i}\right) \cap U_{2 \delta}\left(\Omega_{t_{1}}\right)=$ ϕ for $i=2, \cdots, k$ and $O_{f}\left(x_{i}\right) \cap U_{2 \delta}\left(\Omega_{t_{2}}\right)=\phi$ for $i=3, \cdots, k$. We choose $\gamma>0$ such that $U_{2 r}\left(\Omega_{t_{i}}\right) \subset f\left(U_{i}\left(\Omega_{t_{i}}\right)\right) \cap U_{\dot{j}}\left(\Omega_{t_{i}}\right)$ for $i=1$, 2 . Then there is $N^{\prime} \in N$ such that $f^{-n}\left(x_{1}\right) \in U_{r / 2}\left(\Omega_{t_{1}}\right)$ and $f^{-n}\left(x_{2}\right) \in U_{r / 2}\left(\Omega_{t_{2}}\right)$ for any $n \geqq N^{\prime}$. Since $N(f)=\Omega(f)$ and $f^{-N^{\prime}}\left(x_{i}\right) \oplus \Omega(f)(i=1,2), f^{-N^{\prime}}\left(x_{i}\right) \nprec u_{i}$ for any $u_{i} \in$
$\Omega_{t_{i}}$. Hence there is $\varepsilon^{\prime}>0$ such that there exists neither ε^{\prime}-pseudo orbit $\left\{x_{j}\right\}_{j=0}^{n}$ with $x_{0}=f^{-N^{\prime}}\left(x_{1}\right)$ and $x_{n}=u_{1}$ nor ε^{\prime}-pseudo orbit $\left\{x_{j}^{\prime}\right\}_{j=0}^{n^{\prime}}$ with $x_{0}^{\prime}=$ $f^{-N^{\prime}}\left(x_{2}\right)$ and $x_{n^{\prime}}^{\prime}=u_{2}$. Let $\varepsilon=\min \left\{\gamma / 2, \varepsilon^{\prime} / 2\right\}$ and let $A_{\varepsilon}=$ closure of $\left\{y_{j}\right\}_{f \in Z}$ be an ε-orbit of f such that $\bar{d}\left(A_{\varepsilon}, A\right)<\varepsilon$. Then there is $n \in Z$ such that $y_{n} \in U_{\iota}\left(A \cap \Omega_{t_{1}}\right)$. Suppose that there is $\ell<n$ such that $y_{\ell} \in U_{r}\left(\Omega_{t_{1}}\right)$ and $y_{\ell-1} \oplus U_{\gamma}\left(\Omega_{t_{1}}\right)$. Then $y_{\ell-1} \in U_{\delta}\left(\Omega_{t_{1}}\right)$ because $f\left(y_{\ell-1}\right) \in U_{2 r}\left(\Omega_{t_{1}}\right)$. Since $\bar{d}\left(A_{s}, A\right)$ $<\varepsilon$, there is $z \in A \cap U_{6}\left(y_{\ell-1}\right)$. Clearly $z \oplus U_{r / 2}\left(\Omega_{t_{1}}\right)$ and $z \in U_{28}\left(\Omega_{t_{1}}\right)$. Since $O_{f}\left(x_{i}\right) \cap U_{2 \delta}\left(\Omega_{t_{1}}\right)=\phi$ for $i=2, \cdots, k, z=f^{-p}\left(x_{1}\right)$ for some $p<N^{\prime}$. Since $y_{n} \in U_{\epsilon}\left(A \cap \Omega_{t_{1}}\right)$, there is $u_{1} \in A \cap \Omega_{t_{1}}$ such that $d\left(u_{1}, y_{n}\right)<\varepsilon$. Now we define a sequence $\left\{z_{j}\right\}_{j=0}^{J}\left(J=p-N^{\prime}+n-\ell+1\right)$ as follows;

$$
\left(z_{0}, \cdots, z_{J}\right)=\left(f^{-N^{\prime}}\left(x_{1}\right), \cdots, f^{-p-1}\left(x_{1}\right), y_{\ell}, \cdots, y_{n-1}, u_{1}\right)
$$

Then $\left\{z_{j}\right\}_{j=0}^{J}$ is an ε-pseudo orbit with $z_{0}=f^{-N^{\prime}}\left(x_{1}\right)$ and $z_{J}=u_{1}$. Since $\varepsilon<$ $\varepsilon^{\prime},\left\{z_{j}\right\}_{j=0}^{J}$ is an ε^{\prime}-pseudo orbit with $z_{0}=f^{-N^{\prime}}\left(x_{1}\right)$ and $z_{J}=u_{1}$. This contradicts to the choice of ε^{\prime}. Hence $y_{j} \in U_{r}\left(\Omega_{t_{1}}\right)$ for any $j \leqq n$. Now if $\Omega_{t_{2}} \neq$ $\Omega_{s_{1}}$, then $O_{f}\left(x_{i}\right) \cap \Omega_{t_{2}}=\phi$ for $i=1,3, \cdots, k$. We can assume that $O_{f}\left(x_{i}\right)$ $\cap U_{20}\left(\Omega_{t_{2}}\right)=\phi$ for $i=1,3, \cdots, k$. Then applying the same argument in case of $\Omega_{t_{1}}$, we have that there is $n^{\prime} \in \boldsymbol{Z}$ such that $y_{j} \in U_{r}\left(\Omega_{t_{2}}\right)$ for any $j \leqq$ n^{\prime}. This contradicts to the fact that $y_{j} \in U_{r}\left(\Omega_{t_{1}}\right)$ for any $j \leqq n$. Hence $\Omega_{t_{2}}$ $=\Omega_{s_{1}}$. Similarly $\Omega_{t_{i+1}}=\Omega_{s_{i}}$. We write s_{0} for t_{1}. Then $\alpha\left(x_{1}\right) \subset \Omega_{s_{0}}, \omega\left(x_{k}\right)$ $\subset \Omega_{s_{k}}$ and $\omega\left(x_{i}\right) \cup \alpha\left(x_{i+1}\right) \subset \Omega_{s_{i}}$ for any $1 \leqq i \leqq k-1$.

For simplicity, we write the Ω_{i} for the $\Omega_{s i}$ in Proposition 3.6. Throughout the remainder of this paper we assume that there are k-points x_{i} of $M(k \leqq m-1)$ such that

$$
A-\Omega=\bigcup_{i=1}^{k} \bigcup_{n \in \mathbb{Z}} f^{n}\left(x_{i}\right)
$$

moreover $\alpha\left(x_{1}\right) \subset \Omega_{0}, \omega\left(x_{k}\right) \subset \Omega_{k}$ and $\omega\left(x_{i}\right) \cup \alpha\left(x_{i+1}\right) \subset \Omega_{i}$ for any $1 \leqq i \leqq$ $k-1$.

§4. Extended f-orbits in nonwandering set

Let A be an extended f-orbit. Then there are k-points x_{i} of M such that $A-\Omega=\bigcup_{i=1}^{k} \bigcup_{n \in Z} f^{n}\left(x_{i}\right)$ and $\omega\left(x_{i}\right) \cup \alpha\left(x_{i+1}\right) \subset \Omega_{i}$ and let $A_{i}=A \cap$ Ω_{i}

Lemma 4.1. For any $\delta>0$ and $\varepsilon>0$, there is $\gamma>0$ with $0<\gamma<\delta$ such that for any $0<\gamma^{\prime}<\gamma$, there is an ε-orbit A_{s} of $f ; A_{s}=$ closure of $\left\{y_{j}\right\}_{j \in Z}$ satisfying the followings;
(1) $\bar{d}\left(A, A_{\star}\right)<\gamma^{\prime}$
(2) if $y_{m}, y_{n} \in U_{r^{\prime}}\left(A_{i}\right)$, then $y_{j} \in U_{s}\left(A_{i}\right)=$ for any $m<j<n$.

Proof. Let $\delta>0$ and $\varepsilon>0$ be given. There is $H \in N$ such that $f^{n}\left(x_{i}\right)$ $\in U_{\delta / 2}\left(\omega\left(x_{i}\right)\right)$ and $f^{-n}\left(x_{i+1}\right) \in U_{\partial / 2}\left(\alpha\left(x_{i+1}\right)\right)$ for any $n \geqq H$. Then for any $u \in$ $\Omega_{i}, f^{H}\left(x_{i}\right) \prec u$ and $u \prec f^{-H}\left(x_{i+1}\right)$. Since $f^{H}\left(x_{i}\right)$ and $f^{-H}\left(x_{i+1}\right)$ are not elements of Ω and $N(f)=\Omega(f), u \nprec f^{H}\left(x_{i}\right)$ and $f^{-H}\left(x_{i+1}\right) \nprec u$. Therefore there is ε_{1} >0 such that there exists neither ε_{1}-pseudo orbit $\left\{x_{j}\right\}_{j=0}^{n}$ with $x_{0}=u$ and $x_{n}=f^{H}\left(x_{i}\right)$ nor ε_{1}-pseudo orbit $\left\{x_{j}^{\prime}\right\}_{j=0}^{m}$ with $x_{0}^{\prime}=f^{-H}\left(x_{i+1}\right)$ and $x_{m}^{\prime}=u$. We choose $\gamma_{1}>0$ such that for any pair (p, q) of points on M with $d(p, q)<$ $\gamma_{1}, d(f(p), f(q))<\varepsilon_{1} / 2$. Let $\gamma=\min \left\{\delta / 2, \varepsilon_{1} / 2, \gamma_{1}\right\}$ and $\varepsilon^{\prime}=\min \left\{\varepsilon, \varepsilon_{1} / 2\right\}$. By definition of extended f-orbits, for any $0<\gamma^{\prime}<\gamma$, there is an ε^{\prime}-orbit $A_{\varepsilon^{\prime}}$ of $f ; A_{\varepsilon^{\prime}}=$ closure of $\left\{y_{j}\right\}_{j \in Z}$ such that $\bar{d}\left(A, A_{s^{\prime}}\right)<\gamma^{\prime}$. Suppose that there are m, j and n with $m<j<n$ such that $y_{m}, y_{n} \in U_{r^{\prime}}\left(A_{i}\right)$ and $y_{j} \oplus U_{\dot{\delta}}\left(A_{i}\right)$. Since $\bar{d}\left(A, A_{\varepsilon^{\prime}}\right)<\gamma^{\prime}$, there is $z \in U_{r^{\prime}}\left(y_{j}\right) \cap A$. Clearly $z \oplus U_{\partial / 2}\left(A_{i}\right)$ because $U_{r^{\prime}}\left(y_{j}\right) \cap U_{\partial / 2}\left(A_{i}\right)=\phi$. Then either $z \prec f^{H}\left(x_{i}\right)$ or $f^{-H}\left(x_{i+1}\right) \prec z$. We can assume that $z \prec f^{H}\left(x_{i}\right)$ without loss of generality. Then there is an $\varepsilon^{\prime}-$ pseudo orbit $\left\{x_{j}\right\}_{j=0}^{s}$ with $x_{0}=z$ and $x_{s}=f^{H}\left(x_{i}\right)$. Since $y_{m} \in U_{r^{\prime}}\left(A_{i}\right)$, there is $u \in A_{i}$ such that $d\left(y_{m}, u\right)<\gamma^{\prime}$. Since $\gamma^{\prime}<\gamma_{1}, d\left(f\left(y_{m}\right), f(u)\right)<\varepsilon_{1} / 2$. Hence

$$
d\left(f(u), y_{m+1}\right)<d\left(f(u), f\left(y_{m}\right)\right)+d\left(f\left(y_{m}\right), y_{m+1}\right)<\varepsilon_{1} / 2+\varepsilon^{\prime}<\varepsilon_{1}
$$

Now we define a sequence $\left\{z_{j}\right\}_{j=0}^{L}(L=j-m+s+1)$ as follows;

$$
\left(z_{0}, \cdots, z_{L}\right)=\left(u, y_{m+1}, \cdots, y_{j-1}, x_{0}, \cdots, x_{s}\right)
$$

Then $\left\{z_{j}\right\}_{j=0}^{L}$ is an ε_{1}-pseudo orbit with $z_{0}=u$ and $z_{L}=f^{H}\left(x_{i}\right)$. This is a contradiction.

By Lemma 4.1, for $\delta>0$, small $\gamma^{\prime}>0$ and small $\varepsilon>0$, there is an ε-orbit A_{ϵ} of $f ; A_{s}=$ closure of $\left\{y_{j}\right\}_{j \in Z}$ satisfying the followings;
(1) $\bar{d}\left(A_{0}\right.$, closure of $\left.\left\{y_{j}\right\}_{j=-\infty}^{n_{j}}\right)<\delta$
(2) $\bar{d}\left(A_{i},\left\{y_{j}\right\}_{j=m_{i}}^{n_{i}}\right)<\delta \quad$ for any $1 \leqq i \leqq k-1$
(3) $\bar{d}\left(A_{k}\right.$, closure of $\left.\left\{y_{j}\right\}_{j=m_{k}}^{+\infty}\right)<\delta$
where $m_{i}=\min \left\{j: y_{j} \in U_{r^{\prime}}\left(A_{i}\right)\right\}$ for any $1 \leqq i \leqq k$, and $n_{i}=\max \left\{j: y_{j} \in\right.$ $\left.U_{r^{\prime}}\left(A_{i}\right)\right\}$ for any $0 \leqq i \leqq k-1$.

We denote $y_{m_{i}}$ by $L_{i}^{+}\left(\gamma^{\prime}, \varepsilon\right)$ and $y_{n_{i}}$ by $L_{i}^{-}\left(\gamma^{\prime}, \varepsilon\right)$.
Lemma 4.2. If γ_{n}^{\prime} and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the cluster points of the sequence $L_{i}^{+}\left(\gamma_{n}^{\prime}, \varepsilon_{n}\right)$ are contained in $\omega\left(x_{i}\right)$.

Proof. Let L_{i}^{+}be the set of the cluster points of the sequence $L_{i}^{+}\left(\gamma_{n}^{\prime}, \varepsilon_{n}\right)$,
$y^{+} \in L_{i}^{+}$and $\alpha>0$ be given (α is sufficiently small). Now let $\left\|T_{x} f\right\|=$ $\sup \left\{\| T_{x} f(v): v \in T_{x} M\right.$ and $\left.\|v\| \leqq 1\right\}$ where $\|\cdot\|$ is the Riemannian metric on M. Let $K=\max \left\{\left\|T_{x} f\right\|,\left\|T_{x} f^{-1}\right\|\right\}$. Then there is $\ell \in N$ such that $L_{i}^{+}\left(\gamma_{\ell}^{\prime}, \varepsilon_{\ell}\right)$ is in $U_{\alpha}\left(y^{+}\right)$and $\gamma_{\ell}^{\prime}, \varepsilon_{\ell}<\alpha / 4 K$. For $L_{i}^{+}\left(\gamma_{\ell}^{\prime}, \varepsilon_{\ell}\right)$, there is $m_{i} \in Z$ such that $y_{m_{i}}$ $\in A_{\varepsilon_{i}} \cap U_{r_{\ell}^{\prime}}\left(A_{i}\right)$ and $y_{m_{i}-1} \in A_{\varepsilon_{\ell}}-U_{r_{\ell}^{\prime}}\left(A_{i}\right)$. Since γ_{ℓ}^{\prime} and ε_{ℓ} are small, there is $p \in N$ such that $f^{p}\left(x_{i}\right) \in U_{r_{\ell}^{\prime}}\left(y_{m_{i-1}-1}\right)$. Then

$$
d\left(y_{m_{i}}, f^{p+1}\left(x_{i}\right)\right)<d\left(y_{m_{i}}, f\left(y_{m_{i}-1}\right)\right)+d\left(f\left(y_{m_{i}-1}\right), f^{p+1}\left(x_{i}\right)\right)<\varepsilon_{\ell}+K_{\gamma_{\ell}}<\alpha / 2
$$

Hence

$$
d\left(y^{+}, f^{p+1}\left(x_{i}\right)\right)<d\left(y^{+}, y_{m_{i}}\right)+d\left(y_{m_{i}}, f^{p+1}\left(x_{i}\right)\right)<\alpha / 2+\alpha / 2<\alpha .
$$

Since α is arbitrary $y^{+} \in \omega\left(x_{i}\right)$. Hence $L_{i}^{+} \subset \omega\left(x_{i}\right)$.
Similarly the cluster points of the sequence $L_{i}^{-}\left(\gamma_{n}, \varepsilon_{n}\right)$ are contained in $\alpha\left(x_{i+1}\right)$.

Lemma 4.3. For any $\delta>0$ and $\varepsilon>0$, there is an ε-pseudo orbit $\left\{x_{j}^{i}\right\}_{j=a}^{b}$ of $f \mid \Omega_{i}$, a and b depend on i, such that
(1) $\bar{d}\left(A_{i}\right.$, closure of $\left.\left\{x_{i}^{i}\right\}_{j=a}^{b}\right)<\delta$
(2) $x_{a}^{i} \in \omega\left(x_{i}\right) \quad$ for any $1 \leq i \leq k$
(3) $x_{b}^{i} \in \alpha\left(x_{i+1}\right) \quad$ for any $0 \leq i \leq k-1$.

Proof. Let K be as in Lemma 4.2. For $\delta>0$ and $\varepsilon>0$, choose δ^{\prime} and ε^{\prime} such that $0<\delta^{\prime}<\delta / 2$ and $0<\varepsilon^{\prime}<\varepsilon-(1+K) \delta^{\prime}$. As stated above, there is ε^{\prime}-pseudo orbit $\left\{y_{j}\right\}_{j=a}^{b}$ such that
(i) $\bar{d}\left(A_{i}\right.$, closure of $\left.\left\{y_{j}\right\}_{j=a}^{b}\right)<\delta^{\prime}$.
(a and b are depend on i). By Lemma 4.2, we may assume that $y_{a} \in \omega\left(x_{i}\right)$ and $y_{b} \in \alpha\left(x_{i+1}\right)$. By (i), there is $z_{j} \in A_{i}$ in $U_{b^{\prime}}\left(y_{j}\right)$ for any $a<j<b$. Then we define a sequence $\left\{x_{j}^{i}\right\}_{j=a}^{b}$ as follows; $x_{a}^{i}=y_{a}, x_{b}^{i}=y_{b}$ and $x_{j}^{i}=z_{j}$ for any $a<j<b$. Since $d\left(f\left(x_{j}^{i}\right), f\left(y_{j}\right)\right)<K \delta^{\prime}$,

$$
\begin{aligned}
d\left(f\left(x_{j}^{i}\right), x_{j+1}^{i}\right)< & d\left(f\left(x_{j}^{i}\right), f\left(y_{j}\right)\right)+d\left(f\left(y_{j}\right), y_{j+1}\right) \\
& +d\left(y_{j+1}^{i}, x_{j+1}^{i}\right)<K \delta^{\prime}+\varepsilon^{\prime}+\delta^{\prime}<\varepsilon .
\end{aligned}
$$

Since $U_{\delta^{\prime}}\left(y_{j}\right) \subset U_{\dot{\delta}}\left(x_{j}^{i}\right),\left\{x_{j}^{i}\right\}_{j=a}^{b}$ is an ε-pseudo orbit of $f \mid \Omega_{i}$ satisfying (1), (2) and (3).

For any $1 \leqq i \leqq k-1, a$ and b are finite. If i is equal to 0 , then $a=-\infty$. If i is equal to k, then $b=+\infty$.

§ 5. Proof of Theorem

Throughout it is assumed that f is an $A S$-diffeomorphism and let $\Omega(f)$
$=\Omega_{1} \cup \cdots \cup \Omega_{m}$ such that if $i<j$, then $\Omega_{j} \neq \Omega_{i}$. The stable manifold of x is the set $W^{s}(x, f)=W^{s}(x)=\left\{y \in M: d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$ for any $x \in M$. Let $W_{\delta}^{s}(x)=\left\{y \in M: d\left(f^{n}(x), f^{n}(y)\right)<\delta\right.$ for any $\left.n \geqq 0\right\}$. The unstable manifold of x is the set $W^{u}(x, f)=W^{S}\left(x, f^{-1}\right)$ and $W_{o}^{u}(x)=W_{\delta}^{s}\left(x, f^{-1}\right)$. For small $\delta>0$ and $x \in \Omega$,

$$
W_{\bar{\delta}}^{s}(x)=\left\{y \in M: d\left(f^{n}(x), f^{n}(y)\right)<\lambda^{n} \delta \text { for any } n \geqq 0\right\}
$$

where λ is a positive constant with $\lambda \in(0,1)$. For small $\delta>0$ there is a u-disc family $\tilde{W}_{\dot{\delta}}^{u}$ through a compact neighborhood U_{i} of Ω_{i} in M which reduces to W_{o}^{u} at Ω_{i} and semi-invariant in the sense that

$$
\tilde{W}_{i}^{u}(f(x)) \subset f\left(\tilde{W}_{c}^{u}(x)\right) \quad \text { for } x \in U_{i} \cap f^{-1}\left(U_{i}\right) .
$$

See [2]. For $x \in M$, let $O_{f}^{+}(x)=$ closure of $\left\{f^{n}(x): n \geqq 0\right\}$ and let $O_{f}^{-}(x)=$ closure of $\left\{f^{n}(x): n \leqq 0\right\}$.

The following proposition is due to R. Bowen [1].
Proposition 5.1. For any $\delta>0$, there is an $\varepsilon>0$ so that every ε-pseudo orbit of $f \mid \Omega$ is δ-shadowed by some $z \in \Omega$.

Corollary 5.2. Let A be an extended f-orbit with $A \subset \Omega$. Then A $\in O_{f}$.

Proof. It is clear that $A \subset \Omega$ implies $A \subset \Omega_{i}$ for some $1 \leqq i \leqq m$. By Lemma 4.3, for any $\delta>0$ and any $\varepsilon>0$, there is an ε-pseudo orbit \bar{x} of $f \mid \Omega$ such that

$$
\bar{d}(A, \text { closure of } \bar{x})<\delta / 2 .
$$

By Proposition 5.1, taking sufficiently small $\varepsilon>0, \bar{x}$ is ($\delta / 2$)-shadowed by $z \in \Omega_{i}$. Hence

$$
\begin{aligned}
\bar{d}\left(A, O_{f}(z)\right) & <\bar{d}(A, \text { closure of } \bar{x})+\bar{d}\left(O_{f}(z), \text { closure of } \bar{x}\right) \\
& <\delta / 2+\delta / 2<\delta
\end{aligned}
$$

Since δ is arbitrary and O_{f} is closed, $A \in O_{f}$.
Remark 5.3. Let $z \in \Omega \delta$-shadows ε-pseudo orbit $\left\{x_{j}\right\}_{j=a}^{b}$ of $f \mid \Omega$. Then we may assume that
(1) if a and b are finite, then $z \in W_{\alpha}^{u}\left(x_{a}\right)$ and $f^{b-a}(z) \in W_{\alpha}^{s}\left(x_{b}\right)$ for small $\alpha>0$
(2) if $b=+\infty$, then $z \in W_{\alpha}^{u}\left(x_{a}\right)$
(3) if $a=-\infty$, then $z \in W_{\alpha}^{s}\left(x_{b}\right)$. See [1].

We shall need the following lemma before we prove Theorem.
Lemma 5.4. Let $y \in \Omega_{i}, t \in W_{\delta}^{s}(y)\left(\alpha(t) \subset \Omega_{j}, j \neq i\right)$ and let $y^{\prime} \in \omega(y), z \in$ $W_{\delta}^{u}\left(y^{\prime}\right) \cap \Omega_{i}$ for small $\delta>0$. Then for any $r>0$, any u-disc D which is C^{1}-close to $W^{u}(t) \cap B_{r}(t)$ and any s-disc D^{\prime} which is C^{1}-close to $W_{\delta}^{s}(z) \cap$ $B_{r}(z)$, there is $v \in D$ such that $f^{n}(v) \in D^{\prime}$ for some $n \in N$. Moreover

$$
d\left(f^{j}(v), f^{j}(t)\right)<2 \delta \quad \text { for any } 0 \leq j \leq n
$$

where $B_{r}($.$) is an r$-ball of (. $), u=\operatorname{dim} T_{t}\left(W^{u}(t)\right)$ and $s=\operatorname{dim} T_{z}\left(W_{\delta}^{s}(z)\right)$.
Proof. We shall first prove that for any $r>0$, there is $v^{\prime} \in W^{u}(t) \cap$ $B_{r}(t)$ such that $f^{n}\left(v^{\prime}\right) \in W_{\delta}^{s}(z) \cap B_{r}(z)$ for some $n \in N$. By generalized $\lambda-$ lemma [5, Proposition 2.3], there is u-disc \bar{D} in $W^{u}(t) \cap B_{r}(t)$ such that $f^{n}(\bar{D})$ is C^{1}-close to $W_{\dot{\delta}}^{u}\left(f^{n}(y)\right)$ for large $n \in N$. Since $f^{n}(y)$ is near to $y^{\prime}\left(y^{\prime} \in\right.$ $\omega(y))$, $W_{\delta}^{u}\left(f^{n}(y)\right)$ is C^{1}-close to $W_{\delta}^{u}\left(y^{\prime}\right)$. Hence $f^{n}(\bar{D})$ is C^{1}-close to $W_{\delta}^{u}\left(y^{\prime}\right)$ so that $f^{n}(\bar{D}) \cap\left(W_{\delta}^{s}(z) \cap B_{r}(z)\right) \neq \phi$. Taking sufficiently large $n \in N$, there is $\sigma, 0<\sigma<\lambda^{n} \delta$ such that $\tilde{W}_{\delta}^{u}(a) \cap f^{n}(\bar{D})=\phi$ for any $a \in W_{\lambda^{n} n_{j}}\left(f^{n}(y)\right)-$ $W_{o}^{s}\left(f^{n}(y)\right)$ because $f^{n}(\bar{D})$ is C^{1}-close to $W_{\delta}^{u}\left(f^{n}(y)\right)$. And there is $q \in W_{\sigma}^{s}\left(f^{n}(y)\right)$ such that

$$
\tilde{W}_{\delta}^{u}(q) \cap f^{n}(\bar{D}) \cap\left(W_{\delta}^{s}(z) \cap B_{r}(z)\right) \neq \phi
$$

Let $v^{\prime} \in f^{-n}\left(\tilde{W}_{\delta}^{u}(q)\right) \cap \bar{D} \cap f^{-n}\left(W_{\delta}^{s}(z) \cap B_{r}(z)\right)$. Then $f^{j}\left(v^{\prime}\right) \in f^{j}\left(f^{-n}\left(\tilde{W}_{\delta}^{u}(q)\right)\right.$ for any $0 \leqq j \leqq n$. By semi-invariance of u-disc family $\tilde{W}_{\delta}^{u}, f^{j}\left(v^{\prime}\right) \in \tilde{W}_{\delta}^{u}\left(f^{j-n}(q)\right)$. Since t and $f^{-n}(q)$ are in $W_{\delta}^{s}(y), d\left(f^{j}(t), f^{j-n}(q)\right)<\delta$ for any $0 \leqq j \leqq n$. Hence $d\left(f^{j}\left(v^{\prime}\right), f^{j}(t)\right)<2 \delta$ for any $0 \leqq j \leqq n$.

Secondly by strong transversality, there is $v \in D$ and $n \in N$ such that $f^{n}(v) \in D^{\prime}$ for any u-disc D which is C^{1}-close to $W^{u}(t) \cap B_{r}(t)$ and any s-disc D^{\prime} which is C^{1}-close to $W_{\delta}^{s}(z) \cap B_{r}(z)$. Moreover $d\left(f^{j}(v), f^{j}(t)\right)<$ 2δ for any $0 \leqq j \leqq n$.

Proof of Theorem. Since $O_{f} \subset E_{f}$, it is sufficient to show that $E_{f} \subset$ O_{f}. If A is an extended f-orbit with $A \subset \Omega$, then $A \in O_{f}$ by Corollary 5.2. Therefore we may assume that A is not contained in Ω. Then since $A S$ diffeomorphisms satisfy Axiom A and no cycle property, by Proposition 3.6 there are k-points $x_{i} \in M$ such that

$$
A-\Omega=\bigcup_{i=1}^{k} \bigcup_{n \in \boldsymbol{Z}} f^{n}\left(x_{i}\right)
$$

moreover $\alpha\left(x_{1}\right) \subset \Omega_{0}, \omega\left(x_{k}\right) \subset \Omega_{k}$ and $\omega\left(x_{i}\right) \cup \alpha\left(x_{i+1}\right) \subset \Omega_{i}$ for any $1 \leqq i \leqq$
$k-1$. For small $\delta>0$, we choose a compact neighborhood U_{i} of Ω_{i} such that there is u-disc family \tilde{W}_{i}^{u} through U_{i}. Let $A_{i}=A \cap \Omega_{i}$.

By Lemma 4.3 for any $\delta>0$ and small $\varepsilon>0$, there is an ε-pseudo orbit $\left\{x_{j}^{i}\right\}_{j=a}^{b}$ of $f \mid \Omega_{i}(1 \leqq i \leqq k-1, a$ and b depend on i, a and b are finite $)$ such that $x_{a}^{i} \in \omega\left(x_{i}\right), x_{b}^{i} \in\left(x_{i+1}\right)$ and $\bar{d}\left(A_{i},\left\{x_{j}^{i}\right\}_{j=a}^{b}\right)<\delta / 2$. We denote x_{a}^{i} by y_{i}^{\prime} and x_{b}^{i} by $y_{i}^{\prime \prime}$. By Proposition 5.1, taking sufficiently small $\varepsilon>0,\left\{x_{j}^{i}\right\}_{j=a}^{b}$ is $\delta / 2$-shadowed by $z_{i} \in \Omega_{i}$ with $z_{i} \in W_{o}^{u}\left(y_{i}^{\prime}\right), f^{b-a}\left(z_{i}\right) \in W_{\delta}^{s}\left(y_{i}^{\prime \prime}\right)$. Hence

$$
\bar{d}\left(A_{i},\left\{f^{j}\left(z_{i}\right): 0 \leqq j \leqq b-a\right\}\right)<\delta .
$$

Similarly for A_{0} and A_{k}, there are $z_{0} \in \Omega_{0}$ with $z_{0} \in W_{\delta}^{s}\left(y_{0}^{\prime \prime}\right)\left(y_{0}^{\prime \prime} \in \alpha\left(x_{1}\right)\right)$ and $z_{k} \in \Omega_{k}$ with $z_{k} \in W_{o}^{u}\left(y_{k}^{\prime}\right)\left(y_{k}^{\prime} \in \omega\left(x_{k}\right)\right)$ such that

$$
\begin{aligned}
& \bar{d}\left(A_{0}, \text { closure of }\left\{f^{j}\left(z_{0}\right): j \in(-\infty, 0]\right\}\right)<\delta \\
& \bar{d}\left(A_{k}, \text { closure of }\left\{f^{j}\left(z_{k}\right): j \in[0,+\infty)\right\}\right)<\delta
\end{aligned}
$$

And there is $M_{i} \in N$ such that
(i) $f^{n}\left(x_{i}\right) \in U_{0 / 4}\left(\omega\left(x_{i}\right)\right)$ for any $n \geqq M_{i}$
(ii) $f^{-n}\left(x_{i+1}\right) \in U_{\delta / 4}\left(\alpha\left(x_{i+1}\right)\right) \quad$ for any $n \geqq M_{i}$.

Similarly for $\alpha\left(x_{1}\right)$ and $\omega\left(x_{k}\right)$, there are $M_{0}, M_{k} \in N$ such that
(i) $f^{-n}\left(x_{1}\right) \in U_{\delta / 4}\left(\alpha\left(x_{1}\right)\right) \quad$ for any $n \geqq M_{0}$
(ii)' $f^{n}\left(x_{k}\right) \in U_{\delta / 4}\left(\omega\left(x_{k}\right)\right) \quad$ for any $n \geqq M_{k}$.

Then let $t_{i}=f^{M_{i}}\left(x_{i}\right)(1 \leqq i \leqq k)$, and let $w_{i}=f^{-M_{i}}\left(x_{i+1}\right)(0 \leqq i \leqq k-1) \mathrm{By}$ [3], there are y_{i}^{+}and $y_{i}^{-} \in \Omega_{i}$ such that $t_{i} \in W_{\delta}^{s}\left(y_{i}^{+}\right)$and $w_{i} \in W_{\delta}^{u}\left(y_{i}^{-}\right)$. Since $\omega\left(t_{i}\right)=\omega\left(y_{i}^{+}\right)$and $\alpha\left(x_{i+1}\right)=\alpha\left(y_{i}^{-}\right), y_{i}^{\prime} \in \omega\left(y_{i}^{+}\right)$and $y_{i}^{\prime \prime} \in \alpha\left(y_{i}^{-}\right)$. Hence by Lemma 5.4, for any $r>0$, there is $v \in W^{u}\left(t_{i}\right) \cap B_{r}\left(t_{i}\right)$ such that $f^{n_{i}}(v) \in W_{\delta}^{s}\left(z_{i}\right) \cap$ $B_{r}\left(z_{i}\right)$ for some $n_{i} \in N$. Since $f^{n_{i}}(v) \in W_{\delta}^{s}\left(z_{i}\right) \cap B_{r}\left(z_{i}\right), f^{n_{i}+b-a}(v)$ is near to $f^{b-a}\left(z_{i}\right)$ for sufficient small $r>0$. Let $u_{i-1}=\operatorname{dim} T_{t_{i}}\left(W^{u}\left(t_{i}\right)\right), s_{i}=$ $\operatorname{dim} T_{z_{i}}\left(W_{\delta}^{s}\left(z_{i}\right)\right)$ and $u_{i}=\operatorname{dim} T_{z_{i}}\left(W_{\delta}^{u}\left(z_{i}\right)\right)$. Since $u_{i-1}+s_{i} \geqq \operatorname{dim} M$ by strong transversality condition and $u_{i}+s_{i}=\operatorname{dim} M$ by the hyperbolicity of Ω, $u_{i-1} \geqq u_{i}$. By generalized λ-lemma, we know that there is a u_{i}-disc D in $W^{u}\left(t_{i}\right) \cap B_{r}\left(t_{i}\right)$ such that

$$
f^{n_{i}+b-a}(D) \text { is } C^{1} \text {-close to } W_{o}^{u}\left(f^{b-a}\left(z_{i}\right)\right) .
$$

The stable manifold and the unstable manifold of f are the unstable manifold and the stable manifold of f^{-1} respectively. Hence by Lemma 5.4 applied to f^{-1}, there is $v^{\prime} \in f^{n_{i}+b-a}(D)$ such that $f^{n_{i}}\left(v^{\prime}\right) \in W^{s}\left(w_{i}\right) \cap B_{r}\left(w_{i}\right)$ $\left(W^{s}\left(w_{i}\right) \subset W^{s}\left(\Omega_{i+1}\right)\right)$ for some $n_{i}^{\prime} \in N$. Hence there is a u_{i}-disc in $W^{u}\left(t_{i}\right) \cap$ $B_{r}\left(t_{i}\right)$ such that $f^{m^{\prime}}(\bar{D})$ is C^{1}-close to $W^{u}\left(w_{i}\right) \cap B_{r}\left(w_{i}\right)$, where $m^{\prime}=n_{i}+$
$b-a+n_{i}^{\prime}$. Therefore
(1) $f^{m^{\prime}}(\overline{\bar{D}})$ is C^{1}-close to $W^{u}\left(w_{i}\right) \cap B_{r}\left(w_{i}\right)$ for any u_{i}-disc $\overline{\bar{D}}$ which is C^{1}-close to \bar{D}.
And if r is small, then
(2) $\bar{d}\left(O_{f}^{+}\left(t_{i}\right) \cup A_{i} \cup O_{f}^{-}\left(w_{i}\right),\left\{f^{j}(p): 0 \leqq j \leqq m^{\prime}\right\}\right)<2 \delta$ for any $p \in \bar{D}$.

We shall choose a point $x \in M$ such that $\bar{d}\left(A, O_{f}(x)\right)<2 \delta$. For any $1 \leqq i \leqq k$, let

$$
Q_{\delta}\left(x_{i}\right)=\left\{y \in M: d\left(f^{j}\left(x_{i}\right), f^{j}(y)\right)<\delta \text { for any }-M_{i} \leqq j \leqq M_{i}\right\}
$$

Then there is $r_{1}>0$ such that

$$
B_{r_{1}}\left(t_{i}\right) \subset f^{M_{i}}\left(Q_{\delta}\left(x_{i}\right)\right), B_{r_{1}}\left(w_{i}\right) \subset f^{-M_{i}}\left(Q_{\delta}\left(x_{i+1}\right)\right.
$$

By Lemma 5.4 applied to f^{-1}, there is $\bar{v} \in W_{\delta}^{u}\left(z_{0}\right) \cap B_{r}\left(z_{0}\right)\left(r<r_{1}\right)$ such that $f^{n_{0}}(\bar{v}) \in W^{s}\left(w_{0}\right) \cap B_{r}\left(w_{0}\right)$ for some $n_{0} \in N$. Hence there is a u_{0}-disc D_{0}^{\prime} in $W_{\delta}^{u}\left(z_{0}\right) \cap B_{r}\left(z_{0}\right)$ such that $f^{n_{0}}\left(D_{0}^{\prime}\right)$ is C^{1}-close to $W^{u}\left(w_{0}\right) \cap B_{r}\left(w_{0}\right)$. since $D_{0}^{\prime} \subset$ $W_{\delta}^{u}\left(z_{0}\right)$,

$$
\bar{d}\left(A_{0}, \text { closure of }\left\{f^{j}\left(p^{\prime}\right):-\infty<j \leqq 0\right)<2 \delta \quad \text { for any } p^{\prime} \in D_{0}^{\prime}\right.
$$

Hence if r is small, then
(3) $\bar{d}\left(A_{0} \cup O_{f}^{-}\left(w_{0}\right)\right.$, closure of $\left.\left\{f^{j}\left(p^{\prime \prime}\right):-\infty<j \leqq n_{0}\right\}\right)<2 \delta$ for any $p^{\prime \prime}$ $\in D_{0}^{\prime}$.
If $f^{n_{0}}\left(D_{0}^{\prime}\right)$ is sufficiently C^{1}-close to $W^{u}\left(w_{0}\right) \cap B_{r}\left(w_{0}\right)$, then

$$
f^{n_{0}+M_{0}+M_{1}}\left(D_{0}^{\prime}\right) \text { is } C^{1} \text {-close to } W^{u}\left(t_{1}\right) \cap B_{r}\left(t_{1}\right) .
$$

Then by (1), there is a u_{1}-disc D_{1} in $f^{n_{0}+M_{0}+M_{1}}\left(D_{0}^{\prime}\right)$ such that

$$
f^{m(1)}\left(D_{1}\right) \text { is } C^{1} \text {-close to } W^{u}\left(w_{1}\right) \cap B_{r}\left(w_{1}\right)
$$

$\left(m(i)=n_{i}+\left|I_{i}\right|+n_{i}^{\prime}\right.$ where $\left|I_{i}\right|=b-a$ as $\left.I_{i}=[a, b]\right)$. Hence there is a u_{1}-disc D_{1} in D_{1}^{\prime} such that

$$
f^{n_{0}+M_{0}+M_{1}+m(1)}\left(D_{1}\right) \text { is } C^{1} \text {-close to } W\left(w_{1}\right) \cap B_{r}\left(w_{1}\right) .
$$

Therefore

$$
f^{M(2)}\left(D_{1}\right) \text { is } \mathrm{C}^{1} \text {-close to } W^{u}\left(t_{2}\right) \cap B_{r}\left(t_{2}\right)
$$

where $M(j)=n_{0}+M_{0}+2 \sum_{i=1}^{j-1} M_{i}+\sum_{i=1}^{j-1} m(i)+M_{j}$. By induction, there is a u_{k-1}-disc D_{k-1} in $W_{o}^{u}\left(z_{0}\right) \cap B_{r}\left(z_{0}\right)$ such that

$$
f^{M(k)}\left(D_{k-1}\right) \text { is } C^{1} \text {-close to } W^{u}\left(t_{k}\right) \cap B_{r}\left(t_{k}\right) .
$$

By Lemma 5.4, there is $y \in f^{M(k)}\left(D_{k-1}\right)$ such that $f^{n_{k}}(y) \in W_{o}^{s}\left(z_{k}\right) \cap B_{r}\left(z_{k}\right)$. Hence

$$
\bar{d}\left(A_{k}, \text { closure of }\left\{f^{j}(y): 0 \leqq j<+\infty\right\}\right)<2 \delta .
$$

Let $x=f^{-M(k)}(y)$. Since $x \in W_{\delta}^{u}\left(z_{0}\right) \cap B_{r}\left(z_{0}\right)$,

$$
\bar{d}\left(A_{0}, \text { closure of }\left\{f^{j}(x):-\infty<j \leqq n_{0}\right\}\right)<2 \delta
$$

by (3). Since $f^{M(i)-M_{i}}(x) \in Q_{\delta}\left(x_{i}\right)$ for any i by the choice of r_{1} and $r<r$,

$$
\bar{d}\left(f^{j}\left(x_{i}\right), f^{j}\left(f^{M(i)-M_{i}}(x)\right)\right)<\delta \quad \text { for any }-M_{i-1} \leqq j \leqq M_{i} .
$$

By (2), for any $1 \leqq i \leqq k-1$,

$$
\bar{d}\left(O_{f}^{+}\left(t_{i}\right) \cup A_{i} \cup O_{f}^{-}\left(w_{i}\right),\left\{f^{j}\left(f^{M(i)}(x)\right): 0 \leqq j \leqq m(i)\right\}\right)<2 \delta .
$$

Hence $d\left(A, O_{f}(x)\right)<2 \delta$. Since δ is arbitrary and O_{f} is closed in $C(M), A \in$ O_{f}. Hence $E_{f} \subset O_{f}$.

During the preparation of this paper, we heard that A. Morimoto gave a proof of Theorem [4] but our proof is a different from his.

The author wishes to thank Professors Hiroshi Noguchi and Kenichi Shiraiwa for helpful comments and suggestions and to thank Yoshio Togawa for conversations helpful to this paper.

References

[1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lec. Note in Math. 470, Springer.
[2] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhood of hyperbolic sets, Invention Math. 9 (1970), 121-134.
[3] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Global analysis, Proc. Sympo. Pure Math. Vol. XIV, 133-165. Amer. Math. Soc., Providence, R. I. (1970).
[4] A. Morimoto, Stochastically stable diffeomorphisms and Takens' conjecture, Local dynamical systems: Integral and differential equations. Lecture Notes No. 303 RIMS (1976), Kyoto University, 8-24.
[5] S. Newhouse and J. Palis, Cycles and bifurcation theory, Asterisque 31 (1976), 44-140.
[6] Z. Nitecki and M. Shub, Filtrations, decompositions, and explosions, Amer. J. Math. 97 (1976), 1029-1047.
[7] S. Smale, The Ω-stability theorem, Global analysis, Proc. Sympo. Pure Math. Vol. XIV, 289-309. Amer. Math. Soc., Providence, R. I. (1970).
[8] F. Takens, Tolerance stability, Dynamical systems-Warwick 1974, Lec. Notes in Math. 468, Springer, 293-304.

