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DECOMPOSITION OF REPRESENTATIONS OF SL(2, C)

INDUCED BY THE CONTINUOUS SERIES OF E(2)

HITOSHI KANETA

§ 1. Introduction

Since the representations of SL(2, C) induced by irreducible unitary
representations of E(2) = i ( e _iΨJ: ζe C> appear as the restriction to
the Lorentz group of some irreducible unitary representations of the in-
homogeneous Lorentz group, the decomposition of the induced represen-
tations deserves our investigation. For the representations of SL(2, C)
induced by irreducible unitary representations with discrete spin of E(2),
the decomposition has been obtained by Mukunda [9]. We hope that our
analysis will justify the calculations by Chakrabarti [1], [2] and [3].

As is known (see, for example, § 3 of [6]), the problem to decompose
a unitary representation of SL{2, C) into irreducible ones can be reduced
to the problem to specify the spectral type of certain selfadjoint operators.
In our case we must deal with ordinary differential operators Lg and Lp

k

0 > 0 and k = 1/2,1,3/2, •••):

(1) U = -9Ϊ + A" 2 r in L\E) ,

(2) U = -2i(v)dτ + 2ίpe-*Vk in U(R)2k+ί = Σ Θ L\R) ,

where (y) stands for a diagonal matrix [k, k — 1, , , , — k] and Vk

is a skew symmetric constant matrix whose (v, v + 1) component and (v,
v — 1) component are equal to

-V(k- v)(k + v + l)/2 and V(k - v + ί)(k + v)\2

respectively, remaining components being equal to zero. To study the
spectral type of these operators is itself of our interest.
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§2. Definitions and main theorems

For a positive number p denote by π+

p (resp. π~) a unitary representation

of E(2) on the Hubert space

L+ = |/eL2(0,4τr):/(ψ) = Σ <M^*

(resp. L- = f / e L2(0, 4τr): /(ψ) = £ o
\ I V + 1/2GZ

defined by

( 3 )

In the following, G and Go stands for SL(2, C) and E(2) respectively. One

realization of the induced representation IndGo τ G 7t* is to be defined. As

is known,

is a G-homogeneous space with the G-action y-g = g*yg, whose G-invariant

measure dμ and the little group at ( n n) are dy^y^dyjyo and Go respec-

i l Dfii h j i GV b () *( ) htively. Defining the projection p:G—>V0 by p(g) = ^ * ( Q Q)^? w e attach

to an element u of SU(2) a section sM: V0->G such that suop((τ,θ9<p}u)

= (τ,θ,ψ)u, where

/ r β ^v = /βτ/2 0 \/cos/9/2 -sin^/2\/β^/ 2 0
^ ' ' φ ' \0 e-τ/2)\sinθl2 cos6>/2/\0 β'*

with (T, θ,φ)eRx (0, π) X (0, 2τr). We denote by ί/;'w (resp. U'>u) a unitary

representation of G on the Hubert space H+ = L2(L+, Vo, j«) (resp. H~ =

L2(L", y0>iEι)) defined by

( 4 ) U?

( 5 ) sM(y) = gosu(y g).

A representation (C7, £Γ) of G determines a sequence of mutually

singular σ-finite measures {σu σ2, , σTO} on G = J ; = o T̂O (see the preced-

ing paragraph of Lemma 2 of [6]) such that

( 6 ) U ~ I® T^dσ, ® [2] J® Γw,,d(72 ® Θ
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(see the preceding paragraph of Lemma 3 of [6]). Denoting by σjtaCtP the

sum of the absolutely continuous and purely discontinuous parts in

Lebesgue's decomposition of the measure σj9 a representation UaCtP of G

is understood to be one which is unitarily equivalent to

Γ TmtidσltaetP θ [2] ί@ Tm,λdσ2,ac,p θ θ [tf 0] Γ Γ B Λ , « , P
J G J G J G

Similarly, for a selfadjoint operator L, we denote by Lac>p the restriction

of L to the subspace which is orthogonal to the singular continuous

subspace (p. 517, [7]). We also define Uac and Lac similarly. Finally, for

a σ-finite measure σ on R and a Borel set B, let λdσ denote the self-
JB #

adjoint multiplication operator: f(λ)-^λf(λ) in the Hubert space Π(B,σ).

THEOREM 1. (i) Lξ is unitarily equivalent to λdλ, where R+ =
J R +

(0, oo). (ii) For a positive half-integer k, Lp

ktCbCiP is unitarily equivalent to
c®

[k + 1/2] λdλ. For a positive integer k, Lp

k aC)P is unitarily equivalent to
J E

Γ® Γ® —
[kj λdλ θ [#0] λδ(dλ), where δ denotes Dime's measure.

J R J {0}

THEOREM 2. Under the notation above it holds that

U;£ cz Γ SOtXdλ θ Σ θ ί@ Smβλ ,
J €$ m = 2,4, . . J £m

where Smtλ denotes a representation of the so-called continuous series (§ 10,

[10]) and £ϊ={(O,λ):λ^O}.

Remark. As will be shown in the appendix, corresponding measures

Oj of the representation E/*'e are absolutely continuous, so it holds that

7T+,e ~ 7Ύ+,e T7-,e ^ TJ-,e

Consequently it also holds that Lf ~ Llt<UiP.

% 3. Derivation of differential operators (1) and (2)

We refer to [6] (especially, § 3) the notations in the following. As is

verified easily, the operators ω3 corresponding to the representation ϋ^ ' β

acts on H0

±e ^{feH*: f(y, ψ)eC?(Yχ (0, 4τr))} as smooth differential

operators, where Y denotes the image of the projection p:{p((τ,θ,φ}):
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(τ, θy φ) e R X (0, π) X (0, 2π)}. After some tedious computation we obtain

their explicit forms in terms of the coordinate (r, θ, φ, ψ).

(y0, yi, y2, yd = ieΓ(l, - sin θ sin φ, - sin θ cos p, - cos θ) ,

dμ = β2r sin θdτdθdψ ,

ft>! = sin io9, -f cot θ cos c o d , , ^ 9
sintf

ω2 = cos φdθ — cot ^ sin φdψ + 9̂ . ,
smtf

ω8 = 9,, ,

ω4 = — sin θ cos cpdr — cos θ cos c ^ + s m φ dφ — cot θ sin
sin^

+ ipe~τ(cos θ cos p cos ψ — sin ^ sin ψ) ,

cy5 = sin θ sin ?̂9Γ + cos θ sin ^ + —;—¥-dψ — cot θ cos p9Ψ

sin θ

+ ipe~τ(—cos ^ sin 9 cos ψ — cos φ sin ψ) ,

ω6 = cos θdτ — sin θdθ + ί|θβ"Γ sin ^ cos ψ .

Further,

£Γ+ = e-iψ(idθ + c o t ^ - - Λ - V

H. = eίψ(idθ - cot 09, + - A _ a Λ #g = j ^
\ sin 0 /

- icotθdΨsin^
+ ipe~τ(cos θ cos ψ — i sin ψ) > ,

F_ = eίί0(sin ^9T + cot θdθ + ——dφ - i cot θdΨI sin0

+ iρe~τ(—cos 0 cos ψ — ίsi

F3 = ίω6 ,

Δ = (F+F_ + F_F+ + 2F3

2)/2 + Δo - 1 ,

T Ψ + ^Pe~τ s i n Ψdθ - 2lpe cos ψdΨ

sin^
+ ( - 2 + 2ipe~T cot 0 cos ψ)9^ .

For k = 0, j , 1, , denote by PFfc the £-th heighest weight vectors,

i.e. the solutions of equations
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H3f = kf, Δof = -k(k + 1)/ for fe H*

99

with respect to the representation U**e. Quite similarly to the §4 of [6],

we obtain the following table.

i/

k: Wk Ψ {0}

0,1, •

1/2, 3/2,

wk

{ Σ Λ(τ)Pί,.,(cos ff)e-"'+< +:/, 6 L2(i?, e2rdr)}

Denote by Ws° a subspace of W* consisting of functions with fv e C^(R).

Then making use of formulas on P£,re ([6], § 4), we calculate the restrictions

Δ\Wt, Δ'\W°k and F+\Wζ.

( 8 )

( 9 )

(10)

= [-9? - 29, +

,/, - 2/, - ve-

ipe~W(k -v + ϊ)(k

FJ =
2) .- î-i

v)(k ~
pic + 1

Now it is clear that the natural isometry

Jk:Wk->L\R)2k+1=

defined by

transforms J|Wo and A'\Wk to (1) and (2) respectively (notice that the

differential operators (1) and (2), with domain C0°°(B) and C0°°(i2)2fc+1 respec-

tively, are essentially self adjoint).

§ 4. Proof of theorems

4.1. The spectral type of the differential operator (1). Since the

operator Lg is unitarily equivalent to the differential operator

(I 7 ) -dl + e2 ' ,
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we will calculate the spectral matrix of the latter. Let φό (j — 1, 2) be
solutions of the equation

[-31 + e2τ - λ]φ(τ) = 0 with initial value M 0 ) φ^°Ά = (1 °) .
\̂ i(0) φ2(0)/ \0 1/

Here lϊnλ is assumed to be positive. By change of variable t = e~% ψj(t)
= (pj{z) satisfies

(12)

Two independent solutions of (12) are Ij—λ(t) and Kj—λ{t) ([8], p. 161). Set
v = V—λ By our convention Imp is negative. Since |Jv(ί)/Jζ,(ί)|->0
(resp. oo), as ί->0 (resp. oo), the functions m.^λ) and m+co(X) are equal
to Iv'(l)/Jv(l) and ^(lj/lζίl) respectively (for the definition of m±, see § 5
in chap. 9 of [4]). By the aid of the integral representation ([8], pp. 186-187)

l(z) = —j==M§L=, Γ ch (2: cos ί) aπcPθdθ for Re p > -1/2 ,
V 7Γ Γ(v + 1/2) J 0

Kv{z) = Γ e~βcllί ch vtdt for Re * > -1/2, Re z > 0 ,
Jo

we deduce that for λ > 0

7 /,v sh7rV/l
cos VΎtdtΐdλ ,

J
dftl(;i)

π

dp22(λ) = shπ/fλ ΪΓ Ch t e-cht cos VΎtdtYdλ ,

φ21(^) = dpί2(λ)

W .̂ehί c o s V T ^ V Γ ch ίe"cht cos VΎtdήdλ .

Since the rank of the matrix (dρjk/dλ) is equal to one almost everywhere
and since the operator Lξ is positive definite, (i) of Theorem 1 is now
proved.

4.2. The spectral type of the differential operator. The next lemma
r®

shows that Lp

k contains [k;] λdλ, where V denotes the greatest integer

such that hf < k + 1/2.

LEMMA 1. For an f = (/*, •-,/_*)< in C?(R)2k+1 = Σ Θ C0"(R) with fv
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= 0 for non-positive index v, eitL^e~UL^f converges strongly in L\R)2k+1 as

t —> co.

Proof. As is well known ([7], Theorem 3.7 in chap. X) the conver-

gence follows from the integrability of the norm \\e~τVke~ίtLkf\\ on some

interval (s, oo), where Vk is the constant matrix such that Lp

k = L°k +

2ipe~TVk. Assume that a finite interval (—c,c) contains the support of /

and denote the maximum of the matrix elements of Vk (resp. maxV)Γ |/v(r)|)

by v (resp, a). Since e~itL°kf(τ) = (fv(τ — 2vt)), we have for any large t an

inequality

\\e-τVke-ίtL«f\\ < ^

which implies the integrability of the left side. Q.E.D.

For the time being k is assumed to be a positive half-integer. We

recall the eigenfunction expansion for Li. Suppose a matrix valued

function Φ(τ, X) satisfies

(13) [-2i(v)dτ + 2ipe-*Vk - λ]Φ(τ, λ) = 0

with initial value Φ(0, X) = E2k+1 (the unit matrix). Then we have

PROPOSITION 1. There exists a spectral matrix {ρvv) with the following

properties.

( i ) (pvv) is an hermitian (2k + 1) X (2k + ί)-matrix valued function

on R.

(ii) 0v(Λ) — PvΛ^i)) is non-negative definite for λ2 > λt.

(iii) The total variation of ρvv> is finite on any finite interval.

(iv) For an fe L2(R)2k+u put

Ff(λ) = lim ί Φ*(τ, λ)f(τ)dτ in U((pvv)) .

Then F is a unitary operator on L2(R)2k+ί, and it transforms Lp

k to the self-

adjoint multiplication operator M (Mg(λ) = λg(λ)) in U((pvv)). The inverse

F1 of F is given by

(14) F->g(τ) = lim f Σ ψλ^ X)gΛX)dpw> in U(R)2k + 1 ,

where ψv is the v-th component column vector of the matrix Φ = (ψk, , φ_k).

We may allow to skip the proof of the proposition, because it follows

the same development as the chapter 10 of [4].
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Let (pvv) be the spectral matrix of Lp

k. Then there exist an hermitian

matrix valued function h and a locally bounded measure a such that

f Σ gMApw = f Σ SMΛwdσ for any g e U((pJ)) .
J vv' J vv'

If the multiplicity of Lξ. is equal to m, there exist some finite Borel set

B of R, a unitary matrix valued measurable function £7 and strictly positive

measurable functions hu , hm such that

(15) (Mi)) = TOW, . M A o, , o] u*(λ)

on i? almost everywhere with respect to σ. We may assume that K'1 <

ht<C K for each j for some positive constant K.

PROPOSITION 2. For a positive half-integer k, the multiplicity m of Lp

k

does not exceed k + 1/2.

Our proof of the proposition is lengthy. Two lemmas will precede

the proof. By change of variable t = e~% Ψ(t, λ) = Φ(τ, X) will satisfy

(13') [dt

We note that t = oo is the irregular singular point of the equation above.

LEMMA 2. The matrix {v)~ιVk has Jordan's canonical form

0

0 J(-l,k + 1/2)

\

where J(a,j) denotes a Jordan block.

Proof. Define one-parameter groups ωt (i = 1, 3) of G by

ίΛ /cosί/2 -sinί/2\ ίA (eit/2 0 \

For a one parameter subgroup ω(t) and a finite dimensional continuous

representation T of G, denote ώ and T(ώ) the derivatives at t — 0 of ω(t)

and T(ω(t)) respectively. We know that there exists a (2k + l)-dimensional

analytic representation Tk of G such that the restriction Tfc|S£/(2) is an

irreducible unitary representation of SU(2) satisfying Tk(ώ3) = i(v) and

Tk(ώ^ = Vk. Obviously the characteristic polynomial P(x) of the matrix

(i;)~1^7fc is proportional to άet((v)x— Vk). Since there exists an element
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g of G satisfying —ixώ3 — ώj = g'Wx2 — lώzg if and only if x2 Φ 1, and

since it holds that Tk(—ίxώ3 — ώj) = (y)x — Vfc for any xe C, only —1 and

1 are possible characteristic roots. The multiplicity of them are equal to

k + 1/2, because P(x) is even. As one sees easily, eigen-spaces for eigen-

value — 1 or 1 are of dimension one. Q.E.D.

LEMMA 3. For any finite interval of real λ, there exists a positive number

t0 (independent of X) and a (k + Il2)-dίmensional subspace Sλ of C2k+1 such

that for any solution ψ of (130,

(16) Γ g-'Mfll'cft = oo for any a, β (0 < a < 2p, 0 < β) ,
Jto tβ

provide ψ(t0) φ Sλ.

Proof. Put η(t) = e~2ptψ(t). Then η satisfies

(17) [dt + μ(v)-*Vk + 2P- - ^ W ' ψ ω - 0 .

By Lemma 2, the Theorems 4.1 and 4.3 in the chapter 13 of [4], a non-

zero solution η of (17) satisfies

^ ' = - 3 p or - p .
ί-oo t

Applying the Theorem 4.4 in the same chapter to the equation (17), we

conclude that there exist a positive number tf

0 and a (k + l/2)-dimensional

subspace Si of C2fc+1 such that

(18) lim sup l o g | ^ ) l = - 3p if η{t'o) e S/\{0}
ί-oo t

= -P if

Set ί0 = £o and Ŝ  = S/. We claim that t0 and Sλ posess the desired property.

In fact, if non-zero solution of (130 with ψ(t0) $ Sλ does not satisfy (16),

then the derivative of the integrand in (16) is also integrable on (t0, oo)

because ψ satisfies (130- Thus the integrand converges to zero as t—> oo,

contradicting to (18). Q.E.D.

Proof of Proposition 2. Let B, U and hj (j = 1, , m) be so chosen

as stated in the paragraph just before Proposition 2. Set Ψ(t, λ)U(X) =

(ψj(t, λ)). The assumption m > k + 1/2 shall lead to a contradiction. For
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the finite Borel set J5, there exist a positive number t0 and (k + 1/2)-

dimensional subspace Sλ of C2k+ι for which Lemma 3 holds. Fix a vector

valued measurable function g0 = (gu ',gmy so that \go(Z)\ = 1 and that

2] ψ/£0, X)hjgj(X) 6 Ŝ . Then for any g in L2(J3, σ), the function defined by

f

is integrable on (t0, co) as well as its derivative because of (130 a n ( i (14).

Thus the square of the integral converges to zero as £—*oo. By the

resonance theorem ([12], p. 69), we have

sup f | Σ M*> QhjgM)? dσ/t < oo .
fet0 JB

This contradicts to Lemma 3. Q.E.D.

From now on k denotes a positive integer. Denote by L£x the rest-

riction of L% to the orthogonal complement L2(R)^k+1 of the eigenspace

for eigenvalue zero. We shall mention to the eigenfunction expansion

for UK Let Φ(τ, X) = (φk, , φl9 φ_u , φ_k)(τ, λ) be a (2k + 1) X (2ft)-

matrix valued function satisfying (13) with initial value Φ(0, X) = (φk, ,

ψ-k) (0,^) = E2k, where Φ denotes the (2h) X (2/?)-matrix obtained by ex-

pelling the 0-th row of Φ.

PROPOSITION 3. There exists a spectral matrix (pvv) for Lp

k

L with the

following properties.

( i ) (pvv) is an hermitian (2k) X (2k)-matrix valued function on i?*

(ii) (pvv>(λ^) — pvv>(λj) is a non-negative definite for λ2 > λu λxλz > 0

(iii) The total variation of pvv, is finite on any finite interval lying out-

side of a neighborhood of zero.

(iv) For an fe L2(i2)i+i, put

Ff(λ) = lim f Φ*(τ, λ)f(τ)dτ in U((pvv)) .
N-*oo J |r|<iV

Then F is a unitary operator and transforms Lp

k

L to the self adjoint multipli-

cation operator M (Mg(λ) = λg(X)) in U((pvv)). The inverse F1 of F is given

by the formula:

F~'g(τ) = lim f Σ φX*> teAMp* in U(R)2k+ί .
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The proof of the proposition is almost the same as that of Proposition

1. However, in connection with the proof of Parseval equality, we should

note that the image L&C?(R)2k+d of Lp

k is dense in L2(i2)^+1 and that the

following inequalities hold.

f λ* \g{λ)f dPδ(λ) < f \g(λ)f dPδ(X) < ί \Uff dτ ,

f λ2\g(λ)fdPi(X)<ε-*\ λi\g(λ)fdps(λ)<ε-i\ \L?ffdτ.
JK\λ\<* JK\λ}<ε JR

PROPOSITION 4. For a positive integer k, the multiplicity m of Lp

k

L does

not exceed k.

For the proof we again prepare some auxiliary lemmas. By change

of variables t = e~τ and ψ(t) = φ(τ), (13) takes the form

(13") [(v)dt = 0 .

Since Lp

k and JJC+IF+J^1 act on C0°°(i?)2fc+1 as smooth differential operators,

denote by Lξ. and F+>1c their trivial extensions to C°°(i?)2fc+1.

LEMMA 4. It holds that

( i i ) (F+J)k+1 = iPV(2k + 1)/(2A + 3)e-% for f=(fk, , f_k)\

(iii) The kernel of F+>lc is {0}.

Proof. The fact that Δf and F+ commute yields (i). The assertions

(ii) and (iii) follow from (10). Q.E.D.

LEMMA 5. For λΦO, the k-th component ψk of a solution of (13")

satisfies a differential equation

[ 2k "I

.7=0 J

where the coefficients akjj are of the form

finite

aκ,i(t, X) = Σ akJ,e(X)t-e

with

( i ) ak,2k = 1,

(ii) akij>t{X) is a polynomial of I for ί> 1,

(iii) Σf= oα f c,,,o.τ' = ( * 2 - pΎ
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Proof. Let ψ = (ψv) be a solution of (13"). Through the recursion

relation

(20) ψv = αwAΨwi + —βv+iΨu + T»+ιΨ»+2 9
t

we can represent ψv in terms of ψk and its derivatives ψij). Clearly (ψυ)

is a solution of (13") if and only if ψk satisfies

(21) -kdtψ_k - pV2kψ_k+1 - ~f-k = 0 .
2ιt

It is easy to see that the left side of the equation (21) is of the form

(210 \-kakak_x αr^-α-i ' *_k+1d™ + ' g 6/ί, ^ίjψ* = 0 ,

where the coefficients bj(t> X) = Σ ^ o bj>e(X)t~£ have the properties: 1) 6 i i0

is independent of λ, 2) 6 ,̂/̂ ) is a polynomial of Λ such that bjti{Q) = 0

for ί > 1 and 3) 6 i f l0) = 6y,i(0) .̂ We claim that bJt0 = 0. Indeed, for

Λ = 0 the equation (210 is reduced to an equation with constant coefficient

bJfQ. If bjt0 Φ 0 for some j , the dimension of the solutions of (13") is finite,

which is a contradiction because the image F+)k_1 F+^iC^R)^ is an in-

finite dimensional subspace of the solutions on account of (i) and (ii) of

Lemma 4. Now (i) and (ii) are selfevident.

Our proof of (iii) is rather lengthy. Obviously Rψk(t) = ψ*(—ί) satisfies

(22) [ Σ (-iyak)j(-t, X)d{^Rψk(t) = 0 .

On the other hand both Rψ(t) and (-ϊ)vψ(t) satisfy (13") provided p is

replaced by — p((—l)v denotes a diagonal matrix whose (v,v) component

is equal to (—l)v) Thus a solution of (19) is a solution of (22), from

which it follows that attJ(—t9X)(—iy = aktJ(t,λ), and in particular that

Σ α *, i ,o^ is a n even function of x. Put Pk = Σ%o<ikj,o%s We will show

that Pk devides Pk+1. For this purpose we need

LEMMA 6. For positive integers m and n (m> ri), consider differential

equations with holomorphic coefficients at t = oo.

(A) [Σα/#ψ(*) = 0 (B)

Assume that am = bn = 1 and that every solution of (B) is a solution of
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(A). Then the polynomial Σ]=objtOx3 devides 2^0^,0^? where ajίQ = aj(oo)

and bjiQ = bj(oo).

Assuming Lemma 6, we continue the proof of (iii). If ψk is a solution

of (19), tψk satisfies a differential equation

(2i'O

where the coefficients are holomorphic at t — oo with dkij(oo,X) = aktjtQ.

We see, making use of Lemma 4, that tψk is a solution of (19) with the

index k + 1. Now applying Lemma 6 to equations (19) with index k + 1

and (21"), it follows that Pk devides P fc+1. Since Px(x) = x2 — p2 and since

Pk(x) is even, the assertion (iii) follows as soon as we verify that akf0)Q

is equal to (— ΐ)kp2Ic. From (20) and (21) we can deduce that αfc>M is equal to

Put cv = 1-3 (2v - l)/(2 4 2v). We shall show that Σϊ_oC,cfc-»

= 1. This equality is a direct consequence of the relation (1 — x)'1 =

{(1 — x)"1/2}2. Lemma 5 is now proved. Q.E.D.

Proof of Proposition 4. Let a finite Borel set of i?*, a unitary

X (2&)-matrix valued function U(λ) and strictly positive bounded functions

hj (j = 1, 2, , m) be so chosen as before (see (15)). Put χ = (ψ^Of̂ o1 for

a solution ψk of (19). Then χ satisfies

(23) 3«Z

where A^ is a smooth function of λ on i?* and

Λ =

0

0 - - - Ό

- u
1

0
1

Conversely, it follows, from (13") and (20), that there exists a lower tri-

angular matrix valued function W(t, X) = (wvj(t, λ)) such that the function

given as follows is a solution of (13"):
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A-v+l

Ψ* = Σ W»JXJ for |y| = 1, 2, . , ft ,

Since the matrix Ao has characteristic roots ±/> with multiplicity k, there

exist, for the Borel set B, a positive number ί0 and a /^-dimensional sub-

space Ŝ  of C2jfc such that for any solution χ,

(25) Γ
Jίo

for any a and /3 (0 < a < 2ρ, 0 < β) ,

provided χ(£0) φ S .̂ Let Ŝ  be the image W(t0, λ)Sλ. Since there exist posi-

tive constants a and n such that

II W-\t, λ)\\ < at71 on (t09 oo) X J5 ,

any solution ψ of (13") satisfies

(26) Γβ-JMίΛ=oo
Jto f

for any α and γ (0 < α: < 2p, 2n < ^)

provided -f(Z0) 6 iŜ , where ψ denotes the vector obtained by expelling the

0-th component of ψ. Set Φ(t, λ)U(λ) = (ψj(t,λ)). Obviously the column

vectors ψ j (7 = 1, , 2k) are independent solutions of the following equation

[dt + B_xt + J50 + BJ-^Ψ = 0 ,

where Bj are some smooth functions of λ on i?*. Assuming that the

multiplicity m of Lp

k

L exceeds k, take some bounded measurable functions

gό (j = 1, , m) on B such that Σ J Γ - I Ψ Ά " X)h0gj{X) e SA. On account of

Proposition 3 (iv), the square of the integral

f ΣH
J B y=o

is integrable on (t0, oo) provided g e L\B, σ) and γ > n. Now the same

reasoning as in the proof of Proposition 2 yields a contradiction to (26).

Q.E.D.

It remains to prove Lemma 6.

Proof of Lemma 6. Denote by S the solutions of the equation (B).
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Put Qn(x) = Σo<zj<n bj(oo)χj. We consider a class of differential operators

At — {Σιo<j<hPj(t)di '-Pj is holomorphic at t — 00} for non-negative integer

h. Observe that for any De Dh there exists a unique differential operator

in £)„_! (denote it by r(D)) such that D and r(D) agree on S. To a

differential operator D = Σo<j<LhPj(t)dJt in -DΛ we assign a polynomial

Σo<j<hPj(°°)χ3> which will be denoted by f(D). Finally, for a polynomial

Q(x) π(Q) stands for the remainder with respect to Qn. It suffices to show

that for = πof. The equality clearly holds if 0 < h < n — 1. So we proceed

by induction. Assume that D has a form D = ΣQ^j^h+ιPj(t)d{. Put D =

ΣwίnP/tW ~ ^+i(Z)d?+ 1-n(Eo<^-i bβ)dζ). Then we have fo r(D) = /o r(D)

= πof(D). On the other hand, it holds that

Σ

Q.E.D.

Now we are ready to prove the theorems.

Proof of Theorem 1. We have proved (i) in 4.1. From Lemma 1,

Propositions 2 and 4 it follows that Lp

k ac ~ [k'] λdλ (h? is the greatest
OR

integer such that h! < k + 1/2). Since the function e~τ is rapidly decreasing

as τ->oo, neither L£ with a positive half-integer nor L?-1- with a positive

integer β has an eigenvalue (§ 3, [5]). For a positive integer k, L% maps an

infinite dimensional space F+flc_ί F+>0(C~(K)i) to zero due to Lemma 4.

This completes the proof of (ii) Q.E.D.

Proof of Theorem 2. For the representation U^e it holds that
r®

[d'\WkΘF+Wk-ι]ae — λdλ for a positive integer k. Indeed, the equiva-

lence follows from the "fact that [Δ'\ Wk]ac ~ [k] ί@ λdλ and that Δ^W^ -
J R

J'\Ί\WkZ1 ([6], Lemma 4). Moreover Δ\ Wo ~ ί@λdλ and PFft = {0} for a

half-integer k. Therefore the result of § 3 of [6] implies the first assertion

of the theorem. Similarly the second assertion follows from the fact that

[Δ'\ WkΘF+W,^]ac p ~ ί@λdλ for a half-integer k and that Wk - {0} for a
J R

positive integer k. Q.E.D.
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Appendix

The following proposition as well as an elegant proof of it is due to

Professors T. Hirai and N. Tatsuuma.

PROPOSITION A. It holds that

( i ) IndG o τ G 7r* ~ I n d ^ τ G πp,

( i i ) I n d { e } ] G I ~ [tf0] I n d G o , G π ; ® [ « 0 ] I n d G o t G π;,

where I denotes the unit representation of {e}. In particular the associated
measures of the representation IndGotG π* are absolutely continuous ones on G.

Proof. We consider subgroups

and

Note that Gx is a semi-direct product group between C and C*. The
representations ηf (ζe C) of G_j will be defined as follows.

where <ζ, ζ> = && + ζ2ζ2 for ζ = d + ίζ2 and ζ - ζx + i£2. From Mackey's
theorem on irreducible unitary representations of semi-direct product group
it follows that if ζζ' ̂  0,

Ind ηf ~ Ind 37̂
G-1ΪG1 G-ι\Gχ

(in fact, both representations are irreducible representations of G^). From
Mackey's theorem on the induced representations, we have

Ind ηf ~ Ind find ( Ind ηξ)\ .
G-χ\G Gi\O \Go\Gx \G-iϊGo //

Since the fact that Ind^^, t Go ηf ~ π* is known, (i) has been proved. As
one sees easily

Ind I ~
le) t a-i J O

Thus
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Ind I ~ Ind ( Ind i) ~ Γ Ind tfdt Θ Γ Ind ηldζ
{e}]G G - ι ] G \ { e } \ G - i J J C G-χ\G J C G - i \ G

Ind ? ; Θ [*U Ind 7 ; .
G-!\G G-iϊG

Now, since IndG_1 τ G ηf ~ IndGo τ G πf, the assertion (ii) follows. The remaining

part of the proposition follows from the fact that Plancherel measure of

G is absolutely continuous with support G\{(o, X): — 1 < λ < 0} ([10], 6 in

§14). Q.E.D.
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