Y. Sakane and M. Takeuchi Nagoya Math. J. Vo. 78 (1980), 153-175

EINSTEIN HYPERSURFACES OF KÄHLERIAN C-SPACES

YUSUKE SAKANE*) and MASARU TAKEUCHI

Introduction

A compact simply connected homogeneous complex manifold is called a C-space. A C-space is said to be kählerian if it carries a Kähler metric. It is known (Matsushima [7]) that a kählerian C-space has always an Einstein Kähler metric which is essentially unique.

Let M be a kählerian C-space of dimension n whose second Betti number equals 1. Denote by h the positive generator of $H^2(M, \mathbb{Z}) \cong \mathbb{Z}$. For a hypersurface X of M, we define a positive integer a(X), called the degree of X, by

$$c_1(\{X\}) = a(X)h,$$

where $\{X\}$ denotes the holomorphic line bundle on M associated with the non-singular divisor X. Take an Einstein Kähler metric g on M and fix it. Then it is known for $M = P_n(C)$ that $a(X) \leq 2$ for any hypersurface X which is Einstein with respect to the metric induced by g (Smyth [9], Hano [3]). In this note we shall show that there exists also an upper bound for the degrees of Einstein hypersurfaces of general M.

Let H be the holomorphic line bundle on M with $c_i(H) = h$ and set

$$N_\ell = \dim arGamma(H^\ell) \qquad ext{for } \ell \in Z ext{ ,}$$

where $\Gamma(H^{\ell})$ denotes the space of holomorphic sections of H^{ℓ} . The N_{ℓ} 's are computed by Weyl's formula and monotone increasing with respect to $\ell \geq 0$. We define further a positive integer κ by

$$c_1(M) = \kappa h$$

and set

$$arepsilon(M) = ext{Max} \left\{ ext{positive integer } a; N_{n-arepsilon+a} \leq N_{n-arepsilon} + inom{N_1}{n}
ight\}.$$

Received November 28, 1978.

*) Supported by Grant-in-Aid for Scientific Research.

For example, $\epsilon(P_n(C)) = 2$ $(n \ge 2)$, $\epsilon(Q_n(C)) = 1$ $(n \ge 3)$ and $\epsilon(G_{p,q}(C)) \le \binom{p+q}{p} - pq$ $(2 \le p \le q)$ (Sakane [8]), where $Q_n(C)$ and $G_{p,q}(C)$ denote the complex quadric of dimension n and the complex Grassmann manifold of p-subspaces of C^{p+q} respectively. Then (Theorem 5.3) we have an inequality:

$$a(X) \leq \varepsilon(M)$$

for any Einstein hypersurface X of M.

The above inequality for $M = G_{p,q}(C)$ was proved by the first named author in [8]. Essentially the idea of our proof is the same as that of [8]. But we prove the rationality of the dual map for the canonical projective imbedding $M \longrightarrow P_m(C)$ of M without the use of explicit form of defining equations for $M \subset P_m(C)$.

§1. Preliminaries

Let M be a complex manifold^{*)} of dimension m. The (complex) tangent bundle and the cotangent bundle of M are denoted by T(M) and $T^*(M)$ respectively. Let $K(M) = \Lambda^m T^*(M)$ and $K^*(M)$ be the canonical line bundle of M and its dual line bundle respectively. Then $K^*(M) = \Lambda^m T(M)$ and hence the first Chern class c_1 satisfies

(1.1)
$$c_1(K^*(M)) = c_1(M)$$
.

If *M* carries a Kähler metric *g*, then the Ricci form σ defined by $\sigma(X, Y) = S(X, JY)$, where *S* is the Ricci curvature for *g* and *J* is the complex structure tensor for *M*, is closed and satisfies (cf. Kobayashi-Nomizu [6])

(1.2)
$$c_1(K^*(M))_R = -\frac{1}{4\pi}[\sigma]$$
.

Here $c_{\mathbb{R}}$ means the image of $c \in H^2(M, \mathbb{Z})$ under the group extension $H^*(M, \mathbb{Z}) \to H^*(M, \mathbb{R})$, and $[\eta]$ means the de Rham class of a closed form η on M.

Remark. Hermitian fibre metrics h on $K^*(M)$ correspond one to one to positive volume elements v of M by

$$(1.3) \qquad \langle v, (-2)^m (\sqrt{-1})^{m^2} x \wedge \overline{x} \rangle = h(x, x) \qquad \text{for } x \in K^*(M) \ .$$

^{*)} In this note, a manifold is always assumed to be connected.

For a holomorphic line bundle F on M, we write

$$F^{\ell} = \underbrace{F \otimes \cdots \otimes F}_{\ell}, \quad F^{-\ell} = \underbrace{F^* \otimes \cdots \otimes F^*}_{\ell} \quad \text{for } \ell > 0,$$

 $F^{\circ} = 1,$

where F^* is the dual line bundle of F and 1 is the trivial line bundle on M.

A real cohomology class $c \in H^2(M, \mathbb{R})$ is said to be *positive* if c is the de Rham class of a closed form η on M of bi-degree (1, 1) which has a local expression: $\eta = \sqrt{-1} \sum \eta_{\alpha\beta} dz^{\alpha} \wedge d\overline{z}^{\beta}$ such that the matrix $(\eta_{\alpha\beta})$ is positive definite. For example, let M have a Kähler metric g and ω the Kähler form for g defined by $\omega(X, Y) = g(X, JY)$. Then $-[\omega]$ is a positive real cohomology class. Moreover, an integral cohomology class $c \in H^2(M, \mathbb{Z})$ is said to be *positive* if $c_R \in H^2(M, \mathbb{R})$ is positive in the above sense.

Let V be a finite dimensional complex vector space. The set of nonzero vectors of V will be denoted by V_* . Then the group C_* of non-zero complex numbers acts on V_* from the right in natural manner. The quotient complex manifold V_*/C_* is denoted by P(V). In particular, in case of $V = C^{m+1}$ $(m \ge 1)$ we write $P_m(C)$ for P(V). For $z \in (C^{m+1})_*$, the class of z in $P_m(C)$ is denoted by [z]. Then the map $\pi: (C^{m+1})_* \to P_m(C)$ defined by

$$\pi(z) = [z] \qquad ext{for } z \in ({m{C}}^{m+1})_*$$

is holomorphic and we get a holomorphic principal bundle $C_* \longrightarrow (C^{m+1})_*$ $\xrightarrow{\pi} P_m(C)$. For each $\ell \in \mathbb{Z}$ we define a holomorphic character ι_ℓ of C_* by

$$\iota_{\iota}(a) = a^{\iota} \qquad ext{for} \ a \in C_{*} \; .$$

The holomorphic line bundle associated to the principal bundle $C_* \longrightarrow (C^{m+1})_* \stackrel{\pi}{\longrightarrow} P_m(C)$ by ι_1 is denoted by E and called the *standard line* bundle on $P_m(C)$. Note that then for each $\ell \in \mathbb{Z}$ E^{ℓ} is associated to the same principal bundle by ι_{ℓ} . Let $S_{\ell}(C^{m+1})$ denote the space of homogeneous polynomials on C^{m+1} of degree $\ell \geq 0$. Then $S_{\ell}(C^{m+1})$ is canonically identified with the space $H^0(P_m(C), E^{-\ell})$ of holomorphic sections of $E^{-\ell}$. In fact, each $F \in S_{\ell}(C^{m+1})$ restricted to $(C^{m+1})_*$ is a tensorial form on $(C^{m+1})_*$ of type $\iota_{-\ell}$, and hence it defines an element $\hat{F} \in H^0(P_m(C), E^{-\ell})$. The correspondence $F \mapsto \hat{F}$ gives the required identification. The standard norm of C^{m+1} is denoted by

$$\|z\| = \sqrt{\sum\limits_{lpha=0}^{m} |z^{lpha}|^2} \qquad ext{for } z = egin{pmatrix} z^0 \ z^1 \ dots \ z^m \end{bmatrix} \in C^{m+1} \, .$$

Then the function $z \mapsto ||z||^2$ on $(C^{m+1})_*$ is a tensorial form of type $a \mapsto |a|^{-2}$, and hence it defines a hermitian fibre metric h_E on E. The Chern form ω of E associated to h_E is given by

$$\pi^* \omega = rac{1}{2\pi \sqrt{-1}} d' d'' \log \|oldsymbol{z}\|^2$$
 ,

and we have

$$(1.4) c_1(E)_R = [\omega] .$$

The symmetric tensor g on $P_m(C)$ defined by $g(X, Y) = \omega(JX, Y)$, J being the complex structure tensor for $P_m(C)$, is a Kähler metric on $P_m(C)$. It is called the *Fubini-Study metric* on $P_m(C)$. Note that then ω is the Kähler form for g. It is known (cf. Kobayashi-Nomizu [6]) that the Kähler manifold $(P_m(C), g)$ has constant holomorphic sectional curvature 8π .

Let

$$u_{i} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} (i+1 \in C^{m+1} \quad (0 \leq i \leq m)$$

be the standard unit vectors of C^{m+1} . A frame (e_0, e_1, \dots, e_m) of C^{m+1} is said to be unimodular if $e_0 \wedge e_1 \wedge \dots \wedge e_m = u_0 \wedge u_1 \wedge \dots \wedge u_m$. We denote by P(m + 1) the set of unimodular frames of C^{m+1} . It is identified with the group SL(m + 1) of unimodular $(m + 1) \times (m + 1)$ complex matrices in natural manner. We define a holomorphic map $p: P(m + 1) \rightarrow P_m(C)$ by

$$p(e_0, e_1, \dots, e_m) = [e_0]$$
 for $(e_0, e_1, \dots, e_m) \in P(m+1)$.

The subgroup of SL(m + 1) consisting of all unimodular matrices of the form

$$\begin{pmatrix} \lambda & * \\ 0 & \alpha \end{pmatrix}^{\mathbf{1}}_{\mathbf{m}}$$

is denoted by SL(1, m). Then we get a holomorphic principal bundle $SL(1, m) \longrightarrow P(m + 1) \xrightarrow{p} P_m(C)$. We define further a holomorphic map $\varphi: P(m+1) \to (C^{m+1})_*$ with $\pi \circ \varphi = p$ by

$$\varphi(e_0, e_1, \cdots, e_m) = e_0 \quad \text{for } (e_0, e_1, \cdots, e_m) \in P(m+1) .$$

The subgroup of SL(1, m) consisting of all unimodular matrices of the form

$$\begin{pmatrix} \mathbf{1} & * \\ \mathbf{0} & \alpha \end{pmatrix}^{\mathbf{1}}_{\mathbf{m}}$$

is denoted by $SL_0(1, m)$. Then we get also a principal bundle $SL_0(1, m)$ $\longrightarrow P(m + 1) \xrightarrow{\varphi} (C^{m+1})_*$. We define a holomorphic character χ_ℓ of SL(1, m) by

$$\chi_i(a) = \lambda^i$$
 for $a = \begin{pmatrix} \lambda & * \\ 0 & \alpha \end{pmatrix} \in SL(1, m)$.

LEMMA 1.1. For each $\ell \in Z$ E^{ℓ} is associated to the principal bundle

$$SL(1, m) \longrightarrow P(m + 1) \xrightarrow{p} P_m(C)$$

by the character χ_{ℓ} .

Proof. The map $\varphi: P(m + 1) \rightarrow (C^{m+1})_*$ satisfies

$$egin{aligned} &arphi(ua)=arphi(u)\chi_1(a) & ext{ for } u\in P(m+1), \ a\in SL(1,m) \ , \ &\chi_\ell(a)=\iota_\ell(\chi_1(a)) & ext{ for } a\in SL(1,m) \ . \end{aligned}$$

Thus φ induces an isomorphism from the line bundle associated to P(m + 1)by χ_{ℓ} to the line bundle E^{ℓ} associated to $(C^{m+1})_*$ by ι_{ℓ} . q.e.d. Next we define a holomorphic representation $\rho: SL(1, m) \to GL(m)$, the group of non-singular $m \times m$ complex matrices, by

$$\rho(a) = \lambda^{-1} \alpha \quad \text{for } a = \begin{pmatrix} \lambda & * \\ 0 & \alpha \end{pmatrix} \in SL(1, m) \ .$$

LEMMA 1.2. The tangent bundle $T(P_m(C))$ of $P_m(C)$ is associated to the principal bundle

$$SL(1, m) \longrightarrow P(m + 1) \xrightarrow{p} P_m(C)$$

by the representation ρ .

Proof. Let $GL(m) \longrightarrow F(P_m(C)) \xrightarrow{q} P_m(C)$ be the bundle of frames

of $P_m(C)$. We define a holomorphic map $\psi: P(m+1) \to F(P_m(C))$ by

$$\psi(e_0, e_1, \cdots, e_m) = ((\pi_*)_{e_0} e_1, \cdots, (\pi_*)_{e_0} e_m) \quad \text{for } (e_0, e_1, \cdots, e_m) \in P(m+1) \ ,$$

identifying the tangent space $T_{e_0}((C^{m+1})_*)$ with C^{m+1} . Then it satisfies $q \circ \psi = p$ and

$$\psi(ua) = \psi(u)\rho(a)$$
 for $u \in P(m+1)$, $a \in SL(1, m)$.

q.e.d.

Thus the lemma follows as in Lemma 1.1.

§2. Dual map for a complex submanifold of $P_m(C)$

In this section, M is always assumed to be a complex submanifold of $P_m(C)$ with dimension $n \ge 1$. Let $r = m - n \ge 0$ be the codimension of M. Let $j: M \to P_m(C)$ denote the inclusion. The Kähler metric on M induced by the Fubini-Study metric g on $P_m(C)$ and its Kähler form will be also denoted by g and ω respectively. We set

$$\hat{M}=\pi^{-1}(M)$$
 .

Then, restricting the bundle $C_* \longrightarrow (C^{m+1})_* \xrightarrow{\pi} P_m(C)$ to M, we get a holomorphic principal bundle $C_* \longrightarrow \hat{M} \xrightarrow{\pi} M$. Note that for each $\ell \in \mathbb{Z}$ the induced bundle j^*E^{ℓ} is associated to $C_* \longrightarrow \hat{M} \xrightarrow{\pi} M$ by ι_{ℓ} . We set

$$I_{\ell}\!(M) = \{F \in S_{\ell}\!(C^{\,m+1}); \,\, F | \, \hat{M} = 0\} \;.$$

We denote by P(M) the totality of $(e_0, e_1, \dots, e_m) \in P(m + 1)$ such that

- (i) $e_0 \in \hat{M}$, and
- (ii) $e_1, \cdots, e_n \in T_{e_0}(\hat{M}),$

identifying $T_{e_0}(\hat{M})$ with a subspace of C^{m+1} . The subgroup of SL(1, m) consisting of all unimodular matrices of the form

(2.1)
$$a = \begin{pmatrix} \lambda & * & * \\ 0 & \alpha & * \\ 0 & 0 & \beta \end{pmatrix}_{r}^{1}$$

is denoted by SL(1, n, r). Then we get a holomorphic principal bundle $SL(1, n, r) \longrightarrow P(M) \xrightarrow{p} M$, which is a subbundle of $SL(1, m) \longrightarrow j^*P(m + 1) \xrightarrow{p} M$. Now Lemma 1.1 implies the following lemma.

LEMMA 2.1. For each $\ell \in \mathbb{Z}$ j^*E^{ℓ} is associated to the principal bundle

$$SL(1, n, r) \longrightarrow P(M) \xrightarrow{p} M$$

by the character χ_{ℓ} .

We define further

$$SL_{0}(1, n, r) = SL_{0}(1, m) \cap SL(1, n, r)$$
,

and denote the inclusion $\hat{M} \to (C^{m+1})_*$ by \hat{j} . Then we get a holomorphic principal bundle $SL_0(1, n, r) \longrightarrow P(M) \xrightarrow{\varphi} \hat{M}$, which is a subbundle of $SL_0(1, m) \longrightarrow \hat{j}^*P(m+1) \xrightarrow{\varphi} \hat{M}$.

We define a holomorphic representation $\tau: SL(1, n, r) \rightarrow GL(n)$ by

$$au(a)=\lambda^{-1}lpha \qquad ext{for } a=egin{pmatrix} \lambda &* &* \ 0 &lpha &* \ 0 & 0 η \end{pmatrix}\in SL(1,\,n,\,r) \;.$$

Now Lemma 1.2 implies that $j^*T(P_m(C))$ is associated to $SL(1, n, r) \longrightarrow P(M) \xrightarrow{p} M$ by ρ . It follows that the subbundle T(M) of $j^*T(P_m(C))$ is associated to the same principal bundle by τ . Explicitly, the holomorphic map $\psi: P(M) \to F(M)$, the bundle of frames of M, defined by

$$\psi(e_0, e_1, \cdots, e_m) = ((\pi_*)_{e_0} e_1, \cdots, (\pi_*)_{e_0} e_n) \quad \text{for } (e_0, e_1, \cdots, e_m) \in P(M)$$

provides an isomorphism from the vector bundle associated to P(M) by τ to the tangent bundle T(M). Since det $\tau(a) = \lambda^{-n} \det \alpha$ for each $a \in SL(1, n, r)$ of (2.1), we have the following lemma.

LEMMA 2.2. The line bundle $K^*(M)$ is associated to the principal bundle

$$SL(1, n, r) \longrightarrow P(M) \xrightarrow{p} M$$

by the holomorphic character of SL(1, n, r) defined by

$$a\mapsto \lambda^{-n}\det \alpha$$
 for $a=egin{pmatrix}\lambda &*&*\\0&lpha&*\\0&0η\end{pmatrix}\in SL(1,n,r)$.

Now we shall define the dual map for $M \subset P_m(C)$. Let p be a point of M. Choose a vector $z \in \hat{M}$ such that $\pi(z) = p$. Then $T_z(\hat{M})$ is identified with a linear subspace of C^{m+1} of codimension r, which is determined by p and independent of the choice of z. The annihilator:

$$\vartheta(p) = \{\xi \in (\boldsymbol{C}^{m+1})^*; \langle \xi, T_z(\hat{M}) \rangle = \{0\}\}$$

of $T_{z}(\hat{M})$ in the dual space $(C^{m+1})^{*}$ of C^{m+1} , is an *r*-dimensional linear subspace of $(C^{m+1})^{*}$, i.e., it is a point of the Grassmann manifold $Gr((C^{m+1})^{*})$ of *r*-subspaces of $(C^{m+1})^{*}$. Regarding $Gr((C^{m+1})^{*})$ as a submanifold of $P(\Lambda^{r}(C^{m+1})^{*})$ by the Plücker imbedding, we get a map $\vartheta: M \to P(\Lambda^{r}(C^{m+1})^{*})$, which is easily seen to be holomorphic. The map ϑ is called the *dual* map or Gauss map for $M \subset P_{m}(C)$.

The standard hermitian inner product on C^{m+1} defines canonically a hermitian inner product on $\Lambda^r(C^{m+1})^*$. Identify $\Lambda^r(C^{m+1})^*$ with C^{e+1} , $e+1 = \binom{m+1}{r}$, by an orthonormal basis for $\Lambda^r(C^{m+1})^*$, and hence $P(\Lambda^r(C^{m+1})^*)$ with $P_e(C)$. Denote the Fubini-Study metric on $P_e(C)$ by g'.

The dual map ϑ is said to be a rational map of degree $d \ge 0$ if there exists a homogeneous polynomial map $D: \mathbb{C}^{m+1} \to \Lambda^r(\mathbb{C}^{m+1})^*$ of degree d such that (a) $D(\hat{M}) \subset (\Lambda^r(\mathbb{C}^{m+1})^*)_*$ and (b) it induces the dual map $\vartheta: M \to P(\Lambda^r(\mathbb{C}^{m+1})^*)$. If we identify $\Lambda^r(\mathbb{C}^{m+1})^*$ with the dual space of $\Lambda^r(\mathbb{C}^{m+1})$ by the pairing:

$$\langle \xi_1 \wedge \cdots \wedge \xi_r, e_1 \wedge \cdots \wedge e_r \rangle = \det(\langle \xi_i, e_j \rangle)_{1 \leq i, j \leq r}$$

for $\xi_i \in (C^{m+1})^*$ and $e_j \in C^{m+1}$, then the above conditions (a), (b) are equivalent to that

$$\langle D(e_0), e_{i_1} \wedge \cdots \wedge e_{i_r} \rangle = egin{cases} ext{not zero} & ext{if } (i_1, \cdots, i_r) = (n+1, \cdots, m) \ 0 & ext{otherwise} \end{cases}$$

for each frame (e_0, e_1, \dots, e_m) of C^{m+1} with (i), (ii) and for each $0 \leq i_1 < \dots < i_r \leq m$. Here, in case of r = 0, $e_{n+1} \land \dots \land e_m$ will be understood to be $1 \in C$.

Assuming that the dual map $\vartheta: M \to P(\Lambda^r(C^{m+1})^*)$ is a rational map of degree $d \ge 0$ induced by $D: C^{m+1} \to \Lambda^r(C^{m+1})^*$, we define

$${P}_{D}(M) = \{(e_{\scriptscriptstyle 0}, e_{\scriptscriptstyle 1}, \cdots, e_{\scriptscriptstyle m}) \in P(M); \langle D(e_{\scriptscriptstyle 0}), e_{\scriptscriptstyle n+1} \wedge \cdots \wedge e_{\scriptscriptstyle m} \rangle = 1\}.$$

For each $\ell \in \mathbb{Z}$ the subgroup of SL(1, n, r) consisting of all unimodular matrices a of (2.1) such that

$$\lambda^{\ell-1} \det \alpha^{-1} = 1 ,$$

is denoted by $SL(1, n, r; \ell)$. Note that if for $(e_0, e_1, \dots, e_m) \in P(M)$ and $a \in SL(1, n, r)$ of (2.1) we set $(e'_0, e'_1, \dots, e'_m) = (e_0, e_1, \dots, e_m)a$, then

$$egin{aligned} &\langle D(e_0'), e_{m+1}' \wedge \cdots \wedge e_n'
angle &= \lambda^d \det eta \; \langle D(e_0), e_{m+1} \wedge \cdots \wedge e_n
angle \ &= \lambda^{d-1} \det lpha^{-1} \langle D(e_0), e_{m+1} \wedge \cdots \wedge e_n
angle \,. \end{aligned}$$

Here, in case of r = 0, det β will be understood to be 1. It is not difficult to see from this that we have a holomorphic principal bundle SL(1, n, r; d) $\rightarrow P_D(M) \xrightarrow{p} M$, which is a subbundle of $SL(1, n, r) \rightarrow P(M) \xrightarrow{p} M$. Define $k \in \mathbb{Z}$ by

(2.2)
$$k = n + 1 - d$$
.

Then, for each $a \in SL(1, n, r; d)$ of the form (2.1), we have

$$\lambda^{-n} \det \alpha = \lambda^{-n} \lambda^{d-1} = \lambda^{-(n+1-d)} = \lambda^{-k} = \chi_{-k}(\alpha)$$

It follows from Lemma 2.2 that $K^*(M)$ is associated to $SL(1, n, r; d) \rightarrow P_D(M) \xrightarrow{p} M$ by χ_{-k} . Thus Lemma 2.1 implies that $K^*(M)$ is isomorphic to j^*E^{-k} . An explicit isomorphism is given as follows. The map $\varphi: P(m+1) \rightarrow (C^{m+1})_*$ defined in § 1 by $\varphi(e_0, e_1, \dots, e_m) = e_0$ induces a map $\varphi: P_D(M) \rightarrow \hat{M}$ with $\pi \circ \varphi = p$ satisfying

$$arphi(ua) = arphi(u)\chi_1(a) \qquad ext{for } u \in P_D(M), \ a \in SL(1, n, r; d) \ , \ \chi_{-k}(a) = \iota_{-k}(\chi_1(a)) \qquad ext{for } a \in SL(1, n, r; d) \ .$$

Therefore it induces a vector bundle isomorphism:

(2.3)
$$\varphi_D \colon K^*(M) \longrightarrow j^* E^{-k}$$

In particular, by (1.4) we have

(2.4)
$$c_1(K^*(M))_R = -k[\omega]$$
.

The tensorial form $z \mapsto ||z||^{-2k}$ on \hat{M} of type $a \mapsto |a|^{2k}$ defines a hermitian fibre metric h_k on j^*E^{-k} . Let h_D be the hermitian fibre metric on $K^*(M)$ corresponding to h_k under the isomorphism φ_D . Moreover, let h be the hermitian fibre metric on $K^*(M)$ corresponding to the volume element $v = (-\frac{1}{2})^n \omega^n$ of M (cf. Remark in § 1). With these notations we have the following theorem.

THEOREM 2.1. Let the dual map $\vartheta: M \to P(\Lambda^r(\mathbb{C}^{m+1})^*)$ for $M \subset P_m(\mathbb{C})$ be a rational map of degree d induced by a polynomial map $D: \mathbb{C}^{m+1} \to \Lambda^r(\mathbb{C}^{m+1})^*$. Then we have

$$h = rac{n!}{(2\pi)^n} \, rac{\|D(z)\|^2}{\|z\|^{2d}} h_{\scriptscriptstyle D} \; .$$

Note here that the function $z \mapsto ||D(z)||^2/||z||^{2d}$ on \hat{M} can be regarded as a function on M.

Proof. By Lemma 2.2, $K^*(M)$ is associated to $SL(1, n, r) \to P(M)$ $\xrightarrow{p} M$ by the character $a \mapsto \lambda^{-n} \det \alpha$ of SL(1, n, r). Therefore the tensorial form $F: P(M) \to \mathbb{R}^+$, the positive reals, corresponding to a hermitian fibre metric on $K^*(M)$ satisfies

(2.5)
$$F(ua) = |\lambda|^{-2n} |\det \alpha|^2 F(u)$$
 for $u \in P(M), a \in SL(1, n, r)$.

Let F_h and F_{hp} be tensorial forms on P(M) corresponding to h and h_p respectively. Then by (1.3)

$$egin{aligned} F_{\hbar}(e_{\scriptscriptstyle 0},e_{\scriptscriptstyle 1},\cdots,e_{\scriptscriptstyle m})&=\langle v,(-2)^n(\sqrt{-1})^{n^2}(\pi_*)_{e_0}(e_1\wedge\cdots\wedge e_n\wedgear e_1\wedge\cdots\wedgear e_n)
angle\ &=\langle(\pi^*\omega^n)_{e_0},(\sqrt{-1}e_1\wedgear e_1)\wedge\cdots\wedge(\sqrt{-1}e_n\wedgear e_n)
angle \end{aligned}$$

for each $(e_0, e_1, \dots, e_m) \in P(M)$. In particular, if $(f_0, f_1, \dots, f_m) \in P(M)$ is a unitary frame of C^{m+1} , then

(2.6)
$$F_{h}(f_{0}, f_{1}, \cdots, f_{m}) = \frac{n!}{(2\pi)^{n}},$$

since the Kähler form ω of $P_m(C)$ is SU(m+1)-invariant.

Now take an arbitrary $(e_0, e_1, \dots, e_m) \in P_D(M)$. Then

$$F_{h_D}(e_0, e_1, \cdots, e_m) = \|e_0\|^{-2k}$$

Choose a unitary frame $(f_0, f_1, \dots, f_m) \in P(M)$ and $a \in SL(1, n, r)$ of the form (2.1) such that $(e_0, e_1, \dots, e_m) = (f_0, f_1, \dots, f_m)a$. Note here that then $||e_0|| = |\lambda|$. Now (2.5) and (2.6) imply

(2.7)
$$F_{\lambda}(e_{0}, e_{1}, \cdots, e_{m}) = |\lambda|^{-2n} |\det \alpha|^{2} F_{\lambda}(f_{0}, f_{1}, \cdots, f_{m}) \\ = \frac{n!}{(2\pi)^{n}} |\lambda|^{-2n} |\det \alpha|^{2}.$$

On the other hand,

$$1 = \langle D(e_0), e_{n+1} \land \cdots \land e_m \rangle = \det \beta \langle D(e_0), f_{n+1} \land \cdots \land f_m \rangle$$

= $\lambda^{-1} \det \alpha^{-1} \langle D(e_0), f_{n+1} \land \cdots \land f_m \rangle$

implies

$$\langle D(e_0), f_{i_1} \wedge \cdots \wedge f_{i_r} \rangle = \begin{cases} \lambda \det \alpha & \text{if } (i_1, \cdots, i_r) = (n+1, \cdots, m) \\ 0 & \text{otherwise} \end{cases}$$

for $0 \leq i_1 < \cdots < i_r \leq m$. Since the set $\{f_{i_1} \land \cdots \land f_{i_r}; 0 \leq i_1 < \cdots < i_r \leq m\}$ is an orthonormal basis for $\Lambda^r(C^{m+1})$, we have $\|D(e_0)\|^2 = |\lambda|^2 |\det \alpha|^2$, and hence $|\det \alpha|^2 = |\lambda|^{-2} \|D(e_0)\|^2$. Substituting this into (2.7), we have

$$egin{aligned} F_{\hbar}(e_{\scriptscriptstyle 0},e_{\scriptscriptstyle 1},\,\cdots,\,e_{\scriptscriptstyle m}) &= rac{n\,!}{(2\pi)^n}\,|\lambda|^{_{-2(n\,+\,1)}}\,\|D(e_{\scriptscriptstyle 0})\|^2 \ &= rac{n\,!}{(2\pi)^n}\,\|e_{\scriptscriptstyle 0}\|^{_{-2(n\,+\,1)}}\,\|D(e_{\scriptscriptstyle 0})\|^2\,, \end{aligned}$$

and hence

$$rac{F_{h}(e_{0},\,e_{1},\,\cdots,\,e_{m})}{F_{h_{D}}(e_{0},\,e_{1},\,\cdots,\,e_{m})} = rac{n!}{(2\pi)^{n}} \, rac{\|D(e_{0})\|^{2}}{\|e_{0}\|^{2d}} \, .$$

This proves the theorem.

Remark. Hano [3] proved this theorem in case where M is a complete intersection. Note that in this case the dual map is always a rational map.

THEOREM 2.2 (Hano [3]). Let M be a compact complex submanifold of $P_m(C)$ and let the dual map $\vartheta: M \to P(\Lambda^r(C^{m+1})^*)$ be a rational map of degree d induced by a polynomial map $D: \mathbb{C}^{m+1} \to \Lambda^r(\mathbb{C}^{m+1})^*$. Then the following conditions are mutually equivalent:

- 1) The induced metric g on M is Einstein.
- 2) $||D(z)||^2/||z||^{2d}$ is a constant function on M.
- 3) $\vartheta^*g' = d \cdot g$.

In this case, we have an inequality:

$$\dim (S_d(\boldsymbol{C}^{m+1})/I_d(M)) \leq \binom{m+1}{r}.$$

Proof. This was proved by Hano [3] in case where M is a complete intersection. We can apply his proof to our case, since he used only the property of Theorem 2.1 in his proof. q.e.d.

§3. Kählerian C-spaces

A compact simply connected homogeneous complex manifold is called A C-space is said to be kählerian if it has a Kähler metric. a C-space. In this section we summarize some known results on kählerian C-spaces (cf. Borel-Hirzebruch [1], Takeuchi [10]).

(I) A kählerian C-space M has always an Einstein Kähler metric which is essentially unique in the following sense; For any Einstein Kähler metrics g, g' on M, there exist a holomorphism φ of M and a constant c > 0 such that $\varphi^* g' = cg$ (Matsushima [7]).

q.e.d.

In what follows in this section, let M be a kählerian C-space. Let G denote the identity component $\operatorname{Aut}^{\circ}(M)$ of the group $\operatorname{Aut}(M)$ of holomorphisms of M. It is a connected complex semi-simple Lie group without the center. Fix a point $o \in M$ and set

$$U = \{\varphi \in G; \varphi(o) = o\}.$$

It is a closed connected complex Lie subgroup of G, and we have an identification: M = G/U. Let $\mathfrak{g} = \text{Lie } G$, the Lie algebra of G, and denote the Killing form of \mathfrak{g} by (,). Now $\mathfrak{u} = \text{Lie } U$ is a parabolic Lie subalgebra of \mathfrak{g} and described as follows. Take a Cartan subalgebra \mathfrak{h} of \mathfrak{g} contained in \mathfrak{u} and denote the real part of \mathfrak{h} by \mathfrak{h}_R . The root system Σ of \mathfrak{g} relative to \mathfrak{h} is identified with a subset of \mathfrak{h}_R by means of the duality defined by (,). Then there exist a lexicographic order > on \mathfrak{h}_R and a subset Π_0 of the fundamental root system Π with the following property; If we set $\Sigma_0 = \Sigma \cap \mathbb{Z}\Pi_0$ and $\Sigma_m^+ = \{\alpha \in \Sigma - \Sigma_0; \alpha > 0\}$, then \mathfrak{u} is given by

$$\mathfrak{u} = \mathfrak{h} + \sum_{\alpha \in \mathfrak{L}_0 \cup \mathfrak{L}_{\mathfrak{n}}^+} \mathfrak{g}_{\alpha}$$
,

where g_{α} stands for the root space for α .

Let $\{\Lambda_{\alpha}; \alpha \in \Pi\} \subset \mathfrak{h}_{\mathbb{R}}$ be the fundamental weights corresponding to Π . We set

$$\mathfrak{c} = \{ H \in \mathfrak{h}_{R}; (H, \Pi_{0}) = \{ 0 \} \}$$

and

$$Z_{\mathfrak{c}} = \left\{ arLambda \in \mathfrak{c} \, ; \, rac{2(arLambda, lpha)}{(lpha, lpha)} \in oldsymbol{Z} \, ext{ for each } lpha \in \Sigma
ight\} \, ,$$

which is a lattice of c generated the Λ_a 's for $\alpha \in \Pi - \Pi_0$. Let \tilde{G} be the universal covering group of G and \tilde{U} the (closed) connected complex Lie group of \tilde{G} generated by u. Then we have also an identification: $M = \tilde{G}/\tilde{U}$. For each $\Lambda \in Z_c$ there exists a unique holomorphic character χ_A of \tilde{U} such that $\chi_A(\exp H) = \exp(\Lambda, H)$ for each $H \in \mathfrak{h}$. Then the correspondence $\Lambda \mapsto \chi_A$ gives an isomorphism of Z_c to the group of holomorphic characters of \tilde{U} . Let F_A denote the holomorphic line bundle on M associated to the principal bundle $\tilde{U} \to \tilde{G} \to M$ by χ_A . The correspondence $\Lambda \to F_A$ induces a homomorphism of Z_c to the group $H^1(M, \mathcal{O}^*)$ of isomorphism classes of holomorphic line bundles on M. Also the correspondence $F \mapsto c_1(F)$ defines a homomorphism of $H^1(M, \mathcal{O}^*)$ to $H^2(M, Z)$.

(II) Both of these homomorphisms:

$$Z_{\mathfrak{c}} \xrightarrow{F} H^{1}(M, \mathcal{O}^{*}) \xrightarrow{c_{1}} H^{2}(M, Z)$$

are isomorphisms (Ise [5]).

Thus the second Betti number $b_2(M)$ is given by

(3.1)
$$b_2(M) = \dim \mathfrak{c} = \text{the cardinality of } \Pi - \Pi_0.$$

We define positive integers k_{α} by

$$k_{lpha} = \sum\limits_{eta \in \mathfrak{T}_{\mathfrak{m}}^+} rac{2(eta, lpha)}{(lpha, lpha)} \qquad ext{for } lpha \in \Pi - \Pi_{\scriptscriptstyle 0} \;.$$

Let κ be the greatest common divisor of $\{k_{\alpha}\}_{\alpha \in \Pi - \Pi_0}$ and set

$$\kappa_{\alpha} = \frac{k_{\alpha}}{\kappa}$$
 for $\alpha \in \Pi - \Pi_{0}$

and

$$\Lambda_0 = \sum_{\alpha \in \Pi - \Pi_0} \kappa_{\alpha} \Lambda_{\alpha} \, .$$

We define

$$Z_{\mathfrak{c}}^{\scriptscriptstyle +} = \{ \Lambda \in Z_{\mathfrak{c}}; (\Lambda, lpha) > 0 \, \, ext{for each} \, \, lpha \in \Sigma_{\mathfrak{m}}^{\scriptscriptstyle +} \} \, .$$

Then we have

$$Z_{\mathfrak{c}}^{\scriptscriptstyle +} = \sum_{lpha \in \Pi - \Pi_0} Z^{\scriptscriptstyle +} \Lambda_{lpha} ,$$

where Z^{+} denotes the set of positive integers. Thus we have $\Lambda_{0} \in Z_{c}^{+}$. The set Z_{c}^{+} is invariant under the action of the group Aut (Π, Π_{0}) defined by

$$\operatorname{Aut}\left(\varPi,\varPi_{\scriptscriptstyle 0}\right)=\{\sigma\in GL(\mathfrak{h}_{\boldsymbol{R}});\sigma\varSigma=\varSigma,\sigma\varPi=\varPi,\sigma\varPi_{\scriptscriptstyle 0}=\varPi_{\scriptscriptstyle 0}\}\;.$$

Let Aut $(\Pi, \Pi_0) \setminus Z_c^+$ denote the quotient of Z_c^+ modulo Aut (Π, Π_0) .

A holomorphic immersion $j: M \to P_m(C)$ is said to be Aut⁰(M)-equivariant or simply equivariant, if for each $\varphi \in G$ there exists an element Φ of PL(m + 1), the group of projective transformations of $P_m(C)$, such that $j \circ \varphi = \Phi \circ j$. Holomorphic immersions $j: M \to P_m(C)$ and $j': M \to P_m(C)$ are said to be equivalent if m = m' and there exist $\varphi \in Aut(M)$ and $\Phi \in PL(m + 1)$ such that $j \circ \varphi = \Phi \circ j'$. A Kähler metric g on M is called a homogeneous Kähler metric if the group Aut(M, g) of isometric holomorphisms of (M, g) is transitive on M. A holomorphic immersion $j: M \to P_m(C)$ is called a homogeneous Kähler immersion or an Einstein Kähler immersion if the Kähler metric on M induced by the Fubini-Study metric on $P_m(C)$ is homogeneous or Einstein. Homogeneous or Einstein Kähler immersions j: M $\rightarrow P_m(C)$ and $j': M \rightarrow P_m(C)$ are said to be equivalent if m = m' and there exist $\varphi \in \operatorname{Aut}(M)$ and an element Φ of PU(m + 1), the group of unitary projective transformations of $P_m(C)$, such that $j \circ \varphi = \Phi \circ j'$. Let \mathscr{H}, \mathscr{K} and \mathscr{E} denote the set of equivalence classes of full equivariant holomorphic immersions, homogeneous Kähler immersions and Einstein Kähler immersions of M respectively.

These immersions are constructed in the following way. Let g_u be a compact real form of \mathfrak{g} such that the complex conjugation of \mathfrak{g} with respect to \mathfrak{g}_u leaves \mathfrak{h} invariant, and G_u the (compact) connected Lie subgroup of G generated by \mathfrak{g}_u . Take $\Lambda \in Z_c^+$ and let $\rho_A: \mathfrak{g}_u \to \mathfrak{su}(m+1)$ be an irreducible unitary representation of \mathfrak{g}_u such that its C-linear extension $\rho_A: \mathfrak{g} \to \mathfrak{Sl}(m+1)$ has the highest weight Λ . The extension of ρ_A to \tilde{G} will be also denoted by $\rho_A: \tilde{G} \to SL(m+1)$. Taking a highest weight vector $z_0 \in C^{m+1}$, we can define a full equivariant holomorphic imbedding $j_A: M = \tilde{G}/\tilde{U} \to P_m(C)$ by

$$j_A(x\tilde{U}) = [\rho_A(x)z_0] \quad \text{for } x \in \tilde{G}.$$

The Kähler metric on M induced by the Fubini-Study metric on $P_m(C)$ is denoted by g_A . Then j_A is further a full homogeneous Kähler imbedding, and the identity component Aut⁰ (M, g_A) of Aut (M, g_A) coincides with G_u . Moreover we have:

(III) The space of Aut⁰ (M, g_{A}) -invariant closed 2-forms on M coincides with the space of harmonic 2-forms on (M, g_{A}) (Takeuchi [10]).

For each $p \in \mathbb{Z}^+$ we write j_p and g_p for j_{pA_0} and g_{pA_0} respectively. Then j_p is a full Einstein Kähler imbedding, and the Ricci curvature S_p for g_p is given by

$$S_p = \frac{4\pi\kappa}{p}g_p \,.$$

Thus (1.1) and (1.2) imply

(3.3)
$$c_1(M)_R = -\frac{\kappa}{p}[\omega_p],$$

where ω_p denotes the Kähler form for g_p . The imbedding j_p is called the

p-th full Einstein Kähler imbedding of M.

(IV) Any Einstein Kähler immersion is a homogeneous Kähler immersion (by (I)), and any homogeneous Kähler immersion is an equivariant holomorphic immersion (Takeuchi [10]). Thus we have natural maps:

$$\mathfrak{S} \xrightarrow{\alpha} \mathscr{K} \xrightarrow{\beta} \mathscr{H} .$$

The map α is injective and the map β is bijective (Takeuchi [10]).

(V) The correspondence $p \mapsto j_p$ induces a bijection $Z^+ \xrightarrow{\gamma} \mathscr{E}$, and the correspondence $\Lambda \mapsto j_A$ induces a bijection $\operatorname{Aut}(\Pi, \Pi_0) \setminus Z_c^+ \xrightarrow{\delta} \mathscr{K}$ (Takeuchi [10]).

Let $\Lambda \in Z_{\mathfrak{c}}^+$. We set

$$N_{\iota\scriptscriptstyle A} = \dim H^{\scriptscriptstyle 0}(M, j_{\scriptscriptstyle A}^* E^{-\iota}) \qquad ext{for } \, \ell \in Z \ .$$

For the imbedding $j_A: M \to P_m(C)$ and the standard line bundle E on $P_m(C)$, we have

$$(3.4) j_A^* E = F_A \, .$$

Thus, applying Borel-Weil-Bott theorem (Bott [2]) to the F_A 's we have the following:

(VI) Let $\Lambda \in Z_{\mathfrak{c}}^+$.

(i) For each $\ell \geq 0$, $H^{0}(M, j_{A}^{*}E^{-\ell})$ is an irreducible \tilde{G} -module with the lowest weight $-\ell \Lambda$, and $H^{p}(M, j_{A}^{*}E^{-\ell}) = \{0\}$ for $p \geq 1$. Therefore $N_{\ell \Lambda}$ ($\ell \geq 0$) is given by Weyl's degree formula:

$$N_{\ell A} = \prod_{lpha > 0} rac{(\ell A + \delta, lpha)}{(\delta, lpha)} \,, \qquad ext{where } \delta = rac{1}{2} \sum_{lpha > 0} lpha \;.$$

(ii) For each $\ell > 0$, $H^{0}(M, j_{A}^{*}E^{\ell}) = \{0\}$ and hence $N_{-\ell A} = 0$.

COROLLARY. For each $\ell \geq 0$, we have an exact sequence:

$$0 \longrightarrow I_{\ell}(M) \longrightarrow H^{\scriptscriptstyle 0}(P_{\scriptscriptstyle m}(C), E^{-\ell}) \xrightarrow{\mathcal{I}_A^*} H^{\scriptscriptstyle 0}(M, j_A^*E^{-\ell}) \longrightarrow 0 \; .$$

Proof. The map j_A^* is a non-trivial \tilde{G} -homomorphism and $H^0(M, j_A^* E^{-i})$ is an irreducible \tilde{G} -module by (VI). These imply the surjectivity of j_A^* . Moreover, since $H^0(P_m(C), E^{-i})$ is canonically identified with $S_i(C^{m+1})$, the kernel of j_A^* is identified with $I_i(M)$. q.e.d. Remark 1. Weyl's formula implies that $N_{\ell \ell} < N_{(\ell+1)\ell}$ for $\ell \ge 0$, and hence the $N_{\ell \ell}$'s are monotone increasing with respect to $\ell \ge 0$.

Remark 2. The above corollary for $\ell = 1$, the fullness of j_A and (3.4) imply that $j_A^*: (C^{m+1})^* = H^0(P_m(C), E^{-1}) \to H^0(M, F_A^{-1})$ is a \tilde{G} -isomorphism. It follows that for each $\Lambda \in Z_c^+$ the holomorphic line bundle F_A^{-1} is very ample and the associated Kodaira imbedding is equivalent to the holomorphic imbedding j_A . Conversely let F_A for $\Lambda \in Z_c$ be very ample and let $j: M \to P_m(C)$ be the associated Kodaira imbedding. Then $F_A = j^*E^{-1}$ and hence $c_1(F_A)$ is positive. An explicit description (cf. Borel-Hirzebruch [1]) of the Chern form of F_A shows that $\Lambda \in -Z_c^+$. Thus the set \mathscr{H} corresponds one to one to the set of equivalence classes of Kodaira imbeddings of M.

§4. Dual map for a kählerian C-space in $P_m(C)$

THEOREM 4.1. Let M be a kählerian C-space of dimension n and $j: M \longrightarrow P_m(C)$ a full equivariant holomorphic imbedding of codimension r. Then the dual map $\vartheta: M \to P(\Lambda^r(C^{m+1})^*)$ for $M \subset P_m(C)$ is a rational map if and only if

- 1) j is equivalent to an Einstein Kähler imbedding, say j_p , and
- 2) κ is divisible by p.

In this case, the degree d of ϑ and the positive integer $k = \kappa/p$ is related as:

$$d=n+1-k.$$

Proof. By (IV), (V) we may assume that $j = j_A$ for some $A \in Z_c^+$. The induced Kähler metric on M is denoted by g, and the Kähler form, Ricci curvature, Ricci form for g are denoted by ω , S, σ respectively.

Assume that ϑ is a rational map of degree d. Set k = n + 1 - d. Then by (1.2) and (2.4) we have

$$c_1(K^*(M))_R = -\frac{1}{4\pi}[\sigma] = -k[\omega]$$
.

Since both $-(1/4\pi)\sigma$ and $-k\omega$ are Aut⁰ (M, g)-invariant closed 2-forms, we have $-(1/4\pi)\sigma = -k\omega$ by (III). Thus $\sigma = 4\pi k\omega$, and hence $S = 4\pi kg$. This proves that $j = j_p$ for some $p \in \mathbb{Z}^+$. In this case, by (3.2) we have $S = (4\pi \kappa/p)g$, and hence $k = \kappa/p$. This proves the assertion 2).

Assume conversely that $j = j_p$ for some $p \in Z^+$ and $k = \kappa/p$ is an integer. By (3.2), $S = 4\pi kg$ and hence $\sigma = 4\pi k\omega$. On the other hand, by (1.2) and (1.4) we have

EINSTEIN HYPERSURFACES

$$c_{i}(K^{*}(M))_{R} = -\frac{1}{4\pi}[\sigma] = -k[\omega] = c_{i}(j^{*}E^{-k})_{R},$$

and hence $c_1(K^*(M)) = c_1(j^*E^{-k})$. Now (II) implies

$$(4.1) K^*(M) \cong j^* E^{-k} .$$

Set d = n + 1 - k. We choose an orthonormal basis $\{u_0, u_1, \dots, u_m\}$ of the representation space C^{m+1} of $\rho_{pA_0}: \tilde{G} \to SL(m+1)$ in such a way that u_0 is a highest weight vector and $\{u_0, u_1, \dots, u_n\}$ span $\rho_{pA_0}(g)u_0$. We may assume that ρ_{pA_0} is a matrix representation with respect to this basis. We denote by \hat{G} the quotient group of \tilde{G} modulo the kernel of ρ_{pA_0} . Then it is identified with a closed subgroup of SL(m+1) = P(m+1). We define

$$\hat{U} = \hat{G} \cap SL(1, m) \subset SL(1, n, r)$$
.

Then we have an identification: $M = \hat{G}/\hat{U}$ and the principal bundle $\hat{U} \rightarrow \hat{G} \xrightarrow{p} M$ may be identified with a subbundle of $SL(1, n, r) \rightarrow P(M) \xrightarrow{p} M$. We define further

$$\hat{U_{\scriptscriptstyle 0}}=\,\hat{U}\cap\,SL_{\scriptscriptstyle 0}(1,\,m)\subset\,SL_{\scriptscriptstyle 0}(1,\,n,\,r)$$
 .

Then we have an identification: $\hat{M} = \hat{G}/\hat{U}_0$ and the principal bundle \hat{U}_0 $\rightarrow \hat{G} \xrightarrow{\varphi} \hat{M}$ may be identified with a subbundle of $SL_0(1, n, r) \rightarrow P(M) \xrightarrow{\varphi} \hat{M}$. Now Lemmas 2.1 and 2.2 imply that j^*E^{-k} and $K^*(M)$ are associated to $\hat{U} \rightarrow \hat{G} \xrightarrow{p} M$ by the characters

$$a\mapsto \lambda^{-k} \quad ext{and} \quad a\mapsto \lambda^{-n} \det lpha \quad ext{for} \ a=egin{pmatrix} \lambda & * & * \ 0 & lpha & * \ 0 & 0 & eta \end{pmatrix}\in \hat{U}$$

of \hat{U} respectively. It follows from (4.1) and (II) that $\lambda^{-k} = \lambda^{-n} \det \alpha$, and hence $\lambda^{d-1} \det \alpha = \lambda^{n-k} \det \alpha = 1$ for each $\alpha \in \hat{U}$. This means

$$(4.2) \qquad \qquad \hat{U} \subset SL(1, n, r; d) .$$

Now we shall define a map $D: \hat{M} \to (\Lambda^r(C^{m+1})^*)_*$ such that

$$(4.3) \qquad \langle D(e_{\scriptscriptstyle 0}), e_{i_{\scriptscriptstyle 1}} \wedge \cdots \wedge e_{i_{\scriptscriptstyle r}} \rangle = \begin{cases} 1 & \text{if } (i_{\scriptscriptstyle 1}, \cdots, i_{\scriptscriptstyle r}) = (n+1, \cdots, m) \\ 0 & \text{otherwise} \end{cases}$$

for each $(e_0, e_1, \cdots, e_m) \in \hat{G}$ and for each $0 \leq i_1 < \cdots < i_r \leq m$. Let $z \in \hat{M}$. Choose $(e_0, e_1, \cdots, e_m) \in \hat{G}$ with $e_0 = z$ and define $D(z) \in (\Lambda^r(C^{m+1})^*)_*$ by

$$\langle D(z), e_{i_1} \wedge \cdots \wedge e_{i_r} \rangle = \begin{cases} 1 & \text{if } (i_1, \cdots, i_r) = (n+1, \cdots, m) \\ 0 & \text{otherwise} \end{cases}$$

Another $(e'_0, e'_1, \dots, e'_m) \in \widehat{G}$ with $e'_0 = z$ can be written as

$$(e'_0, e'_1, \cdots, e'_m) = (e_0, e_1, \cdots, e_m) \begin{pmatrix} 1 & * & * \\ 0 & \alpha & * \\ 0 & 0 & \beta \end{pmatrix}$$

with det $\alpha = \det \beta = 1$ by (4.2). Thus we have

$$egin{aligned} &\langle D(z), e_{i_1}' \wedge \cdots \wedge e_{i_r}
angle &= \langle D(z), e_{i_1} \wedge \cdots \wedge e_{i_r}
angle \ &= egin{cases} 1 & ext{if } (i_1, \cdots, i_r) = (n+1, \cdots, m) \ 0 & ext{otherwise }. \end{aligned}$$

This shows that D is well defined and satisfies (4.3). The map D is holomorphic. In fact, choose a local holomorphic section $s(z) = (z, e_1(z), \dots, e_m(z))$ of the bundle $\hat{U}_0 \to \hat{G} \xrightarrow{\varphi} \hat{M}$. Then we have

$$\langle D(\pmb{z}), e_{i_1}(\pmb{z}) \wedge \cdots \wedge e_{i_r}(\pmb{z})
angle = egin{cases} 1 & ext{if } (i_1, \cdots, i_r) = (n+1, \cdots, m) \ 0 & ext{otherwise} \ , \end{cases}$$

and hence D(z) is holomorphic in z. We shall next show that D is homogeneous of degree d. Let $z \in \hat{M}$ and $\lambda \in C_*$ be arbitrary. Choose $(e_0, e_1, \dots, e_m) \in \hat{G}$ with $e_0 = z$ and an element $a \in \hat{U}$ of the form (2.1), and set $(e'_0, e'_1, \dots, e'_m) = (e_0, e_1, \dots, e_m)a$. Then we have

$$egin{aligned} &\langle D(e_{\scriptscriptstyle 0}), e_{i_{\scriptscriptstyle 1}}^\prime \wedge \cdots \wedge e_{i_{\scriptscriptstyle r}}^\prime
angle &= \det eta \, \langle D(e_{\scriptscriptstyle 0}), e_{i_{\scriptscriptstyle 1}} \wedge \cdots \wedge e_{i_{\scriptscriptstyle r}}
angle \ &= \det eta \, \langle D(e_{\scriptscriptstyle 0}'), e_{i_{\scriptscriptstyle 1}}^\prime \wedge \cdots \wedge e_{i_{\scriptscriptstyle r}}^\prime
angle \end{aligned}$$

for each $0 \leq i_1 < \cdots < i_r \leq m$, and hence

$$D(e'_0) = \det \beta^{-1} D(e_0) = \lambda^d D(e_0)$$

by (4.2). Thus we get the required property:

 $D(\lambda z) = \lambda^d D(z)$ for each $\lambda \in C_*, \ z \in \hat{M}$.

Therefore, if we define

$$D_{i_1\cdots i_r}(z) = \langle D(z), u_{i_1} \wedge \cdots \wedge u_{i_r} \rangle$$
 for $z \in \hat{M}$

for $0 \leq i_1 < \cdots < i_r \leq m$, then $D_{i_1 \cdots i_r}$ may be identified with an element of $H^{\circ}(M, j^*E^{-d})$. Since $D_{i_1 \cdots i_r} \neq 0$ for some (i_1, \cdots, i_r) , we have $d \geq 0$ by (VI) (ii). It follows from Corollary of (VI) that each $D_{i_1 \cdots i_r}$ is extended

to a homogeneous polynomial on C^{m+1} of degree d, and hence D is extended to a homogeneous polynomial map $\tilde{D}: C^{m+1} \to \Lambda^r(C^{m+1})^*$ of degree d. It is clear from (4.3) that \tilde{D} induces the dual map ϑ for $M \subset P_m(C)$. q.e.d.

COROLLARY. We have $\kappa \leq n+1$. The equality holds if and only if $M = P_n(C)$.

Proof. Consider the first full Einstein Kähler imbedding $j_1: M \to P_m(C)$. It follows from the above theorem that the dual map \mathscr{P} for j_1 is a rational map of degree $d = n + 1 - \kappa$, where $d \ge 0$. This implies the required inequality. The equality holds if and only if $d = 0 \Leftrightarrow D: \hat{M} \to (\Lambda^r(C^{m+1})^*)_*$ is a constant map $\Leftrightarrow r = 0$ (since j_1 is full) $\Leftrightarrow M = P_n(C)$. q.e.d.

§5. Einstein hypersurfaces of kählerian C-spaces

We assume in this section that M is a kählerian C-space with $b_2(M) = 1$. Then by (3.1) $\Pi - \Pi_0$ consists of only one root, say α_0 . Thus we have $c = R\Lambda_{\alpha_0}$, $Z_c = Z\Lambda_{\alpha_0}$, $\kappa = k_{\alpha_0}$, $\kappa_{\alpha_0} = 1$, $\Lambda_0 = \Lambda_{\alpha_0}$, $Z_c^+ = Z^+\Lambda_{\alpha_0}$ and Aut $(\Pi, \Pi_0) \setminus Z_c^+$ is identified with $Z^+\Lambda_0$. We write N_{ℓ} for $N_{\ell\Lambda_0}$. Now (IV) and (V) imply the following theorem.

THEOREM 5.1. For a kählerian C-space M with $b_2(M) = 1$, the maps:

$$Z^{\scriptscriptstyle +} \stackrel{\gamma}{\longrightarrow} \mathscr{E} \stackrel{lpha}{\longrightarrow} \mathscr{K} \stackrel{eta}{\longrightarrow} \mathscr{H}$$

are all bijections.

The full equivariant holomorphic imbedding of M corresponding to $1 \in Z^+$ under the above bijection, will be called the *canonical projective* imbedding of M.

Let $j_1: M \to P_m(C)$ be the first full Einstein Kähler imbedding of M. The induced Kähler form on M is denoted by ω . Recall that we have isomorphisms:

(5.1)
$$Z\Lambda_0 \xrightarrow{F'} H^1(M, \mathcal{O}^*) \xrightarrow{c_1} H^2(M, Z) .$$

We set

$$H = F_{4_0}^{-1} \,, \qquad h = c_1(H) \;.$$

Then, by (3.4) we have $H = j_1^* E^{-1}$. It follows $c_1(H) = -j_1^* c_1(E)$, and hence $c_1(H)_R = -[\omega]$ by (1.4). Thus *h* is the positive generator of $H^2(M, \mathbb{Z}) \cong \mathbb{Z}$. Note that (3.3) implies $c_1(M) = \kappa h$.

Note also that N_{ℓ} is given by

 $N_{\ell} = \dim H^{\scriptscriptstyle 0}(M, H^{\ell})$.

For a divisor D on M, $\{D\}$ denotes the holomorphic line bundle on M associated to D. Then for a positive divisor D on M, there exists a positive integer a(D) such that

$$c_{i}(\{D\}) = a(D)h .$$

The integer a(D) is called the *degree* of D. For a hypersurface X of M, the degree of the positive divisor defined by X is called the *degree* of X and denoted by a(X).

LEMMA 5.1. Let X be a compact hypersurface of M with degree a and regard it as a complex submanifold of $P_m(C)$ through $j_1: M \to P_m(C)$. Then

$$\dim \left(S_\ell({m C}^{m+1})/I_\ell(X)
ight) = N_\ell - N_{\ell-a} \qquad ext{for } \ell \geq a \;.$$

Proof. In general, for a complex manifold M, a non-singular divisor S on M and a holomorphic vector bundle W on M, we have an exact sequence:

$$0 \longrightarrow \mathcal{O}(W) \longrightarrow \mathcal{O}(W \otimes \{S\}) \longrightarrow \mathcal{O}((W \otimes \{S\}) | S) \longrightarrow 0$$

where \mathcal{O} means the sheaf of germs of holomorphic sections (cf. Hirzebruch [4]). We apply this to the divisor S defined by X and $W = j_1^* E^{-\ell + a}$. Since $c_i(\{S\}) = ah = ac_i(j_1^* E^{-1}) = c_i(j_1^* E^{-a})$, we have $\{S\} = j_1^* E^{-a}$ by (5.1). Therefore we have an exact sequence:

$$0 \longrightarrow \mathcal{O}(j_1^* E^{-\ell+a}) \longrightarrow \mathcal{O}(j_1^* E^{-\ell}) \longrightarrow \mathcal{O}(i^* E^{-\ell}) \longrightarrow 0 ,$$

where $i: X \to P_m(C)$ denotes the inclusion. In the cohomology exact sequence:

$$0 \longrightarrow H^{0}(M, j_{1}^{*}E^{-\ell+a}) \longrightarrow H^{0}(M, j_{1}^{*}E^{-\ell}) \longrightarrow H^{0}(X, i^{*}E^{-\ell})$$
$$\longrightarrow H^{1}(M, j_{1}^{*}E^{-\ell+a}),$$

the last term vanishes for $\ell \ge a$ by (VI) (i), and hence

$$\dim H^{\scriptscriptstyle 0}(X,i^*E^{-\ell})=N_\ell-N_{\ell-a}\;.$$

On the other hand, $H^{0}(P_{m}(C), E^{-i}) \to H^{0}(M, j_{1}^{*}E^{-i})$ is surjective by Corollary of (VI). Together with the surjectivity of $H^{0}(M, j_{1}^{*}E^{-i}) \to H^{0}(X, i^{*}E^{-i})$, we get the surjectivity of $H^{0}(P_{m}(C), E^{-i}) \to H^{0}(X, i^{*}E^{-i})$. This implies

$$H^{\scriptscriptstyle 0}(X,i^*E^{-\ell})\cong S_{\ell}(C^{m+1})/I_{\ell}(X)$$
.

Thus we get our assertion.

THEOREM 5.2 (Ise [5]). Let M be a kählerian C-space with $b_2(M) = 1$ and $j: M \to P_m(C)$ the canonical projective imbedding of M. Then, for each positive divisor D on M of degree a, there exists a homogeneous polynomial F on C^{m+1} of degree a such that D is the pull back by j of the divisor on $P_m(C)$ defined by F.

Remark. In case where D is the divisor defined by a hypersurface X of M, we have

 $\hat{X}=\{z\in \hat{M};\,F(z)=0\}\,,\,\,\,\, ext{and}\,\,\,\,\,(\hat{j}^{*}dF)(z)
eq 0\,\,\,\, ext{for each}\,\,z\in \hat{X}\,,$

where $\hat{j}: \hat{M} \to C^{m+1}$ denotes the inclusion.

For a kählerian C-space M of dimension n with $b_2(M) = 1$, we define

$$arepsilon(M) = \mathrm{Max}\left\{a \in Z^*\,;\, N_{\scriptscriptstyle n-arepsilon+a} \leqq N_{\scriptscriptstyle n-arepsilon} + inom{N_1}{n}
ight\}\,.$$

Note that $\epsilon(M)$ is finite since the N_{ℓ} 's are monotone increasing with respect to $\ell \geq 0$ (Remark 1 in § 3).

THEOREM 5.3. Let M be a kählerian C-space of dimension $n \ge 2$ with $b_2(M) = 1$, and g an Einstein Kähler metric on M. Then, for any compact hypersurface X of M which is Einstein with respect to the metric induced by g, we have an inequality:

$$a(X) \leq \varepsilon(M) \; .$$

Proof. Since an Einstein Kähler metric on M is essentially unique by (I), we may assume that g is induced from the Fubini-Study metric by the first full Einstein Kähler imbedding $j_1: M \to P_m(C)$. Here $m + 1 = N_1$ by (VI). Let r be the codimension of M in $P_m(C)$. We regard X as a complex submanifold of $P_m(C)$ through j_1 and denote the inclusion by $i: X \to P_m(C)$. Then the metric on X induced by the Fubini-Study metric on $P_m(C)$ is Einstein from the assumption.

By Theorem 4.1, the dual map \mathscr{Y} for j_1 is a rational map of degree $n + 1 - \kappa$. Let \mathscr{Y} be induced by a polynomial map $D': \mathbb{C}^{m+1} \to \Lambda^r(\mathbb{C}^{m+1})^*$. Take a homogeneous polynomial F on \mathbb{C}^{m+1} of degree a(X) which has the property in Theorem 5.2 for the divisor on M defined by X. We define a map $D: \mathbb{C}^{m+1} \to \Lambda^{r+1}(\mathbb{C}^{m+1})^*$ by

q.e.d.

$$D=D'\wedge dF$$
 .

It is clearly a homogeneous polynomial map of degree

$$d = n + 1 - \kappa + a(X) - 1 = n - \kappa + a(X)$$
.

Recalling Remark following Theorem 5.2, we see that $D(\hat{X}) \subset (\Lambda^{r+1}(\mathbb{C}^{m+1})^*)_*$ and D induces the dual map $\vartheta: X \to P(\Lambda^{r+1}(\mathbb{C}^{m+1})^*)$ for $i: X \to P_m(\mathbb{C})$. Then, by Theorem 2.2 we have an inequality:

$$\dim \left(S_{n-s+a(X)}(C^{m+1})/I_{n-s+a(X)}(X)\right) \leq \binom{m+1}{r+1} = \binom{m+1}{n} = \binom{N_1}{n}.$$

Assume first $M \neq P_n(C)$. Then $n - \kappa + a(X) \ge a(X)$ by Corollary of Theorem 4.1, and hence by Lemma 5.1

$$\dim \left(S_{n-\varepsilon+a(X)}(C^{m+1})/I_{n-\varepsilon+a(X)}(X)\right) = N_{n-\varepsilon+a(X)} - N_{n-\varepsilon}.$$

Thus we get

$$N_{n-\kappa+a(X)} \leq N_{n-\kappa} + {N_1 \choose n}$$

This implies the required inequality in this case.

Assume next $M = P_n(C)$. Then $\kappa = n + 1$, m = n and X is a hypersurface of $P_n(C)$ of degree a(X). Therefore $n - \kappa + a(X) < a(X)$ and $n - \kappa < 0$, and hence $I_{n-\kappa+a(X)}(X) = \{0\}$ and $N_{n-\kappa} = 0$. Thus we have also

$$\dim (S_{n-\epsilon+a(X)}(C^{m+1})/I_{n-\epsilon+a(X)}(X)) = \dim S_{n-\epsilon+a(X)}(C^{n+1})$$

= $N_{n-\epsilon+a(X)} - N_{n-\epsilon}$.

q.e.d.

This implies the required inequality for $M = P_n(C)$.

References

- [1] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
- [2] R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957), 203-248.
- [3] J. Hano, Einstein complete intersections in complex projective space, Math. Ann. 216 (1975), 197-208.
- [4] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer Verlag, New York, 1966.
- [5] M. Ise, Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1960), 217-252.
- [6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, Interscience, New York, 1969.
- [7] Y. Matsushima, Remarks on Kähler-Einstein manifolds, Nagoya Math. J. 46 (1972), 161–173.
- [8] Y. Sakane, On hypersurfaces of a complex Grassman manifold $G_{m+n,n}(C)$, Osaka J. Math., 16 (1979), 71-95.

EINSTEIN HYPERSURFACES

- [9] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266.
- [10] M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japanese J. Math. New series, 4 (1978), 171-219.

Osaka University