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FIRST CHERN CLASS AND HOLOMORPHIC TENSOR FIELDS

SHOSHICHI KOBAYASHI^

1. Introduction

Let M be an ra-dimensional compact Kaehler manifold, TM its

(holomorphic) tangent bundle and T*M its cotangent bundle. Given a

complex vector bundle E over M, we denote its m-th symmetric tensor

power by SmE and the space of holomorphic sections of E by Γ(E).

In [4] we have shown that Γ(SmTM) = 0 (resp. Γ(SmT*M) = 0) if cx{M)

< 0 (resp. cx(M) > 0) and if M is simply connected. (For the precise

statement of a little stronger result, see [4]).

In this paper we consider more general tensor bundles. Our results

may be summarized as follows:

THEOREM A. Let M be a compact Kaehler manifold with c1 (M) < 0

(i.e., with ample canonical line bundle KM). Let

TζM = ((§) TM\ <g> (k) T*M\ .

// r > s, then Γ(TζM) = 0, i.e., there is no holomorphic tensor fields of

contraυariant degree r and covariant degree s.

The theorem above is an immediate consequence of a theorem of

Bochner [7] and a recent result of Aubin [1] and Yau [8].

COROLLARY A.I. Let M be as above. Let m be a non-negative integer

and q a (possibly negative) integer. Then

(1) Γ(SmTM ®Kq

M) = 0 for m-qn>0,
(2) Γ(SmT*M®K%) = 0 for -m - qn> 0.
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For applications, the cases ±m — qn = 0 are of some interest.

THEOREM B. Let M be a compact Kaehler manifold with c^M) < 0.

Then

Γ(SnqTM®KM) = Γ(S n βΓ*M®KM

q) = 0 for q>0,

unless the universal covering space M of M is biholomorphίc to a product

Dx N of a symmetric bounded domain D and a complex manifold N with

dim D > 0 and dim N > 0.

COROLLARY B.I. Let M be a compact Kaehler manifold with cx{M) < 0

and finite fundamental group. Then

Γ(SnqTM® K%) = Γ(S**T*M® KM

q) = 0 for q>0.

COROLLARY B.2. Let M be a compact Kaehler surface with cx(M) < 0.

Then

Γ(S2qTM® K%) = Γ(S2qT*M® KM*) = 0 forq>0,

unless the universal covering space M of M is bίholomorphίc to the bidisk

{(z,w)eC2;\z\<l,\w\<l}.

The proof of Theorem B is a little more involved; as in our previous

paper [4], it requires Berger's holonomy classification theorem [2]. By a

similar method, we obtain also the following

THEOREM C. Let M be a compact Kaehler manifold with cx{M) = 0

and finite fundamental group. Then

Γ(SmTM®KM) = Γ(S m Γ*M®K M ) = 0 for m>0.

A vector bundle E of rank r over M is said to be instable in the

sense of Bogomolov if there exists a representation p of GL(r; C) with

determinant 1 (i.e., a representation which factors through PGL(r; C))

such that the associated vector bundle E(p) has a nonzero section s which

vanishes at some point of M (see [5]).

The following result is a simple consequence of Bochner's theorem

and the representation theory of GL(n; C).

THEOREM D. Let M be a compact Kaehler-Einstein manifold. Then

its tangent bundle TM is not instable in the sense of Bogomolov.
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COROLLARY D.I. Let M be a compact Kaehler manifold with cx(M) < 0

or cx(M) = 0. Then TM is not ίnstable in the sense of Bogomolov.

In deriving Corollary D.I we use again the result of Aubin (for

c1(M) < 0) and Yau (for c,(M) < 0 and cx(M) = 0). By a purely algebraic

method, a result similar to Corollary D.I has been obtained by Reid [6],

COROLLARY D.2. Let M be a simply connected compact homogeneous

Kaehler manifold. Then TM is not instable in the sense of Bogomolov.

In the last section, we shall discuss possibility of generalizing Theo-

rem D to other vector bundles.

I want to thank F. Sakai and M. Reid for explaining to me the con-

cept of instable vector bundle.

2. Proof of Theorem A

Let M be a compact Kaehler manifold and ξeΓ(Tr

sM). Let | |£|| de-

note the length of ξ and set / = \\ξ||2. If M is Kaehler-Einstein, i.e., Riά

= cgih then a simple calculation shows

Jf=\\Fξ\\*-c(r-s)\\ξ\r

and we obtain the following theorem of Bochner ([7; p. 142]):

THEOREM 1. Let M be a compact Kaehler-Einstein manifold. Then

(1) If the Riccί tensor is positive, then

Γ(Ts

rM) = 0 for r<s,

and Γ{TγM) consists of parallel tensor fields;

(2) If the Ricci tensor is negative, then

Γ(Tr

sM) = 0 for r>s,

and Γ(Tr

rM) consists of parallel tensor fields;

(3) // the Ricci tensor is zero, then Γ(Tr

sM), for all r, s, consists of

parallel tensor fields.

If cx(M) < 0, then by Aubin [1] and Yau [8], there exists a Kaehler-

Einstein metric with negative Ricci tensor on M. Hence, Theorem A fol-

lows from (2) of Theorem 1. Since KM is a subbundle of T°nM and STmM

is a subbundle of T?M, Corollary A.I is a special case of Theorem A.
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3. Proof of Theorem B

Again, by the theorem of Aubin and Yau, we may assume that M is
a Kaehler-Einstein with negative Ricci tensor. Let M be the universal
covering space of M and let

M = M\ X X Mr

be the de Rham decomposition of M into Kaehler manifolds Mu , Mr

with irreducible holonomy group. (Since the Ricci tensor is negative
definite, there is no Euclidean factor in the decomposition). Under a natu-
ral identification, we have

SmTM®K% = Σ (SmiTMί (g) Kir,) ® • ® (SmrTMr <g> K%r),

where the summation is taken over all partitions m = nq = mλ + + mr.
Since every ξ eΓ{SnqTM® K%) is parallel by (2) of Theorem 1, we

have only to show that if V(=Mt) is a non-symmetric Kaehler manifold
with irreducible holonomy group, then the bundle SkTV®Kq

7 has no
parallel sections (other than the zero section). But this is an algebraic
problem. Set U = Cp where p = dim V. Then the problem is to show
that no element of SkU<8)(ΛpU)q is invariant under the natural action of
the holonomy group. By the holonomy classification theorem of Berger
[2] (see also [4] where Berger's theorem is explained in our special situ-
ation), the holonomy group of a p-dimensional non-symmetric irreducible
Kaehler manifold V with nonzero Ricci tensor must be either U(p) or
Sp(pl2) X [/(I). Since these groups act irreducibly on SkU and since
dim(ΛpU) = 1, this completes the proof. The case of SnqT*M® K^ is
similar.

The assumption in Corollary B.I eliminates the possibility of sym-
metric domain for Mt in the above decomposition.

In Corollary B.2, if M is reducible, then M is a bidisk. If M is ir-
reducible, its holonomy group is 17(2) even when M is a symmetric do-
main. As long as the group is as large as 17(2), the proof is still valid.

The proof above is also valid when M i s a compact Kaehler-Einstein
manifold with positive Ricci tensor.

THEOREM 2. If M is a compact Kaehler-Einstein manifold with posi-

tive Ricci tensor, then
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Γ{SnqTM® K%) = Γ(SnqT*M® KM

q) = 0 for q>0 ,

unless M decomposes into a product Mf X M" of a hermίtίan symmetric

space Mf and a Kaehler manifold M" with dim Mf > 0 and dim M" > 0.

We remark that a compact Kaehler manifold with positive Ricci
tensor is simply connected [3] so that we can apply the de Rham decomposi-
tion theorem directly to M.

4. Proof of Theorem C

By the theorem of Yau, there is a Kaehler metric with zero Ricci
tensor on M. By (3) of Theorem 1, every holomorphic tensor field is
parallel. The rest of the argument is similar to that in the proof of
Theorem B.

We note that Theorem C is applicable to the Kaehler K3 surfaces.

5. Proof of Theorem D

Let U = Cn. Let 1 < nx < n2 < ns<n and qu q2, , qs, q be posi-
tive integers such that

qiΠ, + + qsns = qn .

Then the representation λ of GL(n; C) on

W = (Λni C7)Θ^ ® <g) (ΛnsU)®qs ® (ΛnU*)Θq

has determinant 1 and, conversely, every irreducible representation p of
GL(n; C) with determinant 1 appears as an irreducible factor of such a
representation λ.

But W is a subspace of Tn

n\ = (®n5 U) ® (®nq U*). Set E = TM. If
^ is an irreducible representation of GL(n; C) with determinant 1, then
the associated vector bundle E(p) is a subbundle of Tl\M. From Theo-
rem 1 it follows that every holomorphic section ξ of E(p) is parallel and
hence cannot vanish unless it vanishes identically. Since every represen-
tation of PGL(n; C) is fully reducible, this completes the proof of Theo-
rem D.

Corollary D.2 follows from the well known fact (due to H. C. Wang
and A. Borel) that every simply connected, compact homogeneous complex
manifold admits a Kaehler-Einstein metric (of positive Ricci tensor).

Although a compact Kaehler manifold M with cx(M) > 0 may not
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admit a Kaehler-Einstein metric, it may be still true that TM is not in-
stable.

6. Hermitian-Einstein vector bundle

Let E be a holomorphic vector bundle of rank r over a complex
manifold M of dimension n. Let h be a Hermitian fibre-metric in E.
Let s19 , sr be linearly independent local holomorphic sections of E.
We set

haβ = h(sa9 sβ) .

Let z\ - - , zn be a local coordinate system in M With respect to (slf , sr)
and (21, , zn) the curvature of the Hermitian connection in the bundle
E is given by

Let ds2 = 2 J] g^dz3dzk be a Hermitian metric on M. Then we can
define the "Ricci tensor" (Raβ) of h with respect to ds2 by

R«β = Σ g3*Raβjt

We say that (JE, M, h, ds2) is a Hermitian-Einstein vector bundle if the
Ricci tensor (Raβ) is proportional to h, i.e.,

where φ is a function which does not change its sign. (It is not clear
whether we should assume that φ is constant. But, for our present pur-
pose the assumption above suffices.).

Without any change in their proofs, Theorems 1 and D generalize to
Hermitian-Einstein vector bundles. We have therefore

THEOREM 3. Let (E, M, h, ds2) be a Hermitian-Einstein vector bundle
over a compact complex manifold M. Then E is not instable in the sense
of Bogomolov.

Remark. For the tangent bundle E = TM, the existence of h and
ds2 such that (TM, M, h, ds2) is a Hermitian-Einstein vector bundle is
probably a much weaker condition than the existence of a Kaehler-
Einstein metric on M. (The latter condition means the existence of a
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Hermitian-Einstein structure (h, ds2) such that h = ds2).
Many homogeneous vector bundles carry Hermitian-Einstein struc-

tures. But it is important to find other (preferably, algebraic-geometric)
conditions for the existence of Hermitian-Einstein structure.
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