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ON THE LEAST POSITIVE EIGENVALUE OF THE LAPLACIAN

FOR THE COMPACT QUOTIENT OF A CERTAIN

RIEMANNIAN SYMMETRIC SPACE

HAJIME URAKAWA

§ 1. Introduction and statement of results

Let (M, g) be the standard Euclidean space or a Riemannian symmetric

space of non-compact type of rank one. Let G be the identity component

of the Lie group of all isometries of (M, g). Let Γ be a discrete subgroup

of G acting fixed point freely on M whose quotient manifold MΓ is com-

pact. Let — ΔΓ be the Laplace-Beltrami operator (cf. [4]) acting on smooth

functions on MΓ for the Riemannian metric gΓ on MΓ induced by g. The

compactness of MΓ implies that the spectrum of ΔΓ forms a discrete subset

of the set of non-negative real numbers. Let λx(Γ) be the least positive

eigenvalue of ΔΓ. Let vol (MΓ) be the volume of (MΓ, gΓ). Then we have

THEOREM A. Let (M, g) be the n-dίmensional standard Euclidean space,

so that (MΓ, gΓ) is a compact flat manifold. Then we have

(1) UΓ) vol (Mrr» ^ n-\2 + n)1+

1 (n/Z)

where the number jn/2-i is the least positive zero point of the (τz/2 — ί)-th

Bessel function Jn/2-i.

Remark. Since jn/ι-\~nl2 as n->oo (cf. [7] p. 153), the right hand

side of (1) is (πe/2)n = (4.2699 -)n asymptotically as 72-> oo.

Let μn = maxΓ λ^Γ) vol (MΓ)
2/n where the maximum is taken over all

lattices Γ of Rn. For a lattice Γ of Rn, the spectrum of the correspond-

ing flat torus (MΓ,gΓ) is given by {4π2 \xf; x e Γ*}, where Γ* is a dual

lattice of Γ, \xf = (x, x), x e Rn and ( , ) is the inner product of Rn which

gives the standard Riemannian metric on Rn (cf. [1]). So we have λx(Γ)
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= 4π2minΛ;6Γ*_(0)|Λ:|2. On the other hand, vol (MΓ) = det (Γ*)~1/2 (cf. [6]).

Here det (JΓ*) is the determinant of the matrix ((bί9 b^))luiti^n, where {6J?βl

is a basis of Rn generating the lattice Γ*. Then the above μn coincides

4ττ2 times the largest possible value for the ratio

μ(Γ*) = ( min |;

where Γ* varies over all lattices in Rn. A problem to compute the value

μn for every n is related to the following classical problem (cf. [6] p. 34):

What is the maximum possible density for a union of non-overlapping balls

of fixed radius in Rn? But until now the value μn is unknown for n ^ 9.

In 1905, H. Minkowski has given (cf. [6]) a lower estimate for μn by

μn > 4π2ω~2/n

where ωn is the volume of the unit disk in Rn and 4π2ω~Vn ~ (2π/e)n =

(2.3115 -)n as n—>oo. On the other hand, in 1958, C.A.Rogers has

given (cf. [6]) an upper estimate for μn by

where the constant Qn is (4π/e)n = (4.6229 -)n asymptotically as τι-> oo.

The above remark implies that Theorem A improves the result of Rogers

in the asymptotic sense.

THEOREM B. Let (M, g) be a Rίemannian symmetric space of non-

compact type of rank one. Let G be the connected component of the Lie

group of all isometrίes of (M, g). We normalize g in such a way that it is

induced by the Killing form of the Lie algebra of G. Consider all discrete

subgroups Γ of G acting fixed point freely on M whose quotient manifold

MΓ is compact Then we have

( 2 ) limsup λ^Γ) ^ |<5|2 ,
VOl (if p) — oo

for a positive constant \d\2 depending only on (M,g) (cf. §2).

Notice that every real valued zonal spherical function φλ on M cor-

responding to the principal series of G (cf. [10]) satisfies (cf. [3])

Δψλ = (\λf + \δf)φλ , \λf ^ 0 .

Here — Δ is the Laplace-Beltrami operator of (M, g) and it satisfies (cf. § 4)

Δ(fo π) = (ΔΓf) o π for every smooth function / on MΓ, where π is the natural
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projection of M onto MΓ. If (M, g) is the unit disc with the Poincare

metric, then Theorem B has been obtained by H. Huber [5].

I would like to express my thanks to Professor T. Sunada for his

advices during the preparation of this paper.

§ 2. Preliminaries

In this section, following [2] and [3], we prepare some properties of

the zonal spherical functions on the Euclidean space or a Riemannian

symmetric space of non-compact type of rank one.

2.1. Let (M, g) be the standard Euclidean space (Rn, g). Let (xu ,

xn) be the orthonormal coordinate of Rn. Let — Δ — Y^-=1d
2jdx\ be the

Laplace-Beltrami operator on Rn. The zonal spherical functions on Rn

(cf. [9]) are eigen-functions of Δ depending only on r = \x\, xeRn, whose

values at 0 are 1. For example (cf. [7]), for p e R (p > 0), consider the

functions

(x = 0) .

Then Φp is real analytic on Rn and written as Φp(x) = Ψp{r) where Ψp(s)

= ψ(ps) and ψ is an even function on R defined by

- Γ(f) s, (-vw-'tf+">Γ(fΓ
Then Ψp satisfies the equation

— n ~ -̂
dr2 r dr

Recalling the general equality:

dr2 r dr

for a rotationary invariant function F e C\Rn — (0)), we get ΔΦP = p2Φv

(cf. [9]). Let jn/2-i be the least positive zero point of Jn/2-i- Let / be the

even function on R by
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\s\ < l*l*=l

where 0 < ε < 1. Then / satisfies

LEMMA 2.1. (1) / belongs to C\R) and the support of f is contained

in the set {\s\ ̂ jn/2-Jp}, (2) / " is continuous except the point \s\ = jn/2-ilp>

(3) f"{s) = O(\\s\ - ΛWPl" 1 ) , SO f" e L\R\ and (4) Ltf) + (1 + ε)pj ^ 0

(|s| Φ 09jn/2-ilp), for the differential operator Lx on R — (0) defined by

j _ d2 n - l d
as1 s ds

Proof (1) and (2) are clear. (3) is due to the fact that the number

jn/2-1 is the zero point of Jn/2-ι of first order (cf. [7] p. 151). By (2.1), we

have

(^)V;-1 s> 0 ,

for 0 < \s\ <jn/2jp, so (4) holds. Q.E.D.

Let F be the function on Rn defined by F(x) = f(\x\), xeRn. Then

we have

LEMMA 2.2. F belongs to CXR") and C\Rn - γ,) where Tl = {xe Rn;

\x\ = 0 or jn/2-ilp}> and the support of F is contained in the set {xeRn;

1*1 ύJn/2-ilp}* Moreover

(2.2) (JF)(x) = — (2,,/Xlxl) (x Φ 0) and ΔFe L\Rn) ,

(2.3) ΔF ^ (1 + e)p2F on Rn - Tί .

Proofs are immediate from Lemma 2.1.

Due to Lemma 2.1, there exists a sequence {fm}Z=i of smooth even

functions on R such that (5) fm(s)=f(s) (\s\ ̂  jn/2_J2p) and fm(s) = 0

(|s| 5s 2/n/2.,/p), (6) /m (resp./4) converges to / (resp./7) uniformly on 2? as

m-> 00 and (7) lim Γ |/£'(β) - f"(s)\ ds = 0.

Define Fm e Έ^R1) by Fm(x) = /m(|x|), x 6 IT. Then by (5), (6) and (7),

the support of Fm is included in the set {xeRn;\x\ ^ 2jn/2_Jp}9 Fm con-

verges to F uniformly on Rn and
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(2.4) lim f \ΔFm- ΔF\ dx = 0 ,
m-oo J Rn

where dx is the Lebesgue measure on Rn.

2.2. Let (M, g) be a Riemannian symmetric space of non-compact type

of rank one. Let G be the identity component of the Lie group of all

isometries of (M, g). Let K be the isotropy subgroup of G at some point

o of M. The subgroup if is a maximal compact subgroup of G. Let g,

(resp. ϊ) be the Lie algebra of G (resp. if). Let g = ϊ + p be the Cartan

decomposition of g corresponding to ϊ. Then p is identified with the tangent

space of M at o. Let α be a maximal abelian subspace of p, α* its dual

and a% the complexification of α*. Then rank (M, g) = 1 means dim α = 1.

Let B be the Killing form of g. We assume the Riemannian metric g on

M= G/if is induced by go(XO9 Yo) = B(X, Y), X, Yep, where Xβ, Yo are

the tangent vectors of M at o = {if} corresponding to X, Y, respectively.

For Λ e α*, let iϊ, e a be determined by λ(H) = B(Hλ, H) for all H e α. Put

(Λ, μ) = ^(ίί,, fẐ ) for λ, μβa*. We fix an order on α* once and for all.

Let Σ be the set of all non-zero restricted roots of (g, α) and Σ+ the set

of positive elements in Σ. For, a e Σ, let gα = {Xe g; [iJ, X] = a(H)X for

all i ϊ e α}. Let denote mα — dim gα for αr e Σ, which is called the multiplicity

of a. Let δ = 2"1 2 α e J + mα<x. Let n = 2]«e^+ 9« a n ( i -^ the connected

subgroup of G corresponding to n. Each g e G can be uniquely written

as g = κ(g) exp (H(g))n(g) where κ(g) e K, H(g) e α and n(g) e 2V. In case of

rank one, the zonal spherical functions on M mean the (complex valued)

if-invariant eigen-functions of the Laplace-Beltrami operator — Δ of (M, g)

whose values at o = {if} are 1. These functions are exhausted by φλ(g) =

e(V-u-δ)H(gk) cik9 λea%, geG, where dk is the Haar measure on if such
JK

that the total measure is 1. Here φλ satisfies φλ{gk) = ψλ{g) (g e G, k e K)

and hence it is regarded as a function on M. Notice that Σ+ = {a, (2a)}

and δ — 2~\ma + 2m2a)a since M is of rank one. Let Ho e a be the element

such that a(H0) = 1 and hence B(H0, Ho) = 2(ma + 4m2a). For t e R, put

ht = exp (tH0) e A = exp (α). Then t can be regarded as the coordinate on

the one dimensional Lie group A. Put x= —(smh(t))\ Since φλ(ht) is

an even function of t, it is written as φλ(ht) = gλ(x). Then gλ satisfies

(2.5) x(x - l)-£-gΛ + ((a + b + ϊ)x - c)-φ- = -abgλ ,
dx2 dx
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where a = 4"1(mβ + 2m2a + 2</=ϊλ(H0)), b = 4"1(mβ + 2m2α - 2v C Γ

and c = 2"1(ma + m2α + 1) (cf. [3] p. 301). Notice that a + b, ab and c > 0.

Thus &(#) is the hypergeometric function F(a, b, c; x). Moreover, each K-

invariant function F e C\M — (o)) satisfies

= x(x - l)-5?(x) + ((α + 6 ^
ax ax

(tφθ,ke K), where G is the function defined by F(t) = G(x) (cf. [3] p. 302).

Thus we have

2'\ma + 4m2a)Jφλ = abψλ .

If λea*, φλ is real valued and has the following asymptotic behavior:

(2.6) lim|eίίCffotyi(Λ*) - (c(λ)etV~imώ + c(~λ)e-t"/τru^)\ = 0 ,

where c(λ) = Γ(c)Γ(V^Λλ(H0))Γ(a)-ψ(ma + 2 + 2^ϊλ(HQ))-ί (cf. [3] p. 303).

Let dgκ be the volume element of (M, g). Then it is known (cf. [4]

p. 381) that

(2.7) J\ f(g o)dgκ = C|°_ D(x)g(x)dx

for every integrable if-invariant function / on M and g(x) = f(ht o), Λ: =
— (sinh(ί))2. Here C is a positive constant which does not depend on /
and D(x) = (-xy-^«+™>«-v(i - Λ)2-»(«.«-D#

2.3. First, we notice that if 2eα*, λ Φ 0, then the function φλ has

zero points. For, since \c(X)\ = |c(—^)|, c(>ϊ) = c(—X), we have by (2.6)

Ψλ(ht) - 2e- ί W o ) | φ ) j cos («(flo) + arg (φ))) , ^(i/0) > 0 ,

as £—• oo. So let — A^O < Aλ < oo) be the first zero point of gλ(x), x^0.

We consider also the function fλ defined by

f(χ) = fe(x)1+£ , - Aλ^ x ^ 0 ,
/ a W lθ < < A

where 0 < ε < 1. The continuous function £ on (— oo, 0] has the follow-

ing properties.

LEMMA 2.3. (1/) fλ belongs to C\— oo,0] and the support of fλ is con-

tained in the set { — Aλ ^ x ^ 0}, (27) /^ is continuous on — oo < x < 0 except
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-Aλ1 (30 f[\x) = 0{\x + Aλ\^), so fί'eU(-oo,0], and (40 L2(fλ)(x) +

(1 + ε)abfλ(x) ^ 0, except x = 0, — Aλ for the differential operator L2 on (— oo,

0] defined by

L2 = x(x - l)_f- + ((a + b + l)x - c)- d

dx* " xv ' ' ' dx

Proof. (10 and (20 are clear. For (30, we may show that — Aλ is

the zero point of gλ of first order. By the properties of the hypergeo-

metric function gλ(x) = F(a, b, c; x),

+1g'λ)' = -ab(-x)c-\l - x)a
+ s - e ?i

Then G(x) = (-x)c(l - x)a+i-c+1g[ satisfies G\x) < 0 (-Aλ <x<0) and
G'(x) = 0 (x = 0, -Aλ). Hence G(x) > G(0) = 0 ( - Aλ ^ x < 0), that is

g'*(x)>0 (-Aλ£x<0). By (2.5),

L2(fλ)(x) + (1 + e)abfλ(x) == (1 + ε)εx(x - lXgO^Γ1 ^ 0

( - Aλ < x < 0), so (40 holds. Q.E.D.

Define a function Fλ on A by Fλ{ht) = /,(x), x = -(sinh(ί))2. Then it

belongs to C\A) and is an even function, that is Fλ(ht) = Fλ(h_t). Hence

it can be extended to M uniquely as a if-invariant function, denoted by

the same letter Fλ. It satisfies the following properties.

LEMMA 2.4. Fλ belongs to C\M) and C\M — γ2) where γ2 = {kht-o;

keK, — (sinh(ί))2 = 0, —Aλ}9 and the support of Fλ is contained in the set

{kht o keK, -Aλ<: -(sinh(t))2}. Moreover

(2.8) 2-\ma + ±m2a){ΔFλ)(kht ό) = ~{L2fλ){x)

(tΦθ,keK) and ΔFλ e L\M\

(2.9) 2-\ma + 4m2a)AFλ ^ (1 + ε)abFλ on M - γ2 ,

where L\M) is the space of integrable functions on M with respect to the

volume element dgκ in (2.7).

Proof. (2.8) follows from (2.7), (2.5) and Lemma 2.3. The remainds are

immediate from Lemma 2.3. Q.E.D.

Due to Lemma 2.3, there exists a sequence {i^)W}~=1 of smooth even

functions on A such t h a t (50 Fλtn(ht) = Fλ(ht) (\t\ ̂  tJ2) and Fit7n(ht) = 0

(|ί| ^ 2t0), where t0 > 0 is given by -(s inh(O) 2 = -Aλ, (&) Fλ,
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converges to Fλ (resp. F'λ) uniformly on A as m—•oo, and (70

limΓ \FUht)-F'/(ht)\dt = 0,
m-ΌO J —OO

where F[ etc. means the differential of Fλ with respect to t. The functions

Fλim can be extended as If-invariant C°° functions on M, denoted by the

same letter F2,m. Then the support of Fitn is contained in the set {kht o;

ke K,\t\^ 2t0}, jF;,m converges to Fλ uniformly on M and

(2.10) limf \ΔFλ,m-ΔFλ\dgκ = 0

by (50, (60, (70, (2.5) and (2.7).

§ 3. Proof of Theorem A

3.1. In this section, we preserve the notations in 2.1 and introduction.

Let π denote the projection of Rn onto MΓ. For γ e Γ, let τr be the action

of γ on Rn. The Laplace-Beltrami operator — ΔΓ on MΓ satisfies Δ(foπ) =

(ΔΓf) o π for twice differentiable functions / on MΓ. The volume element

on MΓ induced by dx is denoted by dω. Let ZF be the fundamental domain

in Rn for Γ, that is & = {xe Rn; \x\ ^ \x - τr 0| for all γ e Γ}. It is known

(cf. [7]) that

(3.1) Rn = U ^ - ^ a n d τr ^ Π ^

has measure 0 for every ^ e Γ , ̂  ̂  1.

Now since the functions F and Fm have the compact supports, we can

define the Γ-invariant functions Θ and θm on Rn by

0= ΣFoτr, θm= ΣFn°*τ
rer rer

Then there exist functions φ and φm on M Γ such that φoπ = θ, φm°π = θm.

These functions have the following properties:

LEMMA 3.1. (1) The function φ belongs to C\MΓ) and C\MΓ — π{γ$),

and ΔΓφ belongs to L\MΓ), (2) ΔΓφ ̂  (1 + ε)p2φ on MΓ — π{γϊ), and (3)

φme C°°(MΓ) converges to φ uniformly on MΓ as m—> oo, and

lim IΔ Γ φ m - ΔΓφ\ dω = 0 .

Moreover (4)
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lim φm(ΔΓψm)dω = φ(ΔΓφ)dω .
m-»co J M p J M p

φ ( Γ ψ )
M p J M p

Proof. (1), (2) and (3) follow from Lemma 2.2 and (2.4). The inequality

ψm{ΔΓφm)dω — ψ(ΔΓψ)dω
J M p J M p

< ΔΓφm - ΔΓφ\ sup|<om
MMΓ

\ΔΓφ\\mM yaχjφ\φm - ψ\ ,

together with (3), implies (4).

Notice that

Q.E.D.

(3.2)

(3.3)

f ψdω = V...P-" Γ"'2" ψ(r)ι+T»-'dr ,
J Mp JO

Γ Λ/jι/2-i

ψ2dω ^ Vn-\P~n

J Mp J 0

where Vn^ = 2ττn/T(rc/2)-1 is the total measure of the unit sphere S71-1

with respect to the measure induced by the volume element dx on Rn. In

fact, by (3.1) and the definitions of φ, θ and F, we have

ψdω = θdx
J Mp J JF

= Σ f (*H)d

= f Fdx
JΌ7eΓτrSΓ

= f Fdx
Ji2"

(3.2) follows from the inequality for the integrand:

which follows from F ̂  0.

3.2. It is known (cf. [1] p. 186) that the least positive eigenvalue

Λj(Γ) of ΔΓ satisfies the inequality

(3.4) ί >η(ΔΓη)dω ̂  λx(Γ) ί η2dω
J M p J M p
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for all η e C°°(MΓ) such that

ί ηdω = 0 .
J M p

We apply (3.4) for η = ψm — am, where

am = vol (Mr)' 1 f p

Then we have

M φ n V r φ J ^ U n \ j χ < - v o l ( ) ^

As m -> oo, we have

(3.5) ί 9<4Γp)dω ̂  ^(-Off ^ d ω ~ vol(ΛfΓ)-^f φdωY\

by (3) and (4) in Lemma 3.1. Since π(γ^ has measure 0, we have

(3.6) ί ψ{ΔΓψ)dω £ (1 + ε)p2 ί ^dω

by (2) in Lemma 3.1. Then, by (3.5) and (3.6),

) ' 1 ] ^ (1 + e)p2 .

Hence, together with (3.2) and (3.3), we have

λι(Γ)[l ~ P'nVn-i vol

X (j^'VίΓΓ^V-^r)] ^ (1 + ε)p2 .

Letting ε -> 0, we obtain

PROPOSITION 3.1. Under the above situation, we have

UΠ £ inf {p2[l - Vn_γKn vol
(θ. I )

1 - V,.1£1 lvol

u /iere

αy«/2-i \2//»yn/2-i

ψ(r)r-'dr) ( | o

αncί
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3.3. We calculate the right hand side of (3.7). Since

we have

Since the derivative of Jn/i{r)rnβ (resp. (r2/2)(Jn/2.1(r)2 - Jni2-Jf)Ji>n{r))) is
JnnΛr)rnβ (resp. Jnn^(rfr) (cf. [7] p. 189), we have

(by JnώJnn-i) + Jnn-tinn-d = 0 (cf. [7] p. 158)) ,

= 2(j n / 2_ ])
K- 2 .

Put

G(p) =p%l - V,.^, volίM^-'p-)-1

and

A = (2-'(2 + n)Vn.λKn vol(Mr)-')1/n .

If 1 - V,.,^n vol(Mr)-'/rn > 0, then

G'(p) < 0 (p < A ) , C(P) > 0 (p > A) and G'(p0) = 0 .

So we have

inf {G(p); 1 - Vn.,Kn vol (MΓ)-^-" > 0} = G(A)
>0

= n->(2 + ny/»+I

Thus Theorem A is proved.

§ 4. Proof of Theorem B

4.1. In this section, we preserve the notations in 2.2, 2.3 and intro-
duction. Theorem B will be proved by the same way as Theorem A. Let
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π denote the projection of M onto MΓ. For γ e Γ, let τr be the action of

γ on M. The Laplace-Beltrami operator — ΔΓ on M satisfies Δ(foπ) —

{ΔΓf) o π for all twice differentiable functions / on MΓ. The volume element

on MΓ induced by dgκ is denoted by dω. Let 3F be the fundamental do-

main in M for Γ, that is ^ = {g-oe M; r(g-o, o) <^ r(g-o. τr o) for all γ e Γ}

where r( , ) is the distance function on (M, g). It is known (for example,

cf. [2] ) that

(4.i) M = u ^ a n d τr^ n ^

has measure 0 for all f e Γ, γ Φ 1.

Since Fλ and F^ m have the compact supports, we define the /"-invariant

functions θλ and θλyΎfl on M by

Then there exist functions ^ and φλ,m on M Γ such that φλ°π = θλ and

^ m o 7r = ^,m. These functions have the following properties.

LEMMA 4.1. (1) The function ψλ belongs to C\MΓ) and C\MΓ — π(γ2)),

and ΔΓψλ belongs to L\MΓ), (2) 2~1(ma + 4m2a)JΓφλ ^ (1 + ε)abφλ on MΓ —

π(γ2), and (3) φλime C'iMp) converges to φλ uniformly on MΓ as m->oo and

Moreover (4)

lim \ΔΓφι%m - ΔΓψλ\ dω = 0 .
m->oo J Mp

lim φλjm(ΔΓφhm)dω = φλ(ΔΓφλ)dω .
m—oo J i f jT J M pM p

Proofs are similar to Lemma 3.1.

Notice that

(4.2) f φλdω = f Fλdgκ =C{° D{x)gλ{xγ+*dx ,
JMp JM J -Ax

(4.3) f Ψ\dω ^ C f

Then, due to (4.2), (4.3) and Lemma 4.1, we have the following prop-

osition by the similar manner to Proposition 3.1.

PROPOSITION 4.1. Under the above assumption, we obtain
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(4.4) ΛCΓ)[1 - C vol (MΓ)~ιKx] < 2(ma

where

Kx

the constant C and the function D(x) are the ones in (2.7).

4.2. We prove Theorem B due to Proposition 4.1. We fix any λ e a*,

X Φ 0. For a discrete subgroup Γ of G with sufficiently large vol (MΓ)

such that vol (MΓ) > CKλ, we have, by Proposition 4.1,

λ^Γ) ^ %jna + 4m2α)"1α6[l - C vol {Mry
ιKλγ

ι .

Hence, by the definition of a and b, we have

limsup ΛiCO ^ 2(mα + 4m2a)~1ab
VOl (ϋfΓ)->oo

i ( + 4 ) " 1 ( ( m α + 4/n2α)
2

for every 2eo*, /I ̂  0. So we have

limsup λ^Γ) ^ -i-(mα + 4m2α)'1(mα + 2m2α)
2 .

vol (MΓ)-co

Here B(flo> ίίo) = 2(/nβ + 4m2α) implies that the right hand side of the

above inequality coincides with \δ\2 = (δ,δ). Thus Theorem B is proved.

§ 5. Supremum of L2 spectrum

For a complete orientable Riemannian manifold (M, g) (not necessarily

compact), consider

f {Δeψ)ψdvg
σ{M,g)= inf J *

where C?(M) is the space of all real valued C°° functions on M with com-

pact support, — Δg is the Laplace-Beltrami operator of (M, g) acting on

smooth functions on M, and dvg is the volume element of (M, g) (cf. [11]).

Then σ(M, g) ^ 0 and it is called the supremum of the U spectrum of

(M, g) (cf. [11]). Since the operator Δg is a real symmetric operator, we

notice that

ί (Δgφ)φdυg

σ(M,g)= inf JJL ,

^ m ° f φφdv,
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where C™(M)C is the space of all complex valued C°° functions on M with

compact support, and φ(x), xe M, is the complex conjugate of φ(x).

In this section, we calculate σ(M, g) when (M, g) is a Riemannian

symmetric space of non-compact type of rank one. We preserve the nota-

tions in § 2.

PROPOSITION 5.1. Let (M, g) be a Riemannian symmetric space of non-

compact type (not necessarily of rank one). We normalize g in such a way

that it is induced by the Killing form of the Lie algebra Q of the connected

component G of the Lie group of all isometries of (M, g). Then we have

where \δ\ is the norm of δ = jΣaGΣ+ m*® by the inner product induced

from the Killing form as in §2.

Proof. It holds (cf. [10]) that

(5.1) f (Δgf)fdgκ = C f (4/)~tt k)f{λj) |φ) | " 2 dλdk ,

for each fe C0°°(M). Here C is a positive constant, not depending on /,

Zκ(a) is the centralizer of α in K, f(λ, k) (λ e α*, k e K/Zκ(a)) is the Fourier

transform of / defined by

f(lk)= ί
J

dλ is the Euclidean measure on α*, and dk is the measure on K\Zκ(d)

induced by the Haar measure dk on K (cf. [10]). Since (Δgf)~(λ, k) =

(\λf + \δf)f{λ,k) (cf. [12] p. 92, [13] p. 458),

the right hand side of (5.1)

\f{λ,k)\2\c{λ)\-2dλdk
a*XK/ZK(a)

Thus we have σ(M,g) ^ |S|2. Q.E.D.

In particular, when (M, g) is of rank one, the following theorem holds.

THEOREM C. Let (M, g) be a Riemannian symmetric space of non-

compact type of rank one. We normalize g as in Proposition 5.1. Then we

have
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σ ( M , g ) = \δf.

Proof. We may prove σ(M, g) <L\δ\2. We use the notations in 2.3.

Since the supports of Fλ and Fλtm, m = 1, 2, are contained in the set

{kht o; k e K, 0 ̂  t ^ 2£0}, and Fλim converges to Fλ uniformly on M,

(5.2) lim f Flmdgκ = ί Fldgκ .
m->oo J M JM

Moreover we have

(5.3) lim f (JgFλ,m)Fitmdgκ = f (JgFλ)Fidgκ .
m^oo J M J M

In fact, it follows from the inequality

£ \\ΔgF^m - ΔsFx\\LHa) s u p | F , , m | + \\ΔgFλ\\LHM)
M

(2.10), (2.8) and Lemma 2.4.

Thus we have

(5.4) σ(M, g) J\ Fldgκ ^ ^_ (ΔgFλ)Fλdgκ ,

by (5.2), (5.3) and the definition of σ(M, g). Moreover we estimate

the right hand side of (5.4)

:g 2(mα + 4m2α)"1(l + ε)αb f F\dgκ ,
J M

due to (2.9). Then

σ(M, g) ^ 2(mα + 4m2 α)"1(l + ε)αb ,

for every 0 < ε < 1 and 0 Φ λ e α*. Thus we have σ(M, g) <\δ\\ Q.E.D.

Remark. Due to 2.1, it is proved by the similar way to Theorem C,

that

σ(R\g) = 0,

where (Rn, g) is the standard Euclidean space.
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