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ON COMPACT MINIMAL HYPERSURFACES IN A SPHERE

WITH CONSTANT SCALAR CURVATURE
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i 1. Introduction

Let M be an n-dimensional hypersurface immersed in the (n + 1)-
dimensional unit sphere Sn+1 with the standard metric by an immersion
/. We denote by A the second fundamental form of the immersion / which
is considered as a symmetric linear transformation of each tangent
space TXM, i.e. for an arbitrary point x of M and the unit normal vector
field f defined in a neighborhood of x, A is given by f*(AX) = ~Fuxξ
where F is the covariant differentiation in Sn+ί and Xe TXM. Thus, A
depends on the orientation of the unit normal vector field ξ and, in
general, it is locally defined on M. M together with the immersion / is
said to be minimal when the mean curvature tr Ajn identically vanishes
on M. Throughout this paper, we assume that Mis a compact minimal
hypersurface immersed in Sn+1 and the square of the length \A\2 of the
second fundamental form is constant. The assumption that |Af is constant
is equivalent to the one that the scalar curvature s of M is constant,
since s is given hy s = n(n — 1) — \A\2 from the well-known Gauss
equation.

In [8], Simons proved that ί (n - \A\2) \A\2 dV ^ 0 for compact
J M

minimal hypersurfaces in Sn+1 and the equality holds if and only if A is
covariant constant, i.e. FA ~ 0. The study on the case FA = 0 was
done by Chern-do Carmo-Kobayashi [2] and Lawson [4].

To investigate the case \A\2 > n, we must consider the situation
FA ^ 0. The purpose of this paper is to give an integral inequality
(Theorem 1) and its applications. This inequality seems to be more
delicate than Simons' one in the sense that the equality in it does not
necessarily imply FA = 0. In section 4, we consider a 3-dimensional
minimal hypersurface M3 in S4 and we characterize the cases that M3

has positive semi-definite Ricci tensor (Corollary 1) and M3 has sectional
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curvature <,1 (Theorem 2). These are the partial answers for the problem
proposed by Chern-do Carmo-Kobayashi [2] that for minimal hypersurfaces
in Sn+1 with constant \Af, what is the possible next value for \A\2 greater
than n.

§ 2. Preliminaries

Let M be an 7z-dimensional compact oriented Riemannian manifold
with the Riemannian metric < , ) and the covariant differentiation F.
All tensors on M have a natural inner product and Vx extends as a
derivation to all tensors. We also denote them by < , > and Fx. Let E
be a Riemannian vector bundle over M with the inner product ( ,) of
each fibre Ex and the metric connection V corresponding to the inner
product (, ). For any cross-section η of E and any tangent vectors
X, Ye TXM at each point x of M, we define

where 7 is a local extention of Y to a vector field on M. It can be
easily seen that this definition does not depend on the choice of Y

Let φ be a symmetric bilinear form on M. In [1], Cheng-Yau
introduced a differential operator • on functions on M which is associated
to φ. We can easily see that this operator is naturally extended to
the one on cross-sections of any Riemannian vector bundle over M:

DEFINITION. For any cross-section η of E9 we define

where eί9 , en denotes an orthonormal frame of each tangent space
TXM. This definition does not depend on the choice of the orthonormal
frame and coincides with the one given in [1] when η is a function on
M. Note that when φ(eί9 βj) — δίj9 • is the Laplace operator Δ (c.f.
Simons [8] and Nomizu-Smyth [5]).

n

PROPOSITION 1. // φ satisfies J] (VHφ)(X9 et) = 0 for any tangent vector

Xe TXM at each point x of M, then for any cross-sections η9v of E we

have
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(2.1) f (Πη, »)dV = - f { Σ fat, βiX^Λ, M W

where dV is the volume form of M. Thus, • is self-adjoint.

Proof. Let Eu -,En be a local orthonormal frame field on M and
Ω be the (ra — l)-form on M defined by

Then, by a straightforward calculation we have

dΩ= ± φ(Eί9Ej)(FEiV,FEjv)dV+ ± φ(EuE3)ψEi>Ejη,v)dV

if Σ (FEtφ)(X, Eτ) = 0 for any tangent vector X. This together with the
i = l

Stokes' Theorem implies (2.1). q.e.d.

Now, in the following, we always assume that M is isometrically
immersed in the (n + l)-dimensional unit sphere Sw+1 as a minimal hyper-
surface. Let A be the second fundamental form of this immersion as in
the introduction. Let R be the curvature tensor of M. Then the Gauss
equation and the Codazzi equation are respectively expressed as

(R(x, γ)z, wy = (x, w)(Y, z> - (x, z><Y, wy

+ {AX, W)(AY, Z) - (AX,Z}(AY9 W}

and

(2.3) {VXA)Y={VYA)X

for any tangent vectors X, Y, Z, We TXM at each point x of M. By means
of (2.2), the Ricci tensor Ric of M is expressed as

(2.4) Ric (X, Y) = n - 1 - (A2X, Y)

for X, Ye TXM.

§3. The integral inequality

Let φ be a symmetric bilinear form locally defined on M by φ(X, Y)
= (AX, Y) for any tangent vectors X, Y. Let Π^ be the operator defined
in section 2 which is associated to φ. Clearly Π^ is locally defined,
however, ΠΦA is globally defined on M, since it does not depend on the.
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orientation of the unit normal vector field. Since A2 is globally defined,
we define a symmetric bilinear form ψ on M by ψ(X, Y) = (A2X, Y) for
any tangent vectors X, Y and denote its associated operator by •*. From
the Codazzi equation and the assumption that tr A = 0 and \A\2 is con-
stant, we can easily see that φ and ψ satisfy the assumption in Pro-
position 1.

LEMMA 1. Let M be a minimal hypersurface in Sn+\ For any tangent
vectors X,Ye TXM at each point x of M, we have

((ΠΦA)X, 7> = \Af(A2X, 7> - tr A\AX, Y> - |A|2<X, 7>

+ (FXfYA,A).

Proof. Choose the orthonormal frame eu , en of TXM such that
Aet — Xfii for all /. Let X, Y and Eu , En be the local extensions of
X, Y and el9 , en respectively to the vector fields on M such that FeiX
— 0, FeiY = 0 and VeiE3 = 0 for all ί>j. Using the Codazzi equation, we
have

<(ΠΦA)X, Y> = ̂  φ(et,ej)<r.i,.iAX, Y)

(3.i) = £ X^VJ^AX, Y> = Σ ^<Fei(FEiAX), y>

= Σ λt(Γtι(yxAEλ Y> = Σ XiΦJzAeu Y> .

Extending the curvature operator R(eίt X) as a derivation to all tensor
fields on M, we have

Σ WJzM, Y> = Σ
(3.2)

Σ ^<(«(e,, X)A)eu Y)

+ Σ WJEM, r>
i = l

Since (^(β^ X)A)ei = R(eu X)(Aet) - A(R(eiy X)ex), by means of the Gauss
equation (2.2), a straightforward calculation shows that

(3.3) £ J,<(fl(e,, X)A)et, Y) = \A\2 (A2X, Y> - tr A\AX, Y} - \A\\X, Y) .

From the symmetry property of A and the Codazzi equation, we have

n n

xVEiAeι, Y> = Σ UΣ
i l
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(3.4) = ± Wx<(yrA)Eu Et} = ± WSrM, et>

= Σ <Vχ,rM, M> = <yx,γA, A) .
ί = l

From (3.1), (3.2), (3.3) and (3.4), we obtain Lemma 1. q.e.d.

THEOREM 1. Let M be a compact oriented minimal hypersurface

immersed in Sn+\ If the scalar curvature of M is constant, then we have

(3.5) f {(IAf - 4ή) tr A4 + 3(tr A3)2 + 3 \A\'}dV ^ 0 .

The equality in (3.5) holds if and only if

± {{(VeiA)\ A2> + 2((FeiA)-A, A (FeiA))} = 0
i = l

where e19 , en is an orthonormal frame of each tangent space TXM.

Proof. The assumption that the scalar curvature is constant implies

that IA |2 is constant and ψ satisfies the assumption in Proposition 1.

From Lemma 1 and the definition of | ? we see that

<D,A, A2> - <D*A, A> = I A|2 tr A4 - (tr A3)2 - | A|4 .

Thus, from (2.1) we have

f {|A|2 tr A4 - (tr A3)2 - \A\'}dV
J M

(3.6) = f {(ΠΦA, A2> - <D+A, A}}dV
J M

= - f ί έ W«A, M ! > W + f fΣ Ά<yuA, FHA>)dV
JM U = l J JM U = l J

where el9 , en is the orthonormal frame of each tangent space TXM

such that Aet = λiei for all ί. Now, we shall denote <(Fe.A)eJ? ek} = hijk.

Then, from the Codazzi equation, we can see that

(3.7)
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and

(3.8) ± λ\(FeiA, FHA> = Σ <SVeA)\ A2) = ±

For the sake of simplicity, we denote (3.7) by S and (3.8) by T. Then,

(3.6) is expressed as

(3.9) f {|A|2 tr A4 - (tr A3)2 - \AndV = ί (T - S)dV .
J M J M

On the other hand, by the result in Simons [8] that ΔA = (n — |A|2)A

for any minimal hypersurface in Sn + 1, we can obtain another relation

between T and S, that is

(3.10) f (|A|2 - ή)tr A4dV= ί (2T+ ±
JM JM \ 2

since (JA, A3) = (n - \A\2) tr A\ (FA, FA3) = 2T + —S and

ί <JA,A3>dV=-ί (FA,FAs)dV.
J M J M

Compairing (3.9) with (3.10), we have

(3.11) ί {(IAf - An) tr A4 + 3(tr A3)2 + 31A\'}dV = f 5(Γ + S)dV.
J M J M

Noting that the indices i, j , k in hij1c can be mutually commuted, from

(3.7) and (3.8), we see

= 4 Σ
3 ijk

and

Thus, we have

^-ί Σ α + a, + W^fc)
2 ^ o.

3 ί,y,*=i

This together with (3.11) implies (3.5) in Theorem 1. q.e.d.

Remark 1. The symmetric bilinear form defined by ψ'fe* fy) =
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IA I2

(A2ei9 βj} — -!—ι-dυ satisfies the assumption in Proposition 1 without as-
A

suming that |A|2 is constant. Using ψ', by a similar calculation to the

one in the proof of Lemma 1, we can see that (3.9) is replaced by

f (|A|2tr A4 - (tr A3)2 - |A|4 + ±-\A\2 A\A\2)dV = f (T - S)dV.

Remark 2. Clearly, if FA Ξ 0, T + S Ξ O and the equality in (3.5)

holds. The following example, which is one of the homogeneous minimal

hypersurfaces in a sphere demonstrated by Hsiang [3], asserts that T + S

= 0 does not always imply FA = 0.

Let © be the set of 3 X 3 symmetric real matrices with trace 0. ©

is considered as a 5-dimensional vector space. We define the inner pro-

duct in © by (B, C) = tr BC for B, Ce ©. Let & = {Be © (B, B) = 1}.

©' is identified with the 4-dimensional unit sphere S4 in R\ Let SO(S)

act on ©7 by conjugation. We define the map τ of SO(S) into S4 by

τ: SO(3) -> ©' s S4 , r(#) = ^ o ^ " 1

where

By a direct computation, we see that

(1) τ is an immersion,

(2) The induced metric on SO(S) by τ is left invariant, and with

respect to it, the left invariant vector fields

are the orthonormal frame field on SO(3),

(3) The second fundamental form A of τ is given by

A(Z2) = - Λ ^ X 2 , A(X3) = 0

for the unit normal vector with suitable orientation at each point of M,

and hence τ is the minimal immersion. In this case, the left hand side
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of (3.5) vanishes, and so T + S = 0. Since |A|2 = 6, by the result in

Simons [8] that ΔA = (3 - |A|2)A, we have

(3 - |A|2)|A|2 = (ΔA,A) = -<FA,FA) + i -J |A | 2 = -<FA, FA> ,

and hence (FA, FA) = 18. This implies FA *? 0.

§ 4. Applications

In this section, we mainly study 3-dimensional minimal hypersurfaces

in S4 with constant scalar curvature.

The Clifford hypersurfaces MPjU_p p = 1, , n — 1 in Sn+1 are defined

by

It is proved by Chern-do Carmo-Kobayashi [2] and Lawson [4] that a

great sphere and the Clifford hypersurfaces are the only compact minimal

hypersurfaces in Sn+ι satisfying |A|2 <; n. They are also the only com-

pact minimal hypersurfaces in Sn+1 which have non-negative sectional

curvature, since from this condition together with the fact tr A = 0, it

directly follows that |A|2 ^ n. This result is given in Nomizu-Smyth [5].

For compact minimal hypersurfaces in S\ we show that a great

sphere and the Clifford hypersurfaces Mlf2 can be characterized by the

weaker condition than sectional curvature's one under the assumption

that IA |2 is constant.

COROLLARY 1. Let M be a compact minimal hypersurface in S4 with

constant scalar curvature. If M has positive semi-definite Ricci tensor, M

is realized only by a great sphere or the Clifford hypersurfaces M1>2.

Proof Let eu e2, ez be the orthonormal frame of each tangent space

TXM such that Aet = λ^ i = 1, 2, 3. Since tr A = 0, it can be easily seen

that tr A3 = 3det A and tr A4 = — \A\\ Thus, (3.5) in Theorem 1 takes

the form

(4.1) f — IA|4 (|A|2 - 6) + 27(det A)2)dV ^ 0 .
JM 2 )

From (2.4), the condition that the Ricci tensor is positive semi-definite
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implies 2 - λ\ ̂  0 ί = 1,2,3. Hence,

o^Π(ί-2) = ΆΆΆ -
i = l

= (det A)2 - |A|4 + tr A4 + 4 |A|2 - 8

= (det A)2 - — |A|4 + 4 |A|2 - 8 .

From this inequality together with (4.1), we have

(4.2) ί 1( |A | 2 - 3)(|A|2 - 12(/2~ - 1))(|A|2 + 12(/2 + ΐ))dV^ 0 .
Jif 2

Since ^ ^ 2 i = 1,2,3 and tr A = 0, we see that |A|2 ^ 4. Thus, from

the assumption that |A|2 is constant and the inequality (4.2), it follows

that IA |2 ^ 3. This implies the desired result in Corollary 1. q.e.d.

Now, we shall consider a compact minimal hypersurface M in Sn+1

of which sectional curvature is bounded above by 1. Hypersurfaces in

a space of constant curvature c which have sectional curvature <̂ c are

studied in Pinl-Ziller [6] and Yau [10], and it is easily verified that rank A

<̂  2 everywhere. The possible values for \A\2 of such hypersurfaces seem to

be unknown and the rest of this paper is devoted to studying this problem.

In our case, since tr A = 0, the fact that rank A ^ 2 implies tr A3 = 0

and tr A4 = — |A|4. Thus, (3.5) in Theorem 1 becomes
z

(4.3) ί - IA|4 (IA|2 - 2(2τι - S))dV ^ 0 .
JM 2

Hence, we have

COROLLARY 2. Let M be a compact minimal hypersurface in Sn+ί with

constant scalar curvature. If sectional curvature of M is bounded above

by 1, M is a great sphere or \A\2 ^ 2(2rc — 3), i.e. scalar curvature

s£(n~ 2)(n - 3).

As for n = 3, the lower bound 6 of the above inequality |A|2 I> 6 is

actually realized by the immersion τ given in Remark 2. The following

Theorem characterizes this immersion.

THEOREM 2. Let M be a compact minimal hypersurface immersed in
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S4 with constant scalar curvature. Assume that sectional curvature of M

is bounded above by 1 and \Af <̂  6, then we have \A\2 = 0 or \A\2 = 6.

The case \A\2 = 0 is realized only by a great sphere and the case \A\Z = 6

is realized only by the immersion τ up to the rigid motion of S\

Proof. The first statement that if \A\2 <: 6, \A\2 = 0 or |A|2 = 6

directly follows from (4.3). The case |A|2 = 0 is trivial. Thus, we shall

prove the last statement.

Since |A|2 = 6 and rank A <̂  2, A has eigenvalues VΊΓ, — VΊΓ, 0 at

each point of M. Let Eu E2, Ez be the local orthonormal frame field

defined on sufficiently small open set U in M satisfying

AE, = V~3Eί , AE2 = -V~3E2, AE3 = 0 .

Let ωl9 ω2, ω3 be the dual frame field of Eί9 E29 E3. We define 1-forms ωί3

i,j = 1, 2, 3 by ωi3(X) = (FxEi9E3) for any tangent vector X of U. From

the structure equation of M9 we see

(4.4) dωt = Σiωί3A ω3 for i = 1,2, 3 .
.7 = 1

Now, since |A|2 = 6, the left hand side of (4.3) vanishes. From Theo-

1 3

rem 1, this implies T + S — — J ] (λt + λ3 + λk)
2(hijk)

2 identically vanishes
3 ϊ,j,fc=i

on M. In the present case, htjk is given by ((FEiA)Ej9 Ek}9 and setting

χx = VΊΓ, λ2 = —V~S9 λz = 0, we can easily see that

(4.5) hίί3 = <SFE.A)Ei9 E3} = 0 for i9 j = 1,2, 3 .

Moreover, since |A|2 = 6, from (4.5) and Simons' equation A A = — 3A, it

follows that

(FA9 FA) = — A \A\2 - <JA, A> = 3|A|2 = 18
Δ

and

<FA, FA> = Σ ((FEA)E3> EJC>2 = 6(/*123)
2.

Thus, (Λi23)
2 is always equal to 3. We may locally assume that

(4.6) hm = ΛΛF .

Using the fact that (AEί9 E3} = constant for all i, j9 from (4.5) we have
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0 = (iVEiA)EuEsy = Et(AEt9 E,> -

(4.7)

for all i,jf, where ^ = VΊi, λ2 = — \/~3~, Λ3 = 0 and we used the fact ωi5

= —cϋji. From (4.7), we can verify

α>i2 = /A , ω23 = fxωx , ω31 = f2ω2

where /i, /2, /, are functions on U. From (4.6), we have

S3> - <A(FElE2), Ez} -

Thus, ωi2{El) = 1 and ft = —1. A similar calculation shows that VTΓ =

hm = 2VTcy12(£?3) and v ^ = 7ι231 = -^ωn(E^). Thus, /2 = - 1 and /3 =

—. Hence, (4.4) can be expressed as

(4.8) dω1 = -—ω2 Λ ωz , dω2 = — ω3 Λ α̂  , dω3 = 2ωj Λ ω2 .

Let Xu X2y Xz e 3o(3) be the left invariant orthonormal frame field on SO(S)

as in Remark 2 and θί9θ29θs be its dual frame field. Then the Maurer-

Cartan equation is expressed as

(4.9) dθx = —θ2 A θ3 , dθ2 = — θ3 Λ θx , dθz = 2ΘX A θ2.
Δ Δ

Compairing (4.8) with (4.9), we see that there exists a diffeomorphism /
of U into SO(3) for sufficiently small open set U in M and / satisfies
f*θt = ωi i = 1,2,3 (c.f. §ternberg [9]). Since Eu E2, Ez and Xu X2, Z3 are
chosen as orthonormal frame fields on U and SO(3) respectively, / is an
isometry of U into SO(3), and furthermore / preserves the second funda-
mental forms of each immersion into S4. Therefore, since M is compact,
from the fundamental Theorem for hypersurfaces, we can conclude that
M coincides with the hypersurface given by the immersion τ: SO(S) -> S4

up to the rigid motion of S\ q.e.d.
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