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ON THE GEOMETRY OF SOME SIEGEL DOMAINS

RUNE ZELOW (LUNDQUIST)

§ 1. Introduction

In his book [2], Pyatetskii-Shapiro describes representations of clas-
sical domains as certain "fibrations" over their boundary components.
The fibers are quasi-symmetric Siegel domains of the second kind [3].
Professor Kobayashi asked "how symmetric" these fibers are, or more
precisely, he asked for totally geodesic directions in the fiber. The
object of this paper is to determine at least a totally geodesic sub-
manifold of the fiber, and it turns out to be complex. As the fibers
over different points are analytically equivalent, we consider one par-
ticular fiber. The general calculation below holds for a reductive homo-
geneous submanifold through the base point of a symmetric space.
Then we specify the second fundamental form of the fiber for the case
of the Siegel disk (domain of type III) {Z e M(p, C)\ιZ = Z,IP- Z*Z > 0}.
For the domain of type I, {Z eM(p, q, C)\Iq — Z*Z > 0}, p > q, and the
domain of type II, {ZeM(p, C)fZ = -Z, Ip - Z*Z > 0}, the calculations
are similar, so we just point out some of the changes (§ 6). Since the
case of a zero-dimensional boundary component is trivial, we consider
only positive-dimensional boundary components. For lack of space-time,
we have not yet considered the domain of type IV.

Finally, we prove that, in the above cases, the Bergman metric of
the domain induces (up to a constant) the Bergman metric of the fiber.
In proving that, we also have to describe the fiber as a Siegel domain
of the second kind and compute Satake's mappings R and T. We in-
clude a proof that the fiber is in fact quasi-symmetric, since the proof
is easy when we have the mappings R and T. (For a general proof
see Ch. V, § 5 of a forthcoming book by Satake about algebraic struc-
tures on symmetric domains). The Siegel domains in the cases of do-
mains of type I, II, III are defined over the cones of positive-definite
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matrices with entries in complex numbers, quaternions and real numbers,
respectively.

The author is indebted to Professor S. Kobayashi and Professor I.
Satake for discussions and hints.

§2. The Siegel disk

We consider the following classical domain, where 1 < p e Z:

&p: = {ZeMfaOl'Z = Z,IP- Z*Z > 0} ,

where M(p, C) is the set of p x p complex matrices, ί is transpose, *
is adjoint and lv is the identity matrix. The automorphism group of
9P is

G = {g e G£(2p, C)\< g Ja = Λ, 9*Hog = HQ} ,

where

The Lie algebra of G is

, 2 ? 6 M ( P , C ) , A* + A = 0, <B =

G acts transitively on Q)v with the action

g Z = (αZ + 6)(cZ + d)'1 , where flr = ( α δ

7) with a, b,c,de MV{C)
\c a/

The isotropy group at Z — 0 is

So ^ p = G/ίC, and also the involution is σ: G a # H-> H^HQ1 e G.
For realizations of S p giving fibrations over different boundary

components, one uses, following Pyatetskii-Shapiro [2], other choices of
Jo and HQ. The realizations take place in a Grassmannian also the

above one, where Z is represented by ί ] in GPiP(C). Put p = r + s,

with 0 < r e Z, and
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0 0 iί.

/,: =

The corresponding realization is

2>f = {[U] e GPtP(C) IU e M(2p, p, C), ιUJsU = 0, U*H,U > 0} ,

where [ ] means equivalence class under the right action of G£(p, C)
on M(2p, p, C) = {2p x p complex matrices}. For each [U] 6 2f, there
is a unique representation of the form

U = u210
/

tf.η
u22
Ir

0 -

where Un e ΛΓ(s, C) , C712 e M(s, r, C) ,

U21 e M(r, s, C), t/22 e ilf(rf C). Here lUu = t/u, «tfί2 = Un,

tJJ2\ ~ Ul2 and W -

where

w — 1 (77 _ Γ7*) — 77*17 TT7 — W * — 7 7 Γ 7 * r r

T722 = /y — U}2U22. The positivity-condition is equivalent to PΓ22 > 0 and

•*• Γ77 _ r 7 * ^ _ r 7 * r 7 ϊ"7 Γ7*>)-1Γ7 — 77 W - 1 7 7 * 7T7 W~1Γ7*Γ7
V *-' 11 — *-̂  11/ **J 21 \ T — *-̂  22 *-̂  22/ *-̂  21 — *-' 12 ' 22 *-̂  12 — v(_/ i

2
 VV 09 *-̂  22 *-' 21

Pyatetskii-Shapiro puts this in Siegel domain form as follows: Set
t = U22, z = 2Un, u = U12, v = V12( e M(s, r, C)), and

Lt(u, v) = u{Ir - t*t)~ιv* + v(Ir ~ tt*)-1 ιu
v(Ir - * hi} .

Finally, let Ω be the cone of s X s hermitian positive definite matrices.
Then Lt(u, v) is C-linear in u, i?-linear in v, and Lt(u, v) — L£v, u) is purely
imaginary, where conjugation is *. The realization Q)f is then the
Siegel domain of the third kind given by Lt and Ω, i.e.
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Si11 = •
W

0

u

t

h
Oj

u e M(s, r, C), *z = ze M(s, C), H = te M{r, C),

Ir — t*t > 0, Im z — Re Lt(u, u) e Ω

We see that we have a "fibration" of Bf over the boundary component

0 t
0 Ir

L0 OJ

ιt = t e M(r, C), Ir-t*t>0\~ ar9 by the map

(z, u,t)*-+t

Let Vo be the fiber over t — 0.

The automorphism group now looks like

G(5) = {ge G£(2p, C) \ *gJsg = J89 g*Hsg = H,} ,

with action g[U] = [^ί7], and the Lie algebra is

g(5) = {IeM(2p, C)| ιXJ s + JSX = 0, Z * # s + JΪSZ = 0} .

And the involution is σ: g —> HsgH~τ. All these objects correspond to

the same things in the realization Θpf via the isomorphism K : @p " > @p

s)

which takes W to MW, where W e M(2p9 p, C) represents a point in 3tp>

(each such point has a unique representative of the form W = \ with
II p 1

ιZ = Ze M(p, C) and Ip - Z*Z > 0), and where
7 0 0 i/,v ιr 0

o o
W, 0 0 ;)l α U

M satisfies ιMJsM — Jo, M*HSM = iϊ0, and we have also the isomorphism

KiG-1^G(s) given by κ(g) = κogoK~\ which can also be written g H*

MgM*. Then , and Λ; sends Z = 0 in ^p to the point

/ ° ° Iσ = π r e ô> which we therefore take as our base point in @p

s)

v, ύ
We now look at some subgroups of G{s) which are relevant for the

boundary fibration:
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1) An element g e G(s) preserves the boundary component

only if it has the form

179

if and

Q,n

(
0 a22 α 2 3 a2λr
0 a32 α 3 3 α 3 4 l r ,
0 0 0 ajs

where the sizes of the blocks are as indicated .

s r r s

Let G(s) be the group of these elements.

2) An element g e G(s) fixes the point
0 0
0 /

LO θJ

(that is the point t = 0) if and only if it has the form

ί
CLn QJII <Xi3 dUχ

0 a22 0 α 2 4 l
0 0 α 3 3 au '

\0 0 0 α44/
Let G(

o

s) be the group of these elements.

3) An element g e G(s) preserves the fiber Vo if and only if it fixes the

point t = 0 in J^s. So the "group of the fiber Vo" is G(

o

s).
il 0
0 01

4) An element g e G(

o

s) fixes the base point σ = Q T e VQ if and only

1/ o/
if it has the form

ri C\ i (ft — ft ^
I Uq 2 v/ t'VW'44 WΊl/\

0 α2 2 0 0
9 = ' 0 0 α3 3 α3 4

0 0 0 α 4 4

Let K(

o

s) be the group of these elements.

Using the conditions satisfied by elements of G(5), we can then check:

G(

o

s) is the set of elements

0
0
0

_
9 ~

S 3 3

0
0

0
α 3 3

0
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with au e M(s, R), α24 e M(r, s, C), a33 e U(r), au e G£(s, R) and ιauau —

CL44&U ~Z ^ 1/^24^24 ^24^24/

(
α 4 4 0 0 0 ,

0 α 3 3 0 0
u α 3 3 υ

0 0 0 aj

w i t h α 3 3 e ί 7 ( r ) , α 4 4 e θ ( s ) , i . e . K{

o

s) =

T h e L i e a l g e b r a of G(

o

s) i s

0

0

0

Z 3 3

0

X 0(8).

tXli = Xu, XueM(s,R),)

Xu e M(r, s, C), \ ,

as a subalgebra of §£(2p, C).

Finally, one can check that

a) Gcs) is transitive on &'s
b) G(

o

s) is transitive on Vo

c) The ίibration 3tf 3 (z, it, t)^t

d) G ( s )/K ( s ) ίl G(s) - ^ > GisηKis) =

s is G(s)-equivariant.

is an isomorphism.

The fiber F o — Gis) /K(

o

s) is a reductive homogeneous space with respect

to the decomposition g£s) = ϊ£s) + m, where ϊ^s) is the Lie algebra of K{

and

Xs)

m = 1* * *
0 0 0

0 0 0

0 0 0 z 4 4

XΛ

The following is of course well-known, but we include it for com-

pleteness : Consider the realization Q)v = G/K. We have the Cartan

decomposition g — ϊ + p, where

is the Lie algebra of K, and

= BeM(p,C)
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The tangent space at Z — 0 is represented by p, and p admits the
positive definite Ad Z-invariant io-hermitian metric B(X, Y) = trace (ZΓ),
which is, except for a factor 2(p + 1), the Killing form of g restricted

to p, and where j 0 : ( _ ) *-* ( _ ^ ) is the (Ad K-invariant) com-
\Z? 0/ \—iB 0/

plex structure on p corresponding to the natural complex structure on
2P. In this way, by translation from the origin Z — 0, Q)v gets its in-
variant Kahler metric.

§3. Curvature of Fo

In this section we write G,K,@,G0,K0 for G(s), K{s\ ^\ G(

o

s\ K(

o

s) etc.
The connection on G/K can be described by ([1], Ch. 10, 11):

Xeϊ
Xep

where λ is the isotropy representation, g — ϊ + p is the Cartan decom-
position and Λ{X) e qϊ(p(p + 1), R), (p(p + 1) = dim^ ̂ ) . For the rieman-
nian connection given by the above invariant metric (Killing form), the
connection is the natural torsion free and also the canonical one, i.e.
AΞΞO, ([1], Ch. 10, 11). By [1], p. 191, (Ax\ = 0 for Xep, where
Ax\ — Lx — Vx, (Lie derivative minus covariant derivative). If Xe$,
then we let X also denote the vector field on G/K defined by exp tX.
By [1], p. 188, we have U0OA(X)OUQ1 = — (Ax)0 for l e g , where u0 is a
(fixed) linear frame at 0, used to define A. For the isotropy represen-
tation we have the commutative diagram

Ί
t-D

f-1)

where Γo^ is the tangent space at 0, and

d
{(exp tX)K} .

dt

So for X e ϊ, a d z | , = ζ" 1 o^0 oλ(χ)ot^-1 oζ = ζ" 1 o^ 0̂o A(X) ou0oζ = -ζ~ι <

oζ. We see
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1 0 Xep.

To calculate the connection from this, we have ([1], p. 188).

( 2) VYX = -AXY for all vector fields X, Y on G/K .

The similar situation for Vo — G0/Ko is that the induced connection

is Go-invariant, and hence given by some Am:m-* gl(dimΛ Vo, R). Here

we base Λm on a linear frame u0 of Vo at 0, and corresponding to the

above, we have - ^ > T0V0 —=-> RdimR Vo. We get
ζ V

( 3 ) — (Aγ)b κ^rx

Y e m ,

where go = ϊo + m is the earlier decomposition, and also FWoY = ~(AF)0Tf for

vector fields Y, W on F o. We want to calculate Am.

Let Z e Γ0F0, Yem, α(Z, Y) be the second fundamental form of Vo in

^ , and V be the (above) induced covariant derivative on Vo. By the Gauss

formula, we have

^ 4 j Ho o ΛJΓ) o ii-1^ = - (AY)OZ = PZY

- FZY - a(Z, Y) = -(A r)oZ - a(Z, Y) .

We must decompose Y relative to ϊ and p in order to use (1), and we claim

( 5 ) — (AF)0 = Coadtf+^/joζ-1 ,

where a is the involution on G.

Proof, a) The map g 9 Y »-> Y e {vector fields on S} is C-linear, for

= TΓ* oi2^(Y), where TΓ : G -> G/K is the natural

map and Rg: G -» G is right translation by ^ e G.

b) Using (1), we have

-{AY\X = F X o ( - l ^ Γ + - ^ = ^ - y ) - -(A ( I + σ ) F / 2)0X - (Aa_σ)Y/2\X

proving (5). Further, α(Z, Γ) = normal component of —(AY)QZ = normal

component of ζ o a d ( / + σ ) F / 2 o ζ " % i.e.

( 6) a(Z, Y) = normal component of ζΓi-L^-Y, ζιz\ where ^ e ToVo ,

Y e m .
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By (4) we see that, for such Z, Y :

183

( 7 ) u0oAm(Y)ouόιZ = tangential component of ζ Γ 7 + σ Y,ζιz\ .

We choose our (fixed) frames u0 and u0 as follows: Let u0 = [e19 ,

^P(P+I)} be an orthonormal frame at 0 of 2 such that uQ — {elf , βdlmjϊ F J

is a frame of Vo. Then since the metric on p is given by B (Killing

form), we have

( 8 )

as an endomorphism of RAlmRv\ where the ε/s form the standard basis

of the latter vector space. We want to simplify this:

The following diagram commutes, where θ = ~~ σ is the projec-

tion onto p:

T0V0

m

For if X = X' + θXem with X' e ϊ, and π: G -> G/Z, then on the one

hand

ζ(Z) = A
dt

{(exp
dt

{(exp ίZ)Z} - Γ^Z ,

and on the other hand

(exp t#Z)(exp tX;) = exp {tiθX + X') + O(t2)} = exp {tX + O(t2)}

implies

d

d

dt

tX')K)

{exp t Z + O(t2)}Z} = π*X .

Via u0"
loC we can consider Λm(Y) e End (m), and using also (the in-

jective map) θ, we consider Am(Y) e End
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PROPOSITION 1. For Am(Y) e End (0m), where Y em and θ = I ~~ σ

2
is the projection to p, we have

ΛJY) = τoad ( I + < r ) F / 2 ,

where τ: p —> θm is the orthogonal projection with respect to the Killing

form.

Proof. For Y9 Z e m, we have

Am(Y)Z = iim£° B^l±^Y,ζ'tz\, ζ~'e)jζ-% e θm .

So for Γet t i , Zeθm, we get, since ζ"'ζ = 0 by (9), and considering

AJY) e End (0m):

q.e.d.

We can now calculate the curvature of Vo. We calculate at 0:

Denoting the curvature transformation by R(X, Y) where I , Γ e m , we

have ([1], p. 192).

where [ ]m and [ ] ϊ o mean m- and ϊ0-components, and where λQ: ϊ0 —>

g[(dimΛ F o , i?) is induced by the isotropy representation λQ: Ko—>

G£(dimR V0,R). As before, we have the commutative diagram (Z eΐ0 c

ϊ ) :

^ T o y o _ Z ^ j p * o

(ID adJ Uo(Z)

m -=-> Γ 0F 0 - ^ > ^ d i m β Fo

(12) Also θo&dz = a d z o ^ for Z e ϊ 0 c ϊ, as one easily checks.

Now for I J e m write [X,Y] = Z +W with Z e ί0, fFein. Then

in End (θm) we have by (11) and (12):

(13)

Also Λm([X,Y]m) = τoad(J+<r)TF/2, by Proposition 1.
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Since Z e ϊ0 c ϊ, we have σZ — Z, hence ad z = ad(Z+σ)^/2. Also adz (θm)
aθm implies adz = r o a d z on θm. Therefore ad z = ro&da+σ)Z/2: 0m —>0m.
We now see

Λm([X, Γ ] J + λo([X, Y]J = τoad ( J + < ; ) ί F / 2 + road ( J + σ ) Z / 2 : 0m -> θm .

Using Proposition 1, we now get

PROPOSITION 2. The induced curvature on Vo is

R(X,Y) = [τoadα + β ) I / z, road(/

where X,Y em, and T: p —> θm is the orthogonal projection with respect
to the Killing form.

§4. The 2nd fundamental form a

We know this already see (6): For X,Yem,

a{X, Y) = normal component of ζ —ί_^-Y, ζ~%X 1= normal component

of ζj" 7 + σ y ?

 7 + σ z 1 , using (9). So we get, (using the symmetry of
L 6u ill Λ

a):

PROPOSITION 3. The second fundamental form a: m x m
c p o/ Fo m 3f is

a(X, Y) = (/ -

where τ: p —> ^m α^d (̂ m)-1- are orthogonal projection and complement
with respect to the Killing form.

LEMMA 1. For X, Yem, we have a(X, Y) = 0 if and only if
[σX,Y] + [σY,X]eθm.

Proof. We have

\L±±X, ^-^Y\ = h[X, Y] - σ[X, Y]} + \{[σX, Y] - [X, σY]}

«[Z, Γ]) + h[σX, Y] + [σY,X]} ,
2 4

and since Θ([X, Y]) e^g0 = 0ϊϋ + θm = ίm, the lemma follows. q.e.d.
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We now calculate the condition for a(X, Y) to be zero in our con-

crete case 2 = <3f. The involution σ(g) = HsgH^ and m are described

in §2.

For X — I Λ A Λ v " I 6 m we then find

0 0 0 Z 4 4

_
σΛ -\ v

0 0
0 0

Using such expressions in Lemma 1, we find, after a matrix calculation:

LEMMA 2. a(X, Y) = 0 i/ <md 0^2/ i/ X>/Y24 + Y24̂ 24 = 0.

Then we can calculate the null-space Na: = {X\a(X,Y) — OyYem}

of a. In Lemma 2, Z24, Y24 e M(r, s, C), and we must find those

P e M(r, s, C) for which PιQ + QΨ = 0 vQ e M(r, 5, C). Let {£y be the

standard basis for M(r, s, C), and write P = 2 P , ^ . Then 0 = P ^

1Λ*P = Σ PλμEλμEίs + Σ E,sPXμEμX = 2 Pyί?,. + Σ P«ί?.a = 2Pe ίί78 ! +

\sEλε + Σ Piβ£?βi. We see P = 0, so X e Na if and only if X24 = 0, i.e.

LEMMA 3.

Let Jf: = U NajX> where NatX — null-space of a at x. If g e Go and

, Y e T0V0, then α(flrZ, ^Y) = ga(X, Y), so îVα - 2Vα,,.o.

PROPOSITION 4. Γfce distribution Jr is integrable (ίnvolutive).

Proof. Let X, Y, Z be local vector fields on Vo near 0, and suppose

X, Y eJί. Now Z 6 ,/Γ if and only if VΣZ is a local vector field on Vo

for all (local vector fields on VQ)Z, by definition of Jf. We have fur-

ther FίXyY2Z = [F x , VY]Z - i?(Z, Y)Z. Here ΓXZ, FFZ are local vector

fields on Vo since X,Y eJf, and so are, for the same reason, VX(VYZ)9
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Vγ(VxZ). So we have to prove R(Xy Y)Z is tangent to 7 0. By invariance

of Vo and Jί under Go, it suffices to check this at 0. Now for X, Ϋ, Z

ep ~ TQ3, we have R(X, Y)Z = -[[X, Ϋ],Z]. So for the above X,Ye

Nadm and Z e m, one has to check that [[ΘX, ΘY], ΘZ] e dm, i.e.

[[θNa,θNa],θm] c 0m. This is straightforward, so we leave it. q.e.d.

Equally straightforward is

L E M M A 4. [Na, Na] c ϊ0 + Na, [[Na, 2VJ, Na] c Na, [[θNa, ΘNJ, ΘNa] c

θNa.

Now let S c Vo be a maximal connected integral submanifold for

Jί through 0. By Lemma 4, §a: = [Nα, IVJ + Na is a subalgebra of £0>

and we let Gα be the connected subgroup of GQ with Lie algebra gβ

Letting X β : = JBL0 Π Gα, we have the submanifold Ga/Ka of Fo. If g e Ga,

then Tg.Q(Ga/Ka) = gTQ(Ga/Ka) = (/iVα — ̂ Γff.o, since by Lemma 4 we have

T0(GJKa) = NΛ. We see S - GΛ/Zα.

By Lemma 4, we can also consider the algebra

gα: = [θNa, ΘNJ + θNa, which is a symmetric subalgebra of g since ΘNac. p,

and the corresponding groups Ga,Ka: = K Π Gα. Then S = Ga/Ka is a

totally geodesic submanifold of 2. Since Γ0S - ΘN> we have T0S = TQS.

One can calculate that

j β Π θNa = g0 Π θm =

so for such X's we have the ^-geodesic (exp tX) 0 e Vo. However,

since (exp tX) 0 = (exp tX)kt 0 for any path kt e K, we could have that

(expίZ) Oe Vo for all XeθNa, i.e. that S = S. We shall see that this

is in fact the case.

By Proposition 1 we have FXoY = Λm(Y)X = τί I + σ Y , z ] e^m for

Xeθm, Y e m. If now X, Y e T0S too, then α(Z, Y) = 0, so then VXJ =

FXoY. To prove that the second fundamental form of S — Ga/Ka in ^

is zero, we therefore have to prove that τ —ί-^-Y,X e ΘNa for X e θNa>

YeNa9 i.e. we have to prove that ΛlΛJLγ9

 I ~σχ\βΘNa for X,
L dt LL J

YeNa. We have in fact:

X " 4 4

0
0
0

0
0
0
0

0
0
0
0

0
0
0

X
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LEMMA 5. Γ I + σ Y, 1 ~ ° x\ e ΘNa for X,Ye Nm.
L Δ Δ J

Proof. Trivial, using the matrix expressions for σ and elements of
Na. q.e.d.

We now have ([1], p. 59).

PROPOSITION 5. The integral submanifold S = Ga/Ka for Jί is a
totally geodesic complex submanifold of 2 contained in VQ, and T0S
= Nm.

Proof. It only remains to prove that S is complex. In §2 we
described the complex structure jQ. Transforming to our representation
&(

p

s), we have that the complex structure is given by

0 0
0 il

j = Mj0M* = I Q a

r _:τ n I : p -> p ,

where M is given in §2. Since

where j here acts on a typical element of ΘNa, we see jθNa = θNa. By
[1], p. 261, we see that the totally geodesic submanifold S of 2 is a
complex submanifold. Since it follows by the earlier argument that
S = S, we are done. q.e.d.

§5. The Bergmann metric on VQ

Since VQy being a Siegel domain of the second kind, is equivalent
to a bounded domain, we have a Bergman metric on Vo. This metric
was computed in [4] for the case of a quasi-symmetric irreducible
Siegel domain, and Vo is such a space. On the other hand, @p is also
a bounded domain, and has its own Bergman metric. The purpose of
this section is to show

PROPOSITION 6. The Bergman metric on @p induces (up to a con-
stant) the Bergman metric on VQ, and VQ is a quasi-symmetric irre-
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ducible Siegel domain of the second kind ([2], [3], [4]).

Remark. Since the stability group of Go is U(r) x 0(5) (see §2),

hence not irreducible, the proposition is not immediate. That VQ is

quasi-symmetric and irreducible is of course known.

Proof. 1) First we compute the induced metric. We again write

G and G(s) etc., just as in §2. For the Cartan decomposition g = ϊ + p,

we have that the Killing form is

and this is the Bergman metric on @v (restricted to TQ@P ~ p). The

transformation between g and g(s) is (§ 2) g(s) = κ(φ = MQM*, where

M =

So for X, Yeg ( s ) we have BS(X,Y) = B(M*XM,M*YM) for the Killing

form. For the decomposition q(

o

s) — ϊ(

o

s) + m we have

θm =

where g(s) = ϊ ( s ) + p{s) is the Cartan decomposition. If we write the

typical element of θm as (Xu, Xu, X24), then a simple computation shows

that

,-ifY X X V - ί° B\ with 7? - ίx" - i Z ^ V T ^ Λ, (X14, X44, X24) - ^ _ Q j with S - ^ ^ Q j ,

and that

BS{XU, Xu, X2i I y14, Y44, Y24)

2) The description of Vo as a quasi-symmetric domain is as follows,

using terminology from [3], [4]: Setting t = 0 in the expressions in

§2, we see
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ί~ _ ,C), ^eM(s,r,C),

^4- (uu* + Ψu) > 0|

ί : = {x e M(s, R)\'x = x} ~ 2?*(s+1)/2 ,

: = M(s, r, C) ~ Csr, and F:τT χτr-*£c be the hermitian map
, v): = uv* + vιu. Letting Ω be the irreducible, self-adjoint (with

respect to the metric below) cone Ω: = {x e M(s, R) \ x > 0} c δ, we have
that F is β-positive, and we have VQ == ®(δ9 -T, F, Ω): = {(z9 n) e Sc

X^llmz — F(w,^)eβ}; the expression as a Siegel domain. As metric
on δ we take ζx, 2/> •" = Σ ^y^7 = trace (#2/), and as base point we take

e: = 2JS e fl. We must compute the mapping Rx e End CO for xeδ,
defined by <x, F(u, v)> = : 2<β, F ( β ^ , v)>. We have

Assuming (and proving) that Rx e M(s, R) and that Rx is symmetric, the
above expression equals Δ(I>Rxwo* + ΦuRxy — 4ΣRxij(uv* + Ψv)^.

(15) We see that Rx = \LX (left multiplication by a?/4) .

Now we must compute the mapping Tx e p(Ω)e c g(β) c QΪ(δ) defined
by Txe — x, where g(β) = ϊ(β)β + p(fl)β is the Cartan decomposition of
the Lie algebra of G(Ω): = {g e G^(^) | flrfl = fl} at e. We have first a
homomorphism φ: G^(s, i?) —> G(Ω) defined by φ(a)x: = axιa for x e δ,

(16) and the corresponding φ: gl(s, R) -» g(β) is ^(A)ίr = Aα; + ^JA .

(17) Also p(Ω)e = {Xe g(fl) | έZ = Z} .

Now for x e £ c gl (s, /?) we have by (16) that (φ(x)z, y} = <α;̂  + «», j/>

= Σ XijZjkVki + Σ tijXjkVki = <«» »2/ + 3/a> = <«, ?>(»)!/>. So ^(α;) = 9(0;)
i /c ijk

for a? e <? c gl(s, Λ), i.e. (by (17)) φ(x)ep(Ω)e for ^ e δ c gl(s, i?). Since
TX2I = α; and p(a?)2/ = 2(a;/ + /«) = 4x, we see

(18) Γx = \φ{x) , where a; e # c gί(s, 2?) .

We have to check the quasi-symmetry condition TxF(u, v) = F(Rxu, v)
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+ F(u, Rxv): TxF(u, v) = \{x(uv* + Ψu) + {uv* + Ψu)x} = i{xuv* + Ψ(xu)

+ u(xv)* + xvιu} = F(Rxu, v) + F(u, Rxv). The irreducibility of Vo fol-

lows from the irreducibility of Ω ([3], [4]).

So VQ is an irreducible, quasi-symmetric Siegel domain.

3) In [4] we computed the Bergman metric for such a domain. The

result was, where d/dxij9 d/dyij9 d/duaβ are vectors in TQV0, 0 being the

base point

and where for instance X d/dx: = J^X^d/dXij for X e £ a flΓ(s,2?), and

: = Σ Uaβd/dιιaβ ίorUerΊ (X^d/dx,X2-d/dx>0 = ζX^d/dy,X2'd/dy>0
aβ

2 d/dy>0 = 0, (X-d/dx, U-d/foi>0

U2 3/du}0 = 2C<2ISf F(Ulf C/2)>

= 4CΣ{17 lβiίl72βiϊ + U2aβUlaβ} = 8CΣ>UlaβU2aβ, where C > 0 is a certain

constant.

4) To compare the metric in 3) with the induced metric (14), we must

translate X — (XU9 X44, X2ύ e θm to the differential expressions in 3):

On the one hand we have

xr d
A n = — —

{(expίZ) O}
dt

—Xu ιX*i Z2,
- z Z 2 4 0 0

x 2 4 o o
Z Y* nt Y

14 -^-24 c -^2

Writing (exp tX)Ό = (zt,ut), we have on the other hand, using the equiv-

alence of different expressions for points in Q)f (see § 2):

L W ί
(expίZ) O = L j 1(̂ 7 ^ j with the last matrix in G£(p,C) .
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Here zt, ut, At, Bt, Ct and Dt are curves with z0 — ils, u0 = 0, Ao = /„

Bo = 0, Co = 0, D, = Ir. This gives

1~.o + iA0 iB0 + t'

*M, 0

Co A

Comparing the two expressions we see A,, = iXu + XH, z0 = 4{XU — iXu},

ΰ, = 2*XU = 2(tX'2i + i'X'β, where X'u, X£ are real.

(19) So 1 = (Xlit Xu, X24) e ^m represents

4Xu-d/dx - 4XH-d/dy + 2'X',

where u = u' + ΐu" with u', u" real.

5) We now compare the two metrics. By (14)

B.(Xu, 0, 01 Yu, 0,0) = 2 Σ XuijYuv, B,(XU, 0, 010, Γ44( 0) = 0 ,

5,(0, ^44,010, Yu, 0) = 2 Σ Z4 4 i,Γ4 4 ί,, 5,(ZM, X44) 010, 0, 724) = 0 ,

β.(o, o, z241 o, o, r24) = 4 Σ {X».,Y»., + Xu.,Yu.t}
aβ

On the other hand we have, using (19) and 3):

- 4 Z 4 4 3/to, -4Y4i d/dy>0 =

o - 0 .

The last J5s-expression above is for the real vectors indicated, while the

last < , >o-expression in 3) is for complex vectors. We see first

<d/duaβ,d/dΰγδ)Q = &Cδaΐδβδ (Kronecker deltas), and therefore ζd/du'aβ9 d/du'ΐδ}0

= <d/du'Jβ, a/a<>0 = 16Cδarδβδ and <β/dι£β, d/3uβ>0 = 0. Then

<2ίZί4 S/9M/ + 2'XZ-d/du"t2
tY'u.d/du' + 2tY'2ί

= 64C 2
aβ

So we see that < , > = 8CBS. q.e.d.
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§6. Domains of Type I, II

The same results hold as in the case of the Siegel disk. Some of

the changes are (see also [2]):

,2/2 ϋlΛ

ϋ

0

21 /°β I = = (*»(U u , U21))
l r 0

zeM(ryC),U12eM(r,quC)/

U21 e M(p19 r, C) ,= : (z, u)

where p1 = p — r, qλ — q — r, and Im z = (z — 2*)/2i. Then 7 0 =

^ ( ^ , τ^ ,F, β), where <f : = ^f(r, C) = {hermitian matrices} (real vector

space), Ψ*: — M(r, qu C)@M(pl9 r, C) (complex vector space), Ω : — ̂ (r , C)

= {positive-definite hermitian matrices} (cone) and F :Ψ* X Ψ* -> £c —

M(r, C) is the β-positive hermitian map F(u'9 u" \ v', v"): = u'v'* + v"*u".
The metric on i is (x, y): = trace (xy), base point is e = 2/r e β, and

Rx(v/9ιι") — \(xvf,u"x) for x e l . Also T^ = \φ{%) where φ: gt(r,C) —>

is

tn: =

= Ai/ + Further, we can take

I A. 44,

Xj

M: = 0
0

XI = Xu e M(r, C), Xu e M(plf r, C) , \

Z 3 4 e M(qlf r, C), X% = Z 4 4 e M{τ, C)

0 ilr>

VT/,, 0 -and we have

0 /,/

0 0 0

0 0 -Un

0 0

For Z J e m , we have a(X, Y) = 0&Z24Γ3*4 +

, - Z 4 4 0 0

0 0 0 0
0 0 0 0
0 0 0 Xu

= 0, and



194 RUNE ZELOW

Π.

= : (2,u)
z e M(2s, C), ιzJ = Jz,ue M(2s, r, C),

Imz — {uu* — JWuJ) e Ω

where J = ί sJ, p = r + 2s, Im 2 = (2 — 2*)/2i, and the cone is

β = {Ye M(2s, C) I ΫJ = J Γ , Γ* = Y > 0} - ^(s, H), where ί ί denotes the

quaternions. The last isomorphism is by restriction of the isomorphism

$ B x = ( _ _) \-> a + jb e J^(s,H) = {quaternion hermitian matrices} ,
\—0 a/

where α* = α, *6 = — δ,/ /ιere denotes the 2nd quaternionic unit, and

<f:=z{xe M(2s, C)\x* ~ x, xJ — Jx) (real vector space). Letting *P: =

M(2s, τy C) (complex vector space), and F: Ψ* x *T -> ^ c be the β-hermitian

map F(%, v): = wv* - JΨvJ, we have 7 0 = 3(δ, "T, F, Ω). The metric

on & is <α?, yy = trace (α;?/), base point is e = 2/2s e Ω, and β^ = \LX for

α e ^ , (left multiplication). Also Tx — \φ{x) where

φ: {A e QΓ(25, C) 13J = JA}

= Ay + 2/A*. Further we can takeis

m: =

M:=

and we have

— IJΛ.24J

0
0

/ 2 7 r 0
0

Z * = Z 1 4 e M(2s, C), Z 1 4 / = JXU,\

Xu e M{r, 2s, C),

Z * = Z 4 4 e M(2s, C), ΣJ = /Z 4 4 J
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for the complex structure. For X, Y e m, we have a(X, Y) — 0 ^XuJ
ιYu

+ YuPXu = 0.
(Here we also use that the dimension of the boundary component is
positive, and therefore r > 1.) Finally,

-Xu 0 0
0 0 0 0
0 0 0 o ^ C m

0 0 0 Xj
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