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BOUNDEDNESS OF SEMI-STABLE SHEAVES OF SMALL RANKS

MASAKI MARUYAMA

Introduction

As for the construction of moduli spaces of stable sheaves, the
boundedness of semi-stable sheaves is one of the most important questions
which are left unanswered. In the case of dimension one, the boundedness
was proved by M. F. Atiyah [1]. When the dimension of the base variety
is two and the rank is two, F. Takemoto and D. Mumford showed the
boundedness independently ([13]). The author proved in [7] that the
boundedness holds for every rank in the case of dimension two, and then
D. Gieseker gave another proof of it in [3].

In this article, we shall prove the boundedness in some very special
cases which are not contained in the above results. The author hopes
that his results are enough to give evidences of the boundedness in
general cases.

To state our results, let /: X-> S be a smooth, projective, geometrically
integral morphism of noetherian schemes over a ring A and let ΘX{1) be
an /-very ample invertible sheaf on X. Our first main result is

THEOREM 3.1. If S = Spec (k) with an algebraically closed field k,
dimX>2, E is μ-semi-stable (Definition 1.1) and if r(£?) < dim X, then
for almost all Y in \Θx(ί)\, E\γ is μ-semi-stable.

As for the boundedness, we shall consider three statements; Bn>r(Λ).
B'nt£Λ) and B",r(Λ) ((3.4.1), (3.4.2) and (3.4.3)). Lemma 3.5 shows that
Bn,r(Λ) implies B'^A) and B'n,r(Λ) does B'lM). When B^r(Λ) holds for a
couple (n, r), we say that the boundedness of semi-stable sheaves holds
in the case of dimension n and rank r (in the category of Λ-schemes).
As a direct corollary to Theorem 3.1, we see that Bnt2(Λ) and B'nt2(Λ) hold
for all n and Λ (Theorem 3.11).

In § 4, we shall show a very interesting result on μ-semi-stable vector
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bundles on an algebraic surface (Theorem 4.6) whose proof is almost a
modification of some parts of § 4 and § 5 of an excellent paper by Barth
([2]). Theorem 4.6 plays an important role in § 5.

The author believes that one of the best ways to prove the bounded-
ness is to show the stronger statement B'ntr(A). If one reads the proof of
Proposition 5.6 carefully, he may agree with the author. From Proposition
5.6, we can deduce easily that B'n>3(A) and B'nΛ(A) hold for all n if A is a
field of characteristic zero (Theorem 5.7). Unfortunately, Theorem 4.6 is
false if the characteristic of the base field is positive. Thus, so long as
the proof of Proposition 5.6 depends on Theorem 4.6, we are not able to
remove the restriction on A from Theorem 5.7. The author found a
weaker result was enough to prove Proposition 5.6, (2) and hence B'n^(A)
holds and it is going to be written elsewhere (see Remark 5.8).

Throughout this paper, a key role is played by the Harder-Narasimhan
filtration of a torsion free coherent sheaf (Definition 1.3). The author
wishes to express his hearty thanks to Professor M. S. Narasimhan who
pointed out the notion of the filtration to the author when he came to
Kyoto in November, 1976.

§1. Harder-Narasimhan filtration

Throughout this section, we shall fix an arbitrary field k and k
denotes an algebraic closure of k. Let X be a non-singular protective
variety over k (i.e., a smooth, projective, geometrically integral scheme
over k) and Θx(l) a very ample invertible sheaf on X. For a coherent
sheaf E onXK = X0k K, d(E, Θx (1)) or abbreviately d(E) denotes the degree
of the first Chern class c^E) of E with respect to ΘXκ{l) = ΘX{1) ®k K,
where K is an extension field of k. We denote the rank of E at the
generic point of X by r(E). When r{E) Φ 0, μ(E) is defined as follows;

Note that for every extension field L of K, μ(E) = μ(E <S)K L)

DEFINITION 1.1. Let E be a coherent sheaf on X. E is /^-semi-stable

if (1) E is torsion free and (2) for every coherent subsheaf F of E% — E

®fc k with F Φ 0, μ(F) < μ(E).

Remark 1.2. E is torsion free if and only if so is E^ because X is
geometrically integral.
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The following notion is due to Harder and Narasimhan ([5]).

DEFINITION 1.3. Let £ be a torsion free coherent sheaf on X. A

Harder-Narasimhan filtration of E is a filtration 0 = Eo £ Ex £ Q Ea

= E with the following properties;

(a) Ei\Ei_x is //-semi-stable for 1 < ί < a,

(b) μiEJE^) > μiEtJEt) for l < i < a - l .

Remark 1.4. It is easy to see that if 0 = EQ Q Ex Q Q Ea = E is

a Harder-Narasimhan filtration, then so is 0 = Eo <g)Λ L Q Ex (x)fc L £

QEa®kL = E®kL for every extension field L of β.

The existence and the uniqueness of a Harder-Narasimhan filtration

are proved in [5] when X is a curve and k = k. lϊ k — k, one can easily

generalize their proof to arbitrary dimensions (see [12]). The results

hold good without assuming k — k. In fact,

PROPOSITION 1.5. Every torsion free coherent sheaf E on X has a

unique Harder-Narasimhan filtration.

Proof. The uniqueness is easily deduced from Remark 1.4 and the

uniqueness in the case of k = k. For a proof of existence, take a Harder-

Narasimhan filtration 0 = Eo Q Ex Q Q Ea = E = E®k k. Let φ be a

homomorphism of Ex to E/Eλ and β the integer such that im (φ) c 2Jy2£i

and im(0) 6; Eβ.JE^ If β > 1, then we have a non-zero homomorphism

φ of 2?! to EβlEβ.i. This is not the case because μ{E^) > μ{EβjEβ_^ and

both -Ej and EβjEβ^i are μ-semi-stable. Therefore, β = 1 and φ = 0, and

hence Hom.x- (E2, E/^) = 0.

Let us consider the Quot-scheme Q of E/X/k. Let x be the ^-valued

geometric point of Q corresponding to £ - > E\EX -> 0 and let x be the

scheme point which is the image of x. The residue field K of φQtX is a

finite algebraic extension of k. Then, Ex = Ex (g)κ k for a coherent sheaf

on Ex on X^. If if is not purely inseparable over k, then it contradicts

the uniqueness of Ex (see Remark 1.6 below). For the maximal ideal m

of ((PQJ®kK, mlm2Θκk = Ή.omΦz-(E1,EIEiy ==0 (see [4]), and hence

m = 0 by Nakayama's lemma. Therefore, (ΦQlX) ®k K is a field, which

means that ΦQfX = K = k. By induction on the length of the filtration,

we have our assertion. q.e.d.

Remark 1.6. Let E be a torsion free coherent sheaf on X and 0 —
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Eo Q Eί Q - - - £ Ea = E the Harder-Narasimhan filtration. Set mt =

iΆRx{μ(F)\F: coherent subsheaf of Z?/2?J and H = {F\F: coherent subsheaf

of EjEi with μ(F) = rΠi}. Then Ei+JEi is a unique maximal member of

H (see [5], the proof of Lemma 1.3.6 and Lemma 1.3.7). Thus, for a

coherent subsheaf F of EjEi9 if μ(F) = μ(EtJEt)9 r(F) = r(EίJEί) and if

(EIEi)IF is torsion free, then F = E^JE,.

§ 2. Construction of a subsheaf

In this section, k is assumed to be algebraically closed and the

couple (X, ΘXQ)) is the same as in the preceding section. For a vector

subspace V of H°(X, ΘX{1)), let L be the linear subsystem of the complete

linear system |0χ(l)| defined by V. Assume that L is very ample. Set

P = P(VV) and G = Grass2(Vv), the Grassmann variety of 2-dimensional

vector subspaces of V, where Vv is the dual vector space of V. P para-

metrizes all the divisors in L and a non-empty open subset Go of G does

all the subschemes of codimension 2 in X which are complete intersections

of two members of L. Let TC P XkG be the flag variety which defines

the incidence correspondence between P and G. Set To = T XGG0 and

let 7Γi (or, τr2) be the projection of To to P (or, TQ to Go, resp.). On To,

there is an effective Cartier divisor X of X X k TQ such that for a point

t e To, Xj is the divisor in L ®ft &(£) corresponding to π^t) e P. Moreover,

we are able to construct an effective Cartier divisor Y of X such that

for a point te To, F£ is the subscheme of X®kk(t) defined by the point

π2(t) e Go. Note that both X and Ϋ are flat over To.

(2.1)

Now, for a point u of Go, ̂ "X^) = Plw and TΓJ induces a linear

embedding of Pliu) to P. The subscheme of X corresponding to u is the

base locus of the linear pencil in L (x)fc k(u) defined by π^Pl^). From

this view point, Go can be regarded as a parametrizing space of linear

pencils in L which have base loci of codimension 2.

Uo denotes the maximal open set of To over which both X and Y are
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smooth. Then Uo is a non-empty open set of TQ. Let E be a coherent

torsion free sheaf on X and E = p%Q{E). Shrinking Uo if necessary, we

may assume that E is flat over Uo and for every geometric point t of Uo,

E®k(t) is torsion free (see [8] Proposition 2.1 and [9] Lemma 1.6). Let

u be the generic point of Uo and F — E® k(u). Take the Harder-

Narasimhan filtration of F

0 = Fo Q Fλ £ Q Fa = F.

By Proposition 1.5, the above filtration is defined over k(u). Thus the

quotient coherent sheaf FjFx of F defines a morphism s0 of Spec (k(u)) to

Q, where Q is the Quot-scheme of EIXUoIU0. Since Ϊ7o is an integral

scheme, there are a non-empty open set Ux of UQ and a morphism s of

XJX to Q with πs — idσ i and s (x) £(w) = s0, where π is the structure mor-

phism of Q as a C70-scheme. Let EUx —^> E{ > 0 be the pull-back of

the universal quotient sheaf on XQ by s. Applying the above argument

to E[ and F2jFu we obtain a non-empty open set U2 in Ux and a surjective

homomorphism {E^ϋ2 —
2-> E'2 of !72-flat coherent sheaves on Xϋ2 such that

φ2 ® k(u) is the quotient homomorphism FjF1 -> F/JF2. Repeating these

procedures, we have a non-empty open set Ua of Uo and surjective

homomorphisms φii E'i-+ E'i+ί (0 < i < a — ΐ) of £7α-flat, coherent sheaves

on XUa such that JBQ = EUa and ^̂  (8) k(ύ) is the quotient homomorphism

FjF, -• F/F i + 1. Set ^ = ker (&_Γ -^0) and EQ = 0, then each 2*7, is ?7α-flat

and ^ (x) ̂ (w) = i^. In this situation, we obtain a non-empty open subset

U' of Ua such that for all points t of £/', evey (EJE,^) ® A(ί) is /^-semi-

stable ([8] Theorem 2.8). Clearly, for all points t of U',

ύ and hence,

0 = Eo ® Λ(ί) C ^ <g> A(ί) £ QEa®k(t) = EΘk(t)

is the Harder-Narasimhan filtration of E (x) yfe(ί).

For the generic point w of U/,Fί\ΫU is a torsion free sheaf ([9] Lemma

1.6), whence i^|?tt is a subsheaf of ίΊ? t t . Thus there exists a non-empty

open subset U of i7/ such that each j^{{E^v) = Jt is a subsheaf of J =

j*((Ea)u) and that each J/J^ is £/-flat for 0 < i < a, where j : Ϋu-^Xu is

the closed immersion. Then we can find an open subset WQ of U, which

may be empty, such that Wo = {t e UKJJJi^) ® k{t) are μ-semi-stable,

1 < i < a}. Since

d ® k(t)) =
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for all points t of W09

0 = Jo ® k(t) QJι®k(t)Q QJaΘ kit) = E\Ϋt

is the Harder-Narasimhan filtration of E\Ϋt.

On the other hand, by the same procedure as the construction of

{Ei}, we obtain a filtration 0 = HQ c; Hί Q Q Hβ = Jw on a non-empty

open set VF of U such that each HβIHt is W-flat and that for every point

t of W,

0 = H0® k(t) QH,® k(t) Q Q Hβ ® *(*) = #1?,

is the Harder-Narasimhan filtration of E\Ϋt. Set -̂  = min^KJi)^ —>JW/He

is zero on the generic fibre of Y}. Then there is a non-empty open set

W- of VF such that (Ji)w>. is contained in (Hh)w,. We let Ci = Supp (coker ((J^)W'.

—> (H£i)W')) Since #(0*) is a closed set in W/, W< = W( — ̂ (0^) is an open

subset of To. On Wi9 Jt coincides with He.. Furthermore, Wt is non-

empty if and only if, for the generic point u of To, Jt (x) k(u) = Fi\Ϋu is a

filter of the Harder-Narasimhan filtration of E\ΫU.

Summerizing the above results, we have

LEMMA 2.2. Let E be a torsion free coherent sheaf on X.

1) There exists a non-empty open set U of To (see diagram (2.1)) such

that E = p*(E)u has a filtration Φ: 0 = EQ Q Et £ Q Ea = E with the

following properties (a), (b), (c) and (d);

(a) XΌ and Yυ is smooth over U,

(b) every E/Et is flat over U (1 < i < a),

(c) for every point t of U,

Φ ® k(t): 0 = Eo (x) kit) QEX® Kt) Q £ Ea ® &(*) = ^U,

is the Harder-Narasimhan filtration of E\χt9

(d) /or ίfte closed immersion j:Yv -+ XU9 each J* = j*(Ei) is a subsheaf

of J — j*(E) and each J\Ji is flat over U (1 < i < a).

2) There exists an open set Wo of U such that for every point t of

Wo, the filtration Φ\Ϋt has the following property (e0) and that Wo is non-

empty if and only if Φ\tt has the property (e0) when t is the generic point

of U;

(e0) Φ\Ϋt is the Harder-Narasimhan filtration of J(£)k(t).

3) There exists an open set Wt (1 < i < a) of U such that for every
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point t of Wi9 Ji (x) k(i) has the following property (ej and that Wt is non-

empty if and only if Jt (x) k(t) has the property (et) when t is the generic

point of U;

Jt (x) k(t) is a filter of the Harder-Narasimhan filtration of J ® k{t).

Remark 2.3. 1) Let f:X-+S be a smooth, protective, geometrically

integral morphism of noetherian schemes, ΘΣ{1) an /-very ample invertible

sheaf on X and E a coherent sheaf on X. Assume that S is irreducible

and reduced. Let Fλ and F2 be coherent subsheaves of E with the fol-

lowing properties;

(a) EIF1 and EjF2 are flat over S,

(b) r(Fί) = r(F2),

(c) for the generic point s of S, £(x) k(s) is torsion free and both

Fj (x) k(s) and F2 Θ k(s) are filters of the Harder-Narasimhan filtration of

E®k(s). Then F, = F2.
2) By virtue of 1), the filter Φ in 1) of Lemma 2.2 is unique.

Proof of 1). Let Q be the Quot-scheme of E/X/S. By (a), EIFt

defines a section gt of S to Q. By virtue of (b), (c) and the uniqueness

of the Harder-Narasimhan filtration, gUs = g2tS as morphisms of Spec (k(s))

to Qs. Since Q is separated over S and since S is irreducible and reduced,

gi = ft. q e.d.

As an application of the above, we have the following which plays

a key role in the sequal.

PROPOSITION 2.4. Let E be a torsion free, coherent sheaf on X and

let L be a very ample linear subsystem of \ (9X(Ϊ) |. Assume that dim X > 3

and Wi for E in Lemma 2.2 is not empty for some 0 < i < a. Then there

is a coherent subsheaf Et of E such that μ{E^) = μ(Et ® k(t)) and r(E^) —

r(Et (x) k(t)) for a point t of Wt.

Proof. Since π2: To-~> GQ is flat, π2(Wt) is a non-empty open set of GQ.

Pick a ^-rational point υ of π2(Wi). Since the base locus Y of the linear

pencil π^iv) is smooth and since L is very ample, we see that for every

te π2\v), the singular locus of Xt is at most a finite set of points. This

and the assumption that dim X > 3 imply that for every t e π^iv), Xt is

reduced and irreducible. Moreover, f: Z = X XTo πϊ\v) -> X is the blow-

ing-up of X with center Y, D — YXTO^KV) is the exceptional divisor of

/and D^ Yxkπς\v).
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For each point t of PI, Zt = g~\f) is the member of the linear pencil

κϊ\v) corresponding to t and h~\t) = Dt = Y as subschemes of Zt C X.

Set V = w; Π ̂ ( i ; ) . Then EV = E 0ΦWi Θv and 2?ifF = Et ®0Wi Θv are flat over

V and this is a subsheaf of that because of the property (b) of Lemma

2.2. Let B be the subsheaf of torsions of f*(E) and let Ef = f*(E)/B.

Then E" is g-flat and clearly i?£ = Ev. It is easy to construct a coherent

subsheaf 2# of Ef such that F 7 = Er\E[ is g -flat and F'v ^ J5Γ/J5<fF as

quotient sheaves of E'y. Note that β(E\γ) = £?%.

Pick a point ί of P̂ 1 - V and let ΛΓ be the torsion part of F[ Fr ® k(t)

(note that Zt is a projective variety with at most a finite number of

singular points). Suppose that codim (Supp (N), Zt) = 1, then χ(N(m)) =

amn'1l(n — 1)! + terms of degree < n — 1 with a some positive integer,

where dim X = n + 1. For F£ = F'<g) k(t0), tQ e V,

)mn-η(n - 1)!

+ terms of degree <τι — 1 ,

where Λ: is the degree of a canonical divisor of ZtQ and d is the degree

of X with respect to ΘX{1). Thus, for Ff = F//iV,

-a + r(Ffol2)mn-η(n - 1)!

+ terms of degree < n — 1 .

Let us consider the sheaf H = F'\Dt. Since Fr is torsion free, we obtain

the following exact sequence;

0 • F'( -1) • F • H • 0 .

Thus we have

χ(H(m)) = χ(F(m)) - χ(F'(m - 1)) = r(H)dmκ-'/(« - 1)! + ( « ) - a

+ r(H)κ'l2)mn-2l(n - 2)! + terms of degree n - 2

and r(£Γ) = r(F0') ,

where κf is the degree of a canonical divisor of Dt = Y. Therefore,
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μ(H) = (d(Fί) - a)/r(H) < d(F{)lr(F{) = μ(Fζ) .

On the other hand, E'\Dt =jf(E\γ) and H is a quotient sheaf of E'\Dt with

r(H) = r(Fό) = r(Fί\Dt)9 where j t is the isomorphism of Dt to Y. These

and Theorem 2 of [12] implies that μ(H) > μ(Fί\Dt) = /i(F0'). This is a

contradiction, whence codim (Supp (N), Zt) > 2. Therefore, if C is the set

of pinch points of F'9 i.e., the set of points at which Fr is not locally

free, then

(2.4.1) codim (Ct9Zt) > 2 and hence, Ct ~fi Dt for all tePl

Let 0 = Ho Q Hx Q Q Hβ — E \γ be the Harder-Narasimhan filtration

of E\γ and let H5 = fg(Hj). Let if be the torsion part of F'\D and let I be

{F'\D)jK. Then, we see that Supp (if) g C Π D, I is flat over P*1 and

Iv = Ff \Dv. Moreover, I coincides with (E; \D)IHe for an I by virtue of the

property (e,) for Wt and Remark 2.3, (1). Thus Ct Π -Dί is jj\A) if ί 6 V,

where A is the set of pinch points of Ht. From this we infer that

fD(C ΓΊ D) = A U (U ίepϊ-FΛ(C t Π A)). Since P,1 - V is a finite set, (2.4.1)

shows that fD(C Π D) Φ Y. We have therefore

(2.4.2) On D - (C Π JD), F'U is isomorphic to β((E\Y)IHt) as quotient

sheaf of E'\D and /^(C Π D) Φ Y.

By replacing £J by jB(τn), m > 0, we may assume that E is generated

by its global sections:

ψ'.φ®** > E >0 .

Pulling back ψ to Z and composing it with the homomorphism f*{E) —> E\

we have surjective homomorphisms τx and r2;

Let C" be the set of pinch points of E. Then, for general points t of

PI, codim (/"'(CO Π Z ί ? Zt) > 2 and codim ( C Π F J ) > 2. Set Zo = Z -

ΛV(C) U CO, Xo = X~f(C) U C7 and /0 - /|Z o. The restrictions of τx

and τ2 to Zo define a morphism v: Zo -> Flag (M, r(JSO, ^(^0); the flag

variety of pairs of quotient vector spaces (Vl9 V2) of an M-dimensional

vector space such that dim Vλ — r(Ef), dim V2 = r(F') and V2 is a quotient

vector space of Vt. By (2.4.2), β((E\Y)IH£) = F'U on Zo Π ΰ as quotient

bundles of E'\ZonD and hence, v(f~\y)) is one point for all ye YD Xo

Thus v factors through Zo, that is, υ = u;/0 for a ι/: Z0->Flag (M, r(E7), r(F0).



74 MASAKI MARUYAMA

This means that there are locally free quotient coherent sheaves ηx: (9ff
-* Eo and V2: EQ -> Fo such t h a t fo*(Eo) s E'\Zo = f?{E\Xo\ f*(F0) = F'\Zo,

ffiη,) ^ τx and/0*(^2) ^ τ2. Since EQ ^ /O*/Ό*(#o) ^fQ*ff(E\Xo) ^ 2?|Xo, ^2 induces
a surjective homomorphism of E\Xo to i^ Then we can extend this to a
surjective

ζ:E-+F with F torsion free .

Set Et = ker (ζ), then Et meets our requirement. In fact, for general
tePl identify Zt by f(Zt). F\{XoΠZt) = FQ\(Xof)Zt) = F'\Zo,, and from (2.4.1)

and (2.4.2) we can deduce codim(Zt - XQ Π Zt, Zt) > 2. Hence d(F\Zt) =
d(F'\z) and r(F\Zt) = r(Ff\z), which imply that d{Et\z^ = d(Et\z) and
r{Et\z) = r(Et\z). Therefore, μ(Eτ) = μ{E,\Zt) = μ{Et ® k{t)) and

§ 3. Boundedness of semi-stable sheaves of rank 2

In this section, we shall prove the boundedness of /^-semi-stable
sheaves of rank 2. In the first place, let us show the following interest-
ing result which can be derived from Proposition 2.4 directly.

THEOREM 3.1. Let X be a non-singular projectίve variety over an
algebraically closed field k and Θx(l) a very ample invertible sheaf on X.
Let E be a torsion free coherent sheaf on X and L a very ample linear
subsystem of \ΦX(X)\. Assume that d i m X > 2, r(E) < dimX and that E is
μ-semi-stable with respect to Θx(ΐ). Then, for general members Y of L,
E\γ is μ-semi-stable with respect to ΘY{1) = Θx{l)\γ.

Proof. We shall prove our assertion by induction on r(E). If r(E)
= 1, then it is enough to show that E\γ is torsion free and it follows
from Lemma 1.6 of [9]. Assume that r(E) > 1. Take the open set U of
To and the filtration

of Lemma 2.2. Pick a ^-rational point t in U. E\Xt is not μ-semi-stable
if and only if a > 1. π^π^t) Π U is regarded as an open set of the linear
system Tr^t (L). Now, assume that E\Xt is not μ-semi-stable. Then,
rdEJE^i) (g) k(t)) < r(E) < dimX*. Thus, by our induction hypothesis,
for general members D of Tr^ (L), every (EJEi.^φ k{t)\D is μ-semi-stable.
We may assume, therefore, that our filtration Φ of E and open set U
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have the property (e0) of Lemma 2.2. Since dim X > r(E) > 2, the above

and Proposition 2.4 provide us with a coherent subsheaf Ex of E with

μ{E?) > μ(22). This contradicts the assumption that E is μ-semi-stable.

Hence, E\Xt is μ-semi-stable. q.e.d.

Before showing the main result in this section, let us observe our

problem from general view point and make it clear. Let f:X-> S be a

smooth, protective, geometrically integral morphism of noetherian schemes

over a ring A and let Θx(ΐ) be an /-very ample invertible sheaf on X.

Assume that the dimensions of fibres of / are constant n. For a coherent

sheaf E o n a fibre Xs of X over S, we can write

(3.2) χ(E(m)) = Σ (
ίo \ n —

with some integers αo(^), * ,αn(.E), where i?(7tt) = E®k{s) Θx{m).

For an integer r and a sequence of integers (au , an), Σx/S(n, r, α^

• , an) is the family of the classes of coherent sheaves on the fibres of

X over S such that E on a fibre Xs is contained in Σx/S(n, r, au , an)

if and only if it has the following two properties:

(3.3.1) E is //-semi-stable with respect to ΘXs(ΐ) = Θx(l) ®ΰs k(s).

(3.3.2) ao(E) = rd, at(E) = a, and a,(E) > a, for 2 < ί < n, where d

is the degree of Xs with respect to 0Z s(l).

The property (3.3.2) implies that, for Ee Σx/S(n, r, au ,αn), r(E) =

r and the degree of 1? is constant on each connected component of S.

For integers r, αi and α2, Σx/S(n, r, au a2) is the family of the classes

of coherent sheaves on the fibres of X over S such that £ on a fibre Xs

is contained in Σxίs{n, r, al9 α2) if and only if E has the property (3.3.1)

and the following two properties:

(3.3.3) E satisfies Serre's condition (S2) (EGA Ch. IV, 5.7.2).

(3.3.4) ao(E) = rd, ax(E) = aγ and a2(E) > α2, where d is the same as

in (3.3.2).

Finally let us introduce another family. For a numerical polynomial

h(m) of degree n, Σx/S(n, r, h(m)) is the family of the classes of coherent

sheaves on the fibres of X over S such that E is a member of

Σx/S(n, r, h(m)) if and only if E has the property (3.3.1) and the following

property:
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(3.3.5) r(E) = r and χ(E(m)) = h(m).

Let us consider the following statements:

(3.4.1) Bn,r(A): Σx/S(n, r, au , an) is bounded for all f:X->S, Θx(ΐ)

and (α1? , an) whenever n, r and A are fixed.

(3.4.2) B£fr(Λ):2£/5(τι, r, α1? α2) is bounded for all f: X-+S,Θx(ΐ) and

(αi, α2) whenever n, r and A are fixed.

(3.4.3) B£'tr(Λ): Σ^/S(n9r,h(m)) is bounded for a l l / : X - > S , Θx(l) and

Λ(m) whenever TZ, r and Λ are fixed.

LEMMA 3.5. (1) Bn,r(A) implies £",r(Λ).

(2) B'ntr{Λ) implies B'IM\

Proof. (1) is trivial. Take a coherent sheaf E on X$ which is con-

tained in Σx/S(n9 r9 h(m)). We have only to show that E is a (ό)-sheaf

for a sequence (6) = (60> > &*) of integers which depends only on the

family Σx/S(n9 r, h(m)) (see [6] Theoreme 1.13). Let Y be the set of pinch

points of E and i: X — Y-> X the natural immersion. Then i%i*(E) = Ef

is torsion free and coherent because E is a subsheaf of a coherent,

locally free sheaf F and hence Ef is a quasi-coherent subsheaf of i*i*(F)

= .F. Moreover, Ef satisfies the condition (S2) because codim(Y, X) > 2

(EGA Ch. IV, 5.10.5). Consider the exact sequence

0 >E >E' >T ^ 0 .

Since codim (Supp (T), X) > 2, χ(T(m)) = cmn~2 + terms of degree <n - 2,

c > 0. Therefore, ί?7 is a member of Σ'z/8(n9 r, au α2), where

) Σ : (

B'n>r(A) implies that there exists a sequence (6) = (60, -,bn) of integers

such that every member of Σx/S(n9 r, al9 a2) is a (6)-sheaf. Since for gen-

eral members su ,sn of H°(XS9Θx£ΐ))9 E\Yi is a subsheaf of # Ί r i , ^ is

also a (δ)-sheaf, where Yt is the zero scheme of su ,s<. q.e.d.

Let j9 be the natural morphism of D — Div x / 5 to P = Pic z / S and F

the universal family on XχsD. Θx(ΐ) defines a section q:S-^P and

(DxPS,ΫXpS) parametrizes all the members of |0*β(l)|, seS. Let S'

be the maximal open set of D XP S over which Ϋ XP S is smooth and
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set Xf = (Ϋ XpS)\s,. Thus we obtain a smooth, projective, geometrically

integral morphism f: X' -> S' of J-schemes which parametrizes all the

smooth members of |0X s(l)|, seS

and Θχ>(l) = j*π*((9z(ΐ)) is very ample over S\

PROPOSITION 3.6. Let !F (or, 2Ff) be a subfamily of ΣXIS(n, r, al9 , an)

(or, Σx/S(n, r, au a2), resp.). Assume that if E is a coherent sheaf on Xs

contained in 2F (or, <F'\ then for general members Y of \ΘZ(X)\, E\γ is μ-

semi-stable. If Bn_hr(A) (or, B'n_1>r(Λ), resp.) is true, then & (or, ^', resp.)

is bounded.

Proof. Let Ee& (or, &') and σ a general element of H°(Xs,ΘXs(ΐj).

We have the exact sequence

(3.6.1) 0 > E(-ΐ) > E > E\γ > 0 ,

where Y is the zero scheme of σ.

LEMMA 3.7. (1) If Esatisfies (S2), then H°(XS, E(~£)) = O=H\XS, E(-£))

for sufficiently large ί.

(2) If σ is sufficiently general and if E satisfies (S2), then E\γ satisfies

(S2), too.

Proof There exists a resolution of E by locally free, coherent sheaves,

n . 27T /w-2 π /w-3 /l w /o w n

U > Jlιn-2 > &n-3 > ' * ' > &0 > & > V

and E satisfies (S2) if and only if for the set of pinch points Yt of ker (/,),

dim Yt < n - i - 4 (cf. [8] Proof of Lemma 2.2).

(1) This is well-known (see [11]). We shall give a proof for com-

pleteness. Since every Et is locally free and coherent, there is an integer

£Q such that for all i > £ΰ, Hj(Xs, Et(-£)) = 0, 0 < j < n, 0 < i < n - 2.

Set ker (/€) = Kt. Then by induction on i and the exact sequences

0 >K< >Et >Ki.ί >0,

we have Hj(Xs, Kt(-£)) = 0 for 0 < j < i + 2 and £ > £Q. Thus, from the
exact sequence
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0 > Ko • Eo • E • 0

we have H°(XS9E(-£)) = 0 = Hι(Xt,E(-£)) for all £ > £0.

(2) If σ is sufficiently general, then

0 • En_2\γ • En.3\γ • • E0\γ • E\γ > 0

is exact and d i m ^ Π Y) < n — i — 5. Since the set of pinch points of

ker (fi\Y) is Y (Ί Yt9 we see that for the above Y, E\γ satisfies (S2). q.e.d.

Now let us come back to the proof of Proposition 3.6. The exact

sequence (3.6.1) implies that χ((E\r)(m)) = Δχ(E(m)) = χ(E(m)) - χ(E(m-ϊ)).

This and the above lemma show that if E\γ is /^-semi-stable, then E\γe

Σχ>/S>(n — 1, r, al9 , an_j) or Σ'XΊS,(n — 1, r, au a2) according as Ee & or

EeP'. Replacing JF (or, J^') by &(m) = {E(m)\Ee &} (or, ̂ \m) =

{E{m)\Ee^% resp.), m > 0, we may assume that (i) H\Y9 (E\r)(£)) = 0

for all i > 0, a lH > 0 and all Ee & (or, Ee y\ resp.), (ii) dim H°(Y, (E\γ)(£))

< ci9 άimHXY, (E\γ)(£)) < c\ for all Ee& (or, Ee &', resp.) and all £, (iii)

${Δχ(E{m))\Ee IF (or, EeϊF'9 resp.)} < oo and (iv) there is a sequence

(b) = (bί9 - - , bn) of integers such that E\γ is (δ)-sheaf for all Ee & (or,

Ee&r

9 resp.) (see [6] Definition 1.5) because Bn_hr(Λ) (or, B'n_liT(A)9 resp.)

is true. Moreover, in the case of 3Ff

9 we may assume that (v) there is

an integer £0 such that H\Y9 (E\γ)(-£)) = 0 = H\Y9 (E\γ)(-£)) for all

£ > £0 and all Ee^'. The exact sequence (3.6.1) and (i) yield that

H\XS9 E) ̂  H\XS9 E{£)) for all i > 2 and £ > 0, whence H\XS9 E) = 0 for

all i > 2. Therefore,

(3.6.2) dim H°(XS9 E) - dim H\XS9 E) = χ(E) = rd + a, + d2+ + dn,

where χ(E(m)) = rd(^ + Λ) + Jm + n~ λ\ + ± d(m + n 7 %
\ n / \ n — 1 / ί=2 \ 7z — & /

On the other hand, dim H°(XS9 E(£)) - dim H°(XS9 E(£ -1)) < dim H°( Y, (£J | r

< c£ and since £? is //-semi-stable, H°(XS9 E(£)) = 0 if d(E(£)9 ΘXs{l)) < 0.

Thus, dimH°(XS9 E) < c0 + c_j + + c_α = 60, where # is independent

of the choice of E. Combining this with (3.6.2), we have

(3.6.3) bQ > dim H°(XS, E) > rd + ax + d2 + . + dn.

By virtue of (iii) above, d29 , dn_x range over a finite set and hence, dn

is bounded from above. In the case of !F9 dn is bounded because dn > an.

Thus %{χ(E(m))\Ee ̂ } < oo. Assume that E is contained in &'. The

exact sequence (3.6.1) shows that dim H\XS9 E(£)) - dim H\XS9 E(£ - 1))
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< dimiP(Y, (E\r)(£))< c'e. (v) implies that, for I > £0 and all

H\Xs,E{-β)) ^ H\Xs,E{-£,% By virtue of this and Lemma 3.7, we

have that H\Xs,E(-£)) = 0 for all i > £0 and all Ee &'. Therefore,

0 < dimiΓ(X,,E) < c'o + dx + + cί_,

This and (3.6.2) imply that

Since d2, - - ,dn_1 range over a finite set, dn is bounded from below.

Thus, dn is bounded in the case of &', too. Hence %{χ(E(m))\Ee &'}

< oo. On the other hand, (iv) and (3.6.3) show that Ee^ (or, Ee^f)

is (60, &!,-••, &w)-sheaf. Then, the boundedness of J^ or IF* follows from

Theoreme 1.13 of [6]. q.e.d.

Using the above proposition, we have

PROPOSITION 3.8. BnΛ(A) and Br

nΛ(Λ) hold for all n and Λ and hence,

B"A(Λ) is true for all n and Λ.

Proof. ΣX/S{1,1, αθ = Σ'z/S(l, 1, al9 α2) is the family of the classes of

invertible sheaves on curves with fixed degree. Then, its boundedness is

well-known. Pick an L in Σx/S(n, 1, a1? , an) or Σ'z/S(n, 1, au α2). For

general Y of |ί?Xί(l)|, L\γ is torsion free or equivalently //-semi-stable.

Using induction on n, our assertion follows from Proposition 3.6. q.e.d.

Remark 3.9. Proposition 3.8 is a special case of Theoreme 3.13 of [6].

We have proved the boundedness of the family of semi-stable sheaves

with fixed Chern classes on a surface ([7] Theorem 2.5 and Corollary

2.5.3). Using Proposition 3.8 instead of Step B in the proof of Theorem

2.5 of [7], the same method is applicable to proving that a similar asser-

tion to Theorem 2.5 of [7] holds for the families Σx/S(2, r, au α2). Then,

as the proofs Corollary 2.5.2 and Corollary 2.5.3 of [7], we can show

that B2tr(Λ) holds. In this case, B2>r(Λ) is stronger than B^XΛ).

THEOREM 3.10. B2f7.(Λ) and B'2tr{A) hold and hence, B'lr{Λ) does for

all r and A.

This and Theorem 3.1 yield

THEOREM 3.11. Bn,2(Λ) and B'n>2(Λ) hold and hence, B"j2(Λ) is true for

all n and Λ.
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Proof. The case of n = 1 is well-known and the case of n = 2 is a

special case of Theorem 3.10. Assume n > 3 and take a ^-semi-stable

sheaf E of rank 2 on a fibre Xs. By virtue of Theorem 3.1, for general

member Y of |0Z s(l)|, E\γ is μ-semi-stable. Thus, applying Proposition 3.6

bo ^ — Σx/S(n, 2, α1? , an) and 3Ff — Σx/S(n, 2, au α2), we see that

Σx/S(n, 2, au , an) and i^/sίra, 2, a l f a2) are bounded. q.e.d.

§ 4. A technique of Barth* )

Let X be a non-singular protective surface over an algebraically

closed field k9 Θx(ΐ) a very ample invertible sheaf on X and L a very

ample linear subsystem of the complete linear system |0X(1)|. As in the

first paragraph of §2, we have the following diagram:

where Vis the linear subspace of H\X,ΘX{1)) defining L and q:X->Pξ

parametrizes all the divisors of L. Note that p is a PN~ ̂ bundle and

hence, X is smooth.

Let E be a locally free, coherent sheaf on X of rank r. Assume the

following:

(4.1.1) E is //-semi-stable with respect to ΘX{1).

(4.1.2) For the generic point u of Pξ,p*(E) ® k(u) = E contains

subbundle F of rank r — 1 such that μ(F) > μ{E).

As in the proof of Lemma 2.2, there is a non-empty open set U of

Pξ and a coherent subsheaf FQ of p*(E)u such that FQ <g) k{u) = F and

p^(E)uIF0 is ϊ7-flat. Then, on a non-empty open set W of £7, (F0)TF is a

subbundle of p*(E)w. Furthermore, there is a coherent subsheaf F of

p*CE) = 1? such that FΌ = F, and E/F is torsion free.

P(Fv)\Xw is a projective subbundle of P(Ev)\Xw. Let Γ be the closure

of P(Fv)\Xw in P(EV). If Γ is regarded as a subscheme of F(E V ) with

reduced structure, then it is a divisor of P(EV). Since P(EV) = P(EV) XXX,

we have the following commutative diagram;

*} The argument of this section is a modification of some parts of §4 and §5 of [2].
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- P(JV) =

"I
X «ϊ- X

LEMMA 4.2. g(Γ) =

Proo/. Assume that g(Γ) ψ P(EV), then g(Γ) is an irreducible divisor

of P(EV) because Γ is a protective subbundle of P(Ey) at general points

of X and a divisor of P(E V ). Moreover, for a general point x of X, £(Γ%

is a hyperplane of P(Ey)x = P7""1. Thus, #(Γ) is a projective subbundle

of P(£7V) outside a finite set of points {xu , xt} of X This means that

there is a quotient bundle G of Ey \Σo such that P(G) = g(Γ)Xo, where

XQ = X- {xl9 , xt}. Therefore, P(G) XZX= Γp-HXo) and hence,

( P U O ) * ( ^ V ) ^
 = ^w Let C be a smooth curve which passes through none

of xu - ,xt and corresponds to a point υ of W^ Pξ. Then, C c p~\XQ)

and /i(F(8) A(y)) = μ(F) > μ(E) = ^(J5). Let G' be a coherent subsheaf of

E such that G'\Zo = G v . For this G7, we have

= μ(G'\c) = μ(G^\c) = μ(F® k{υ)) =

which contradicts the assumption (4.1.1). q.e.d.

Now let us assume

(4.3) k is a field of characteristic zero.

Then, since Γ is a variety and g is surjective, g\Γ is smooth on a non-

empty open set Δ of Γw. Pick a /^-rational point y of the open set qπ(Δ)

such that C = Xy is smooth. C is regarded as a curve in X, too. Γ

cuts out a projective subbundle A = P ( F V ® fc(y)) on P(JSV)C. B = g(A)

is also a projective subbundle of P(EV)C and g induces isomorphisms of

P(EV)C to P ί E ^ and of A to β.

A c Γ — > X

π
B c P(EV) — • X

From these we obtain the following commutative diagram of normal

bundles;
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N.A/Γ

dg' \a*(dp)

where a is the projection of A to C which is identified with the projec-

tion of B to C (note that Γ is smooth along A). Since g' is smooth on

Δ and C Π Δ Φ φ, dgf is generically surjective. It is easy to see that

Nc/1 = V ®kΘc and Nc/X = 0C(1) = 0^(1) |c, where V = im(0) defined by

the homomorphism

Moreover, the map φ is identified with the natural homomorphism

V Θk Θc • H°(C, Θc(l)) ®k Θc • Φc(l) .

Thus, we obtain the following exact commutative diagram

dp
NrCI2 •N,CIX

0- Hn 0

where Ho is a locally free sheaf of rank N — 1 which is uniquely deter-

mined by C. On the other hand, the following exact commutative diagram

is obtained;

•N,0

0 >a*(Q)®M\ε •N,

«*(NC/X)

II

0

0

where Q = E \cjF ® k(y) and M is the tautological line bundle of Ev\c on

P(EV)C. The above three diagrams provide us with following exact com-

mutative diagram;

M ^ a*(Nc/z) >0

0 >a*(Q)®M\B-
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Since dg; is generically surjective, so is γ. We have, therefore,

(4.4) 0 Φ r e Horn., (a*(Hc), a*(Q) <g> M \B) = Horn,, (if,, Q ® (F <g> £(y))v).

LEMMA 4.5. JSuery non-trivial coherent subsheaf G of Hc has a negative

degree.

Proof. If N = 2, then ifc = 0C(—1). Our assertion is obvious in this

case. Assume that N > 2. We may assume that G is a subbundle of Hc.

Since iJ c is a subbundle of Θ^N, so is G. Therefore, deg G = deg (det G)

< 0. If deg G = 0, then G v is a quotient sheaf of C%N whose degree is

zero. Thus G v ^ Θψ, that is, G ^ Θψ. This implies that dim H\C, fl"c)

> dim H°(C, G) = s > 0. On the other hand, we have the exact sequence

0 > H\C, Hc) > H\C, ΘT) - ^ H\C, ΘC{1))

and by the definition of Hc> d is injective. Hence H°(C, Hc) = 0. This

is a contradiction. Therefore, deg G < 0. q.e.d.

Let E be a coherent torsion free sheaf on a non-singular projective

surface X with very ample invertible sheaf Θx(l). £ is a subsheaf of a

locally free sheaf E' with dim (Supp (£'/£;)) < 0. Such an E' is unique

up to isomorphisms. Assume that r(E) == 2. For a non-singular curve

C in L, set

?, C) - min{deg(((E;\C)/D)® Dv) = degE- 2degD\D:line subbundle

of E'\c} and

d(E) = max{d(£f, C)|C: non-singular curve in L} .

Then, there exists a non-empty open set U of L such that d(i£) = <2(2?, C)

for all C in U.

THEOREM 4.6. Let X be a non-singular projective surface over an

algebraically closed field k of characteristic zero, Θx(l) a very ample

invertible sheaf on X and L a very ample linear subsystem of \ΘX(1)\.

(1) Let E be a coherent sheaf of rank 2 on X. Assume that E is μ-

semi-stable with respect to Θz(ΐ).

(a) If X = P2 and Θx(l) is the line bundle corresponding to lines of

P\ then d(E)> - 1 .

(b) Otherwise, d(E) > - C 2 for a CeL.

(2) Let E be a coherent sheaf on X having the properties (4.1.1) and
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(4.1.2). Then, (EjF)®Fw contains a non-zero subbundle M with degM
> - C 2 for a CeL and r(M) < N- 1 or with d e g M > - C 2 and r(M) =
N-l.

Proof. Replacing E by Ef defined just before this theorem, we may

assume that E is locally free.

(1) If, for every general member C of L, E\c is /^-semi-stable, then

our assertion is trivial. Otherwise, for the generic member D of L, we

have the Harder-Narasimhan filtration 0 £ F Q E\D of E\D. For this F,

we have the property (4.1.2). If C is general, E\c has the Harder-

Narasimhan filtration 0 Q F Q E\c. Moreover, when C is sufficiently

general, ϊίomΰG(HCy det (E\c) ® F®(~2)) ψ 0 by (4.4). If N= 2, then Hc =

Θc{— 1), whence deg E — 2 deg F > — C2. This case can happen only

when X — P2 and ΘX{1) is the invertible sheaf corresponding to lines of

P2. Assume that N > 2. By Lemma 4.5, every quotient coherent sheaf

of Hc has a degree > - C2. Therefore, deg E - 2 deg F > - C2. If C is

sufficiently general, d(E) = deg i? — 2 deg F because F is a filter of the

Harder-Narasimhan filtration of E\c. Thus our proof is completed.

(2) A similar argument to the above is applicable to this case.

Hence, we omit the proof.

Remark 4.7. Theorem 4.6 is false unless we assume that the charac-

teristic of k is zero. For example, on P2, Tj?P is /^-semi-stable and T{/P\e

= ®e(pr) θ Θ£(2pr) for every line i of P2, where T$P is the pull-back of

the tangent bundle TPι of P 2 by r-th Frobenius morphism.

EXAMPLE 4.8. (1) Let us consider the case where X = P2, ΘX{1) =

0p2(2). For general member C of |0X(1)|, we have the exact sequence

defining Hc

0 >HC • V ®fc 0c -i-> ΘC{1) > 0 .

In this case, ίf°(ζ) is bijective and H\C, V (g)fc Θc) = 0. Thus ίf°(C, Hc)

= 0 = H\C9 Hc). For a quotient line bundle L of Hc, H\C, L) = 0 because

H\C,HC) = Q. Thus d e g L > - l . Therefore, d(E)>-l for every μ-

semi-stable sheaf E of rank 2 on P 2 (see the proof of Theorem 4.6). On

the other hand, d(E, ΘX{1)) is even and every smooth member of |ό?x(l)| is

isomorphic to P1. Thus we see that d(E) = 0 (cf. [2] p. 137).

(2) Let us consider the case of rank 3 on (P2,0P2(1)). Take a μ-
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semi-stable sheaf E of rank 3 on P2 and a general line C = P\ E \c is

i s o m o r p h i c t o ΘPi(a^) © Θ p i ( a 2 ) © Θ p i ( a z ) w i t h a x > a 2 > a z .

(i) If α2 > αs, then we see that ΘPί(az — ax) Θ (PPi(az — α2) contains a

line subbundle of degree > — 1 by Theorem 4.6, (2). Thus az — a2> — 1.

(ii) If aί > α2, then we see α2 — a1 > — 1 by applying Theorem 4.6,

(2) to the dual sheaf Ev of E.

After twisting suitably, we may assume that d = d(E, 0P2(1)) = 0, 1

or 2. By (i) and (ii) above, we have

(a) if d = 0, then (au α2, σ,) = (1, 0, -1) or (0, 0, 0),

(b) if d = 1, then {flu α2, α.) = (1, 0, 0),

(c) if d = 2, then ((flu α2, α.) = (1, 1, 0).

Can all the cases happen?

§ 5. Boundedness of semi-stable sheaves of rank 3 and 4

We shall begin with the following.

LEMMA 5.1. Assume that Σx/S(n, r, al9 a2) is bounded (for the notation,

see § 3). Let IF be the family of the classes of coherent sheaves on the

fibres of X over S such that E is a member of !F if and only if r(E) = r,

ax(E) = aι and E is μ-semi-stable. Then, {a2(E)\Ee ^} is bounded from

above.

Proof. Assume that a coherent sheaf £ on a fibre Xs is contained

in IF. Let Y be the set of pinch points of E and let ί the open immer-

sion of X - y to X Then, Ef = i#ί*(J5) satisfies (S2), ax(E) = ax(E'\ E' is

μ-semi-stable and a2(Ef) > a2(E) (see the proof of Lemma 3.5). Thus we

may replace & by ^f = {Ee $F\E satisfies (S2)}. JίEe^' is not contained

in Σχ,s(n, r, au «2), then a2 > a2(E). Since Σ'x/S(n, r, au a2) is bounded,

%{χ(E(m))\Ee Σ'x/S(n, r, au a2)} < oo, a fortiori, {α2(£J)|ίJe J ^ n , r, α1? α2)} is

bounded from above by an integer b. Therefore, {a2(E)\Ee IF'} is

bounded from above by b. q.e.d.

Let X be a smooth, projective, integral scheme over an algebraically

closed field k of characteristic zero. L & very ample linear subsystem of

a complete linear system |0j(l) | and E a torsion free coherent sheaf on

X. E\D is not ^-semi-stable with respect to ΘX(1)\D for the generic mem-

ber D of L if and only if E\z is not //-semi-stable with respect to Θz(l)

= ®χ(X)\z for every ^-rational member Z of a non-empty open subset of
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L. Thus we may say that E\γ is not //-semi-stable for every general

member Y of L.

LEMMA 5.2. Under the above situation, assume that r(E) = dim X > 2,

E is μ-semί-stable and E\z is not μ-semi-stable with respect to Θz(ΐ) for

every general member Z of L. Then, for general members Z of L, E\z has

the Harder-Narasimhan filtration

such that (1) r(E,) = 1 or r(E) - 1 and (2) -d < r
r(E)d(Eu Θx(l)) < 0, where d is the degree of X with respect to ΘΣ{1).

Proof We shall prove our assertion by induction on dimX When

dim X = 2, our assertion follows directly from Theorem 4.6, (1). Assume

that dim X > 3. Take the open set U of To and the filtration

0 = Eo Q E, Q - Q Ea = E

of Lemma 2.2. If rφ^Ei^ < dimX— 1 for every 1 < i < a, then for

general point u of U, 0 = EQ\ΫU Q E^Q - £ Ea\ΫU = E\Ϋu is the Harder-

Narasimhan filtration of E\Ϋu = E\ΫU by virtue of Theorem 3.1. Thus, E

has a coherent subsheaf Ef with μ(Er) = μ(Ex <g> &(w)) > μ(E<g)k(u)) = μ(#)

by virtue of Proposition 2.4. This can not happen because i? is //-semi-

stable. Therefore, we see that a = 2 and r ^ ) = 1 or r(E) — 1. Assume

that r(Ei) = r(£?) — 1. If for general Ϋu, Eί\Ϋu is //-semi-stable, then we

see that E is not μ-semi-stable by the similar argument to the above.

Fix a general member Z of L such that E\z has the Harder-Narasimhan

filtration

0 = EQQEίQE2 = E\z

and for every general member Y of Trz(L), E^y is not //-semi-stable.

Applying the induction hypothesis to (Eu Z, U = Ίτz(L)), Ex\γ has the

Harder-Narasimhan filtration for general Y of V

such that rCFi) = 1 or r(JE) - 2 and - d < r{F^)d{Eu Θz(l)) - r{E,)d{Fu ΘY{1))

< 0. If μiFzjFύ > μ{E2IE,) for every general Z and 7, the open set W,

of Lemma 2.2 is not empty and hence, E has a coherent subsheaf Ef

with μ(2?0 = μ(E?) > μ(E\z)=μ(E). This is not the case because £J is μ-
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semi-stable. Thus μiFJFJ < μiEJEJ. Setting r - r(E), we have two

cases:

Case I. r(Fί) — r — 2; then we obtain

(r - 2)d(Ed - (r - l)d(FJ < -d and d{Ex) - d(F,) < d(E) -

Thus -d < (r - 2)d(Eί) + (r - l)d(£) - 2(r - 1 ) ^ ) = (r - ΐ)d(E)

Case II. r(Fj) = 1, then we get

d{E,) - (r - 1 ) ^ ) < -d and (*(#,) - d(F,) < (r -

Hence we have

(r - l)d(ίJ) - r d ^ ) > -d/(r -ΐ)>-

The inequality (r - l)d(#) - rdC^) < 0 follows from the fact that Ex is

a filter of the Harder-Narasimhan filtration of E\z.

In the case of r(Et) = 1, we can prove our assertion similarly to the

above. q.e.d.

In the case of r(E) = dim X + 1, a similar result is obtained.

LEMMA 5.3. Under the same situation as in Lemma 5.2, assume that

r(E) — 1 = d i m X > 2, E is μ-semi-stable and that E\z is not μ-semi-stable

with respect to Θz{\) for every general Z of L. Then, for general Z of L,

E\z has the Harder-Narasimhan filtration

such that (1) μ(E) - d < μiEJE^) < μ(E) + d for 1 < i < a, d =

c?(0x(l), Θx(l)) and (2) one of the following properties (i) and (ii) is enjoyed;

( i) a = 3 and (r(E,), r(E2IE,), r(E/E2)) is a permutation of (1,1, r(E) - 2),

(ii) a = 2 and ( r (^), r(EjE^) is a permutation of (1, r(E) — 1) or

(2, r(E) - 2).

Proof. If we would give a complete proof, we should exhaust many

cases. Thus we shall discuss only some typical cases. Our proof is by

induction on dim X. Assume that dim X = 2. Then r(E) = 3. By Lemma

2.2, we have only to show the lemma for the generic member Z of L.

Let us consider the case where E \z has the Harder-Narasimhan filtration

Φ: 0 = EQQEίQE2QE3 = E\z.

Set μiEJEi.i) = diEJEt^) = mt. Applying Theorem 4.6 to F = E29 we see
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that EIE2®E2

W contains a subbundle M with d(M) > -d. If r(M) = 2,

then 2m3 — mx — m2> —d and if r(M) = 1, then m3 — m2> —d. Taking

the dual filtration Φ v of Φ

ΦV r\ /— / IT' / Z71 W ί1— / ZT̂  / ΊP \ V <•— ZT'V XT'V I

we have that m2 + m3 — 2/τi! > — d or m2 — mj > — d. Combining these

with m1 + τn2 + m3 = 3μ(23) and mx > m2 > /n3, the desired inequalities

/*(#) - d < μίEJEi^) < μ(E) + d are obtained. The proof of the other

cases is similar to the above and easier.

Assume that dim X > 2. By the same argument as in the proof of

Lemma 5.2, for every general Z in L, E\z has the Harder-Narasimhan

filtration

with either (i) or (ii). Let us consider the case where Ψ has the property

(i) and r{E2IE^) = r(E) — 2 = dim Z. By virtue of Lemma 5.2, for every

general Y of Ύrz (L), F = (EJEt) \r has the Harder-Narasimhan filtration

0 = Fo Q Fx Q F2 = F

w i t h μ{F) < μ{Fx) < μ(F) + d a n d μ(F) -d< μ(FJF2) < μ{F). L e t

0 = Go Q G, £ £ Gβ = E2\γ

be the Harder-Narasimhan filtration of E2\γ.

SUBLEMMA 5.4. μiββjG^,) > μiF/F,) > μ(F) - d.

Proof. Let F[ be the inverse image of Fx to E2\γ. Then, the filtration

0 = E,\γ Q Eλ\γ Q Fί £ E2\r induces a filtration O g I 1 c F 1 c G = GβIGβ.x.

Since all the Ex\γ, Fίl{Ex\γ) s Fx and {E2\γ)jFi ^ F/i^ are ^-semi-stable, we

have that d{Ex) > r(Edμ(Ei\γ)> d(FxIEx) > r(FxIEx)μ(Fx) and d(GIFx) >

r{GIFx)μ{FjFx). On the other hand, μ(Ex\γ) > μ(F) > μ{FjFx\ μ(Fx) > μ(F)

> μ(FIFd and μ{FIFx) > μ(F) - d. Thus d(Gβ/Gβ_x) > r(GβIGβ.x)μ{FjFx) >

r(GβIGβ.x)(μ(F) - d). q.e.d.

Now, if μ(GβIGβ_x) > μ{E3IE2\ then E2\γ is a filter of the Harder-

Narasimhan filtration of E\γ, whence W2 in Lemma 2.2 is not empty.

Then, this contradicts the μ-semi-stability of E by Proposition 2.4.

Therefore, μ(F) - d < μ{GβfGβ.x) < μ(EJE2). By a similar argument we

see also that μ(Ex) < μ(F) + d. From these, we can easily deduce the



SEMI-STABLE SHEAVES 89

required inequalities μ(E) — d < μ^EJE^i) < μ(E) + d. The other cases

of a = 3 can be proved by the same way. When Ψ has the property (ii),

a similar but easier argument is applicable by using Lemma 5.2 or our

induction hypothesis. q.e.d.

If E is a torsion free coherent sheaf on a non-singular variety, then

there is a torsion free coherent sheaf Eι containing E such that Er

satisfies (S2) and codim (Supp (E'jE)) > 2 (see the proof of Lemma 3.5).

Such an Er is unique up to isomorphisms and, as a matter of fact, Ef =

(JE'V)V. Ef is written ε(E). For a family !F of torsion free coherent

sheaves on non-singular varieties, ε!F denotes {ε(E) \ E e J^}.

LEMMA 5.4. Let f: X —• S be a smooth, projective, geometrically integral

morphίsm of noetherίan schemes with dim X/S = n and let ΘX{V) be an

f-very ample invertible sheaf on X. Let 3F, ΪFX and ϊF2 be families of the

classes of coherent sheaves on the fibres of X over S. Assume the follow-

ing]

(1) every member of !F is an extension of a member of ZF2 by a

member of J^Ί,

(2) every member of !FX and !F2 is torsion free,

(3) every member of ίF satisfies the condition (S2),

(4) both ίFx and ε!F2 are bounded,

(5) {a2(E)\Ee^2} is a bounded set

Then, 2? is bounded.

Proof. Take a member E of fF. Then we have an exact sequence

Φ: 0 > Ex > E >E2 > 0

with Ex e !FX and E2eJ^2, Assume that E, Ex and E2 are on a fibre Xs.

There exists a sequence Yu , Yn_2 of members of |0X s(l) | such that for

every 0 < i < n — 2, Z* = Yx Yt (Zo = Xs) has the following properties;

(a) Zi is smooth and dimZ^ = n — i, (b) E\Zi satisfies (S2), (c) E1\z.,E2\Zi

and ε(E2)\z. are torsion free, (d) the restriction of the exact sequence Φ

to Z, is also exact and (e) ε(E2)\Zi = ε(E2\Zi). Set ^(i) = {E\Zi\Ee^},

= {E,\Zi\Ee &}, &™ = {^UJjBe ^ } and ε ( ^ 2 ) w = {ε(E2)\Zi\Ee ^} =

We shall prove the boundedness of J Γ ( ί ) by descending induction on L

Since ^ Ί and ε&2 are bounded, so are &*p and ε(J^2)
(ί). Thus #{χ(F(/n))|F

e J Γ ί ί ) } < o o and #{χ(G(τn))|Ge ε(J^2)
(ί)} < co. On the other hand, aQ(G)

= Oo(e(G)) and α^G) = α^Gf)). Moreover, a2(E2) = α2(^2U,). Thus, in
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particular, {χ(G(m))\G e lFin~2)} < oo by the assumption (5). Since every

member of J^w~2) is a subsheaf of a member of the bounded family

ε(JS)(w"2), the above result implies that S^in~2) is bounded. Therefore,

jru-2) j s bounded. Thus our assertion is proved for i = n — 2. Assume

that gf{i) is bounded for an ί < n — 2. Replacing & by ^(m) = {i?(7tt)|i?

6 ^ } , m > 0, we may assume that (i) ίP(Z,, (# \Zi)(£)) = 0 for all j > 1,

4 > 0 and Ee &, (ii) dim H\ZU (E\Zi)(£)) < cc, d i m ί T ^ , (E\Zi)(£)) < c\ for

all Ee^, (iii) #{χ((E|z<)(m))|-Ee «̂ } < co, (iv) there is a sequence of

integers (6) = (6^ , bn_i+1) such that E\Zί is a (6)-sheaf for all EetF

and (v) there is an integer So such that H°(Zt, (E\Zi)(-S)) = H\ZU (E\Zi)(-S))

= 0 for all ί > £0. Since H\Z^U (E2\ZiJ(£)) c f P ^ . , , (e(E2)\Zί x{£)) by (e),

s(^2)U{_i is torsion free by (c) and (e) and since ε(JΓ

2)
( ί"1 ) is bounded, we

see that there is an integer ix such that H*(Zt_u G(—£)) = 0 for all ^

> £1 and G e ^ " ^ On the other hand, since SF^ is bounded and

every member of J^" 1 * is torsion free, we may assume that H0(Zi_ί9 F{—6))

= 0 for all Fe P ^ and I > tx. Therefore, H°(Zt.u (E\Zi_t)(-1)) = 0 for

all E e !F and ί > βx. Thanks to this and (i)—(v) above, we can employ

the same argument as in the proof of Proposition 3.6 and know that

^{ί-χ) is bounded. q.e.d.

Now, we are ready to prove the following.

PROPOSITION 5.6. (1) If B^Ur(A) holds and if r < n - 1, then B'nfr(Λ)

holds.

(2) Assume that A is a field of characteristic zero. If B'n_1)7l(Λ) and

Bn-\,n-i(Λ) hold, then so does B'ntn(Λ).

(3) Assume that A is a field of characteristic zero. If Bf

n_ltn_x(A),

Bn-1>n(A) and Bf

n_ltn+λ{Ai) hold, then so does B'nί7l+1(A).

Proof. (1) is an immediate consequence of Theorem 3.1 and Proposi-

tion 3.6. To prove (2), let 2F be the subfamily of Σ'x/S(n, n, au a2) such

that E on a fibre Xs is contained in IF if and only if E is a member of

Σfχ/S(n,n,aί,a2) and for general Y in |0X s(l) |, E\γ is /^-semi-stable. Since

Bn-ίfn(A) holds, !F is bounded by virtue of Proposition 3.6. If E is con-

tained in &' = Σχ/S{n, n, al9 a2) ~ &, then E\z is not /^-semi-stable for

every general member Z in |0X/1)|. Lemma 5.2 provides us with the

Harder-Narasimhan filtration
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for general Ze\ΘXs(ΐ)\ such that r{E,) = 1 or r{E) - 1 and -d<

r{E,)d{E, ΘXs(ΐ)) - r(E)d(Eίy ΘZ{1)) < 0, where d is the maximum of the

degrees of Xs with respect to 0X s(l). We may assume that E\z satisfies

the condition (S2) (Lemma 3.7). Since a^E) is fixed, {ax{E^\Ee &'} is

bounded. Setting E2 = (E\z)/El9 we have the exact sequence

0 > Ex > EI z > E2 > 0

and {a^E^Ee IF'} is bounded. Now, let us consider two families @ι —

{E^EeS?'} and &2 = {E2\Ee &'}. Since {a,{E2)\E2e %2) is bounded and

since B^^.^Λ) and B'n_λΛ(Λ) hold, {a2(E2)\E2e &2) bounded from above by

b2 (Lemma 5.1). From this and the fact that a2(E\z) = a2(E) > a29 we

infer that {a2{E^\Ex e &,} is bounded from below by a2 — b2. Similarly,

{a2(E2)\E2e @2} is bounded from below by α2 — bx. Therefore, we have

(5.6.1) {a^Ed I Ex e ^ } , {a2(Ed \ Ex e ^ } , {

and {a2(E2)\E2e &2} are bounded sets of integers.

Since E2 is torsion free and E \z satisfies (S2), Eί does (S2). Thus we see

that ^j is contained in a finite union of Σx,/S,{n — 1, n — 1, α, 6)'s and

Σχ'/s'(n — 1> 1> ̂ > tys> where X'jS' is the same as before Proposition 3.6.

Therefore,

(5.6.2) ^j is bounded.

ε(E2) satisfies (S2), a^E,)) = ax(E2) and α2(ε(ίJ2)) > a2(E2) (see the proof

of Lemma 3.5). Thus, for the same reason as &l9 we have

(5.6.3) ε(^2) is bounded.

By virtue of (5.6.1), (5.6.2) and (5.6.3), we can apply Lemma 5.5 to

{E\z\Ee J^'} and we see that {E\z \ Ee^'} is bounded. Then the same

argument as in the proof of Proposition 3.6 shows that ^' is bounded.

We see therefore that Σx/S(n9 n9 al9 α2) = 2F U 3Fr is bounded.

Next, let us prove (3). Let J^ and &' be the subfamilies of

Σχ/S(n9 7i + l, aί9 a2) defined similarly to J^ and &' in the proof of (2).

For the same reason as (2), 2F is bounded. By virtue of Lemma 5.3, we

have the Harder-Narasimhan filtration

0 = Eo QEX Q . . . QEa = E\z

for Ee^' and general Ze\ΘXs(ΐ)\ with the properties (1) and (2). As
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before, we may assume that E\z satisfies (S2). By the property (1),

{ax{Eύ\Ee &'} is bounded. Since B'n_lΛ(A), B'n_l)2(A), B'n_ltn_x(Λ) and

Bn-Un(Λ) hold, we see that {a2(EaIEa_1)\Ee J*"'} is bounded from above,

whence {α2(Sα_1)|JSre έFf) is bounded from below. Repeating this procedure,

it is seen that {a2(E^)\Ee &'} is a bounded set. Hence, {a2(E2\E^)\Ee &'}

is bounded and so on. Thus we have

(5.6.4) {aάEJEi.JlEe^'} and {a^EJE^,) \ Ee^'} are bounded.

Set tfx = {E.^EeP'}, J?2 = {EJE.^EeP'}, J^i = {Ex\Ee&'} and
jf" = {Ee-i/EilEe^'}. Since every member of f̂2 is torsion free and

E \z satisfies (S2), every member of ^ λ satisfies (S2) and hence, so does every

member of &[. Since B'n.1Λ{Λ)> B'n-iΛΛ)> J3£-i,»-i(Λ) and B'n_Un(Λ) hold, we

see that Jf ί and ε(^f ίθ is bounded by (5.6.4). Since each member of 3^x

is an extension of a member of J?" by a member of ^ ί , ^ is bounded

by virtue of (5.6.4) and Lemma 5.5. Then, applying Lemma 5.5 to SFX —

Jfj, & = {E\z I jEeJ^7} and ^ 2 = ^ 2 , we know that {E\z\Ee^f} is

bounded. Therefore, 3Ff is bounded similarly to (2). Thus, Σf

x/S{n, n+1, au a2)

= & U &' is bounded. q.e.d.

As a direct corollary to Proposition 5.6, we have

THEOREM 5.7. // A is a field of characteristic zero, then B'n>z(Λ) and

B'nΛ(A) hold for all n and hence, so do B",3(Λ) and B"Λ{Λ) (for the notation,

see (3.4.2) and (3.4.3)).

Proof. BΊf3(Λ) and B[yi(A) are well-known and B'2tZ(A) and B'2>i(A) are

special cases of Theorem 3.10. Assume that n > 3 and B'n_hi(Ά) and

B'n^M) h o l d S i n c e B'n-iM) holds by Theorem 3.11, Proposition 5.6

implies that B'nfS(A) and B'n>i(A) hold. Therefore, by induction on n, we

see that B'n,z(A) and Bf

nΛ(A) hold for all n. q.e.d.

Remark 5.8. (1) To remove the restriction on A from Theorem 5.7,

we should replace Lemma 5.2 and Lemma 5.3 by suitable lemmas. If the

characteristic is positive, Lemma 5.2 and Lemma 5.3 are false as was

shown in Remark 4.7. The author has a result which can play the same

role in the proof of Proposition 5.6 as Lemma 5.2. Thus Proposition 5.6,

(1), (2) and hence B'nίZ(A) hold for all A and n. But almost all the parts

of its proof consist of complicated computations. Hence, I will write it

elsewhere.
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(2) The proof of Proposition 5.6 shows that B'ntr(Λ) holds for all n

and r if and only if the following statement Mntr(Λ) holds for all n and

r.

Mn>r(Λ): Let E on a. fibre Xs be a member of Σx/S(n, r, αu α2). If E\z

is not ^-semi-stable for almost all Z in \ΘXs(X)\, then for sufficiently gen-

eral members Z of |^,(1) |, E\z has the Harder-Narasimhan filtration

such that μ(E) — v < μ(Ei/Eί_1) < μ(E) + v with v a constant depending

only on the family Σx/S(n, r, αu α2).

Theorem 3.1, Lemma 5.2 and Lemma 5.3 show that MUir(Λ) holds

with v = diίr<n+l and A is a field of characteristic zero.

Let MXιS(ΐΓ) be the moduli scheme of semi-stable sheaves obtained

in Theorem 4.11 of [10]. Corollary 5.9.1 of [10], Theorem 3.10, Theorem

3.11 and Theorem 5.7 provide us with the following

THEOREM 5.9. (1) If dim X/S < 2, then MX/S(H) is α projective

scheme over S.

(2) If the rank is two, then MX/S{H) is a projective scheme over S.

(3) If S is a scheme over a field of characteristic zero and if the rank

is three or four, then MX/S(H) is a projective scheme over S.
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