EINSTEIN HYPERSURFACES OF KÄHLERIAN \boldsymbol{c}-SPACES

YUSUKE SAKANE*) and MASARU TAKEUCHI

Introduction

A compact simply connected homogeneous complex manifold is called a C-space. A C-space is said to be kählerian if it carries a Kähler metric. It is known (Matsushima [7]) that a kählerian C-space has always an Einstein Kähler metric which is essentially unique.

Let M be a kählerian C-space of dimension n whose second Betti number equals 1. Denote by h the positive generator of $H^{2}(M, Z) \cong Z$. For a hypersurface X of M, we define a positive integer $a(X)$, called the degree of X, by

$$
c_{1}(\{X\})=a(X) h,
$$

where $\{X\}$ denotes the holomorphic line bundle on M associated with the non-singular divisor X. Take an Einstein Kähler metric g on M and fix it. Then it is known for $M=P_{n}(C)$ that $a(X) \leqq 2$ for any hypersurface X which is Einstein with respect to the metric induced by g (Smyth [9], Hano [3]). In this note we shall show that there exists also an upper bound for the degrees of Einstein hypersurfaces of general M.

Let H be the holomorphic line bundle on M with $c_{1}(H)=h$ and set

$$
N_{\ell}=\operatorname{dim} \Gamma\left(H^{\ell}\right) \quad \text { for } \ell \in \boldsymbol{Z},
$$

where $\Gamma\left(H^{\ell}\right)$ denotes the space of holomorphic sections of H^{ℓ}. The N_{ℓ} 's are computed by Weyl's formula and monotone increasing with respect to $\ell \geq 0$. We define further a positive integer κ by

$$
c_{1}(M)=\kappa h,
$$

and set

$$
\varepsilon(M)=\operatorname{Max}\left\{\text { positive integer } a ; N_{n-\kappa+a} \leq N_{n-\kappa}+\binom{N_{1}}{n}\right\} .
$$

[^0]*) Supported by Grant-in-Aid for Scientific Research.

For example, $\varepsilon\left(P_{n}(C)\right)=2(n \geqq 2), \varepsilon\left(Q_{n}(C)\right)=1(n \geqq 3)$ and $\varepsilon\left(G_{p, q}(C)\right) \leqq$ $\binom{p+q}{p}-p q(2 \leqq p \leqq q)$ (Sakane [8]), where $Q_{n}(C)$ and $G_{p, q}(C)$ denote the complex quadric of dimension n and the complex Grassmann manifold of p-subspaces of C^{p+q} respectively. Then (Theorem 5.3) we have an inequality:

$$
a(X) \leqq \varepsilon(M)
$$

for any Einstein hypersurface X of M.
The above inequality for $M=G_{p, q}(C)$ was proved by the first named author in [8]. Essentially the idea of our proof is the same as that of [8]. But we prove the rationality of the dual map for the canonical projective imbedding $M \longleftrightarrow P_{m}(C)$ of M without the use of explicit form of defining equations for $M \subset P_{m}(C)$.

§1. Preliminaries

Let M be a complex manifold*) of dimension m. The (complex) tangent bundle and the cotangent bundle of M are denoted by $T(M)$ and $T^{*}(M)$ respectively. Let $K(M)=\Lambda^{m} T^{*}(M)$ and $K^{*}(M)$ be the canonical line bundle of M and its dual line bundle respectively. Then $K^{*}(M)=\Lambda^{m} T(M)$ and hence the first Chern class c_{1} satisfies

$$
\begin{equation*}
c_{1}\left(K^{*}(M)\right)=c_{1}(M) \tag{1.1}
\end{equation*}
$$

If M carries a Kähler metric g, then the Ricci form σ defined by $\sigma(X, Y)$ $=S(X, J Y)$, where S is the Ricci curvature for g and J is the complex structure tensor for M, is closed and satisfies (cf. Kobayashi-Nomizu [6])

$$
\begin{equation*}
c_{1}\left(K^{*}(M)\right)_{R}=-\frac{1}{4 \pi}[\sigma] \tag{1.2}
\end{equation*}
$$

Here c_{R} means the image of $c \in H^{2}(M, Z)$ under the group extension $H^{*}(M, Z) \rightarrow H^{*}(M, R)$, and $[\eta]$ means the de Rham class of a closed form η on M.

Remark. Hermitian fibre metrics h on $K^{*}(M)$ correspond one to one to positive volume elements v of M by

$$
\begin{equation*}
\left\langle v,(-2)^{m}(\sqrt{-1})^{m^{2}} x \wedge \bar{x}\right\rangle=h(x, x) \quad \text { for } x \in K^{*}(M) . \tag{1.3}
\end{equation*}
$$

[^1]For a holomorphic line bundle F on M, we write

$$
\begin{aligned}
& F^{\ell}=\underbrace{F \otimes \cdots \otimes F}_{\ell}, \quad F^{-\ell}=\underbrace{F^{*} \otimes \cdots \otimes F^{*}}_{\ell} \quad \text { for } \ell>0, \\
& F^{0}=1,
\end{aligned}
$$

where F^{*} is the dual line bundle of F and 1 is the trivial line bundle on M.

A real cohomology class $c \in H^{2}(M, R)$ is said to be positive if c is the de Rham class of a closed form η on M of bi-degree (1,1) which has a local expression: $\eta=\sqrt{-1} \sum \eta_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta}$ such that the matrix ($\eta_{\alpha \bar{\beta}}$) is positive definite. For example, let M have a Kähler metric g and ω the Kähler form for g defined by $\omega(X, Y)=g(X, J Y)$. Then $-[\omega]$ is a positive real cohomology class. Moreover, an integral cohomology class $c \in H^{2}(M, Z)$ is said to be positive if $c_{R} \in H^{2}(M, R)$ is positive in the above sense.

Let V be a finite dimensional complex vector space. The set of nonzero vectors of V will be denoted by V_{*}. Then the group C_{*} of non-zero complex numbers acts on V_{*} from the right in natural manner. The quotient complex manifold V_{*} / C_{*} is denoted by $P(V)$. In particular, in case of $V=C^{m+1}(m \geqq 1)$ we write $P_{m}(C)$ for $P(V)$. For $z \in\left(C^{m+1}\right)_{*}$, the class of z in $P_{m}(C)$ is denoted by [z]. Then the map $\pi:\left(C^{m+1}\right)_{*} \rightarrow P_{m}(C)$ defined by

$$
\pi(z)=[z] \quad \text { for } z \in\left(C^{m+1}\right)_{*}
$$

is holomorphic and we get a holomorphic principal bundle $\boldsymbol{C}_{*} \longrightarrow\left(\boldsymbol{C}^{m+1}\right)_{*}$ $\xrightarrow{\pi} P_{m}(C)$. For each $\ell \in Z$ we define a holomorphic character ι_{ℓ} of C_{*} by

$$
\iota_{\ell}(a)=a^{\ell} \quad \text { for } a \in C_{*} .
$$

The holomorphic line bundle associated to the principal bundle $\boldsymbol{C}_{*} \longrightarrow$ $\left(C^{m+1}\right)_{*} \xrightarrow{\pi} P_{m}(C)$ by ι_{1} is denoted by E and called the standard line bundle on $P_{m}(C)$. Note that then for each $\ell \in \boldsymbol{Z} E^{\ell}$ is associated to the same principal bundle by ι_{ℓ}. Let $S_{\ell}\left(C^{m+1}\right)$ denote the space of homogeneous polynomials on C^{m+1} of degree $\ell \geqq 0$. Then $S_{\ell}\left(C^{m+1}\right)$ is canonically identified with the space $H^{0}\left(P_{m}(C), E^{-\ell}\right)$ of holomorphic sections of $E^{-\ell}$. In fact, each $F \in S_{\ell}\left(C^{m+1}\right)$ restricted to $\left(C^{m+1}\right)_{*}$ is a tensorial form on $\left(C^{m+1}\right)_{*}$ of type $\iota_{-\ell}$, and hence it defines an element $\hat{F} \in H^{\circ}\left(P_{m}(C), E^{-\ell}\right)$. The correspondence $F \mapsto \hat{F}$ gives the required identification. The standard norm of C^{m+1} is denoted by

$$
\|\boldsymbol{z}\|=\sqrt{\sum_{\alpha=0}^{m}\left|\boldsymbol{z}^{\alpha}\right|^{2}} \quad \text { for } \boldsymbol{z}=\left(\begin{array}{c}
z^{0} \\
z^{1} \\
\vdots \\
\boldsymbol{z}^{m}
\end{array}\right) \in \boldsymbol{C}^{m+1}
$$

Then the function $z \mapsto\|z\|^{2}$ on $\left(C^{m+1}\right)_{*}$ is a tensorial form of type $a \mapsto|a|^{-2}$, and hence it defines a hermitian fibre metric h_{E} on E. The Chern form ω of E associated to h_{E} is given by

$$
\pi^{*} \omega=\frac{1}{2 \pi \sqrt{-1}} d^{\prime} d^{\prime \prime} \log \|z\|^{2}
$$

and we have

$$
\begin{equation*}
c_{1}(E)_{R}=[\omega] \tag{1.4}
\end{equation*}
$$

The symmetric tensor g on $P_{m}(C)$ defined by $g(X, Y)=\omega(J X, Y), J$ being the complex structure tensor for $P_{m}(C)$, is a Kähler metric on $P_{m}(C)$. It is called the Fubini-Study metric on $P_{m}(C)$. Note that then ω is the Kähler form for g. It is known (cf. Kobayashi-Nomizu [6]) that the Kähler manifold $\left(P_{m}(C), g\right)$ has constant holomorphic sectional curvature 8π.

Let

$$
u_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)\left(i+1 \quad \in C^{m+1} \quad(0 \leqq i \leqq m)\right.
$$

be the standard unit vectors of C^{m+1}. A frame ($e_{0}, e_{1}, \cdots, e_{m}$) of C^{m+1} is said to be unimodular if $e_{0} \wedge e_{1} \wedge \cdots \wedge e_{m}=u_{0} \wedge u_{1} \wedge \cdots \wedge u_{m}$. We denote by $P(m+1)$ the set of unimodular frames of C^{m+1}. It is identified with the group $S L(m+1)$ of unimodular $(m+1) \times(m+1)$ complex matrices in natural manner. We define a holomorphic map $p: P(m+1) \rightarrow P_{m}(C)$ by

$$
p\left(e_{0}, e_{1}, \cdots, e_{m}\right)=\left[e_{0}\right] \quad \text { for }\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(m+1)
$$

The subgroup of $S L(m+1)$ consisting of all unimodular matrices of the form

$$
\left(\begin{array}{cc}
\lambda & * \\
0 & \alpha
\end{array}\right)_{\} m}^{\} 1}
$$

is denoted by $S L(1, m)$. Then we get a holomorphic principal bundle $S L(1, m) \longrightarrow P(m+1) \xrightarrow{p} P_{m}(C)$. We define further a holomorphic map $\varphi: P(m+1) \rightarrow\left(C^{m+1}\right)_{*}$ with $\pi \circ \varphi=p$ by

$$
\varphi\left(e_{0}, e_{1}, \cdots, e_{m}\right)=e_{0} \quad \text { for }\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(m+1) .
$$

The subgroup of $S L(1, m)$ consisting of all unimodular matrices of the form

$$
\left.\left(\begin{array}{ll}
1 & * \\
0 & \alpha
\end{array}\right)\right\} 1
$$

is denoted by $S L_{0}(1, m)$. Then we get also a principal bundle $S L_{0}(1, m)$ $\longrightarrow P(m+1) \xrightarrow{\varphi}\left(C^{m+1}\right)_{*}$. We define a holomorphic character χ_{e} of $S L(1, m)$ by

$$
\chi_{\ell}(a)=\lambda^{\ell} \quad \text { for } a=\left(\begin{array}{ll}
\lambda & * \\
0 & \alpha
\end{array}\right) \in S L(1, m) .
$$

Lemma 1.1. For each $\ell \in Z E^{\ell}$ is associated to the principal bundle

$$
S L(1, m) \longrightarrow P(m+1) \xrightarrow{p} P_{m}(C)
$$

by the character χ_{6}.
Proof. The map $\varphi: P(m+1) \rightarrow\left(C^{m+1}\right)_{*}$ satisfies

$$
\begin{array}{cl}
\varphi(u a)=\varphi(u) \chi_{1}(a) & \text { for } u \in P(m+1), a \in S L(1, m), \\
\chi_{\ell}(a)=\iota_{\ell}\left(\chi_{1}(a)\right) & \text { for } a \in S L(1, m) .
\end{array}
$$

Thus φ induces an isomorphism from the line bundle associated to $P(m+1)$ by χ_{ℓ} to the line bundle E^{ℓ} associated to $\left(C^{m+1}\right)_{*}$ by ι_{ℓ}.
q.e.d.

Next we define a holomorphic representation $\rho: S L(1, m) \rightarrow G L(m)$, the group of non-singular $m \times m$ complex matrices, by

$$
\rho(a)=\lambda^{-1} \alpha \quad \text { for } a=\left(\begin{array}{cc}
\lambda & * \\
0 & \alpha
\end{array}\right) \in S L(1, m) .
$$

Lemma 1.2. The tangent bundle $T\left(P_{m}(C)\right)$ of $P_{m}(C)$ is associated to the principal bundle

$$
S L(1, m) \longrightarrow P(m+1) \xrightarrow{p} P_{m}(C)
$$

by the representation ρ.
Proof. Let $G L(m) \longrightarrow F\left(P_{m}(C)\right) \xrightarrow{q} P_{m}(C)$ be the bundle of frames
of $P_{m}(C)$. We define a holomorphic map $\psi: P(m+1) \rightarrow F\left(P_{m}(C)\right)$ by

$$
\psi\left(e_{0}, e_{1}, \cdots, e_{m}\right)=\left(\left(\pi_{*}\right)_{e_{0}} e_{1}, \cdots,\left(\pi_{*}\right)_{e_{0}} e_{m}\right) \quad \text { for }\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(m+1),
$$

identifying the tangent space $T_{e_{0}}\left(\left(\boldsymbol{C}^{m+1}\right)_{*}\right)$ with \boldsymbol{C}^{m+1}. Then it satisfies $q \circ \psi=p$ and

$$
\psi(u a)=\psi(u) \rho(a) \quad \text { for } u \in P(m+1), a \in S L(1, m) .
$$

Thus the lemma follows as in Lemma 1.1. q.e.d.

§2. Dual map for a complex submanifold of $P_{m}(C)$

In this section, M is always assumed to be a complex submanifold of $P_{m}(C)$ with dimension $n \geqq 1$. Let $r=m-n \geqq 0$ be the codimension of M. Let $j: M \rightarrow P_{m}(C)$ denote the inclusion. The Kähler metric on M induced by the Fubini-Study metric g on $P_{m}(C)$ and its Kähler form will be also denoted by g and ω respectively. We set

$$
\hat{M}=\pi^{-1}(M)
$$

Then, restricting the bundle $C_{*} \longrightarrow\left(C^{m+1}\right)_{*} \xrightarrow{\pi} P_{m}(C)$ to M, we get a holomorphic principal bundle $C_{*} \longrightarrow \hat{M} \xrightarrow{\pi} M$. Note that for each $\ell \in Z$ the induced bundle $j^{*} E^{\ell}$ is associated to $C_{*} \longrightarrow \hat{M} \xrightarrow{\pi} M$ by ι_{ℓ}. We set

$$
I_{\ell}(M)=\left\{F \in S_{\ell}\left(C^{m+1}\right) ; F \mid \hat{M}=0\right\}
$$

We denote by $P(M)$ the totality of $\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(m+1)$ such that
(i) $e_{0} \in \hat{M}$, and
(ii) $e_{1}, \cdots, e_{n} \in T_{e_{0}}(\hat{M})$,
identifying $T_{e_{0}}(\hat{M})$ with a subspace of C^{m+1}. The subgroup of $S L(1, m)$ consisting of all unimodular matrices of the form

$$
\left.a=\left(\begin{array}{ccc}
\lambda & * & * \tag{2.1}\\
0 & \alpha & * \\
0 & 0 & \beta
\end{array}\right)\right\} r
$$

is denoted by $S L(1, n, r)$. Then we get a holomorphic principal bundle $S L(1, n, r) \longrightarrow P(M) \xrightarrow{p} M$, which is a subbundle of $S L(1, m) \longrightarrow j^{*} P(m$ $+1) \xrightarrow{p} M$. Now Lemma 1.1 implies the following lemma.

Lemma 2.1. For each $\ell \in Z j^{*} E^{\ell}$ is associated to the principal bundle

$$
S L(1, n, r) \longrightarrow P(M) \xrightarrow{p} M
$$

by the character χ_{\bullet}.
We define further

$$
S L_{0}(1, n, r)=S L_{0}(1, m) \cap S L(1, n, r)
$$

and denote the inclusion $\hat{M} \rightarrow\left(C^{m+1}\right)_{*}$ by \hat{j}. Then we get a holomorphic principal bundle $S L_{0}(1, n, r) \longrightarrow P(M) \xrightarrow{\varphi} \hat{M}$, which is a subbundle of $S L_{0}(1, m) \longrightarrow \hat{j}^{*} P(m+1) \xrightarrow{\varphi} \hat{M}$.

We define a holomorphic representation $\tau: S L(1, n, r) \rightarrow G L(n)$ by

$$
\tau(a)=\lambda^{-1} \alpha \quad \text { for } a=\left(\begin{array}{ccc}
\lambda & * & * \\
0 & \alpha & * \\
0 & 0 & \beta
\end{array}\right) \in S L(1, n, r) .
$$

Now Lemma 1.2 implies that $j^{*} T\left(P_{m}(C)\right)$ is associated to $S L(1, n, r) \longrightarrow$ $P(M) \xrightarrow{p} M$ by ρ. It follows that the subbundle $T(M)$ of $j^{*} T\left(P_{m}(C)\right)$ is associated to the same principal bundle by τ. Explicitly, the holomorphic map $\psi: P(M) \rightarrow F(M)$, the bundle of frames of M, defined by

$$
\psi\left(e_{0}, e_{1}, \cdots, e_{m}\right)=\left(\left(\pi_{*}\right)_{e_{0}} e_{1}, \cdots,\left(\pi_{*}\right)_{e_{0}} e_{n}\right) \quad \text { for }\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(M)
$$

provides an isomorphism from the vector bundle associated to $P(M)$ by τ to the tangent bundle $T(M)$. Since $\operatorname{det} \tau(\alpha)=\lambda^{-n} \operatorname{det} \alpha$ for each $a \in S L(1, n, r)$ of (2.1), we have the following lemma.

Lemma 2.2. The line bundle $K^{*}(M)$ is associated to the principal bundle

$$
S L(1, n, r) \longrightarrow P(M) \xrightarrow{p} M
$$

by the holomorphic character of $S L(1, n, r)$ defined by

$$
a \mapsto \lambda^{-n} \operatorname{det} \alpha \quad \text { for } a=\left(\begin{array}{ccc}
\lambda & * & * \\
0 & \alpha & * \\
0 & 0 & \beta
\end{array}\right) \in S L(1, n, r)
$$

Now we shall define the dual map for $M \subset P_{m}(C)$. Let p be a point of M. Choose a vector $z \in \hat{M}$ such that $\pi(z)=p$. Then $T_{z}(\hat{M})$ is identified with a linear subspace of C^{m+1} of codimension r, which is determined by p and independent of the choice of z. The annihilator:

$$
\vartheta(p)=\left\{\xi \in\left(C^{m+1}\right)^{*} ;\left\langle\xi, T_{z}(\hat{M})\right\rangle=\{0\}\right\}
$$

of $T_{z}(\hat{M})$ in the dual space $\left(\boldsymbol{C}^{m+1}\right)^{*}$ of \boldsymbol{C}^{m+1}, is an r-dimensional linear subspace of $\left(C^{m+1}\right)^{*}$, i.e., it is a point of the Grassmann manifold $\operatorname{Gr}\left(\left(C^{m+1}\right)^{*}\right)$ of r-subspaces of $\left(C^{m+1}\right)^{*}$. Regarding $\operatorname{Gr}\left(\left(C^{m+1}\right)^{*}\right)$ as a submanifold of $P\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)$ by the Plücker imbedding, we get a map $\vartheta: M \rightarrow P\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)$, which is easily seen to be holomorphic. The map ϑ is called the dual $m a p$ or Gauss map for $M \subset P_{m}(C)$.

The standard hermitian inner product on C^{m+1} defines canonically a hermitian inner product on $\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}$. Identify $\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}$ with $C^{e+1}, e+1$ $=\binom{m+1}{r}$, by an orthonormal basis for $\Lambda^{r}\left(C^{m+1}\right)^{*}$, and hence $P\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)$ with $P_{e}(C)$. Denote the Fubini-Study metric on $P_{e}(C)$ by g^{\prime}.

The dual map ϑ is said to be a rational map of degree $d \geqq 0$ if there exists a homogeneous polynomial map $D: C^{m+1} \rightarrow \Lambda^{r}\left(C^{m+1}\right)^{*}$ of degree d such that (a) $D(\hat{M}) \subset\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)_{*}$ and (b) it induces the dual map $\vartheta: M \rightarrow$ $P\left(\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}\right)$. If we identify $\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}$ with the dual space of $\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)$ by the pairing:

$$
\left\langle\xi_{1} \wedge \cdots \wedge \xi_{r}, e_{1} \wedge \cdots \wedge e_{r}\right\rangle=\operatorname{det}\left(\left\langle\xi_{i}, e_{j}\right\rangle\right)_{1 \leqq i, j \leqq r}
$$

for $\xi_{i} \in\left(C^{m+1}\right)^{*}$ and $e_{j} \in \boldsymbol{C}^{m+1}$, then the above conditions (a), (b) are equivalent to that

$$
\left\langle D\left(e_{0}\right), e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right\rangle= \begin{cases}\text { not zero } & \text { if }\left(i_{1}, \cdots, i_{r}\right)=(n+1, \cdots, m) \\ 0 & \text { otherwise }\end{cases}
$$

for each frame ($e_{0}, e_{1}, \cdots, e_{m}$) of C^{m+1} with (i), (ii) and for each $0 \leqq i_{1}<$ $\cdots<i_{r} \leqq m$. Here, in case of $r=0, e_{n+1} \wedge \cdots \wedge e_{m}$ will be understood to be $1 \in \boldsymbol{C}$.

Assuming that the dual map $\vartheta: M \rightarrow P\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)$ is a rational map of degree $d \geqq 0$ induced by $D: C^{m+1} \rightarrow \Lambda^{r}\left(C^{m+1}\right)^{*}$, we define

$$
P_{D}(M)=\left\{\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(M) ;\left\langle D\left(e_{0}\right), e_{n+1} \wedge \cdots \wedge e_{m}\right\rangle=1\right\}
$$

For each $\ell \in \boldsymbol{Z}$ the subgroup of $S L(1, n, r)$ consisting of all unimodular matrices a of (2.1) such that

$$
\lambda^{\ell-1} \operatorname{det} \alpha^{-1}=1,
$$

is denoted by $S L(1, n, r ; \ell)$. Note that if for $\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(M)$ and $a \in S L(1, n, r)$ of (2.1) we set $\left(e_{0}^{\prime}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right)=\left(e_{0}, e_{1}, \cdots, e_{m}\right) a$, then

$$
\begin{aligned}
\left\langle D\left(e_{0}^{\prime}\right), e_{m+1}^{\prime} \wedge \cdots \wedge e_{n}^{\prime}\right\rangle & =\lambda^{d} \operatorname{det} \beta\left\langle D\left(e_{0}\right), e_{m+1} \wedge \cdots \wedge e_{n}\right\rangle \\
& =\lambda^{a-1} \operatorname{det} \alpha^{-1}\left\langle D\left(e_{0}\right), e_{m+1} \wedge \cdots \wedge e_{n}\right\rangle .
\end{aligned}
$$

Here, in case of $r=0$, $\operatorname{det} \beta$ will be understood to be 1 . It is not difficult to see from this that we have a holomorphic principal bundle $S L(1, n, r ; d)$ $\rightarrow P_{D}(M) \xrightarrow{p} M$, which is a subbundle of $S L(1, n, r) \rightarrow P(M) \xrightarrow{p} M$. Define $k \in Z$ by

$$
\begin{equation*}
k=n+1-d \tag{2.2}
\end{equation*}
$$

Then, for each $a \in S L(1, n, r ; d)$ of the form (2.1), we have

$$
\lambda^{-n} \operatorname{det} \alpha=\lambda^{-n} \lambda^{d-1}=\lambda^{-(n+1-d)}=\lambda^{-k}=\chi_{-k}(a) .
$$

It follows from Lemma 2.2 that $K^{*}(M)$ is associated to $S L(1, n, r ; d) \rightarrow$ $P_{D}(M) \xrightarrow{p} M$ by χ_{-k}. Thus Lemma 2.1 implies that $K^{*}(M)$ is isomorphic to $j^{*} E^{-k}$. An explicit isomorphism is given as follows. The map $\varphi: P(m+1)$ $\rightarrow\left(C^{m+1}\right)_{*}$ defined in $\S 1$ by $\varphi\left(e_{0}, e_{1}, \cdots, e_{m}\right)=e_{0}$ induces a map $\varphi: P_{D}(M) \rightarrow$ \hat{M} with $\pi \circ \varphi=p$ satisfying

$$
\begin{array}{ll}
\varphi(u a)=\varphi(u) \chi_{1}(a) & \text { for } u \in P_{D}(M), a \in S L(1, n, r ; d) \\
\chi_{-k}(a)=\iota_{-k}\left(\chi_{1}(a)\right) & \text { for } a \in S L(1, n, r ; d) .
\end{array}
$$

Therefore it induces a vector bundle isomorphism:

$$
\begin{equation*}
\varphi_{D}: K^{*}(M) \longrightarrow j^{*} E^{-k} . \tag{2.3}
\end{equation*}
$$

In particular, by (1.4) we have

$$
\begin{equation*}
c_{1}\left(K^{*}(M)\right)_{R}=-k[\omega] \tag{2.4}
\end{equation*}
$$

The tensorial form $z \mapsto\|z\|^{-2 k}$ on \hat{M} of type $a \mapsto|a|^{2 k}$ defines a hermitian fibre metric h_{k} on $j^{*} E^{-k}$. Let h_{D} be the hermitian fibre metric on $K^{*}(M)$ corresponding to h_{k} under the isomorphism φ_{D}. Moreover, let h be the hermitian fibre metric on $K^{*}(M)$ corresponding to the volume element $v=\left(-\frac{1}{2}\right)^{n} \omega^{n}$ of M (cf. Remark in § 1). With these notations we have the following theorem.

Theorem 2.1. Let the dual map $\vartheta: M \rightarrow P\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)$ for $M \subset P_{m}(C)$ be a rational map of degree d induced by a polynomial map $D: C^{m+1} \rightarrow$ $\Lambda^{r}\left(C^{m+1}\right)^{*}$. Then we have

$$
h=\frac{n!}{(2 \pi)^{n}} \frac{\|D(z)\|^{2}}{\|z\|^{2 d}} h_{D}
$$

Note here that the function $z \mapsto\|D(z)\|^{2} /\|z\|^{2 d}$ on \hat{M} can be regarded as a function on M.

Proof. By Lemma 2.2, $K^{*}(M)$ is associated to $S L(1, n, r) \rightarrow P(M)$ $\xrightarrow{p} M$ by the character $a \mapsto \lambda^{-n} \operatorname{det} \alpha$ of $S L(1, n, r)$. Therefore the tensorial form $F: P(M) \rightarrow \boldsymbol{R}^{+}$, the positive reals, corresponding to a hermitian fibre metric on $K^{*}(M)$ satisfies

$$
\begin{equation*}
F(u a)=|\lambda|^{-2 n}|\operatorname{det} \alpha|^{2} F(u) \quad \text { for } u \in P(M), a \in S L(1, n, r) \tag{2.5}
\end{equation*}
$$

Let F_{h} and $F_{h_{D}}$ be tensorial forms on $P(M)$ corresponding to h and h_{D} respectively. Then by (1.3)

$$
\begin{aligned}
F_{n}\left(e_{0}, e_{1}, \cdots, e_{m}\right) & =\left\langle v,(-2)^{n}(\sqrt{-1})^{n^{2}}\left(\pi_{*}\right)_{e_{0}}\left(e_{1} \wedge \cdots \wedge e_{n} \wedge \bar{e}_{1} \wedge \cdots \wedge \bar{e}_{n}\right)\right\rangle \\
& =\left\langle\left(\pi^{*} \omega^{n}\right)_{e_{0}},\left(\sqrt{-1} e_{1} \wedge \bar{e}_{1}\right) \wedge \cdots \wedge\left(\sqrt{-1} e_{n} \wedge \bar{e}_{n}\right)\right\rangle
\end{aligned}
$$

for each $\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P(M)$. In particular, if $\left(f_{0}, f_{1}, \cdots, f_{m}\right) \in P(M)$ is a unitary frame of C^{m+1}, then

$$
\begin{equation*}
F_{n}\left(f_{0}, f_{1}, \cdots, f_{m}\right)=\frac{n!}{(2 \pi)^{n}}, \tag{2.6}
\end{equation*}
$$

since the Kähler form ω of $P_{m}(C)$ is $S U(m+1)$-invariant.
Now take an arbitrary $\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in P_{D}(M)$. Then

$$
F_{h_{D}}\left(e_{0}, e_{1}, \cdots, e_{m}\right)=\left\|e_{0}\right\|^{-2 k}
$$

Choose a unitary frame $\left(f_{0}, f_{1}, \cdots, f_{m}\right) \in P(M)$ and $a \in S L(1, n, r)$ of the form (2.1) such that $\left(e_{0}, e_{1}, \cdots, e_{m}\right)=\left(f_{0}, f_{1}, \cdots, f_{m}\right) a$. Note here that then $\left\|e_{0}\right\|$ $=|\lambda|$. Now (2.5) and (2.6) imply

$$
\begin{align*}
F_{n}\left(e_{0}, e_{1}, \cdots, e_{m}\right) & =|\lambda|^{-2 n}|\operatorname{det} \alpha|^{2} F_{h}\left(f_{0}, f_{1}, \cdots, f_{m}\right) \\
& =\frac{n!}{(2 \pi)^{n}}|\lambda|^{-2 n}|\operatorname{det} \alpha|^{2} \tag{2.7}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
1 & =\left\langle D\left(e_{0}\right), e_{n+1} \wedge \cdots \wedge e_{m}\right\rangle=\operatorname{det} \beta\left\langle D\left(e_{0}\right), f_{n+1} \wedge \cdots \wedge f_{m}\right\rangle \\
& =\lambda^{-1} \operatorname{det} \alpha^{-1}\left\langle D\left(e_{0}\right), f_{n+1} \wedge \cdots \wedge f_{m}\right\rangle
\end{aligned}
$$

implies

$$
\left\langle D\left(e_{0}\right), f_{i_{1}} \wedge \cdots \wedge f_{i_{r}}\right\rangle= \begin{cases}\lambda \operatorname{det} \alpha & \text { if }\left(i_{1}, \cdots, i_{r}\right)=(n+1, \cdots, m) \\ 0 & \text { otherwise }\end{cases}
$$

for $0 \leqq i_{1}<\cdots<i_{r} \leqq m$. Since the set $\left\{f_{i_{1}} \wedge \cdots \wedge f_{i_{r}} ; 0 \leqq i_{1}<\cdots<i_{r}\right.$ $\leqq m\}$ is an orthonormal basis for $\Lambda^{r}\left(C^{m+1}\right)$, we have $\left\|D\left(e_{0}\right)\right\|^{2}=|\lambda|^{2}|\operatorname{det} \alpha|^{2}$, and hence $|\operatorname{det} \alpha|^{2}=|\lambda|^{-2}\left\|D\left(e_{0}\right)\right\|^{2}$. Substituting this into (2.7), we have

$$
\begin{aligned}
F_{h}\left(e_{0}, e_{1}, \cdots, e_{m}\right) & =\frac{n!}{(2 \pi)^{n}}|\lambda|^{-2(n+1)}\left\|D\left(e_{0}\right)\right\|^{2} \\
& =\frac{n!}{(2 \pi)^{n}}\left\|e_{0}\right\|^{-2(n+1)}\left\|D\left(e_{0}\right)\right\|^{2},
\end{aligned}
$$

and hence

$$
\frac{F_{n}\left(e_{0}, e_{1}, \cdots, e_{m}\right)}{F_{h_{D}}\left(e_{0}, e_{1}, \cdots, e_{m}\right)}=\frac{n!}{(2 \pi)^{n}} \frac{\left\|D\left(e_{0}\right)\right\|^{2}}{\left\|e_{0}\right\|^{2 d}} .
$$

This proves the theorem. q.e.d.

Remark. Hano [3] proved this theorem in case where M is a complete intersection. Note that in this case the dual map is always a rational map.

Theorem 2.2 (Hano [3]). Let M be a compact complex submanifold of $P_{m}(\boldsymbol{C})$ and let the dual map $\vartheta: M \rightarrow P\left(\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}\right)$ be a rational map of degree d induced by a polynomial map $D: C^{m+1} \rightarrow \Lambda^{r}\left(C^{m+1}\right)^{*}$. Then the following conditions are mutually equivalent:

1) The induced metric g on M is Einstein.
2) $\|D(z)\|^{2} /\|z\|^{2 d}$ is a constant function on M.
3) $\vartheta^{*} g^{\prime}=d \cdot g$.

In this case, we have an inequality:

$$
\operatorname{dim}\left(S_{d}\left(\boldsymbol{C}^{m+1}\right) / I_{d}(M)\right) \leqq\binom{ m+1}{r}
$$

Proof. This was proved by Hano [3] in case where M is a complete intersection. We can apply his proof to our case, since he used only the property of Theorem 2.1 in his proof.
q.e.d.

§ 3. Kählerian C-spaces

A compact simply connected homogeneous complex manifold is called a C-space. A C-space is said to be kählerian if it has a Kähler metric. In this section we summarize some known results on kählerian C-spaces (cf. Borel-Hirzebruch [1], Takeuchi [10]).
(I) A kählerian C-space M has always an Einstein Kähler metric which is essentially unique in the following sense; For any Einstein Kähler metrics g, g^{\prime} on M, there exist a holomorphism φ of M and a constant $c>0$ such that $\varphi^{*} g^{\prime}=c g$ (Matsushima [7]).

In what follows in this section, let M be a kählerian C-space. Let G denote the identity component $\operatorname{Aut}^{0}(M)$ of the group Aut (M) of holomorphisms of M. It is a connected complex semi-simple Lie group without the center. Fix a point $o \in M$ and set

$$
U=\{\varphi \in G ; \varphi(o)=o\} .
$$

It is a closed connected complex Lie subgroup of G, and we have an identification: $M=G / U$. Let $\mathfrak{g}=$ Lie G, the Lie algebra of G, and denote the Killing form of \mathfrak{g} by (,). Now $\mathfrak{u}=$ Lie U is a parabolic Lie subalgebra of g and described as follows. Take a Cartan subalgebra \mathfrak{h} of g contained in \mathfrak{u} and denote the real part of \mathfrak{h} by \mathfrak{h}_{R}. The root system Σ of \mathfrak{g} relative to \mathfrak{h} is identified with a subset of \mathfrak{h}_{R} by means of the duality defined by (,). Then there exist a lexicographic order $>$ on \mathfrak{G}_{R} and a subset Π_{0} of the fundamental root system Π with the following property; If we set $\Sigma_{0}=\Sigma \cap Z \Pi_{0}$ and $\Sigma_{\mathrm{m}}^{+}=\left\{\alpha \in \Sigma-\Sigma_{0} ; \alpha>0\right\}$, then \mathfrak{u} is given by

$$
\mathfrak{H}=\mathfrak{h}+\sum_{\alpha \in \Sigma_{00} \Sigma_{\text {古 }}} \mathfrak{g}_{\alpha},
$$

where g_{α} stands for the root space for α.
Let $\left\{\Lambda_{\alpha} ; \alpha \in \Pi\right\} \subset \mathfrak{h}_{R}$ be the fundamental weights corresponding to Π. We set

$$
\mathfrak{c}=\left\{H \in \mathfrak{h}_{R} ;\left(H, \Pi_{0}\right)=\{0\}\right\}
$$

and

$$
Z_{\mathrm{c}}=\left\{\Lambda \in \mathfrak{c} ; \frac{2(\Lambda, \alpha)}{(\alpha, \alpha)} \in \boldsymbol{Z} \text { for each } \alpha \in \Sigma\right\}
$$

which is a lattice of \mathfrak{c} generated the Λ_{α} 's for $\alpha \in \Pi-\Pi_{0}$. Let \tilde{G} be the universal covering group of G and \tilde{U} the (closed) connected complex Lie group of \tilde{G} generated by \mathfrak{u}. Then we have also an identification: $M=$ \tilde{G} / \tilde{U}. For each $\Lambda \in Z_{\mathrm{c}}$ there exists a unique holomorphic character χ_{A} of \tilde{U} such that $\chi_{A}(\exp H)=\exp (\Lambda, H)$ for each $H \in \mathfrak{h}$. Then the correspondence $\Lambda \mapsto \chi_{A}$ gives an isomorphism of Z_{c} to the group of holomorphic characters of \tilde{U}. Let F_{A} denote the holomorphic line bundle on M associated to the principal bundle $\tilde{U} \rightarrow \tilde{G} \rightarrow M$ by χ_{1}. The correspondence $\Lambda \rightarrow F_{A}$ induces a homomorphism of Z_{c} to the group $H^{1}\left(M, \mathcal{O}^{*}\right)$ of isomorphism classes of holomorphic line bundles on M. Also the correspondence $F \mapsto c_{1}(F)$ defines a homomorphism of $H^{1}\left(M, \mathcal{O}^{*}\right)$ to $H^{2}(M, Z)$.
(II) Both of these homomorphisms:

$$
Z_{\mathrm{c}} \xrightarrow{F} H^{1}\left(M, \mathcal{O}^{*}\right) \xrightarrow{c_{1}} H^{2}(M, Z)
$$

are isomorphisms (Ise [5]).
Thus the second Betti number $b_{2}(M)$ is given by

$$
\begin{equation*}
b_{2}(M)=\operatorname{dim} \mathfrak{c}=\text { the cardinality of } \Pi-\Pi_{0} . \tag{3.1}
\end{equation*}
$$

We define positive integers k_{α} by

$$
k_{\alpha}=\sum_{\beta \in \Sigma_{\text {+ }}} \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \quad \text { for } \alpha \in \Pi-\Pi_{0} .
$$

Let κ be the greatest common divisor of $\left\{k_{\alpha}\right\}_{\alpha \in I-\Pi_{0}}$ and set

$$
\kappa_{\alpha}=\frac{k_{\alpha}}{\kappa} \quad \text { for } \alpha \in \Pi-\Pi_{0}
$$

and

$$
\Lambda_{0}=\sum_{\alpha \in \Pi-\Pi_{0}} \kappa_{\alpha} \Lambda_{\alpha} .
$$

We define

$$
Z_{\mathrm{c}}^{+}=\left\{\Lambda \in Z_{\mathrm{c}} ;(\Lambda, \alpha)>0 \text { for each } \alpha \in \Sigma_{\mathrm{m}}^{+}\right\} .
$$

Then we have

$$
Z_{\mathrm{c}}^{+}=\sum_{\alpha \in \Pi-\Pi_{0}} Z^{+} \Lambda_{\alpha},
$$

where \boldsymbol{Z}^{+}denotes the set of positive integers. Thus we have $\Lambda_{0} \in \boldsymbol{Z}_{c}^{+}$. The set Z_{c}^{+}is invariant under the action of the group $\operatorname{Aut}\left(\Pi, \Pi_{0}\right)$ defined by

$$
\operatorname{Aut}\left(\Pi, \Pi_{0}\right)=\left\{\sigma \in G L\left(\mathfrak{h}_{R}\right) ; \sigma \Sigma=\Sigma, \sigma \Pi=\Pi, \sigma \Pi_{0}=\Pi_{0}\right\}
$$

Let $\operatorname{Aut}\left(\Pi, \Pi_{0}\right) \backslash Z_{c}^{+}$denote the quotient of Z_{c}^{+}modulo Aut $\left(\Pi, \Pi_{0}\right)$.
A holomorphic immersion $j: M \rightarrow P_{m}(C)$ is said to be Aut ${ }^{0}(M)$-equivariant or simply equivariant, if for each $\varphi \in G$ there exists an element Φ of $P L(m+1)$, the group of projective transformations of $P_{m}(C)$, such that $j \circ \varphi=\Phi \circ j$. Holomorphic immersions $j: M \rightarrow P_{m}(C)$ and $j^{\prime}: M \rightarrow P_{m}(C)$ are said to be equivalent if $m=m^{\prime}$ and there exist $\varphi \in \operatorname{Aut}(M)$ and $\Phi \in P L(m+1)$ such that $j \circ \varphi=\Phi \circ j^{\prime}$. A Kähler metric g on M is called a homogeneous Kähler metric if the group $\operatorname{Aut}(M, g)$ of isometric holomorphisms of (M, g) is transitive on M. A holomorphic immersion $j: M \rightarrow P_{m}(C)$ is called a
homogeneous Kähler immersion or an Einstein Kähler immersion if the Kähler metric on M induced by the Fubini-Study metric on $P_{m}(\boldsymbol{C})$ is homogeneous or Einstein. Homogeneous or Einstein Kähler immersions $j: M$ $\rightarrow P_{m}(C)$ and $j^{\prime}: M \rightarrow P_{m^{\prime}}(\boldsymbol{C})$ are said to be equivalent if $m=m^{\prime}$ and there exist $\varphi \in \operatorname{Aut}(M)$ and an element Φ of $P U(m+1)$, the group of unitary projective transformations of $P_{m}(\boldsymbol{C})$, such that $j \circ \varphi=\Phi \circ j^{\prime}$. Let \mathscr{H}, \mathscr{K} and \mathscr{E} denote the set of equivalence classes of full equivariant holomorphic immersions, homogeneous Kähler immersions and Einstein Kähler immersions of M respectively.

These immersions are constructed in the following way. Let g_{u} be a compact real form of g such that the complex conjugation of g with respect to g_{u} leaves \mathfrak{h} invariant, and G_{u} the (compact) connected Lie subgroup of G generated by g_{u}. Take $\Lambda \in Z_{c}^{+}$and let $\rho_{\Lambda}: g_{u} \rightarrow \mathfrak{j u}(m+1)$ be an irreducible unitary representation of g_{u} such that its C-linear extension $\rho_{A}: g \rightarrow \Re(m+1)$ has the highest weight Λ. The extension of ρ_{A} to \tilde{G} will be also denoted by $\rho_{1}: \tilde{G} \rightarrow S L(m+1)$. Taking a highest weight vector $z_{0} \in C^{m+1}$, we can define a full equivariant holomorphic imbedding $j_{4}: M=$ $\tilde{G} / \tilde{U} \rightarrow P_{m}(C)$ by

$$
j_{1}(x \tilde{U})=\left[\rho_{1}(x) z_{0}\right] \quad \text { for } x \in \tilde{G} .
$$

The Kähler metric on M induced by the Fubini-Study metric on $P_{m}(C)$ is denoted by g_{A}. Then j_{A} is further a full homogeneous Kähler imbedding, and the identity component $\operatorname{Aut}^{\circ}\left(M, g_{A}\right)$ of $\operatorname{Aut}\left(M, g_{A}\right)$ coincides with G_{u}. Moreover we have:
(III) The space of $\operatorname{Aut}^{0}\left(M, g_{A}\right)$-invariant closed 2-forms on M coincides with the space of harmonic 2-forms on (M, g_{A}) (Takeuchi [10]).

For each $p \in \boldsymbol{Z}^{+}$we write j_{p} and g_{p} for $j_{p \Lambda_{0}}$ and $g_{p \Lambda_{0}}$ respectively. Then j_{p} is a full Einstein Kähler imbedding, and the Ricci curvature S_{p} for g_{p} is given by

$$
\begin{equation*}
S_{p}=\frac{4 \pi \kappa}{p} g_{p} \tag{3.2}
\end{equation*}
$$

Thus (1.1) and (1.2) imply

$$
\begin{equation*}
c_{1}(M)_{R}=-\frac{\kappa}{p}\left[\omega_{p}\right] \tag{3.3}
\end{equation*}
$$

where ω_{p} denotes the Kähler form for g_{p}. The imbedding j_{p} is called the
p-th full Einstein Kähler imbedding of M.
(IV) Any Einstein Kähler immersion is a homogeneous Kähler immersion (by (I)), and any homogeneous Kähler immersion is an equivariant holomorphic immersion (Takeuchi [10]). Thus we have natural maps:

$$
\mathscr{E} \xrightarrow{\alpha} \mathscr{K} \xrightarrow{\beta} \mathscr{H} .
$$

The map α is injective and the map β is bijective (Takeuchi [10]).
(V) The correspondence $p \mapsto j_{p}$ induces a bijection $Z^{+} \xrightarrow{\gamma}$ é, and the correspondence $\Lambda \mapsto j_{A}$ induces a bijection Aut $\left(\Pi, \Pi_{0}\right) \backslash Z_{c}^{+} \xrightarrow{\delta} \mathscr{K}$ (Takeuchi [10]).

Let $\Lambda \in Z_{c}^{+}$. We set

$$
N_{\ell \Lambda}=\operatorname{dim} H^{\circ}\left(M, j_{A}^{*} E^{-\ell}\right) \quad \text { for } \ell \in \boldsymbol{Z} .
$$

For the imbedding $j_{A}: M \rightarrow P_{m}(C)$ and the standard line bundle E on $P_{m}(C)$, we have

$$
\begin{equation*}
j_{A}^{*} E=F_{A} \tag{3.4}
\end{equation*}
$$

Thus, applying Borel-Weil-Bott theorem (Bott [2]) to the F_{A} 's we have the following:
(VI) Let $\Lambda \in Z_{\mathrm{c}}^{+}$.
(i) For each $\ell \geqq 0, H^{0}\left(M, j_{A}^{*} E^{-\ell}\right)$ is an irreducible \tilde{G}-module with the lowest weight $-\ell \Lambda$, and $H^{p}\left(M, j_{A}^{*} E^{-\ell}\right)=\{0\}$ for $p \geqq 1$. Therefore $N_{\ell A}(\ell \geqq 0)$ is given by Weyl's degree formula:

$$
N_{\ell \Lambda}=\prod_{\alpha>0} \frac{(\ell \Lambda+\delta, \alpha)}{(\delta, \alpha)}, \quad \text { where } \delta=\frac{1}{2} \sum_{\alpha>0} \alpha .
$$

(ii) For each $\ell>0, H^{0}\left(M, j_{1}^{*} E^{\ell}\right)=\{0\}$ and hence $N_{-\ell A}=0$.

Corollary. For each $\ell \geqq 0$, we have an exact sequence:

$$
0 \longrightarrow I_{\ell}(M) \longrightarrow H^{\circ}\left(P_{m}(C), E^{-\ell}\right) \xrightarrow{j_{A}^{*}} H^{\circ}\left(M, j_{A}^{*} E^{-\ell}\right) \longrightarrow 0 .
$$

Proof. The map j_{A}^{*} is a non-trivial \tilde{G}-homomorphism and $H^{0}\left(M, j_{A}^{*} E^{-\ell}\right)$ is an irreducible \tilde{G}-module by (VI). These imply the surjectivity of j_{Δ}^{*}. Moreover, since $H^{\circ}\left(P_{m}(C), E^{-ๆ}\right)$ is canonically identified with $S_{\ell}\left(C^{m+1}\right)$, the kernel of j_{Δ}^{*} is identified with $I_{\ell}(M)$. q.e.d.

Remark 1. Weyl's formula implies that $N_{\ell A}<N_{(\ell+1) \Lambda}$ for $\ell \geqq 0$, and hence the $N_{\ell A}$'s are monotone increasing with respect to $\ell \geqq 0$.

Remark 2. The above corollary for $\ell=1$, the fullness of j_{A} and (3.4) imply that $j_{A}^{*}:\left(C^{m+1}\right)^{*}=H^{0}\left(P_{m}(C), E^{-1}\right) \rightarrow H^{0}\left(M, F_{A}^{-1}\right)$ is a \tilde{G}-isomorphism. It follows that for each $\Lambda \in Z_{c}^{+}$the holomorphic line bundle F_{A}^{-1} is very ample and the associated Kodaira imbedding is equivalent to the holomorphic imbedding j_{Λ}. Conversely let F_{Λ} for $\Lambda \in Z_{\mathrm{c}}$ be very ample and let $j: M \rightarrow$ $P_{m}(C)$ be the associated Kodaira imbedding. Then $F_{A}=j^{*} E^{-1}$ and hence $c_{1}\left(F_{A}\right)$ is positive. An explicit description (cf. Borel-Hirzebruch [1]) of the Chern form of F_{A} shows that $\Lambda \in-Z_{c}^{+}$. Thus the set \mathscr{H} corresponds one to one to the set of equivalence classes of Kodaira imbeddings of M.

§4. Dual map for a kählerian C-space in $P_{m}(C)$

Theorem 4.1. Let M be a kählerian C-space of dimension n and $j: M$ $\longleftrightarrow P_{m}(C)$ a full equivariant holomorphic imbedding of codimension r. Then the dual map $\vartheta: M \rightarrow P\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)$ for $M \subset P_{m}(C)$ is a rational map if and only if

1) j is equivalent to an Einstein Kähler imbedding, say j_{p}, and
2) κ is divisible by p.

In this case, the degree d of ϑ and the positive integer $k=\kappa / p$ is related as:

$$
d=n+1-k
$$

Proof. By (IV), (V) we may assume that $j=j_{\Lambda}$ for some $\Lambda \in Z_{c}^{+}$. The induced Kähler metric on M is denoted by g, and the Kähler form, Ricci curvature, Ricci form for g are denoted by ω, S, σ respectively.

Assume that ϑ is a rational map of degree d. Set $k=n+1-d$. Then by (1.2) and (2.4) we have

$$
c_{1}\left(K^{*}(M)\right)_{R}=-\frac{1}{4 \pi}[\sigma]=-k[\omega]
$$

Since both $-(1 / 4 \pi) \sigma$ and $-k \omega$ are $\operatorname{Aut}^{0}(M, g)$-invariant closed 2 -forms, we have $-(1 / 4 \pi) \sigma=-k \omega$ by (III). Thus $\sigma=4 \pi k \omega$, and hence $S=4 \pi k g$. This proves that $j=j_{p}$ for some $p \in Z^{+}$. In this case, by (3.2) we have $S=(4 \pi \kappa / p) g$, and hence $k=\kappa / p$. This proves the assertion 2).

Assume conversely that $j=j_{p}$ for some $p \in Z^{+}$and $k=\kappa / p$ is an integer. By (3.2), $S=4 \pi k g$ and hence $\sigma=4 \pi k \omega$. On the other hand, by (1.2) and (1.4) we have

$$
c_{1}\left(K^{*}(M)\right)_{R}=-\frac{1}{4 \pi}[\sigma]=-k[\omega]=c_{1}\left(j^{*} E^{-k}\right)_{R}
$$

and hence $c_{1}\left(K^{*}(M)\right)=c_{1}\left(j^{*} E^{-k}\right)$. Now (II) implies

$$
\begin{equation*}
K^{*}(M) \cong j^{*} E^{-k} \tag{4.1}
\end{equation*}
$$

Set $d=n+1-k$. We choose an orthonormal basis $\left\{u_{0}, u_{1}, \cdots, u_{m}\right\}$ of the representation space C^{m+1} of $\rho_{p \Lambda_{0}}: \tilde{G} \rightarrow S L(m+1)$ in such a way that u_{0} is a highest weight vector and $\left\{u_{0}, u_{1}, \cdots, u_{n}\right\}$ span $\rho_{p \lambda_{0}}(\mathrm{~g}) u_{0}$. We may assume that $\rho_{p A_{0}}$ is a matrix representation with respect to this basis. We denote by \hat{G} the quotient group of \tilde{G} modulo the kernel of $\rho_{p 1_{0}}$. Then it is identified with a closed subgroup of $S L(m+1)=P(m+1)$. We define

$$
\hat{U}=\hat{G} \cap S L(1, m) \subset S L(1, n, r)
$$

Then we have an identification: $M=\hat{G} / \hat{U}$ and the principal bundle $\hat{U} \rightarrow$ $\hat{G} \xrightarrow{p} M$ may be identified with a subbundle of $S L(1, n, r) \rightarrow P(M) \xrightarrow{p} M$. We define further

$$
\hat{U}_{0}=\hat{U} \cap S L_{0}(1, m) \subset S L_{0}(1, n, r)
$$

Then we have an identification: $\hat{M}=\hat{G} / \hat{U}_{0}$ and the principal bundle \hat{U}_{0} $\rightarrow \hat{G} \xrightarrow{\varphi} \hat{M}$ may be identified with a subbundle of $S L_{0}(1, n, r) \rightarrow P(M) \xrightarrow{\varphi}$ \hat{M}. Now Lemmas 2.1 and 2.2 imply that $j^{*} E^{-k}$ and $K^{*}(M)$ are associated to $\hat{U} \rightarrow \hat{G} \xrightarrow{p} M$ by the characters

$$
a \mapsto \lambda^{-k} \quad \text { and } \quad a \mapsto \lambda^{-n} \operatorname{det} \alpha \text { for } a=\left(\begin{array}{ccc}
\lambda & * & * \\
0 & \alpha & * \\
0 & 0 & \beta
\end{array}\right) \in \hat{U}
$$

of \hat{U} respectively. It follows from (4.1) and (II) that $\lambda^{-k}=\lambda^{-n} \operatorname{det} \alpha$, and hence $\lambda^{d-1} \operatorname{det} \alpha=\lambda^{n-k} \operatorname{det} \alpha=1$ for each $a \in \hat{U}$. This means

$$
\begin{equation*}
\hat{U} \subset S L(1, n, r ; d) \tag{4.2}
\end{equation*}
$$

Now we shall define a map $D: \hat{M} \rightarrow\left(\Lambda^{r}\left(C^{m+1}\right)^{*}\right)_{*}$ such that

$$
\left\langle D\left(e_{0}\right), e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right\rangle= \begin{cases}1 & \text { if }\left(i_{1}, \cdots, i_{r}\right)=(n+1, \cdots, m) \tag{4.3}\\ 0 & \text { otherwise }\end{cases}
$$

for each $\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in \hat{G}$ and for each $0 \leqq i_{1}<\cdots<i_{r} \leqq m$. Let $z \in \hat{M}$. Choose $\left(e_{0}, e_{1}, \cdots, e_{m}\right) \in \hat{G}$ with $e_{0}=z$ and define $D(z) \in\left(\Lambda^{\tau}\left(C^{m+1}\right)^{*}\right)_{*}$ by

$$
\left\langle D(z), e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right\rangle= \begin{cases}1 & \text { if }\left(i_{1}, \cdots, i_{r}\right)=(n+1, \cdots, m) \\ 0 & \text { otherwise }\end{cases}
$$

Another $\left(e_{0}^{\prime}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right) \in \hat{G}$ with $e_{0}^{\prime}=z$ can be written as

$$
\left(e_{0}^{\prime}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right)=\left(e_{0}, e_{1}, \cdots, e_{m}\right)\left(\begin{array}{ccc}
1 & * & * \\
0 & \alpha & * \\
0 & 0 & \beta
\end{array}\right)
$$

with $\operatorname{det} \alpha=\operatorname{det} \beta=1$ by (4.2). Thus we have

$$
\begin{aligned}
\left\langle D(z), e_{i_{1}}^{\prime} \wedge \cdots \wedge e_{i_{r}}^{\prime}\right\rangle & =\left\langle D(z), e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right\rangle \\
& = \begin{cases}1 & \text { if }\left(i_{1}, \cdots, i_{r}\right)=(n+1, \cdots, m) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This shows that D is well defined and satisfies (4.3). The map D is holomorphic. In fact, choose a local holomorphic section $s(z)=\left(z, e_{1}(z), \cdots\right.$, $e_{m}(z)$) of the bundle $\hat{U}_{0} \rightarrow \hat{G} \xrightarrow{\varphi} \hat{M}$. Then we have

$$
\left\langle D(z), e_{i_{1}}(z) \wedge \cdots \wedge e_{i_{r}}(z)\right\rangle= \begin{cases}1 & \text { if }\left(i_{1}, \cdots, i_{r}\right)=(n+1, \cdots, m) \\ 0 & \text { otherwise }\end{cases}
$$

and hence $D(z)$ is holomorphic in z. We shall next show that D is homogeneous of degree d. Let $z \in \hat{M}$ and $\lambda \in C_{*}$ be arbitrary. Choose (e_{0}, e_{1}, $\left.\cdots, e_{m}\right) \in \hat{G}$ with $e_{0}=z$ and an element $a \in \hat{U}$ of the form (2.1), and set $\left(e_{0}^{\prime}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right)=\left(e_{0}, e_{1}, \cdots, e_{m}\right) a$. Then we have

$$
\begin{aligned}
\left\langle D\left(e_{0}\right), e_{i_{1}}^{\prime} \wedge \cdots \wedge e_{i_{r}}^{\prime}\right\rangle & =\operatorname{det} \beta\left\langle D\left(e_{0}\right), e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right\rangle \\
& =\operatorname{det} \beta\left\langle D\left(e_{0}^{\prime}\right), e_{i_{1}}^{\prime} \wedge \cdots \wedge e_{i_{r}}^{\prime}\right\rangle
\end{aligned}
$$

for each $0 \leqq i_{1}<\cdots<i_{r} \leqq m$, and hence

$$
D\left(e_{0}^{\prime}\right)=\operatorname{det} \beta^{-1} D\left(e_{0}\right)=\lambda^{d} D\left(e_{0}\right)
$$

by (4.2). Thus we get the required property:

$$
D(\lambda z)=\lambda^{d} D(z) \quad \text { for each } \lambda \in C_{*}, z \in \hat{M} .
$$

Therefore, if we define

$$
D_{i_{1} \cdots i_{r}}(z)=\left\langle D(z), u_{i_{1}} \wedge \cdots \wedge u_{i_{r}}\right\rangle \quad \text { for } z \in \hat{M}
$$

for $0 \leqq i_{1}<\cdots<i_{r} \leqq m$, then $D_{i_{1} \cdots i_{r}}$ may be identified with an element of $H^{\circ}\left(M, j^{*} E^{-d}\right)$. Since $D_{i_{1} \cdots i_{r}} \neq 0$ for some (i_{1}, \cdots, i_{r}), we have $d \geqq 0$ by (VI) (ii). It follows from Corollary of (VI) that each $D_{i_{1} \cdots i_{r}}$ is extended
to a homogeneous polynomial on C^{m+1} of degree d, and hence D is extended to a homogeneous polynomial map $\tilde{D}: C^{m+1} \rightarrow \Lambda^{r}\left(C^{m+1}\right)^{*}$ of degree d. It is clear from (4.3) that \tilde{D} induces the dual map ϑ for $M \subset P_{m}(C)$. q.e.d.

Corollary. We have $\kappa \leqq n+1$. The equality holds if and only if $M=P_{n}(C)$.

Proof. Consider the first full Einstein Kähler imbedding $j_{1}: M \rightarrow$ $P_{m}(\boldsymbol{C})$. It follows from the above theorem that the dual map ϑ for j_{1} is a rational map of degree $d=n+1-\kappa$, where $d \geqq 0$. This implies the required inequality. The equality holds if and only if $d=0 \Leftrightarrow D: \hat{M} \rightarrow$ $\left(\Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}\right)_{*}$ is a constant map $\Leftrightarrow r=0$ (since j_{1} is full) $\Leftrightarrow M=P_{n}(\boldsymbol{C})$.
q.e.d.

§5. Einstein hypersurfaces of kählerian C-spaces

We assume in this section that M is a kählerian C-space with $b_{2}(M)$ $=1$. Then by (3.1) $\Pi-\Pi_{0}$ consists of only one root, say α_{0}. Thus we have $\mathfrak{c}=\boldsymbol{R} \Lambda_{\alpha_{0}}, Z_{\mathrm{c}}=\boldsymbol{Z} \Lambda_{\alpha_{0}}, \kappa=k_{\alpha_{0}}, \kappa_{\alpha_{0}}=1, \Lambda_{0}=\Lambda_{\alpha 0}, Z_{\mathrm{c}}^{+}=\boldsymbol{Z}^{+} \Lambda_{\alpha_{0}}$ and $\operatorname{Aut}\left(\Pi, \Pi_{0}\right) \backslash Z_{\mathrm{c}}^{+}$ is identified with $\boldsymbol{Z}^{+} \Lambda_{0}$. We write N_{ℓ} for $N_{\ell 1_{0}}$. Now (IV) and (V) imply the following theorem.

Theorem 5.1. For a kählerian C-space M with $b_{2}(M)=1$, the maps:

$$
\boldsymbol{Z}^{+} \xrightarrow{\gamma} \mathscr{E} \xrightarrow{\alpha} \mathscr{K} \xrightarrow{\beta} \mathscr{H}
$$

are all bijections.
The full equivariant holomorphic imbedding of M corresponding to $1 \in \boldsymbol{Z}^{+}$under the above bijection, will be called the canonical projective imbedding of M.

Let $j_{1}: M \rightarrow P_{m}(\boldsymbol{C})$ be the first full Einstein Kähler imbedding of M. The induced Kähler form on M is denoted by ω. Recall that we have isomorphisms:

$$
\begin{equation*}
Z \Lambda_{0} \xrightarrow{F} H^{1}\left(M, \mathcal{O}^{*}\right) \xrightarrow{c_{1}} H^{2}(M, Z) . \tag{5.1}
\end{equation*}
$$

We set

$$
H=F_{A_{0}}^{-1}, \quad h=c_{1}(H) .
$$

Then, by (3.4) we have $H=j_{1}^{*} E^{-1}$. It follows $c_{1}(H)=-j_{1}^{*} c_{1}(E)$, and hence $c_{1}(H)_{R}=-[\omega]$ by (1.4). Thus h is the positive generator of $H^{2}(M, \boldsymbol{Z}) \cong \boldsymbol{Z}$. Note that (3.3) implies

$$
c_{1}(M)=\kappa h .
$$

Note also that N_{ι} is given by

$$
N_{\ell}=\operatorname{dim} H^{\circ}\left(M, H^{\ominus}\right) .
$$

For a divisor D on $M,\{D\}$ denotes the holomorphic line bundle on M associated to D. Then for a positive divisor D on M, there exists a positive integer $a(D)$ such that

$$
c_{1}(\{D\})=a(D) h .
$$

The integer $a(D)$ is called the degree of D. For a hypersurface X of M, the degree of the positive divisor defined by X is called the degree of X and denoted by $a(X)$.

Lemma 5.1. Let X be a compact hypersurface of M with degree a and regard it as a complex submanifold of $P_{m}(C)$ through $j_{1}: M \rightarrow P_{m}(\boldsymbol{C})$. Then

$$
\operatorname{dim}\left(S_{\ell}\left(C^{m+1}\right) / I_{\ell}(X)\right)=N_{\ell}-N_{\ell-a} \quad \text { for } \ell \geqq a .
$$

Proof. In general, for a complex manifold M, a non-singular divisor S on M and a holomorphic vector bundle W on M, we have an exact sequence:

$$
0 \longrightarrow \mathcal{O}(W) \longrightarrow \mathcal{O}(W \otimes\{S\}) \longrightarrow \mathcal{O}((W \otimes\{S\}) \mid S) \longrightarrow 0,
$$

where \mathcal{O} means the sheaf of germs of holomorphic sections (cf. Hirzebruch [4]). We apply this to the divisor S defined by X and $W=j_{1}^{*} E^{-\iota+a}$. Since $c_{1}(\{S\})=a h=a c_{1}\left(j_{1}^{*} E^{-1}\right)=c_{1}\left(j_{1}^{*} E^{-a}\right)$, we have $\{S\}=j_{1}^{*} E^{-a}$ by (5.1). Therefore we have an exact sequence:

$$
0 \longrightarrow \mathcal{O}\left(j_{1}^{*} E^{-\epsilon+a}\right) \longrightarrow \mathcal{O}\left(j_{1}^{*} E^{-\vartheta}\right) \longrightarrow \mathcal{O}\left(i^{*} E^{-\iota}\right) \longrightarrow 0,
$$

where $i: X \rightarrow P_{m}(C)$ denotes the inclusion. In the cohomology exact sequence:

$$
\begin{aligned}
0 & \longrightarrow H^{\circ}\left(M, j_{j}^{*} E^{-\iota+a}\right) \longrightarrow H^{\circ}\left(M, j_{1}^{*} E^{-\iota}\right) \longrightarrow H^{\bullet}\left(X, i^{*} E^{-\iota}\right) \\
& \longrightarrow H^{1}\left(M, j_{1}^{*} E^{-c+a}\right),
\end{aligned}
$$

the last term vanishes for $\ell \geqq a$ by (VI) (i), and hence

$$
\operatorname{dim} H^{\circ}\left(X, i^{*} E^{-\varrho}\right)=N_{\iota}-N_{\iota-a} .
$$

On the other hand, $H^{\circ}\left(P_{m}(C), E^{-}\right) \rightarrow H^{\circ}\left(M, j_{1}^{*} E^{-\ominus}\right)$ is surjective by Corollary of (VI). Together with the surjectivity of $H^{0}\left(M, j_{1}^{*} E^{-}\right) \rightarrow H^{0}\left(X, i^{*} E^{-}\right)$, we get the surjectivity of $H^{\circ}\left(P_{m}(C), E^{-}\right) \rightarrow H^{\circ}\left(X, i^{*} E^{-\varrho}\right)$. This implies

$$
H^{0}\left(X, i^{*} E^{-\ell}\right) \cong S_{\ell}\left(C^{m+1}\right) / I_{\ell}(X)
$$

Thus we get our assertion.
q.e.d.

Theorem 5.2 (Ise [5]). Let M be a kählerian C-space with $b_{2}(M)=1$ and $j: M \rightarrow P_{m}(C)$ the canonical projective imbedding of M. Then, for each positive divisor D on M of degree a, there exists a homogeneous polynomial F on C^{m+1} of degree a such that D is the pull back by j of the divisor on $P_{m}(\boldsymbol{C})$ defined by F.

Remark. In case where D is the divisor defined by a hypersurface X of M, we have

$$
\hat{X}=\{z \in \hat{M} ; F(z)=0\}, \quad \text { and } \quad\left(\hat{j}^{*} d F\right)(z) \neq 0 \quad \text { for each } z \in \hat{X},
$$

where $\hat{j}: \hat{M} \rightarrow \boldsymbol{C}^{m+1}$ denotes the inclusion.
For a kählerian C-space M of dimension n with $b_{2}(M)=1$, we define

$$
\varepsilon(M)=\operatorname{Max}\left\{a \in Z^{+} ; N_{n-\kappa+a} \leqq N_{n-\kappa}+\binom{N_{1}}{n}\right\}
$$

Note that $\varepsilon(M)$ is finite since the N_{ℓ} 's are monotone increasing with respect to $\ell \geqq 0$ (Remark 1 in $\S 3$).

Theorem 5.3. Let M be a kählerian C-space of dimension $n \geqq 2$ with $b_{2}(M)=1$, and g an Einstein Kähler metric on M. Then, for any compact hypersurface X of M which is Einstein with respect to the metric induced by g, we have an inequality:

$$
a(X) \leqq \varepsilon(M)
$$

Proof. Since an Einstein Kähler metric on M is essentially unique by (I), we may assume that g is induced from the Fubini-Study metric by the first full Einstein Kähler imbedding $j_{1}: M \rightarrow P_{m}(C)$. Here $m+1=N_{1}$ by (VI). Let r be the codimension of M in $P_{m}(C)$. We regard X as a complex submanifold of $P_{m}(C)$ through j_{1} and denote the inclusion by $i: X \rightarrow P_{m}(C)$. Then the metric on X induced by the Fubini-Study metric on $P_{m}(C)$ is Einstein from the assumption.

By Theorem 4.1, the dual map ϑ^{\prime} for j_{1} is a rational map of degree $n+1-\kappa$. Let ϑ^{\prime} be induced by a polynomial map $D^{\prime}: C^{m+1} \rightarrow \Lambda^{r}\left(\boldsymbol{C}^{m+1}\right)^{*}$. Take a homogeneous polynomial F on C^{m+1} of degree $a(X)$ which has the property in Theorem 5.2 for the divisor on M defined by X. We define a $\operatorname{map} D: \boldsymbol{C}^{m+1} \rightarrow \Lambda^{r+1}\left(\boldsymbol{C}^{m+1}\right)^{*}$ by

$$
D=D^{\prime} \wedge d F .
$$

It is clearly a homogeneous polynomial map of degree

$$
d=n+1-\kappa+a(X)-1=n-\kappa+a(X) .
$$

Recalling Remark following Theorem 5.2, we see that $D(\hat{X}) \subset\left(\Lambda^{r+1}\left(C^{m+1}\right)^{*}\right)_{*}$ and D induces the dual map $\vartheta: X \rightarrow P\left(\Lambda^{r+1}\left(C^{m+1}\right)^{*}\right)$ for $i: X \rightarrow P_{m}(C)$. Then, by Theorem 2.2 we have an inequality:

$$
\operatorname{dim}\left(S_{n-k+a(X)}\left(C^{m+1}\right) / I_{n-k+a(X)}(X)\right) \leqq\binom{ m+1}{r+1}=\binom{m+1}{n}=\binom{N_{1}}{n}
$$

Assume first $M \neq P_{n}(C)$. Then $n-\kappa+a(X) \geqq a(X)$ by Corollary of Theorem 4.1, and hence by Lemma 5.1

$$
\operatorname{dim}\left(S_{n-\kappa+a(X)}\left(C^{m+1}\right) / I_{n-\kappa+a(X)}(X)\right)=N_{n-\kappa+a(X)}-N_{n-\kappa}
$$

Thus we get

$$
N_{n-\kappa+a(X)} \leqq N_{n-\kappa}+\binom{N_{1}}{n}
$$

This implies the required inequality in this case.
Assume next $M=P_{n}(C)$. Then $\kappa=n+1, m=n$ and X is a hypersurface of $P_{n}(C)$ of degree $a(X)$. Therefore $n-\kappa+a(X)<a(X)$ and $n-\kappa<0$, and hence $I_{n-\kappa+a(X)}(X)=\{0\}$ and $N_{n-\varepsilon}=0$. Thus we have also

$$
\begin{aligned}
\operatorname{dim}\left(S_{n-\kappa+\alpha(X)}\left(C^{m+1}\right) / I_{n-\kappa+\alpha(X)}(X)\right) & =\operatorname{dim} S_{n-\kappa+a(X)}\left(C^{n+1}\right) \\
& =N_{n-\kappa+\alpha(X)}-N_{n-\kappa} .
\end{aligned}
$$

This implies the required inequality for $M=P_{n}(C)$.
q.e.d.

References

[1] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[2] R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957), 203-248.
[3] J. Hano, Einstein complete intersections in complex projective space, Math. Ann. 216 (1975), 197-208.
[4] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer Verlag, New York, 1966.
[5] M. Ise, Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1960), 217-252.
[6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, Interscience, New York, 1969.
[7] Y. Matsushima, Remarks on Kähler-Einstein manifolds, Nagoya Math. J. 46 (1972), 161-173.
[8] Y. Sakane, On hypersurfaces of a complex Grassman manifold $G_{m+n, n}(C)$, Osaka J. Math., 16 (1979), 71-95.
[9] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266.
[10] M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japanese J. Math. New series, 4 (1978), 171-219.

Osaka University

[^0]: Received November 28, 1978.

[^1]: *) In this note, a manifold is always assumed to be connected.

