H. Urakawa Nagoya Math. J. Vol. 78 (1980), 137-152

ON THE LEAST POSITIVE EIGENVALUE OF THE LAPLACIAN FOR THE COMPACT QUOTIENT OF A CERTAIN RIEMANNIAN SYMMETRIC SPACE

HAJIME URAKAWA

§1. Introduction and statement of results

Let (\tilde{M}, g) be the standard Euclidean space or a Riemannian symmetric space of non-compact type of rank one. Let G be the identity component of the Lie group of all isometries of (\tilde{M}, g) . Let Γ be a discrete subgroup of G acting fixed point freely on \tilde{M} whose quotient manifold M_{Γ} is compact. Let $-\Delta_{\Gamma}$ be the Laplace-Beltrami operator (cf. [4]) acting on smooth functions on M_{Γ} for the Riemannian metric g_{Γ} on M_{Γ} induced by g. The compactness of M_{Γ} implies that the spectrum of Δ_{Γ} forms a discrete subset of the set of non-negative real numbers. Let $\lambda_{1}(\Gamma)$ be the least positive eigenvalue of Δ_{Γ} . Let vol (M_{Γ}) be the volume of (M_{Γ}, g_{Γ}) . Then we have

THEOREM A. Let (\tilde{M}, g) be the n-dimensional standard Euclidean space, so that (M_{Γ}, g_{Γ}) is a compact flat manifold. Then we have

(1)
$$\lambda_1(\Gamma) \operatorname{vol}(M_{\Gamma})^{2/n} \leq n^{-1}(2+n)^{1+2/n} \left[\frac{2\pi^{n/2}}{\Gamma(n/2)} \right]^{2/n} [j_{n/2-1}]^{2-4/n}$$

where the number $j_{n/2-1}$ is the least positive zero point of the (n/2 - 1)-th Bessel function $J_{n/2-1}$.

Remark. Since $j_{n/2-1} \sim n/2$ as $n \to \infty$ (cf. [7] p. 153), the right hand side of (1) is $(\pi e/2)n = (4.2699 \cdots)n$ asymptotically as $n \to \infty$.

Let $\mu_n = \max_{\Gamma} \lambda_1(\Gamma) \operatorname{vol} (M_{\Gamma})^{2/n}$ where the maximum is taken over all lattices Γ of \mathbb{R}^n . For a lattice Γ of \mathbb{R}^n , the spectrum of the corresponding flat torus (M_{Γ}, g_{Γ}) is given by $\{4\pi^2 |x|^2; x \in \Gamma^*\}$, where Γ^* is a dual lattice of Γ , $|x|^2 = (x, x), x \in \mathbb{R}^n$ and (,) is the inner product of \mathbb{R}^n which gives the standard Riemannian metric on \mathbb{R}^n (cf. [1]). So we have $\lambda_1(\Gamma)$

Received September 18, 1978.

Revised September 10, 1979.

 $= 4\pi^2 \min_{x \in \Gamma^{*-}(0)} |x|^2$. On the other hand, $\operatorname{vol}(M_{\Gamma}) = \det(\Gamma^{*})^{-1/2}$ (cf. [6]). Here $\det(\Gamma^{*})$ is the determinant of the matrix $((b_i, b_j))_{1 \leq i,j \leq n}$, where $\{b_i\}_{i=1}^n$ is a basis of \mathbb{R}^n generating the lattice Γ^{*} . Then the above μ_n coincides $4\pi^2$ times the largest possible value for the ratio

$$\mu(\varGamma^*) = \left(\min_{x \in \varGamma^{*} - (0)} |x|^2\right) (\det\left(\varGamma^*
ight))^{-n}$$

where Γ^* varies over all lattices in \mathbb{R}^n . A problem to compute the value μ_n for every *n* is related to the following classical problem (cf. [6] p. 34): What is the maximum possible density for a union of non-overlapping balls of fixed radius in \mathbb{R}^n ? But until now the value μ_n is unknown for $n \geq 9$. In 1905, H. Minkowski has given (cf. [6]) a lower estimate for μ_n by

$$\mu_n > 4\pi^2 \omega_n^{-2/n}$$

where ω_n is the volume of the unit disk in \mathbb{R}^n and $4\pi^2 \omega_n^{-2/n} \sim (2\pi/e)n = (2.3115 \cdots)n$ as $n \to \infty$. On the other hand, in 1958, C. A. Rogers has given (cf. [6]) an upper estimate for μ_n by

 $\mu_n \leq Q_n$

where the constant Q_n is $(4\pi/e)n = (4.6229 \cdots)n$ asymptotically as $n \to \infty$. The above remark implies that Theorem A improves the result of Rogers in the asymptotic sense.

THEOREM B. Let (\tilde{M}, g) be a Riemannian symmetric space of noncompact type of rank one. Let G be the connected component of the Lie group of all isometries of (\tilde{M}, g) . We normalize g in such a way that it is induced by the Killing form of the Lie algebra of G. Consider all discrete subgroups Γ of G acting fixed point freely on \tilde{M} whose quotient manifold M_{Γ} is compact. Then we have

(2)
$$\lim_{v \in I} \sup_{M_{\Gamma} \to \infty} \lambda_{i}(\Gamma) \leq |\delta|^{2},$$

for a positive constant $|\delta|^2$ depending only on (\tilde{M}, g) (cf. § 2).

Notice that every real valued zonal spherical function φ_{λ} on \tilde{M} corresponding to the principal series of G (cf. [10]) satisfies (cf. [3])

$$arDelta arphi_{\lambda} = (ert \lambda ert^2 + ert \delta ert^2) arphi_{\lambda} \,, \qquad ert \lambda ert^2 \geqq 0$$

Here $-\Delta$ is the Laplace-Beltrami operator of (\tilde{M}, g) and it satisfies (cf. § 4) $\Delta(f \circ \pi) = (\Delta_{\Gamma} f) \circ \pi$ for every smooth function f on M_{Γ} , where π is the natural projection of \tilde{M} onto M_r . If (\tilde{M}, g) is the unit disc with the Poincaré metric, then Theorem B has been obtained by H. Huber [5].

I would like to express my thanks to Professor T. Sunada for his advices during the preparation of this paper.

§2. Preliminaries

In this section, following [2] and [3], we prepare some properties of the zonal spherical functions on the Euclidean space or a Riemannian symmetric space of non-compact type of rank one.

2.1. Let (\tilde{M}, g) be the standard Euclidean space (\mathbb{R}^n, g) . Let (x_1, \dots, x_n) be the orthonormal coordinate of \mathbb{R}^n . Let $-\mathcal{A} = \sum_{i=1}^n \partial^2 / \partial x_i^2$ be the Laplace-Beltrami operator on \mathbb{R}^n . The zonal spherical functions on \mathbb{R}^n (cf. [9]) are eigen-functions of \mathcal{A} depending only on $r = |x|, x \in \mathbb{R}^n$, whose values at 0 are 1. For example (cf. [7]), for $p \in \mathbb{R}$ (p > 0), consider the functions

$${\varPhi}_{p}(x) = egin{cases} \Gamma\Big(rac{n}{2}\Big)\Big(rac{pr}{2}\Big)^{1-n/2} J_{n/2-1}(pr) & (x
eq 0) \ 1 & (x=0) \ . \end{cases}$$

Then Φ_p is real analytic on \mathbb{R}^n and written as $\Phi_p(x) = \Psi_p(r)$ where $\Psi_p(s) = \psi(ps)$ and ψ is an even function on \mathbb{R} defined by

$$\psi(s) = \Gamma\left(\frac{n}{2}\right) \sum_{m=0}^{\infty} (-1)^m (m!)^{-1} \Gamma\left(\frac{n}{2} + m\right)^{-1} \left(\frac{s}{2}\right)^{2m}.$$

Then Ψ_p satisfies the equation

(2.1)
$$-\frac{d^2}{dr^2}\Psi_p - \frac{n-1}{r}\frac{d}{dr}\Psi_p = p^2\Phi_p$$

Recalling the general equality:

$$\Delta F = -rac{\partial^2}{\partial r^2}F - rac{n-1}{r}rac{\partial F}{\partial r}$$

for a rotationary invariant function $F \in C^2(\mathbb{R}^n - (0))$, we get $\Delta \Phi_p = p^2 \Phi_p$ (cf. [9]). Let $j_{n/2-1}$ be the least positive zero point of $J_{n/2-1}$. Let f be the even function on \mathbb{R} by

$$f(s) = egin{cases} {rak V} _p(s)^{1+\epsilon} \ , \qquad |s| \leq rac{j_{n/2-1}}{p} \ , \ 0 \ , \qquad \qquad |s| \geq rac{j_{n/2-1}}{p} \ , \end{cases}$$

where $0 < \varepsilon < 1$. Then f satisfies

LEMMA 2.1. (1) f belongs to $C^{1}(\mathbf{R})$ and the support of f is contained in the set $\{|s| \leq j_{n/2-1}/p\}$, (2) f'' is continuous except the point $|s| = j_{n/2-1}/p$, (3) $f''(s) = O(||s| - j_{n/2-1}/p|^{s-1})$, so $f'' \in L^{1}(\mathbf{R})$, and (4) $L_{1}(f) + (1 + \varepsilon)p^{2}f \geq 0$ $(|s| \neq 0, j_{n/2-1}/p)$, for the differential operator L_{1} on $\mathbf{R} - (0)$ defined by

$$L_{\scriptscriptstyle 1} = rac{d^{\scriptscriptstyle 2}}{ds^{\scriptscriptstyle 2}} + rac{n-1}{s} \, rac{d}{ds} \, .$$

Proof. (1) and (2) are clear. (3) is due to the fact that the number $j_{n/2-1}$ is the zero point of $J_{n/2-1}$ of first order (cf. [7] p. 151). By (2.1), we have

$$L_1(f)+(1+arepsilon)p^2f=(1+arepsilon)arepsilonigg(rac{darPsilon_p}{ds}igg)^2arPsi_p^{arepsilon-1}\geqq 0$$
 ,

for $0 < |s| < j_{n/2-1}/p$, so (4) holds.

Let F be the function on \mathbb{R}^n defined by $F(x) = f(|x|), x \in \mathbb{R}^n$. Then we have

LEMMA 2.2. F belongs to $C^1(\mathbb{R}^n)$ and $C^2(\mathbb{R}^n - \gamma_1)$ where $\gamma_1 = \{x \in \mathbb{R}^n; |x| = 0 \text{ or } j_{n/2-1}/p\}$, and the support of F is contained in the set $\{x \in \mathbb{R}^n; |x| \leq j_{n/2-1}/p\}$. Moreover

(2.2)
$$(\varDelta F)(x) = -(L_1 f)(|x|) \quad (x \neq 0) \text{ and } \varDelta F \in L^1(\mathbb{R}^n),$$

(2.3)
$$\Delta F \leq (1+\varepsilon)p^2 F \quad on \ \mathbb{R}^n - \gamma_1.$$

Proofs are immediate from Lemma 2.1.

Due to Lemma 2.1, there exists a sequence $\{f_m\}_{m=1}^{\infty}$ of smooth even functions on **R** such that (5) $f_m(s) = f(s)$ $(|s| \leq j_{n/2-1}/2p)$ and $f_m(s) = 0$ $(|s| \leq 2j_{n/2-1}/p)$, (6) f_m (resp. f'_m) converges to f (resp. f') uniformly on **R** as $m \to \infty$ and (7) $\lim_{m \to \infty} \int_{-\infty}^{\infty} |f''_m(s) - f''(s)| \, ds = 0.$

Define $F_m \in C^{m-\infty}(\mathbb{R}^n)$ by $F_m(x) = f_m(|x|)$, $x \in \mathbb{R}^n$. Then by (5), (6) and (7), the support of F_m is included in the set $\{x \in \mathbb{R}^n; |x| \leq 2j_{n/2-1}/p\}$, F_m converges to F uniformly on \mathbb{R}^n and

140

Q.E.D.

(2.4)
$$\lim_{m\to\infty}\int_{R^n}|\Delta F_m-\Delta F|\,dx=0\,,$$

where dx is the Lebesgue measure on \mathbb{R}^n .

2.2. Let (\tilde{M}, g) be a Riemannian symmetric space of non-compact type of rank one. Let G be the identity component of the Lie group of all isometries of (\tilde{M}, g) . Let K be the isotropy subgroup of G at some point o of M. The subgroup K is a maximal compact subgroup of G. Let g, (resp. f) be the Lie algebra of G (resp. K). Let g = f + p be the Cartan decomposition of g corresponding to \mathfrak{k} . Then \mathfrak{p} is identified with the tangent space of \tilde{M} at o. Let α be a maximal abelian subspace of \mathfrak{p}, α^* its dual and \mathfrak{a}_c^* the complexification of \mathfrak{a}^* . Then rank (M, g) = 1 means dim $\mathfrak{a} = 1$. Let B be the Killing form of g. We assume the Riemannian metric g on $ilde{M}=G/K$ is induced by $g_o(X_o, Y_o)=B(X, Y), X, Y \in \mathfrak{p},$ where X_o, Y_o are the tangent vectors of \tilde{M} at $o = \{K\}$ corresponding to X, Y, respectively. For $\lambda \in \mathfrak{a}^*$, let $H_{\lambda} \in \mathfrak{a}$ be determined by $\lambda(H) = B(H_{\lambda}, H)$ for all $H \in \mathfrak{a}$. Put $(\lambda, \mu) = B(H_{\lambda}, H_{\mu})$ for $\lambda, \mu \in a^*$. We fix an order on a^* once and for all. Let Σ be the set of all non-zero restricted roots of (g, α) and Σ^+ the set of positive elements in Σ . For, $\alpha \in \Sigma$, let $\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}; [H, X] = \alpha(H)X$ for all $H \in \mathfrak{a}$. Let denote $m_{\alpha} = \dim \mathfrak{g}_{\alpha}$ for $\alpha \in \Sigma$, which is called the multiplicity of α . Let $\delta = 2^{-1} \sum_{\alpha \in \Sigma^+} m_{\alpha} \alpha$. Let $\mathfrak{n} = \sum_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$ and N the connected subgroup of G corresponding to n. Each $g \in G$ can be uniquely written as $g = \kappa(g) \exp(H(g))n(g)$ where $\kappa(g) \in K$, $H(g) \in \mathfrak{a}$ and $n(g) \in N$. In case of rank one, the zonal spherical functions on M mean the (complex valued) K-invariant eigen-functions of the Laplace-Beltrami operator $-\Delta$ of (M, g)whose values at $o = \{K\}$ are 1. These functions are exhausted by $\varphi_{\lambda}(g) =$ $\int_{K} \mathrm{e}^{(\sqrt{-1}\lambda-\delta)H(gk)} \, dk, \ \lambda \in \mathfrak{a}_{\mathcal{C}}^{*}, \ g \in G, \ \text{where} \ dk \ \text{is the Haar measure on } K \ \text{such}$ that the total measure is 1. Here φ_{λ} satisfies $\varphi_{\lambda}(gk) = \varphi_{\lambda}(g)$ $(g \in G, k \in K)$ and hence it is regarded as a function on \overline{M} . Notice that $\Sigma^+ = \{\alpha, (2\alpha)\}$ and $\delta = 2^{-1}(m_a + 2m_{2a})\alpha$ since \tilde{M} is of rank one. Let $H_0 \in \alpha$ be the element such that $\alpha(H_0) = 1$ and hence $B(H_0, H_0) = 2(m_{\alpha} + 4m_{2\alpha})$. For $t \in \mathbb{R}$, put $h_t = \exp(tH_0) \in A = \exp(a)$. Then t can be regarded as the coordinate on the one dimensional Lie group A. Put $x = -(\sinh(t))^2$. Since $\varphi_i(h_i)$ is an even function of t, it is written as $\varphi_{\lambda}(h_{\lambda}) = g_{\lambda}(x)$. Then g_{λ} satisfies

(2.5)
$$x(x-1)\frac{d^2}{dx^2}g_{\lambda} + ((a+b+1)x-c)\frac{dg_{\lambda}}{dx} = -abg_{\lambda},$$

where $a = 4^{-1}(m_{\alpha} + 2m_{2\alpha} + 2\sqrt{-1}\lambda(H_0)), \quad b = 4^{-1}(m_{\alpha} + 2m_{2\alpha} - 2\sqrt{-1}\lambda(H_0))$ and $c = 2^{-1}(m_{\alpha} + m_{2\alpha} + 1)$ (cf. [3] p. 301). Notice that a + b, ab and c > 0. Thus $g_{\lambda}(x)$ is the hypergeometric function F(a, b, c; x). Moreover, each K-invariant function $F \in C^2(M - (o))$ satisfies

 $(t \neq 0, k \in K)$, where G is the function defined by F(t) = G(x) (cf. [3] p. 302). Thus we have

$$2^{-1}(m_{lpha}+4m_{2lpha})arDeltaarphi_{\lambda}=abarphi_{\lambda}$$
 .

If $\lambda \in \mathfrak{a}^*$, φ_{λ} is real valued and has the following asymptotic behavior:

(2.6)
$$\lim_{t\to\infty} |\mathrm{e}^{t\delta(H_0)}\varphi_{\lambda}(h_t) - (c(\lambda)\mathrm{e}^{t\sqrt{-1}\lambda(H_0)} + c(-\lambda)\mathrm{e}^{-t\sqrt{-1}\lambda(H_0)})| = 0,$$

where $c(\lambda) = \Gamma(c)\Gamma(\sqrt{-1}\lambda(H_0))\Gamma(a)^{-1}\Gamma(m_{\alpha} + 2 + 2\sqrt{-1}\lambda(H_0))^{-1}$ (cf. [3] p. 303).

Let dg_{κ} be the volume element of (\tilde{M}, g) . Then it is known (cf. [4] p. 381) that

(2.7)
$$\int_{\tilde{M}} f(g \cdot o) dg_{\kappa} = C \int_{-\infty}^{0} D(x)g(x) dx$$

for every integrable K-invariant function f on \tilde{M} and $g(x) = f(h_t \cdot o)$, $x = -(\sinh(t))^2$. Here C is a positive constant which does not depend on f and $D(x) = (-x)^{2^{-1}(m_\alpha + m_{2\alpha} - 1)}(1 - x)^{2^{-1}(m_{2\alpha} - 1)}$.

2.3. First, we notice that if $\lambda \in \mathfrak{a}^*$, $\lambda \neq 0$, then the function φ_{λ} has zero points. For, since $|c(\lambda)| = |c(-\lambda)|$, $\overline{c(\lambda)} = c(-\lambda)$, we have by (2.6)

$$arphi_{\lambda}(h_{\imath}) \thicksim 2\mathrm{e}^{-\imath\delta(H_{0})} \left| c(\lambda)
ight| \cos \left(t\lambda(H_{\scriptscriptstyle 0}) + rg\left(c(\lambda)
ight)
ight), \qquad \delta(H_{\scriptscriptstyle 0}) > 0$$

as $t \to \infty$. So let $-A_{\lambda}(0 < A_{\lambda} < \infty)$ be the first zero point of $g_{\lambda}(x), x \leq 0$. We consider also the function f_{λ} defined by

$$f_{\lambda}(x) = \begin{cases} g_{\lambda}(x)^{1+\epsilon}, & -A_{\lambda} \leq x \leq 0, \\ 0, & -\infty < x < -A_{\lambda}, \end{cases}$$

where $0 < \varepsilon < 1$. The continuous function f_{λ} on $(-\infty, 0]$ has the following properties.

LEMMA 2.3. (1') f_{λ} belongs to $C^{1}(-\infty, 0]$ and the support of f_{λ} is contained in the set $\{-A_{\lambda} \leq x \leq 0\}$, (2') f_{λ}'' is continuous on $-\infty < x < 0$ except

 $-A_{\lambda}$, (3') $f_{\lambda}''(x) = O(|x + A_{\lambda}|^{\epsilon-1})$, so $f_{\lambda}'' \in L^{1}(-\infty, 0]$, and (4') $L_{2}(f_{\lambda})(x) + (1 + \epsilon)abf_{\lambda}(x) \geq 0$, except x = 0, $-A_{\lambda}$ for the differential operator L_{2} on $(-\infty, 0]$ defined by

$$L_2 = x(x-1)\frac{d^2}{dx^2} + ((a+b+1)x-c)\frac{d}{dx}$$
.

Proof. (1') and (2') are clear. For (3'), we may show that $-A_{\lambda}$ is the zero point of g_{λ} of first order. By the properties of the hypergeometric function $g_{\lambda}(x) = F(a, b, c; x)$,

$$((-x)^{c}(1-x)^{a+b-c+1}g'_{\lambda})' = -ab(-x)^{c-1}(1-x)^{a+b-c}g_{\lambda}.$$

Then $G(x) = (-x)^{c}(1-x)^{a+b-c+1}g'_{\lambda}$ satisfies G'(x) < 0 $(-A_{\lambda} < x < 0)$ and G'(x) = 0 $(x = 0, -A_{\lambda})$. Hence G(x) > G(0) = 0 $(-A_{\lambda} \le x < 0)$, that is $g'_{\lambda}(x) > 0$ $(-A_{\lambda} \le x < 0)$. By (2.5),

$$L_2(f_\lambda)(x) + (1+\varepsilon)abf_\lambda(x) = (1+\varepsilon)\varepsilon x(x-1)(g'_\lambda)^2 g_\lambda^{\varepsilon-1} \geqq 0$$

 $(-A_{\lambda} < x < 0)$, so (4') holds.

Define a function F_{λ} on A by $F_{\lambda}(h_t) = f_{\lambda}(x)$, $x = -(\sinh(t))^2$. Then it belongs to $C^1(A)$ and is an even function, that is $F_{\lambda}(h_t) = F_{\lambda}(h_{-t})$. Hence it can be extended to \tilde{M} uniquely as a K-invariant function, denoted by the same letter F_{λ} . It satisfies the following properties.

LEMMA 2.4. F_{λ} belongs to $C^{1}(\tilde{M})$ and $C^{2}(\tilde{M} - \gamma_{2})$ where $\gamma_{2} = \{kh_{i} \cdot o; k \in K, -(\sinh(t))^{2} = 0, -A_{\lambda}\}$, and the support of F_{λ} is contained in the set $\{kh_{i} \cdot o; k \in K, -A_{\lambda} \leq -(\sinh(t))^{2}\}$. Moreover

(2.8)
$$2^{-1}(m_{\alpha}+4m_{2\alpha})(\varDelta F_{\lambda})(kh_{t}\cdot o)=-(L_{2}f_{\lambda})(x)$$

 $(t \neq 0, k \in K)$ and $\varDelta F_{\lambda} \in L^{1}(\tilde{M})$,

$$(2.9) 2^{-1}(m_{\alpha}+4m_{2\alpha})\varDelta F_{\lambda} \leq (1+\varepsilon)abF_{\lambda} on \ \tilde{M}-\gamma_{2}$$

where $L^{1}(\tilde{M})$ is the space of integrable functions on \tilde{M} with respect to the volume element dg_{κ} in (2.7).

Proof. (2.8) follows from (2.7), (2.5) and Lemma 2.3. The remainds are immediate from Lemma 2.3. Q.E.D.

Due to Lemma 2.3, there exists a sequence $\{F_{\lambda,m}\}_{m=1}^{\infty}$ of smooth even functions on A such that (5') $F_{\lambda,m}(h_t) = F_{\lambda}(h_t)$ ($|t| \leq t_o/2$) and $F_{\lambda,m}(h_t) = 0$ ($|t| \geq 2t_o$), where $t_o > 0$ is given by $-(\sinh(t_o))^2 = -A_{\lambda}$, (6') $F_{\lambda,m}$ (resp. $F'_{\lambda,m}$)

Q.E.D.

converges to F_{λ} (resp. F'_{λ}) uniformly on A as $m \to \infty$, and (7)

$$\lim_{m o \infty} \int_{-\infty}^{\infty} |F_{\lambda,m}^{\prime\prime}(h_t) - F_{\lambda}^{\prime\prime}(h_t)| \, dt = 0 \; ,$$

where F'_{λ} etc. means the differential of F_{λ} with respect to t. The functions $F_{\lambda,m}$ can be extended as K-invariant C^{∞} functions on \tilde{M} , denoted by the same letter $F_{\lambda,m}$. Then the support of $F_{\lambda,m}$ is contained in the set $\{kh_t \cdot o; k \in K, |t| \leq 2t_o\}, F_{\lambda,m}$ converges to F_{λ} uniformly on \tilde{M} and

(2.10)
$$\lim_{m\to\infty}\int_{\tilde{M}}|\Delta F_{\lambda,m}-\Delta F_{\lambda}|\,dg_{K}=0$$

by (5'), (6'), (7'), (2.5) and (2.7).

§3. Proof of Theorem A

3.1. In this section, we preserve the notations in 2.1 and introduction. Let π denote the projection of \mathbb{R}^n onto M_{Γ} . For $\gamma \in \Gamma$, let τ_{γ} be the action of γ on \mathbb{R}^n . The Laplace-Beltrami operator $-\Delta_{\Gamma}$ on M_{Γ} satisfies $\Delta(f \circ \pi) = (\Delta_{\Gamma} f) \circ \pi$ for twice differentiable functions f on M_{Γ} . The volume element on M_{Γ} induced by dx is denoted by $d\omega$. Let \mathscr{F} be the fundamental domain in \mathbb{R}^n for Γ , that is $\mathscr{F} = \{x \in \mathbb{R}^n; |x| \leq |x - \tau_{\gamma} \cdot 0| \text{ for all } \gamma \in \Gamma\}$. It is known (cf. [7]) that

(3.1)
$$\boldsymbol{R}^n = \bigcup_{r \in \Gamma} \tau_r \cdot \mathscr{F} \quad \text{and} \quad \tau_r \cdot \mathscr{F} \cap \mathscr{F}$$

has measure 0 for every $\gamma \in \Gamma$, $\gamma \neq 1$.

Now since the functions F and F_m have the compact supports, we can define the Γ -invariant functions θ and θ_m on \mathbb{R}^n by

$$\theta = \sum_{r \in \Gamma} F \circ \tau_r, \qquad heta_m = \sum_{r \in \Gamma} F_m \circ \tau_r.$$

Then there exist functions φ and φ_m on M_{Γ} such that $\varphi \circ \pi = \theta$, $\varphi_m \circ \pi = \theta_m$. These functions have the following properties:

LEMMA 3.1. (1) The function φ belongs to $C^1(M_{\Gamma})$ and $C^2(M_{\Gamma} - \pi(\gamma_1))$, and $\Delta_{\Gamma}\varphi$ belongs to $L^1(M_{\Gamma})$, (2) $\Delta_{\Gamma}\varphi \leq (1 + \varepsilon)p^2\varphi$ on $M_{\Gamma} - \pi(\gamma_1)$, and (3) $\varphi_m \in C^{\infty}(M_{\Gamma})$ converges to φ uniformly on M_{Γ} as $m \to \infty$, and

$$\lim_{m o\infty}\int_{{}^{M}{}_{\Gamma}}\left|arDelta_{{}^{\Gamma}}arphi_{{}^{m}}-arDelta_{{}^{\Gamma}}arphi
ight|d\omega=0\;.$$

Moreover (4)

$$\lim_{m o\infty}\int_{{}^M\Gamma} arphi_m({}^J_{\Gamma}arphi_m)d\omega = \int_{{}^M\Gamma} arphi({}^J_{\Gamma}arphi)d\omega \;.$$

Proof. (1), (2) and (3) follow from Lemma 2.2 and (2.4). The inequality

together with (3), implies (4).

Notice that

(3.2)
$$\int_{M_{\Gamma}} \varphi d\omega = V_{n-1} p^{-n} \int_{0}^{j_{n/2-1}} \psi(r)^{1+\epsilon} r^{n-1} dr ,$$

(3.3)
$$\int_{M_{\Gamma}} \varphi^2 d\omega \geq V_{n-1} p^{-n} \int_{0}^{j_{n/2-1}} \psi(r)^{2(1+\epsilon)} r^{n-1} dr$$

where $V_{n-1}=2\pi^{n/2} \varGamma(n/2)^{-1}$ is the total measure of the unit sphere S^{n-1} with respect to the measure induced by the volume element dx on \mathbb{R}^n . In fact, by (3.1) and the definitions of φ , θ and F, we have

$$\int_{M_{\Gamma}} \varphi d\omega = \int_{\mathscr{F}} \theta dx$$

= $\sum_{\gamma \in \Gamma} \int_{\mathscr{F}} (F \circ \tau_{\gamma}) dx$
= $\int_{\bigcup_{\gamma \in \Gamma} \tau_{\gamma} \cdot \mathscr{F}} F dx$
= $\int_{R^{n}} F dx$
= $V_{n-1} p^{-n} \int_{0}^{j_{n/2-1}} \psi(r)^{1+\epsilon} r^{n-1} dr$.

(3.2) follows from the inequality for the integrand:

$$heta^2 = \sum\limits_{ au, au'\inarGamma} (F\circ au_{ au})(F\circ au_{ au'}) \geqq \sum\limits_{ au\inarGamma} (F\circ au_{ au})^2 \ ,$$

which follows from $F \ge 0$.

3.2. It is known (cf. [1] p. 186) that the least positive eigenvalue $\lambda_{i}(\Gamma)$ of \varDelta_{Γ} satisfies the inequality

(3.4)
$$\int_{M_{\Gamma}} \eta(\varDelta_{\Gamma}\eta) d\omega \geq \lambda_{1}(\Gamma) \int_{M_{\Gamma}} \eta^{2} d\omega$$

for all $\eta \in C^{\infty}(M_{\Gamma})$ such that

$$\int_{M_{\Gamma}} \eta d\omega = 0 \; .$$

We apply (3.4) for $\eta = \varphi_m - \alpha_m$, where

$$lpha_m = \mathrm{vol}\,(M_{\varGamma})^{-1} \int_{M_{\varGamma}} \varphi_m d\omega \;.$$

Then we have

$$\int_{{}^{M}{}_{\Gamma}} arphi_m (arLambda_{arLambda} arphi_m) d\omega \geqq \lambda_{ ext{i}} (arLambda) [\int_{{}^{M}{}_{\Gamma}} arphi_m^2 d\omega - ext{vol} \, (M_{arLambda})^{ ext{-1}} igg(\int_{{}^{M}{}_{\Gamma}} arphi_m d\omega igg)^2 igg] \, .$$

As $m \to \infty$, we have

(3.5)
$$\int_{M_{\Gamma}} \varphi(\Delta_{\Gamma} \varphi) d\omega \geq \lambda_{1}(\Gamma) \left[\int_{M_{\Gamma}} \varphi^{2} d\omega - \operatorname{vol} (M_{\Gamma})^{-1} \left(\int_{M_{\Gamma}} \varphi d\omega \right)^{2} \right]$$

by (3) and (4) in Lemma 3.1. Since $\pi(\gamma_1)$ has measure 0, we have

(3.6)
$$\int_{M_{\Gamma}} \varphi(\varDelta_{\Gamma}\varphi) d\omega \leq (1+\varepsilon) p^{2} \int_{M_{\Gamma}} \varphi^{2} d\omega$$

by (2) in Lemma 3.1. Then, by (3.5) and (3.6),

$$\lambda_1(\Gamma)\Big[1-\mathrm{vol}\,(M_\Gamma)^{-1}\Bigl(\int_{M_\Gamma} arphi d\omega\Bigr)^2\Bigl(\int_{M_\Gamma} arphi^2 d\omega\Bigr)^{-1}\Big] \leq (1+arepsilon)p^2 \ .$$

Hence, together with (3.2) and (3.3), we have

$$egin{aligned} \lambda_1(arGamma) & \left[1-p^{-n}V_{n-1}\operatorname{vol}\,(M_{arGamma})^{-1} igg(\int_0^{j_{n/2-1}}\psi(r)^{1+\epsilon}r^{n-1}drigg)^2 \ & imes \left(\int_0^{j_{n/2-1}}\psi(r)^{2(1+\epsilon)}r^{n-1}drigg)^{-1}
ight] &\leq (1+\epsilon)p^2 \;. \end{aligned}$$

Letting $\varepsilon \to 0$, we obtain

PROPOSITION 3.1. Under the above situation, we have

(3.7)
$$\lambda_{i}(\Gamma) \leq \inf_{p>0} \{ p^{2} [1 - V_{n-1}K_{n} \operatorname{vol} (M_{\Gamma})^{-1} p^{-n}]^{-1}; \\ 1 - V_{n-1}K_{n} \operatorname{vol} (M_{\Gamma})^{-1} p^{-n} > 0 \}$$

where

$$K_n = \left(\int_0^{j_{n/2-1}} \psi(r) r^{n-1} dr
ight)^2 \left(\int_0^{j_{n/2-1}} \psi(r)^2 r^{n-1} dr
ight)^{-1}$$

and

$$V_{n-1} = 2\pi^{n/2} \Gamma \Big(rac{n}{2} \Big)^{-1} \, .$$

3.3. We calculate the right hand side of (3.7). Since

$$\psi(r) = \Gamma\left(\frac{n}{2}\right) \left(\frac{r}{2}\right)^{1-n/2} J_{n/2-1}(r) ,$$

we have

$$K_n = \left(\int_0^{j_{n/2-1}} J_{n/2-1}(r) r^{n/2} dr
ight)^2 \left(\int_0^{j_{n/2-1}} J_{n/2-1}(r)^2 r dr
ight)^{-1}.$$

Since the derivative of $J_{n/2}(r)r^{n/2}$ (resp. $(r^2/2)(J_{n/2-1}(r)^2 - J_{n/2-2}(r)J_{n/2}(r)))$ is $J_{n/2-1}(r)r^{n/2}$ (resp. $J_{n/2-1}(r)^2r$) (cf. [7] p. 189), we have

$$egin{aligned} K_n &= (J_{n/2}(j_{n/2-1})(j_{n/2-1})^{n/2})^2 (rac{1}{2}(j_{n/2-1})^2(-1)J_{n/2-2}(j_{n/2-1})J_{n/2}(j_{n/2-1}))^{-1}\ &= (J_{n/2}(j_{n/2-1})(j_{n/2-1})^{n/2})^2 (rac{1}{2}(j_{n/2-1})^2J_{n/2}(j_{n/2-1})^2)^{-1}\ & ext{ (by } J_{n/2}(j_{n/2-1})+J_{n/2-2}(j_{n/2-1})=0 ext{ (cf. [7] p. 158))}\ ,\ &= 2(j_{n/2-1})^{n-2}\ . \end{aligned}$$

Put

$$G(p) = p^{2}(1 - V_{n-1}K_{n} \operatorname{vol} (M_{\Gamma})^{-1}p^{-n})^{-1}$$

and

$$p_{0} = (2^{-1}(2+n)V_{n-1}K_{n} \operatorname{vol} (M_{\Gamma})^{-1})^{1/n}$$
.

If $1 - V_{n-1}K_n \operatorname{vol}(M_{\Gamma})^{-1}p^{-n} > 0$, then

$$G'(p) < 0 \, \, (p < p_{\scriptscriptstyle 0}) \;, \qquad G'(p) > 0 \, \, (p > p_{\scriptscriptstyle 0}) \; ext{and} \; \; G'(p_{\scriptscriptstyle 0}) = 0 \;.$$

So we have

$$egin{aligned} &\inf_{p>0} \left\{ G(p); 1 - V_{n-1}K_n \operatorname{vol}{(M_{arsigma})^{-1}p^{-n}} > 0
ight\} = G(p_0) \ &= 2^{-2/n}n^{-1}(2+n)^{2/n+1}(V_{n-1}K_n \operatorname{vol}{(M_{arsigma})^{-1}})^{2/n} \ &= n^{-1}(2+n)^{2/n+1} \Big(rac{2\pi^{n/2}}{\Gamma(n/2)} \Big)^{2/n} (j_{n/2-1})^{2-4/n} \operatorname{vol}{(M_{arsigma})^{-2/n}} \end{aligned}$$

Thus Theorem A is proved.

§4. Proof of Theorem B

4.1. In this section, we preserve the notations in 2.2, 2.3 and introduction. Theorem B will be proved by the same way as Theorem A. Let

 π denote the projection of \tilde{M} onto M_{Γ} . For $\gamma \in \Gamma$, let τ_{γ} be the action of γ on \tilde{M} . The Laplace-Beltrami operator $-\varDelta_{\Gamma}$ on M satisfies $\varDelta(f \circ \pi) = (\varDelta_{\Gamma} f) \circ \pi$ for all twice differentiable functions f on M_{Γ} . The volume element on M_{Γ} induced by dg_{κ} is denoted by $d\omega$. Let \mathscr{F} be the fundamental domain in \tilde{M} for Γ , that is $\mathscr{F} = \{g \cdot o \in \tilde{M}; r(g \cdot o, o) \leq r(g \cdot o, \tau_{\gamma} \cdot o) \text{ for all } \gamma \in \Gamma\}$ where $r(\cdot, \cdot)$ is the distance function on (\tilde{M}, g) . It is known (for example, cf. [2]) that

$$(4.1) \qquad \qquad \tilde{M}=\bigcup_{r\in r}\tau_r\mathscr{F} \quad \text{and} \quad \tau_r\mathscr{F}\cap \mathscr{F}$$

has measure 0 for all $\gamma \in \Gamma$, $\gamma \neq 1$.

Since F_{λ} and $F_{\lambda,m}$ have the compact supports, we define the Γ -invariant functions θ_{λ} and $\theta_{\lambda,m}$ on \tilde{M} by

$$heta_{\lambda} = \sum_{\tau \in \Gamma} F_{\lambda} \circ au_{\tau} , \qquad heta_{\lambda,m} = \sum_{\tau \in \Gamma} F_{\lambda,m} \circ au_{\tau} .$$

Then there exist functions φ_{λ} and $\varphi_{\lambda,m}$ on M_{Γ} such that $\varphi_{\lambda} \circ \pi = \theta_{\lambda}$ and $\varphi_{\lambda,m} \circ \pi = \theta_{\lambda,m}$. These functions have the following properties.

LEMMA 4.1. (1) The function φ_{λ} belongs to $C^{1}(M_{\Gamma})$ and $C^{2}(M_{\Gamma} - \pi(\gamma_{2}))$, and $\Delta_{\Gamma}\varphi_{\lambda}$ belongs to $L^{1}(M_{\Gamma})$, (2) $2^{-1}(m_{\alpha} + 4m_{2\alpha})\Delta_{\Gamma}\varphi_{\lambda} \leq (1 + \varepsilon)ab\varphi_{\lambda}$ on $M_{\Gamma} - \pi(\gamma_{2})$, and (3) $\varphi_{\lambda,m} \in C^{\infty}(M_{\Gamma})$ converges to φ_{λ} uniformly on M_{Γ} as $m \to \infty$ and

$$\lim_{m\to\infty}\int_{M_{\Gamma}}\left|\varDelta_{\Gamma}\varphi_{\lambda,m}-\varDelta_{\Gamma}\varphi_{\lambda}\right|d\omega=0.$$

Moreover (4)

$$\lim_{m\to\infty}\int_{{}^{M}{}_{\Gamma}}\varphi_{\lambda,m}(\varDelta_{\Gamma}\varphi_{\lambda,m})d\omega=\int_{{}^{M}{}_{\Gamma}}\varphi_{\lambda}(\varDelta_{\Gamma}\varphi_{\lambda})d\omega\;.$$

Proofs are similar to Lemma 3.1.

Notice that

(4.2)
$$\int_{\mathcal{M}_{\Gamma}} \varphi_{\lambda} d\omega = \int_{\tilde{\mathcal{M}}} F_{\lambda} dg_{\kappa} = C \int_{-A_{\lambda}}^{0} D(x) g_{\lambda}(x)^{1+\varepsilon} dx ,$$

(4.3)
$$\int_{\mathcal{M}_{\Gamma}} \varphi_{\lambda}^{2} d\omega \geq C \int_{-A_{\lambda}}^{0} D(x) g_{\lambda}(x)^{2(1+\epsilon)} dx .$$

Then, due to (4.2), (4.3) and Lemma 4.1, we have the following proposition by the similar manner to Proposition 3.1.

PROPOSITION 4.1. Under the above assumption, we obtain

$$(4.4) \lambda_{\iota}(\Gamma)[1-C \operatorname{vol}(M_{\Gamma})^{-1}K_{\iota}] \leq 2(m_{\alpha}+4m_{2\alpha})^{-1}ab,$$

where

$$K_{\scriptscriptstyle \lambda} = \left(\int_{-A_{\scriptscriptstyle \lambda}}^{0} D(x)g_{\scriptscriptstyle \lambda}(x)dx
ight)^2 \left(\int_{-A_{\scriptscriptstyle \lambda}}^{0} D(x)g_{\scriptscriptstyle \lambda}(x)^2dx
ight)^{-1}$$

the constant C and the function D(x) are the ones in (2.7).

4.2. We prove Theorem B due to Proposition 4.1. We fix any $\lambda \in \mathfrak{a}^*$, $\lambda \neq 0$. For a discrete subgroup Γ of G with sufficiently large vol (M_{Γ}) such that vol $(M_{\Gamma}) > CK_{\lambda}$, we have, by Proposition 4.1,

$$\lambda_{1}(\Gamma) \leq 2(m_{\alpha}+4m_{2\alpha})^{-1}ab[1-C\operatorname{vol}(M_{\Gamma})^{-1}K_{\lambda}]^{-1}$$

Hence, by the definition of a and b, we have

$$\lim_{\mathrm{vol}\;(M_{\Gamma}) o\infty} \sup_{\lambda_1(\Gamma)} \leq 2(m_{lpha}+4m_{2lpha})^{-1}ab \ = rac{1}{8}(m_{lpha}+4m_{2lpha})^{-1}((m_{lpha}+4m_{2lpha})^2+4\lambda(H_0)^2)$$

for every $\lambda \in \mathfrak{a}^*$, $\lambda \neq 0$. So we have

$$\lim_{\mathrm{vol}} \sup_{(M_{\Gamma}) \to \infty} \lambda_{\mathrm{l}}(\Gamma) \leq \tfrac{1}{8} (m_{\alpha} + 4m_{2\alpha})^{-1} (m_{\alpha} + 2m_{2\alpha})^{2} \ .$$

Here $B(H_0, H_0) = 2(m_a + 4m_{2a})$ implies that the right hand side of the above inequality coincides with $|\delta|^2 = (\delta, \delta)$. Thus Theorem B is proved.

§5. Supremum of L² spectrum

For a complete orientable Riemannian manifold (M, g) (not necessarily compact), consider

$$\sigma(M,g) = \inf_{\varphi \in C_{\sigma}^{\infty}(M)} rac{\int_{M} (\mathcal{\Delta}_{g} \varphi) \varphi dv_{g}}{\int_{M} \varphi^{2} dv_{g}} ,$$

where $C_o^{\infty}(M)$ is the space of all real valued C^{∞} functions on M with compact support, $-\varDelta_g$ is the Laplace-Beltrami operator of (M, g) acting on smooth functions on M, and dv_g is the volume element of (M, g) (cf. [11]). Then $\sigma(M, g) \geq 0$ and it is called the supremum of the L^2 spectrum of (M, g) (cf. [11]). Since the operator \varDelta_g is a real symmetric operator, we notice that

$$\sigma(M,g) = \inf_{arphi \in C_0^\infty(M)} c \; rac{\displaystyle \int_M (arLag arphi) ar arphi dv_g}{\displaystyle \int_M arphi ar arphi dv_g} \; ,$$

where $C_o^{\infty}(M)^c$ is the space of all complex valued C^{∞} functions on M with compact support, and $\bar{\varphi}(x)$, $x \in M$, is the complex conjugate of $\varphi(x)$.

In this section, we calculate $\sigma(M, g)$ when (M, g) is a Riemannian symmetric space of non-compact type of rank one. We preserve the notations in § 2.

PROPOSITION 5.1. Let (\tilde{M}, g) be a Riemannian symmetric space of noncompact type (not necessarily of rank one). We normalize g in such a way that it is induced by the Killing form of the Lie algebra g of the connected component G of the Lie group of all isometries of (\tilde{M}, g) . Then we have

$$\sigma(M,g) \ge |\delta|^2$$
 ,

where $|\delta|$ is the norm of $\delta = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_{\alpha} \alpha$ by the inner product induced from the Killing form as in §2.

Proof. It holds (cf. [10]) that

(5.1)
$$\int_{\tilde{M}} (\Delta_g f) \bar{f} dg_{\kappa} = C \int_{\mathfrak{a}^* \times K/Z_{\kappa}(\mathfrak{a})} (\Delta_g f)^{\sim}(\lambda, \dot{k}) \overline{\tilde{f}(\lambda, \dot{k})} |c(\lambda)|^{-2} d\lambda d\dot{k} ,$$

for each $f \in C_0^{\infty}(\tilde{M})$. Here C is a positive constant, not depending on f, $Z_{\kappa}(\mathfrak{a})$ is the centralizer of \mathfrak{a} in K, $\tilde{f}(\lambda, k)$ ($\lambda \in \mathfrak{a}^*$, $k \in K/Z_{\kappa}(\mathfrak{a})$) is the Fourier transform of f defined by

$$ilde{f}(\lambda,\dot{k}) = \int_{\tilde{M}} f(g\cdot o) e^{-(\sqrt{-1}\lambda+\delta)H(g^{-1}k)} dg_{\kappa} \; ,$$

 $d\lambda$ is the Euclidean measure on α^* , and $d\dot{k}$ is the measure on $K/Z_\kappa(\alpha)$ induced by the Haar measure dk on K (cf. [10]). Since $(\Delta_g f)^{\sim}(\lambda, \dot{k}) = (|\lambda|^2 + |\delta|^2)\tilde{f}(\lambda, \dot{k})$ (cf. [12] p. 92, [13] p. 458),

the right hand side of (5.1)

$$\geq |\delta|^2 C \int_{\mathfrak{a}^* \times K/Z_K(\mathfrak{a})} |\tilde{f}(\lambda, \dot{k})|^2 |c(\lambda)|^{-2} d\lambda \, d\dot{k}$$

$$= |\delta|^2 \int_{\tilde{\mathcal{M}}} f \bar{f} dg_K \, .$$

Thus we have $\sigma(\tilde{M}, g) \ge |\delta|^2$.

In particular, when (\tilde{M}, g) is of rank one, the following theorem holds.

Q.E.D.

THEOREM C. Let (\tilde{M}, g) be a Riemannian symmetric space of noncompact type of rank one. We normalize g as in Proposition 5.1. Then we have

 $\sigma(ilde{M},g) = |\delta|^2$.

Proof. We may prove $\sigma(\tilde{M}, g) \leq |\delta|^2$. We use the notations in 2.3. Since the supports of F_{λ} and $F_{\lambda,m}$, $m = 1, 2, \cdots$ are contained in the set $\{kh_t \cdot o; k \in K, 0 \leq t \leq 2t_o\}$, and $F_{\lambda,m}$ converges to F_{λ} uniformly on \tilde{M} ,

(5.2)
$$\lim_{m\to\infty}\int_{\tilde{M}}F_{\lambda,m}^2dg_K=\int_{\tilde{M}}F_{\lambda}^2dg_K.$$

Moreover we have

(5.3)
$$\lim_{m\to\infty}\int_{\tilde{M}} (\varDelta_g F_{\lambda,m}) F_{\lambda,m} dg_K = \int_{\tilde{M}} (\varDelta_g F_{\lambda}) F_{\lambda} dg_K$$

In fact, it follows from the inequality

$$\begin{split} \left| \int_{\tilde{\mathfrak{M}}} \left(\mathscr{\Delta}_{g} F_{\lambda,m} \right) F_{\lambda,m} dg_{K} - \int_{\tilde{\mathfrak{M}}} \left(\mathscr{\Delta}_{g} F_{\lambda} \right) F_{\lambda} dg_{K} \right| \\ & \leq \| \mathscr{\Delta}_{g} F_{\lambda,m} - \mathscr{\Delta}_{g} F_{\lambda} \|_{L^{1}(\tilde{\mathfrak{M}})} \sup_{\tilde{\mathfrak{M}}} |F_{\lambda,m}| + \| \mathscr{\Delta}_{g} F_{\lambda} \|_{L^{1}(\tilde{\mathfrak{M}})} \sup_{\tilde{\mathfrak{M}}} |F_{\lambda,m} - F_{\lambda}| , \end{split}$$

(2.10), (2.8) and Lemma 2.4.

Thus we have

(5.4)
$$\sigma(\tilde{M},g)\int_{\tilde{M}}F_{\lambda}^{2}dg_{\kappa}\leq\int_{\tilde{M}}(\varDelta_{g}F_{\lambda})F_{\lambda}dg_{\kappa},$$

by (5.2), (5.3) and the definition of $\sigma(\tilde{M}, g)$. Moreover we estimate

the right hand side of (5.4)
$$\leq 2(m_{lpha}+4m_{2lpha})^{-1}(1+arepsilon)ab\int_{ ilde{M}}F_{\lambda}^{2}dg_{K}\,,$$

due to (2.9). Then

$$\sigma(ilde{M},g) \leq 2(m_{lpha}+4m_{2lpha})^{-1}(1+arepsilon)ab$$
 ,

for every $0 < \varepsilon < 1$ and $0 \neq \lambda \in \mathfrak{a}^*$. Thus we have $\sigma(\tilde{M}, g) \leq |\delta|^{\varepsilon}$. Q.E.D.

Remark. Due to 2.1, it is proved by the similar way to Theorem C, that

$$\sigma(\mathbf{R}^n,g)=0$$
,

where (\mathbf{R}^n, g) is the standard Euclidean space.

References

- [1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture note in Math., **194**, Springer-Verlag, New York, 1971.
- [2] R. Gangolli, Asymptotic behavior of spectra of compact quotients of certain symmetric spaces, Acta Math., 12 (1968), 151-192.
- [3] Harish-Chandra, Spherical functions on a semisimple Lie group, I, Amer. J. Math., 80 (1958), 241-310.
- [4] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [5] H. Huber, Über den ersten Eigenwert des Laplace-Operators auf kompakten Riemannschen Flachen, Commet. Math. Helv., 49 (1974), 251-259.
- [6] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, New York, 1973.
- [7] S. Moriguchi, K. Udagawa and S. Hitotsumatsu, Mathematical formulas, III (in Japanese), Iwanami Shoten, Tokyo, 1960.
- [8] T. Sunada, Spectrum of a compact flat manifold, Commet. Math. Helv., 53 (1978), 613-621.
- [9] N. J. Vilenkin, Special functions and the theory of group representations, Trans. Math. Mono., Amer. Math. Soc., 22 (1968).
- [10] G. Warner, Harmonic analysis on semi-simple Lie groups, II, Springer-Verlag, New York, 1972.
- [11] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), 289-297.
- [12] S. Helgason, A duality for symmetric spaces with applications to group representations, Advance Math., 5 (1970), 1-154.
- [13] —, The surjectivity of invariant differential operators on symmetric spaces, I, Ann. Math., 98 (1973), 451-479.

Department of Mathematics College of General Education Tohoku University