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COMPLETENESS OF TWO THEORIES ON ORDERED ABELIAN

GROUPS AND EMBEDDING RELATIONS

YUICHI KOMORI

§ 0. Introduction

The first order language J£? that we consider has two nuUary function
symbols 0,1, a unary function symbol —, a binary function symbol +,
a unary relation symbol 0 <, and the binary relation symbol = (equality).
Let «£?' be the language obtained from JSP, by adding, for each integer
n > 0, the unary relation symbol n\ (read "n- divides")* The terms 1 +
• + 1 and t + - + t (1 and t repeated n times) will be written as n
and nt, the term t + (—s) as t — s, the atomic formula 0 < t — s as t < s,
and the formulas u<tΛt<s and t = sV t<s as u<t<s and t <̂  s,
respectively. We now give some axiom systems for abelian groups with
a semidiscrete total ordering.

(a) The axioms for abelian groups:

(x + y) + z = x + (y + z)
x + y = y + x
x + 0 = x
X - x = 0.

(b) The axioms for a total ordering compatible with group structures:
0 < x A 0 < y -> 0 < x + y
-π(0<xΛ0< -x)
x = 0V0<xV0< -x.

(c) The axioms for a semi-discrete ordering:

0 < l
2x < 1 V 1< 2x.

(d) The axioms for infinitesimals:
2* < 1 -> nx < 1 for each n > 2.

The axioms for nl are
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(e) n I x <-> 3ylz(— 1 < 2z < 1 Λ x = ny + z) for each n > 0, and

(f) n\x V n\x + 1 V n\x + 2 V V n\x + n - 1 for each n > 1.

(g) The axioms for divisable infinitesimals:

— 1 < 2x < 1 -> 3y(x = ny) for each n > 1.

(h) The axiom for discrete orderings:

-i (0 < x < 1).
(i) The axiom for existence of infinitesimals:

3x(0 < x < 1).

The language of the theory S is if. The set of axioms of S is
(a) U (b) U (c) U (d) (We will write (a, b, c, d) for this set in future.). The
language of the theory D is if as well. The set of axioms of D is S U (h)
(equivalent to (a, b, c, h)), which is equivalent to (a, b) U {0 < x <-> x =
1 V 1 < x}. We call a model of S (or D) an abelίan group with a semi-
discrete (or discrete) total ordering. The languages of the theories SS, SC
and DC are all 2'. The sets of axioms of SS, SC and DC are S U (e, f),
SS U (g, i) and SS U (g, h) (equivalent to D U (e, f)), respectively.

Let Z and Q be the set of integers and the set of rationals, respec-
tively. Consider the group ZQ = Z X Q ordered as follows: 0 < (x, y) if
and only if either 0 < x or x = 0 and 0 < y. ZQ is a model of S which
contains Z as a submodel (identifying (n, 0) with n). Of course, Z is a
model of Z>, but ZQ is not a model of Z>. It is clear that each model of
S is also a model of (e), or, more precisely, given a model of S, there is
a unique value of n \ so that (e) is satisfied. ZQ is a model of ASC as well.

It is known that DC allows elimination of quantifiers and that it is
complete (cf. Kreisel and Krivine [2] p. 54. There exists an error in the
proof, but it is easy to correct the error.). In § 1, we shall show that
SC allows elimination of quantifiers and that it is complete and decidable.

In § 2, we shall show that any model of S (SS, D) can be embedded in
some model of SS (SC9 DC, respectively). Embedding relations will be
used to show some results on the first order semantics for if and =£f'.
One of them is that for any universal formula F of if; and any model A
of SS U (i), F is valid in ZQ if and only if F is valid in A. In the paper
[1], we shall make use of it for giving a complete description of super-
Lukasiewicz propositional logics.

Z is a model of SS U (g), but not a model of SC. Therefore, (i) is
not a consequence of the set (a, b, c, d, e, f, g). Consider the group ZZ ~
Zx Z ordered as follows: 0 < (x,y) if and only if either 0 < x or x = 0
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and 0 < y. This group (identifying (n, 0) with ή) is a model of SS U (i),

but not a model of SC. Hence, (g) is not a consequence of the set (a, b,

c, d, e, f, i).

§ 1. Elimination of quantifiers

To show that SC admits elimination of quantifiers, we consider a

formula F of the form 3x(tfi Λ Λ an) where each at is an atomic formula

of =£?' or the negation of an atomic formula of ϋ?'. Thus at is of one of

the forms t = s, tΦ s, 0<t, —ι (0 < t), n\t or —i (n\ t).

In this section, the derivations from SS are done without notice. As

we shall prove by the way that DC admits elimination of quantifiers, we

notice the use when we use (g) or (i). t = s, t Φ s, —ι (0 < t) and —ι (n\i)

are equivalent to t — s = 0, 0<t — s V 0 < s — t, t = OVO<—t and

7i I £ + 1 V ••• V n\t + n — 1, respectively. Hence we can suppose that

each at is of one of the forms t = 0, 0 < t or n \ t.

Each term t can be written in the form px + s with p e Z and s a term

which does not contain x. If p = 0, the atomic formula can be taken

out of the scope of 3x.

Thus the formula F can be written in the form

. x ixfax < tx A - Λ PjX < tj Λ ux < qxx A Λ uk < qkx A
Λ * )

rλx = v, A - - Λ rtx = vt A n, | SjX — w1 A Λ nm \ smx — wm)

where the p, q, r, s are in N (the set of natural numbers which does not

contain 0) and t, u, v, w are terms which do not contain x.

For any ke N, t = u, t <.u and n \ t are equivalent to kt = ku, kt < ku

and kn\kt, respectively. Hence, taking the least common multiple (l.c.m.)

of pu ,pj, qί9 , qk, ru >,rl9 sl9 , sm we can suppose that px =

= Pj» = ^i = ' ' * = Qk = rx = = rz = §! = = sm = p in the formula

{*). Then the formula (*) is equivalent to

3JC(X <t,A • • • Λ x < ί i Λ w i < x Λ Λ uk < x A

x = vλ A - - - A x = vι A nλ \x — wί A Anm \x — wm A ly(x = py)).

It follows from SS U (g) that 3 y(x = py) is equivalent to p \ x. If Z ^ 1,

then the above formula equivalent to

ι>i < U Λ Λ ι/i < ^ Λ ux < ViA Λ wfc < υx A

υx = υ2 A - - A υx = vι A nx \ υx — wί A Λ nm \ vx — wm A p \ vx
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which is quantifier free. Hence we can assume that 1 = 0. If j ^ 2, the
formula F is equivalent to

ft < k A lx{x <t,Ax<t3A •)) V ft < *i Λ lx(x <t2Ax<t3A •))

and we are reduced to the case of a formula with j — 1 atomic formulas
of the form x < t. Hence we can assume that j <I 1. Similarly, we can
assume that k<Ll.

Suppose that j = k = 1. Let n be l.c.m. of nu n2, , nm,p. Let Cq

be the formula

lylz(0 < ny + z + q < t, - u, A -K 2z < ΐ) A n,\q + u, - w, A

- Λ 7im |g + z/j - u>mΛ£>|<7 + uλ (q = 0 ,1, 2, , n - 1) .

Then, F is equivalent to Co V CΊ V V C n . ,
It suffices to show that lylz(0 < ny + z + q < t A —1 < 2z < ΐ) is

equivalent to some quantifier free formula. It follows from SS U (g) that
it is equivalent to 3 (̂0 < ny + q < t). If q = 0, then it is equivalent to
0 < £ in SC (equivalent to n < t in Z>C). If 0 < g ^ n — 1, then it is
equivalent to — 1 < 2(t — q) in SC (equivalent to q < t in DC).

When j = 0 or k = 0, F is equivalent to Eo V E, V V JS7n_! where
^ is the formula nx \ q + ux — wt A Λ nm \ q + uλ — wm A p \ q + ux.

This completes our proof that SC (and DC) allows elimination of
quantifiers.

Because any atomic formula without variables is equivalent to 0 = 0
or 0 Φ 0, any quantifier free formula without variables is equivalent to
0 = 0 or 0 Φ 0. Hence any closed formula is equivalent to 0 = 0 or 0 Φ 0.
Therefore SC (and DC) is complete.

THEOREM 1.1. Both theories SC and DC allow elimination of quanti-
fiers, and they are complete and decidable.

§2. Embedding relations

THEOREM 2.1. Any model of SS can be embedded in some model of SC.

Proof. Let A be a model of SS. When A satisfies (h), we consider
A X Q ordered as 0 < (x, y) if and only if either 0 < x or x = 0 and 0 < y.
Then A X Q is a model of SC and the mapping /: A -> A X Q such that
f(x) = (x, 0) is an embedding of A in A X Q. Suppose A does not satisfy
(h), that is, satisfies (i). Let B be the set {(x, n)\n\x and n > 0 and xe A}.
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We define functions —, + and a relation 0 < on B as follows: — (x, ή)

= (—x, ή), (x, m) + (y, n) = (nx + my, mή), 0 < (x, n) if and only if 0 < x.

The relation ~ on B defined by (x, m) ~ (y, ή) if and only if nx = my is

a congruence relation. B/~ is a model of SC and the mapping g: A -> 5 / ^

such that g(x) = [(x, 1)] (equivalence class containing (x, 1)) is an embedd-

ing of A in B\~. Q.E.D.

By the Embedding Theorem (cf. [2] p. 40) and the fact that ZQ is a

model of complete theory SC, we have

COROLLARY 2.2. For any universal formula F of &', F is valid in ZQ

if and only if F is valid in every model of SS.

The following corollary is used for giving a complete description of

super-Eukasiewicz propositional logics in a subsequent paper [1J.

COROLLARY 2.3. For any universal formula F of S£' and any model A

of SS U (i), F is valid in ZQ if and only if F is valid in A.

Proof. By Corollary 2.2, F is valid in A if F is valid in ZQ. Con-

versely, suppose that F is valid in A. ZZ can be embedded in any model

of SS U (i). Hence F is valid in ZZ. Any finitely generated submodel of

ZQ is isomorphic to Z or ZZ. Hence it can be embedded in ZZ. There-

fore, F is valid in ZQ. Q.E.D.

LEMMA 2.4. For any model A of S and any elements xu x2, , xq of

A, if m + 7ZA + + nqxq = 0, then m = nx = = nq = 0 or there

exist elements yl9 y29 , yq_, of A and integers kiS (1 ̂  i £ q, 0 <Zj £ q - 1)

such that Xi — kiQ + Σ%\ kiSy$ for any i (1 ̂  i <̂  q).

Proof. Choosing the signs of xl9 x2, , xq suitably, we can assume

that nu n2, , nq are positive or zero. We prove this lemma by induction

on nx + n2 + + nq.

Case 1. Suppose that at least two of nu n2, , nq are positive. We.

can assume that 0 < nx ^ n2. Then we have

m + n,{x, + x2) + (n2 - ^)x2 + nzxz + + nqxq = 0 .

By the hypothesis of induction, there exist elements yu ,yq.1 of A and

integers pί3 such that
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g - l q-l

*Ί -f Λ2 — /̂ 10 I Z_j Pljjj CIHU Λ^ — /yί0 1̂  Z_l PijJj V̂  — ^J °J > S//

Then we have JCJ = (p10 — p2o) + Σl=ϊ (A* ~" Ajb^ It completes our proof

of Case 1 that we put kυ = pυ — p2j (0 <*j ^ q — 1) and ktj = / ^ (2 <ΞJ ί

^ g , O r g j ^ g - 1 ) .

Case 2. We can assume that nx Φ 0 and n2 = n3 = = ?z9 = 0. Since

it follows from S that v#(rax =£ τι) for every mutually prime integers m, n,

nx is a factor of m. Hence, we have xx = —m/nu Put y€ = x<+1 (ί = 1,

2, . . . , g - l ) . Q.E.D.

THEOREM 2.5. Any model of S can be embedded in some model of SS.

Proof. It suffices to show that any model of S generated by a finite

set can be embedded in some model of SS (cf. Theorem 13 in [1] p. 41).

Let A be a model of S which have n generators au a2, , an but can not

be generated by n — 1 generators. We define a relation 0 < on Z X Qn

as follows: 0 < (m, qu , qn) if and only if 0 < pm + {pq^ax + + (pqn)an

where p is l.c.m. of denominators of ql9 qn,

In order to prove that Z X Qn is a model of SS, it suffices to show

that m ~ hx~ = kn = 0 if m + kxax + + knan = 0. By Lemma 2.4,

au α2, , an can be generated by n — 1 generators if m + &Λ + +

knan = 0, and mΦO or Λ< ̂  0 for some i. Hence, Z X Qn is a model of

Let / b e a function from A into ZX Qn such that /(m + ^e^ +

+ knan) = (m, *!,-•-, An). Then / is an embedding of A in Z X Qn. Q.E.D.

By Theorem 2.1 and Theorem 2.5, we have

THEOREM 2.6. Any model of S can be embedded in some model of SC.

The following corollary can be proved similarly to Corollary 2.3.

COROLLARY 2.7. For any universal formula F of 3? and any model A

of SI) (i), F is valid in ZQ if and only if F is valid in A.

We can prove the following theorem quite similarly to Theorem 2.5.

THEOREM 2.8. Any model of D can be embedded in some model of DC.

Since any model of D has a submodel Z which is a model of DC, we

have the following corollary.
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COROLLARY 2.9. For any universal formula F of J£? and any model A
of D, F is valid in Z if and only if F is valid in A.

Any model of (a, b) U {0 < 1}, that is, any totally ordered abelian
group with 1 contains Z as a submodel. Hence, for any model A of
(a, b) U {0 < 1}, the set of open formulas valid in A is included in the set
of open formulas valid in Z which equals to the set of open theorems of
Z>. The theory D is an open theory, that is, axiomatizable by only
open formulas. Therefore, we have

THEOREM 2.10. The theory D is the greatest element of the class of open
consistent theories in S£ containing (a, b) U {0 < 1}.
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